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Interaction of Rayleigh waves with randomly distributed oscillators on the surface
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The attenuation of Rayleigh waves due to their interaction with resonating structures randomly distributed
on the surface of a semi-infinite elastic medium is calculated along with the Rayleigh wave frequency. The
resonating structures are modeled by single oscillators coupled to the displacement field at the surface of the
elastic medium. Using the coherent potential approximation, the dependence of the frequency and damping
constant of the Rayleigh waves on wave vectors are determined for various values of the concentration of
oscillators on the surface.@S0163-1829~99!01719-1#
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I. INTRODUCTION

Surface acoustic waves are known to be a versatile pr
for various effects and physical properties at crystal surfa
Their sensitivity to surface modifications along with the hi
accuracy, to which their frequencies can be measured in
ultrasonic regime, makes them attractive as a tool in surf
science and as sensors in technical applications. For a t
retical description of the influence of surface modificatio
on Rayleigh waves,1 simple perturbation theory is often su
ficient. However, certain surface structures like protub
ances, adsorbed crystallites, etc., may give rise to resona
in the interaction with a surface wave that are not access
to low-order perturbation theory. The resonant interaction
surface acoustic waves with single resonating structures
been investigated in detail,2–9 partly with the aim of achiev-
ing high reflectivities in surface acoustic wave devices9 and
in view of efficient protection against noise caused by ra
ways in the macroscopic world. Here, concrete blocks
used as resonating surface structures.10

Internal oscillations of microscopic surface structures a
their coupling to acoustic modes of the substrate have
been a focus of recent experimental work. The vibratio
modes of periodic gold nanostructures on fused quartz s
strates have been investigated by a picosecond ultraso
technique and theoretically by the finite element metho11

The percolation transition of gold islands on NaCl has be
monitored via a Brillouin light-scattering analysis of the su
face acoustic modes of this system.12

Recently, surface acoustic waves have been used to s
the structural behavior of hydrogen films deposited on a s
face of a LiNbO3 crystal as a response to therm
treatment.13–15 Above a critical temperature, the homog
neous hydrogen film undergoes a transition to a state, w
crystallites are formed spontaneously on the surface ha
their own vibrational resonances. These crystallites are
tributed randomly on the surface. The transition has b
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monitored by measuring the frequency and the attenuatio
surface acoustic waves.

The goal of this paper is to study theoretically the effe
of randomly distributed resonators on the frequency and
attenuation of Rayleigh waves. The resonators are mod
by masses and springs coupled to the displacement fie
the surface and exerting a stress on the surface. Allowing
oscillators to randomly occupy the positions of a regular g
on the surface, one may use the well-established theor
the lattice vibrations in crystals with defects to calculate
self-energy of the surface modes. From this quantity,
frequency and attenuation constant of the surface wave
calculated as function of their wave number as well as
dependence of these quantities on the coupling strength
tween the oscillators and the substrate and on the conce
tion of oscillators on the grid.

II. GENERAL THEORY

A semi-infinite elastic medium is considered filling th
half-spacez,0. For simplicity, this medium is assumed
be isotropic, which, however, is no restriction for the validi
of the following general theory. On the surface of this m
dium (z50), we introduce a two-dimensional grid with grid
points Ym,n5(md,nd). On each of these gridpoints, a ha
monic oscillator may be situated with probabilityp ~Fig. 1!.
The oscillator degree of freedomXm,n obeys the equation o
motion

FIG. 1. Geometry of the system under consideration.
13 291 ©1999 The American Physical Society
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M ~Ẍm,n1gẊm,n!1k@Xm,n2u3~Ym,n,0!#50, ~2.1!

whereua(R,z) is thea component of the displacement fie
and R5(x,y). When taking these oscillators as a simp
model for crystallites with their vibrational resonances, t
damping constantg represents dissipation inside the cryst
lites. The oscillators exert the stress

T33
~os!~R,0!5(

m,n
cm,nS~R2Ym,n!k@Xm,n2u3~Ym,n,0!#

~2.2!

on the surface. Here we have introduced the random vari
cm,n , which is equal to 1 with probabilityp and equal to 0
with probability 12p. The functionS(R) characterizes the
stress distribution on the surface generated by a single o
lator. Energy conservation in the caseg50 requires

E d2R S~R!51. ~2.3!

The equation of motion for the displacement field reads

rüa5(
b

]

]xb
Tab ~2.4!

with the mass densityr and the constitutive equation

Tab5 (
b,m,n

Cab mn

]

]xm
un . ~2.5!

For the isotropic material under consideration, the ela
moduli Cab mn can be expressed by two Lame´ constantsl
andm via

Cab mn5ldabdmn1m~damdbn1dandbm!. ~2.6!

Equation~2.2! has to be regarded as a boundary condition
the displacement field at the surface.

When applying an external surface stress of the form

Ta3
~ex!~R,0;t !5I a~k,v!ei ~k–R2vt !, ~2.7!

oscillating with a fixed frequencyv, the displacement field
responding to this surface stress can be represented as

ua~R,z;t !5~2p!22E d2qWa~zuq!ei ~q–R2vt !. ~2.8!

To satisfy the equations of motion in the isotropic substra
the functionsWb , b51,2,3, describing the depth depe
dence of the displacement field have to be of the form
e
-

le

il-

ic

r

,

S W1~zuq!

W2~zuq!

W3~zuq!
D 5

1

qS q1

q2

2 iaL~q,v!
D eaL~q,v!zAL~q,v!

1
1

qS q1

q2

2 i
q2

21q1
2

aT~q,v!

D eaT~q,v!zAT1~q,v!

1
1

qS 2q2

q1

0
D eaT~q,v!zAT2~q,v!, ~2.9!

where

aL,T~q,v!5Fq2
21q1

22S v

vL,T
D 2G1/2

~2.10!

and vL and vT are the velocities of longitudinal and tran
verse bulk sound waves in the isotropic medium. The ro
in Eq. ~2.10! are the ones with positive real part or, if th
expression in the square brackets is negative, the ones
negative imaginary part to satisfy the boundary conditions
exponential decay or the Sommerfeld radiation conditions
z→2`.

Inserting Eq.~2.8! with Eq. ~2.9! into the boundary con-
ditions

Ta3~R,0!5Ta3
~os!~R,0!1Ta3

~ex!~R,0! ~2.11!

and choosingI 15I 250, I 3(q,v)[I (q,v), we obtain the
following equations for the amplitudesAL , AT1, andAT2:

AT1~q,v!52
2aL~q,v!aT~q,v!

aT
2~q,v!1q2 AL~q,v!, ~2.12a!

AT2~q,v!50, ~2.12b!

AL~q,v!5R0~q,v!I ~q,v!

1R0~q,v!E d2q8V~q,q8,v!AL~q8,v!.

~2.12c!

In writing Eq. ~2.12c! we have introduced the bare Gree
function

R0~q,v!5
q@aT~q,v!21q2#

4q2aT~q,v!aL~q,v!2@aT~q,v!21q2#2 ,

~2.13!

which, for given wave numberq, has a pole at the frequenc
v5vRq, wherevR is the Rayleigh wave velocity of the sub
strate. We have also introduced an interaction potential

V~q,q8,v!5a~q,v!b~q8,v!(
m,n

cm,nei ~q82q!•Ym,n,

~2.14!

where
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a~q,v!5
k

m

v21 igv

v0
22v22 igv

E d2Reiq–RS~R!, ~2.15!

b~q,v!5
1

4p2

aL~q,v!@q22aT
2~q,v!#

q@aT~q,v!21q2#
. ~2.16!

Introducing now the Green functionR(q,q8,v) of the disor-
dered system via

AL~q,v!5E d2q8R~q,q8,v!I ~q8,v!, ~2.17!

one may obtain from Eq.~2.12c! the Dyson equation

R~q,q8,v!5R0~q,v!d~q2q8!

1R0~q,v!E d2q9V~q,q9,v!R~q9,q8,v!.

~2.18!

In this way, the problem of determining the response of
displacement field to an external stress is transformed in
standard multiple-scattering problem. We finally introdu
the ensemble-averaged Green function

^R~q,q8,v!&5G~q,v!d~q2q8!. ~2.19!

In letting G depend on the modulus of the wave vector on
we have assumed that the functionS is sufficiently symmet-
ric that isotropy in thex-y plane is restored after averagin
over the ensemble of oscillator configurations on the surfa
This means in particular thata(q,v)5a(q,v). For the
Green functionG, we write the Dyson equation

G~q,v!5R0~q,v!1R0~q,v!S~q,v!G~q,v!
~2.20!

involving the self-energyS. It is the determination ofS that
we are addressing in Sec. III.

III. FREQUENCY SHIFT
AND ATTENUATION OF RAYLEIGH WAVES

In determining the self-energy, we apply standard
proximations used in the theory of phonons in crystals w
lattice defects.16,17 For convenience, we define

S~q,v!5a~q,v!b~q,v!S 2p

d D 2

w~q,v!. ~3.1!

In a concentration expansion, i.e., an expansion with res
to p, the first-order term is found to be

w~1!~v!5
p

12K0~v!
, ~3.2!

where

K0~v!52pE
0

`

dq q a~q,v!b~q,v!R0~q,v!. ~3.3!

In this approximation, the self-energy is proportional to t
average densityp/d2 of the oscillators on the surface.

An approach that goes beyond the first-order theory
may be applied to higher values ofp is the coherent-potentia
e
a

,

e.

-
h

ct

d

approximation~CPA!. It is known to reproduce correctly th
first-order results inp and 12p ~Ref. 17!, and it is widely
used as an interpolation scheme between low-concentra
and high-concentration limits. Within this approximation, t
function w is calculated from the implicit equation

w~v!5
p

12K~v!@12w~v!#
~3.4!

with

K~v!52pE
0

`

dq q a~q,v!b~q,v!G~q,v!. ~3.5!

From Eqs.~3.4! and~3.5! together with Eqs.~2.20! and~3.1!,
the self-energy may be calculated. Note that as in Eqs.~3.2!
and ~3.4!, w is a function of the frequencyv only.

IV. NUMERICAL RESULTS

Surface localized modes of the system under consid
ation that can be excited by an external surface stress c
ponent T33

(ex) manifest themselves as~complex! poles vp

5V(q)2 iG(q) of the Green functionG(q,v) for given real
q. The real partV as a function ofq gives the dispersion
relation for the surface modes of the system, whileG(q) may
be identified with the damping constant of a mode with wa
numberq. The complex poles have been determined num
cally. For the functionS, a Gaussian has been chose
S(R)}exp@20.5(R/a)2#. The integral occurring in the CPA
iteration procedure@right-hand side of Eq.~3.5!# has been
carried out numerically on appropriate contours in the co
plex plane slightly off the real axis.

In the following, we usev05Ak/M as frequency unit
andq05v0 /vR as wave-vector unit, wherevR is the velocity
of Rayleigh waves of the substrate. The reduced frequen
V/v0 and reduced damping constantsG/v0 depend on the
following dimensionless system parameters: The Poisson
tio s of the substrate, the ratioa/d of the width of the inter-
action area and the nearest-neighbor distance between o
lators, the quantityq0a, the coupling constant«5k/(ma),
the reduced internal damping constant of the resonatorh
5g/v0, and the concentrationp of resonators on the surface
In all calculations reported on here, we have chosens
50.17, which corresponds to fused quartz,q0a5p/16 and
a/d50.5, while the parameters«, h, andp have been varied
The above choice of relative lengths, i.e.,q0a anda/d, im-
plies that for wave numbers near the resonance valueq0,
effects resulting from the discreteness of the latticelike Bra
reflection are unimportant.

Figure 2 shows the reduced dispersion relation of surf
modes at fixed values of«50.2 andh50.1 for various con-
centrationsp of oscillators on the surface. For small valu
of p, only one branch of surface modes is found, namely
Rayleigh branch. It is slightly perturbed near the resona
wave vectorq0 and crosses the straight line of the Raylei
wave dispersion curve for a free surface at a wave num
slightly smaller thanq0. When approaching this wave num
ber from below, the surface waves of our system are fi
slowed down and then accelerated as compared to Rayl
waves of the free surface.

From a critical concentration of resonators on, the disp
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sion relation splits into two branches. The lower one be
off from the straight linev5vRq leading to wave slowing. It
is bounded above byv0. With increasing concentration, th
lower branch bends away from the Rayleigh branch m
strongly.

The upper branch starts off atq50 as a leaky wave at a

FIG. 2. Dispersion relation of surface modes for various c
centrations of oscillators on the surface:p51 ~outer thick solid
line!, p50.75 ~thick long-dashed line!, p50.5 ~thick short-dashed
line!, p50.25 ~dotted line!, p50.1 ~inner thick solid line!, p
50.05 ~thin dash-dotted line!, p50.025 ~thin short-dashed line!,
and p50.001 ~thin solid line!. The upper thin solid straight line
marked byL andT correspond to longitudinal and transverse sou
waves of the substrate, respectively. Further parameters«
50.2, h50.1.
s

e

frequency slightly belowv0, leaves the radiating region o
thev-q plane at a wave numberq'v0 /vT , and bends up to
approach asymptotically the Rayleigh branch of the free s
face. The typical mode repulsion behavior is found result
from the coupling of the Rayleigh mode of the substrate a
the vibrational mode of a film of oscillators on the surfac
We note that the limiting casep51 of a perfect lattice of
oscillators on the surface had already been considered
lier. It occurs as the special case of vanishing interact
between the oscillators in Refs. 18 and 20 and has b
treated for a one-dimensional array of resonating elemen
Ref. 19. For larger values ofp, the upper branch cannot b
pursued all the way from the nonradiative region toq50. In
fact, it has been found that for vanishing internal damping
the oscillators (h→0), the leaky branch in the radiative re
gion disappears, and the upper branch of the surface m
terminates at the boundaryv5vTq of the nonradiative re-
gion.

It has to be noted that only parts of the two branches
the dispersion relation are relevant for propagation exp
ments, while in other regions of the dispersion relation
group velocity of the modes is too small to be applicable
such experiments. To illustrate this, we have displayed
Fig. 3 the power flow along the surface atz50 generated by
an external surface stress~2.7! with I a(k,v)5da3I 0 as a
function of k andv, whereI 0 is a constant. The concentra
tion of oscillators on the surface has been chosen to bp
50.5. In a certain range of wave numbers~corresponding to
a certain range of periodicities in a transducer!, the two
modes are both visible in Fig. 3.

The attenuation of the surface modes in our system
shown in Fig. 4. For small concentrations of resonators,
damping constantG has a well-defined maximum as a fun
tion of wave numbers slightly belowq0. This maximum
sharpens with increasingp, but changes its position ver
little. Beyond the critical concentration, when the mod
have split into two branches, theG-q curves become much
broader. For the lower mode@Fig. 4~a!#, the maximum oc-
curs at wave numbersqmax larger thanq0, andqmax slightly

-

d

ess

FIG. 3. Power flowP1 in thex direction at the

surface generated by an external surface str
~2.7! with constant amplitude~arbitrary units!.
h50.1, «50.2, p50.5.
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FIG. 4. Damping constantG of surface modes as a function o
the modulusq of the wave vector,«50.2. ~a! Lower mode in the
dispersion relation,h50.1. p51 ~upper solid line!, p50.5 ~dash-
dotted line!, p50.25~upper dotted line!, p50.1 ~long-dashed line!,
p50.03 ~upper short-dashed line!, p50.025~lower dotted line!, p
50.01 ~lower short-dashed line!, and p50.001 ~lower solid line!.
~b! Lower mode in the dispersion relation,h50.01. p51 ~solid
line!, p50.5 ~dash-dotted line!, p50.1 ~long-dashed line!, p
50.005 ~short-dashed line!, andp50.001 ~dotted line!. ~c! Upper
mode in the dispersion relation,h50.1. p51 ~thick solid line!, p
50.5 ~lower thick dash-dotted line!, p50.4 ~long-dashed line!, p
50.25~short-dashed line!, p50.1 ~upper dotted line!, p50.05~up-
per thick dash-dotted line!, p50.025 ~lower dotted line!, p50.01
~thin dash-dotted line!, andp50.001~thin solid line!. The vertical
lines marked byL and T correspond toq/q05vR /vL and q/q0

5vR /vT , respectively.
increases with increasingp. On the other hand, the maxima
values ofG decrease asp approaches 1. We note that forp
51, attenuation of the surface modes is only due to
internal damping of the oscillators on the surface. In the lim
h→0, the surface modes would be undamped forp51. To
illustrate the influence of the internal damping constantg of
the oscillators on the attenuation of the surface modes,G-q
curves for the lower branch are shown in Fig. 4~b! for several
concentrationsp with h50.01, which is smaller than the
value ofh in Fig. 4~a! by a factor of 10. The attenuation o
the surface modes is generally reduced as compared to
corresponding curves forh50.1. Especially the difference
between the attenuation forp50.5 andp50.1 and for the
totally covered surface (p51) has become much larger, an
for smallp, the resonance peak in theG-q curve has become
much sharper.

WhenG is plotted as a function of frequency rather th
of wave number, the frequencyvmax with maximal damping
varies largely linearly with concentrationp as demonstrated
for various sets of parameters in Fig. 5.

The damping constants of the modes belonging to
upper branch of the dispersion relation are shown in F
4~c!. In the radiative region, the damping due to radiati
into the bulk is very large as compared to attenuation of
true surface modes, and it decreases with increasing con
tration p. The onset of conversion into longitudinal bu
waves near the left vertical line in Fig. 4~c! gives rise to a
rapid variation of theG-q curve.

The qualitative dependence of the dispersion curves
attenuation of the surface modes on the coupling consta«
at fixed concentrationp of oscillators may be characterize
as follows and is easily understood: with increasing«, the

FIG. 5. Frequency of maximal attenuation as a function of c
centrationp of oscillators on the surface for three different values
the coupling constant«. h50.05 (3, dotted line!; h50.1 (s,

solid line!, h50.2 (t̄, dashed line!, h50.4 (n, dash-dotted line!.
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two branches in the dispersion relation repel each other m
strongly. TheG-q curves become broader, and the damp
of the Rayleigh branch increases at finiteg as the Rayleigh
modes are more strongly coupled to the dissipative osc
tors at the surface.

A simplified treatment of the randomly distributed osc
lators on the surface would be to replace the system un
consideration by one with an oscillator situated on each g
point Ym,n having an effective reduced coupling consta
« (eff)5«p. This would correspond to the virtual crystal a
proximation in the theory of vibrations in disordered crysta
This simplified description would lead to a dispersion re
tion in qualitative agreement with the CPA results, althou
quantitative differences exist. However, the attenuation
the surface modes cannot be described correctly in this
proach since radiation damping due to conversion into b
waves is not included.

V. CONCLUSIONS

In summary, we have calculated the dispersion curves
the attenuation of surface acoustic modes in a semi-infi
isotropic half-space with a surface covered by randomly d
tributed damped harmonic oscillators. The oscillators mo
surface structures that give rise to surface shape resona
The randomness has been treated within the coher
potential approximation. For small intrinsic damping of t
single oscillators, the attenuation of the surface modes sh
a strong sensitivity to the concentration of oscillators on
K
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surface. A particularly interesting feature is the almost line
dependence on the concentration of the frequency at wh
maximal damping occurs. This finding can perhaps be u
for the determination of the density of resonating surfa
elements with the help of surface acoustic waves.

We hope that the results presented in this work are help
in the interpretation of experiments like the ones reported
Refs. 13–15. Up to now, a comparison between theory a
experiment can only be a qualitative one because the sys
treated here can only be regarded as a very simplified mo
of the situation encountered in the experiments. Hydrog
crystallites forming on a LiNbO3 substrate have been mod
eled by oscillators that all have equal frequencies, coupl
constants to the surface, and internal damping. For a qua
tative comparison with experiment, a better modeling of t
shape of the surface elements, their size distribution, th
internal structure, and their coupling to the substrate wo
be necessary, and the elastic anisotropy of the subst
would have to be taken into account.
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