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Interaction of Rayleigh waves with randomly distributed oscillators on the surface
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The attenuation of Rayleigh waves due to their interaction with resonating structures randomly distributed
on the surface of a semi-infinite elastic medium is calculated along with the Rayleigh wave frequency. The
resonating structures are modeled by single oscillators coupled to the displacement field at the surface of the
elastic medium. Using the coherent potential approximation, the dependence of the frequency and damping
constant of the Rayleigh waves on wave vectors are determined for various values of the concentration of
oscillators on the surfac§S0163-1829)01719-1

I. INTRODUCTION monitored by measuring the frequency and the attenuation of
surface acoustic waves.

Surface acoustic waves are known to be a versatile probe The goal of this paper is to study theoretically the effect
for various effects and physical properties at crystal surface®f randomly distributed resonators on the frequency and the
Their sensitivity to surface modifications along with the highattenuation of Rayleigh waves. The resonators are modeled
accuracy, to which their frequencies can be measured in tHey masses and springs coupled to the displacement field at
ultrasonic regime, makes them attractive as a tool in surfac€ Surface and exerting a stress on the surface. Allowing the
science and as sensors in technical applications. For a theBScillators to randomly occupy the positions of a regular grid
retical description of the influence of surface modifications®n the surface, one may use the well-established theory of
on Rayleigh waved simple perturbation theory is often suf- the lattice vibrations in crystals with defects to calculate the

ficient. However, certain surface structures like protuber-self'energy of the surface modes. From this quantity, the

ances, adsorbed crystallites, etc., may give rise to resonancggquency and attenuation constant of the surface waves is

in the interaction with a surface wave that are not accessibIC"’IICUIated as function of their wave number as well as the
: . i ependence of these quantities on the coupling strength be-
to low-order perturbation theory. The resonant interaction o

. . ; . ween the oscillators and the substrate and on the concentra-
surface acoustic waves with single resonating structures h

been investigated in detdif® partly with the aim of achiev- on of oscillators on the grid.
ing high reflectivities in surface acoustic wave devicasd
in view of efficient protection against noise caused by rail-
ways in the macroscopic world. Here, concrete blocks are A semi-infinite elastic medium is considered filling the
used as resonating surface structdfes. half-spacez<0. For simplicity, this medium is assumed to
Internal oscillations of microscopic surface structures ande isotropic, which, however, is no restriction for the validity
their coupling to acoustic modes of the substrate have alsof the following general theory. On the surface of this me-
been a focus of recent experimental work. The vibrationallium (z=0), we introduce a two-dimensional grid with grid-
modes of periodic gold nanostructures on fused quartz sukpoints Y, ,=(md,nd). On each of these gridpoints, a har-
strates have been investigated by a picosecond ultrasoniosonic oscillator may be situated with probabilpy(Fig. 1).
technique and theoretically by the finite element method. The oscillator degree of freedoXy, , obeys the equation of
The percolation transition of gold islands on NaCl has beerinotion
monitored via a Brillouin light-scattering analysis of the sur-
face acoustic modes of this systéfn.

Il. GENERAL THEORY

Recently, surface acoustic waves have been used to study T ( /7)/
the structural behavior of hydrogen films deposited on a sur- ; { ) o= o
face of a LiNbQ crystal as a response to thermal Iy/ (/7‘\) ¢ )
treatment3~® Above a critical temperature, the homoge- 7=

neous hydrogen film undergoes a transition to a state, where X
crystallites are formed spontaneously on the surface having
their own vibrational resonances. These crystallites are dis-
tributed randomly on the surface. The transition has been FIG. 1. Geometry of the system under consideration.
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M (Xmnt ¥Xmn) + & Xmn—Us(Ymn0]=0, (2.1) W, (z|q) A
Wy(z]q) | == dz eL(@@)ZA (q,w)
whereu,(R,z) is the@ component of the displacement field Wi(2|q) —ia (q,0)
and R=(x,y). When taking these oscillators as a simple
model for crystallites with their vibrational resonances, the a1
damping constany represents dissipation inside the crystal- 1 (OB
lites. The oscillators exert the stress += e*T@ZAL (q, )
ql  di+ai
a aT(qvw)
TS (RO=2 CmnSR=Ymn) k[ Xmn=U3(Ymn,0)] 4,
(2.2) 3 a1 | e @A, (qw), (2.9
0

on the surface. Here we have introduced the random variable
Cmn» Which is equal to 1 with probabilitp and equal to 0 Where
with probability 1—p. The functionS(R) characterizes the

stress distribution on the surface generated by a single oscil-
lator. Energy conservation in the cage=0 requires

211/2
q§+q§—(i) } (2.10

aL 1(g,w)= ULt

andv, andvy are the velocities of longitudinal and trans-
d4?R SR)=1 2.3 verse bulk sound waves in the isotf(_)pic medium. Th_e roots
' ' in Eq. (2.10 are the ones with positive real part or, if the
expression in the square brackets is negative, the ones with
negative imaginary part to satisfy the boundary conditions of

The equation of motion for the displacement field reads . S .
q P exponential decay or the Sommerfeld radiation conditions at

Z— — o,
. d Inserting Eq.(2.8) with Eq. (2.9 into the boundary con-
pl,= % @Tw (24 ditions

Toa(RO=TF(R,0)+TH(R,0) (213
with the mass density and the constitutive equation
and choosingl=1,=0, I3(q,w)=1(g,w), we obtain the
following equations for the amplitude; , Ay, andAr,:

dJ
T = C —u,,. 2.
o6~ 20, Co v s 29 20, (G, ) ax(G,®)

ATl(q,CU)_ a'2|'(q,w)+q2 AL(qvw)l (2123
For the isotropic material under consideration, the elastic
moduli C,z ,, can be expressed by two Lantenstants\ Ar(9,0)=0, (2.12b
and u via
AL(g,@)=Ry(q,0)I(q,»)
Cop uv=N0ap0,t (84,05, F 84,05,). (2.6

+Ro(q,w)f d?q'V(9,9",0)AL(q",0).

Equation(2.2) has to be regarded as a boundary condition for (2.120
the displacement field at the surface.

When applying an external surface stress of the form  In writing Eq. (2.129 we have introduced the bare Green
function

T (R0 =1 4(k, )€ kR™eV), 2.7 Ro(0, @)= al ar(q,@)?+9?]
o8 207 ar(q,0) @ (0, @) —[ar(q, )7+
oscillating with a fixed frequencw, the displacement field (2.13
responding to this surface stress can be represented as which, for given wave numbeg, has a pole at the frequency

w=vRry, Wherevg is the Rayleigh wave velocity of the sub-
strate. We have also introduced an interaction potential

2]2!

U(RZ) = (2m) 2 f W, (2 e TR o). (2.9

V(qvqllw):a(qvw)b(quw)z Cm'nei(q’fq%men,
To satisfy the equations of motion in the isotropic substrate, mn (2.14
the functionsW,, B=1,2,3, describing the depth depen- '
dence of the displacement field have to be of the form where



b L (@0Ie*ak(q.e)]
(0)= 2 ™ qlar(q @)+ ]

Introducing now the Green functidR(q,q’, ) of the disor-
dered system via

(2.19

(2.17
one may obtain from Eq2.129 the Dyson equation

R(q,q’,w)z Ro(quw)&q_ql)

AL(q,w)=f d?d’R(9,9', )1 (9", 0),

+Ro(q,w)J d?q"V(9,9",@)R(Q",q",w).
(2.18
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approximation(CPA). It is known to reproduce correctly the
first-order results i and 1-p (Ref. 19, and it is widely
used as an interpolation scheme between low-concentration
and high-concentration limits. Within this approximation, the
functionw is calculated from the implicit equation

p
1-K(o)[1-W(w)]

W(w)= (3.4

with

K(w>=2wfo°°dqqa(q,w>b<q,w>e<q,w>. 35

From Eqs(3.4) and(3.5) together with Eqs(2.20 and(3.1),
the self-energy may be calculated. Note that as in E2j8)
and (3.4), w is a function of the frequency only.

IV. NUMERICAL RESULTS

In this way, the problem of determining the response of the Surface localized modes of the system under consider-
displacement field to an external stress is transformed into ation that can be excited by an external surface stress com-

standard multiple-scattering problem. We finally introduceponent T3

the ensemble-averaged Green function

(R(9,9",@))=G(q,w)8(q—q'). (2.19

() manifest themselves agompley poles wp

=Q(q)—iT'(qg) of the Green functios(q, w) for given real
g. The real part) as a function ofg gives the dispersion
relation for the surface modes of the system, whi{g) may

In letting G depend on the modulus of the wave vector onIy,be identified with the damping constant of a mode with wave

we have assumed that the functiSiis sufficiently symmet-

numberg. The complex poles have been determined numeri-

ric that isotropy in thex-y plane is restored after averaging C@lly- For the functizons a Gaussian has been chosen:
over the ensemble of oscillator configurations on the surfaceX(R) *€xl—0.5(R/a)"]. The integral occurring in the CPA

This means in particular thad(q,w)=a(q,w). For the
Green functionG, we write the Dyson equation

G(g,w)=Rp(g,0) +Ry(q,w)2(q,»)G(q,w)
(2.20

involving the self-energy.. It is the determination of that
we are addressing in Sec. lll.

Ill. FREQUENCY SHIFT
AND ATTENUATION OF RAYLEIGH WAVES

iteration procedurégright-hand side of Eq(3.5] has been
carried out numerically on appropriate contours in the com-
plex plane slightly off the real axis.

In the following, we usewy=«x/M as frequency unit
andgy= wq/vg as wave-vector unit, wheuss is the velocity
of Rayleigh waves of the substrate. The reduced frequencies
Q/wy and reduced damping constartéw, depend on the
following dimensionless system parameters: The Poisson ra-
tio o of the substrate, the rate/'d of the width of the inter-
action area and the nearest-neighbor distance between oscil-
lators, the quantitygga, the coupling constant = «x/(ua),

In determining the self-energy, we apply standard apthe reduced internal damping constant of the resonagors
proximations used in the theory of phonons in crystals with= ¥/ @o, and the concentratigmof resonators on the surface.

lattice defect$®1’ For convenience, we define

2\ 2
E(q,w)=a(q,w)b(q,w)(7) w(Q,®). (3.0

In all calculations reported on here, we have chosen
=0.17, which corresponds to fused quarga= /16 and
a/d=0.5, while the parametets », andp have been varied.
The above choice of relative lengths, i.gea anda/d, im-
plies that for wave numbers near the resonance vghje

In & concentration expansion, i.e., an expansion with respegle s resulting from the discreteness of the latticelike Bragg

to p, the first-order term is found to be

p

WO T K )

(3.2

where

Ko<w>=2wf:dqqa(q,w>b<q,w>Ro<q,w>. (33

reflection are unimportant.

Figure 2 shows the reduced dispersion relation of surface
modes at fixed values ef=0.2 and»=0.1 for various con-
centrationsp of oscillators on the surface. For small values
of p, only one branch of surface modes is found, namely the
Rayleigh branch. It is slightly perturbed near the resonance
wave vectorg, and crosses the straight line of the Rayleigh
wave dispersion curve for a free surface at a wave number
slightly smaller tharg,. When approaching this wave num-

In this approximation, the self-energy is proportional to theber from below, the surface waves of our system are first

average densitp/d? of the oscillators on the surface.

slowed down and then accelerated as compared to Rayleigh

An approach that goes beyond the first-order theory anavaves of the free surface.

may be applied to higher values jpfs the coherent-potential

From a critical concentration of resonators on, the disper-
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o frequency slightly beloww,, leaves the radiating region of
L T/ the w-q plane at a wave number~ w, /v, and bends up to
14r {,/y' y approach asymptotically the Rayleigh branch of the free sur-
Q/wo /{{;/ face. The typical mode repulsion behavior is found resulting
13 ,,{7’ ] from the coupling of the Rayleigh mode of the substrate and
//,f,’/ the vibrational mode of a film of oscillators on the surface.
12 7 1 We note that the limiting casp=1 of a perfect lattice of
04 oscillators on the surface had already been considered ear-
vr / ] lier. It occurs as the special case of vanishing interaction
/,/:/// between the oscillators in Refs. 18 and 20 and has been
TE S P 1 treated for a one-dimensional array of resonating elements in
/ /’ ,,,,, ,/-f*':“_‘”_“_“Z";"ZZ:-"E‘-:_:E'Z:. Ref. 19. For larger values qf, the upper branch cannot be
09 /,»f,,—;;:’ //// 1 pursued all the way from the nonradiative regiorgte0. In
/A fact, it has been found that for vanishing internal damping of
08 4. ) the oscillators y—0), the leaky branch in the radiative re-
,/,’f/” gion disappears, and the upper branch of the surface modes
o7 5’/” ] terminates at the boundawy=uv+q of the nonradiative re-
47 gion.
06 // ] It has to be noted that only parts of the two branches in
the dispersion relation are relevant for propagation experi-
0806 08 b7 08 oe T IS T ments, while in other regions of the dispersion relation the
q/qO group velocity of the modes is too small to be applicable in

such experiments. To illustrate this, we have displayed in

FIG. 2. Dispersion relation of surface modes for various con-Flg' 3 the power flow along the s_urfacezato generated by
centrations of oscillators on the surfage=1 (outer thick solid ~an external surface stre¢8.7) with | ,(k,w)=6,3l0 as a
line), p=0.75 (thick long-dashed ling p=0.5 (thick short-dashed function ofk and w, wherel is a constant. The concentra-
line), p=0.25 (dotted ling, p=0.1 (inner thick solid ling, p tion of oscillators on the surface has been chosen t@ be
=0.05 (thin dash-dotted line p=0.025 (thin short-dashed line ~ =0.5. In a certain range of wave numbécsrresponding to
and p=0.001 (thin solid line. The upper thin solid straight lines a certain range of periodicities in a transdycehe two
marked byl and T correspond to longitudinal and transverse soundmodes are both visible in Fig. 3.
waves of the substrate, respectively. Further parameters: The attenuation of the surface modes in our system is
=0.2, »=0.1. shown in Fig. 4. For small concentrations of resonators, the

damping constarif has a well-defined maximum as a func-
sion relation splits into two branches. The lower one bendsion of wave numbers slightly below,. This maximum
off from the straight linew=wvgq leading to wave slowing. It sharpens with increasing, but changes its position very
is bounded above by,. With increasing concentration, the little. Beyond the critical concentration, when the modes
lower branch bends away from the Rayleigh branch moréave split into two branches, tHe-q curves become much
strongly. broader. For the lower modd-ig. 4(a)], the maximum oc-

The upper branch starts off g&=0 as a leaky wave at a curs at wave numbert,,, larger thanqy, and g,y slightly

FIG. 3. Power flowP, in thex direction at the
surface generated by an external surface stress
(2.7 with constant amplituddarbitrary unitg.
n=0.1, e=0.2, p=0.5.
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FIG. 4. Damping constart of surface modes as a function of

the modulusg of the wave vectorg =0.2. (a) Lower mode in the
dispersion relationy=0.1. p=1 (upper solid ling, p=0.5 (dash-
dotted ling, p=0.25(upper dotted ling p=0.1 (long-dashed ling

p=0.03 (upper short-dashed linegp=0.025 (lower dotted ling, p

=0.01 (lower short-dashed lingand p=0.001 (lower solid line.

(b) Lower mode in the dispersion relatiom=0.01. p=1 (solid

line), p=0.5 (dash-dotted ling p=0.1 (long-dashed ling p

=0.005 (short-dashed line and p=0.001 (dotted ling. (c) Upper
mode in the dispersion relatiom=0.1. p=1 (thick solid line, p

=0.5 (lower thick dash-dotted line p=0.4 (long-dashed ling p

=0.25(short-dashed lingep= 0.1 (upper dotted ling p=0.05(up-

per thick dash-dotted lingp=0.025 (lower dotted ling, p=0.01
(thin dash-dotted ling and p=0.001(thin solid ling. The vertical
lines marked byL and T correspond tog/qyo=vg/v, and g/qq

=vgrlvT, respectively.
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FIG. 5. Frequency of maximal attenuation as a function of con-
centrationp of oscillators on the surface for three different values of
the coupling constant. »=0.05 (X, dotted ling; »=0.1 (O,

solid line), =0.2 (U, dashed ling »=0.4 (A, dash-dotted ling

increases with increasing On the other hand, the maximal
values ofl" decrease ap approaches 1. We note that fpr
=1, attenuation of the surface modes is only due to the
internal damping of the oscillators on the surface. In the limit
n—0, the surface modes would be undampedderl. To
illustrate the influence of the internal damping constaraf

the oscillators on the attenuation of the surface motieg,
curves for the lower branch are shown in Figofor several
concentrationg with =0.01, which is smaller than the
value of 7 in Fig. 4(a) by a factor of 10. The attenuation of
the surface modes is generally reduced as compared to the
corresponding curves fop=0.1. Especially the difference
between the attenuation far=0.5 andp=0.1 and for the
totally covered surfacep=1) has become much larger, and
for smallp, the resonance peak in theq curve has become
much sharper.

WhenT is plotted as a function of frequency rather than
of wave number, the frequeney,,ax With maximal damping
varies largely linearly with concentratignas demonstrated
for various sets of parameters in Fig. 5.

The damping constants of the modes belonging to the
upper branch of the dispersion relation are shown in Fig.
4(c). In the radiative region, the damping due to radiation
into the bulk is very large as compared to attenuation of the
true surface modes, and it decreases with increasing concen-
tration p. The onset of conversion into longitudinal bulk
waves near the left vertical line in Fig(a} gives rise to a
rapid variation of thd™-q curve.

The qualitative dependence of the dispersion curves and
attenuation of the surface modes on the coupling constant
at fixed concentratiop of oscillators may be characterized
as follows and is easily understood: with increasingthe
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two branches in the dispersion relation repel each other morgurface. A particularly interesting feature is the almost linear
strongly. Thel'-q curves become broader, and the dampingdependence on the concentration of the frequency at which
of the Rayleigh branch increases at finiteas the Rayleigh maximal damping occurs. This finding can perhaps be used
modes are more strongly coupled to the dissipative oscillafor the determination of the density of resonating surface
tors at the surface. elements with the help of surface acoustic waves.

A simplified treatment of the randomly distributed oscil-  We hope that the results presented in this work are helpful
lators on the surface would be to replace the system undeén the interpretation of experiments like the ones reported in
consideration by one with an oscillator situated on each gridRefs. 13—15. Up to now, a comparison between theory and
point Y., , having an effective reduced coupling constantexperiment can only be a qualitative one because the system
£©M=¢p. This would correspond to the virtual crystal ap- treated here can only be regarded as a very simplified model
proximation in the theory of vibrations in disordered crystals.of the situation encountered in the experiments. Hydrogen
This simplified description would lead to a dispersion rela-crystallites forming on a LiNb@ substrate have been mod-
tion in qualitative agreement with the CPA results, althougheled by oscillators that all have equal frequencies, coupling
guantitative differences exist. However, the attenuation ofonstants to the surface, and internal damping. For a quanti-
the surface modes cannot be described correctly in this agative comparison with experiment, a better modeling of the
proach since radiation damping due to conversion into bullshape of the surface elements, their size distribution, their

waves is not included. internal structure, and their coupling to the substrate would
be necessary, and the elastic anisotropy of the substrate
V. CONCLUSIONS would have to be taken into account.

In summary, we have calculated the dispersion curves and
the attenuation of surface acoustic modes in a semi-infinite
isotropic half-space with a surface covered by randomly dis-
tributed damped harmonic oscillators. The oscillators model We would like to thank G. Weiss, K. Escheday, J.
surface structures that give rise to surface shape resonanc€&assen, D. Strauch, and Yu. Kosevich for stimulating dis-
The randomness has been treated within the coherentussions. E.A.G. and A.P.M. are very grateful for the hospi-
potential approximation. For small intrinsic damping of thetality of the Max-Planck-Institute for Physics of Complex
single oscillators, the attenuation of the surface modes showSystems in Dresden. Financial support by INTAS-96-441 is
a strong sensitivity to the concentration of oscillators on thegratefully acknowledged.
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