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Susceptibility scaling and vertex corrections for a nested Fermi liquid
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An unusual scaling of the spin susceptibility, as a function of frequency/temperature, was discovered for
noninteracting electrons on a nested Fermi surface. This scaling has been confirmed by neutron-scattering
experiments on high-temperature superconductors, and it can explain the anomalous quasiparticle damping in
cuprates if electron collisions are dominant. The present work proves that self-energy and vertex corrections
preserve the scaling features of the susceptibility to leading order in the Hubbard on-site Coulomb repulsionU.
Analytic results for the static susceptibility show how self-energy and vertex terms modify the traditional
random-phase approximation results for a spin-density-wave instability and suppress the charge susceptibility.
These results are relevant tod-wave superconductors, organic metals, and chromium.
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I. INTRODUCTION

The Landau Fermi-liquid theory of weakly interactin
quasiparticles is valid in simple metals because the P
exclusion principle limits accessible scattering states.1 Lut-
tinger proved2 that the damping for electron collisions on
Fermi sphere takes the Fermi-liquid~FL! form

GFL5A@~pT!21v2#, ~1!

where the small prefactorA is determined by the Coulom
potential. Higher-order self-energy and vertex correctio
renormalize the constantA, but otherwise yield correction
of higher powers in the frequencyv and temperatureT. This
perturbation theory justifies the free-electron response
electrons in a simple metal, which Drude deduced a hund
years ago from the optical conductivity spectra of metals l
copper, silver, and even lead.

However, many metals exhibit anomalous damping tha
dominated by electron collisions. For example, hig
temperature superconductors, such as the cup
YBa2Cu3O7, display a damping that is linear inv up to large
frequencies'1 eV and that becomes linear inT in the static
limit.3 If the linear damping persists to zero frequency, ca
sality forces the effective mass to diverge at zero tempera
and frequency—a scenario that is the essence of the ‘‘m
ginal’’ Fermi-liquid hypothesis.4

The present analysis is motivated by the nested Fe
liquid theory5 ~NFL! that derives the unconventional dam
ing

GNFL.
p

2
@U/W#2 maxuv,~p22!Tu ~2!

by applying the Born approximation to electrons scatter
between nearly parallel segments of the Fermi surface, w
are separated by a momentumQ. When the quasiparticle
energy spectrum satisfies the nesting condition
PRB 590163-1829/99/59~2!/1324~9!/$15.00
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«0~k1Q!.2«0~k!, ~3!

the phase space for collisions is dominated by parallel o
regions.

When the NFL damping formula is fit to experiment
transport data on cuprates, the estimated Hubbard on
Coulomb repulsionU is similar to the bandwidthW. Thus
higher-order corrections are needed to test the s
consistency of the NFL theory.

The primary goal of the present analysis is to compute
self-energy and vertex corrections to the spin susceptibi
since the susceptibility scaling as a function of (v/T) deter-
mines the anomalous NFL damping. We find a strong ren
malization of the susceptibility by the self-energy and t
vertex terms, and prove that the scaling is conserved in le
ing orders ofU.

Vertex corrections cancel divergent self-energy contrib
tions to the optical conductivity in the long-wavelength lim
as shown by a charge-conserving analysis that satisfies
Ward identity.6 These NFL calculations provide a micro
scopic explanation for two mysterious features of superc
ducting cuprates: The strange decrease in the optical re
tivity as a function of v;6 and a flat electronic Rama
spectrum that persists to 1 eV.7

The susceptibility at finite momentum plays a key role
d-wave superconductivity theories and defines a phase
gram for the competing spin-density-wave~SDW! phase
transition.8 Decades ago, Berk and Schrieffer,9 and indepen-
dently Kohn and Luttinger,10 showed that pairing by ex
change of spin or charge fluctuations lacks substance
electrons with a spherical Fermi surface. However, rec
compelling evidence for ad-wave symmetry of the energ
gap in high-temperature superconductors has rejuvenate
terest in such pairing mechanisms for charge carriers tha
coupled solely by a repulsive Coulomb potential.

Scalapino and others11 computed numerically the spin
fluctuation exchange for two-dimensional tight-binding mo
1324 ©1999 The American Physical Society
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PRB 59 1325SUSCEPTIBILITY SCALING AND VERTEX . . .
els and found very small superconducting transition temp
tures for ad-state in lowest order. Nevertheless, they poin
out that the random-phase approximation~RPA! series for
the susceptibility may boost the pairing strength. In this c
text, vertex corrections may reduce the RPA enhancem
as pointed out by Schrieffer.12

A nested Fermi-surface topology enhances thed-wave
pairing interaction to yield ad-wave superconducting stat
with Tc.100 K in the leading order spin-fluctuation proces
even though the high-Tc regime is constrained to a narro
range of nesting vectors.13 Higher-order terms are als
needed to test this nesting mechanism for enhancedd-state
superconductivity.

We develop the many-body formalism in Sec. II, inclu
ing a simple derivation of the scaling and NFL damping.
Sec. III the Ward identity is used to guide the vertex form
ism and a perturbation theory calculation verifies that sca
is preserved. The static limit for the susceptibility is com
puted analytically in Sec. III, and then self-energy and ver
contributions are compared to the standard RPA terms in
context of the SDW phase transition andd-wave supercon-
ductivity in Sec. IV. Conclusions of our study are in Sec.

II. MANY-BODY METHOD

We consider the Hubbard Hamiltonian

H5(
k,s

«0~k!ck,s
1 ck,s

1
U

2V (
k,k8,q,s

ck1q,s
1 ck82q,2s

1 ck8 ,2sck,s , ~4!

whereU defines the on-site Coulomb repulsion, and the el
tron energy is«0(k).

The noninteracting quasiparticle Green’s function is

G0~k,iv!5
1

iv2«0~k!
. ~5!

Dyson’s equation

G21~k,iv!5G0
21~k,iv!2S~k,iv! ~6!

defines the self-energy

S~k,iv!52E ddq

~2p!d T(
n

G~k1q,iv1 in!

3D~q,in!G~k,iv;q,in!, ~7!

which is shown diagrammatically in Fig. 1. The screen
interaction is defined as

D~q,in!5
U

11UP~q,in!
, ~8!

and the polarizability

P~q,in!522E ddk

~2p!d T(
v

G~k,iv!

3G~k1q,iv1 in!G~k,iv;q,in! ~9!
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is also displayed in Fig. 1.
If a noninteracting system exhibits the nesting property

Eq. ~3! for some nesting vectorQ, then the imaginary part o
the bare polarizability5 develops scaling inv/T. An elemen-
tary proof of this scaling phenomena follows from the pola
izability formula in terms of the Fermi functionf (z)
5@exp(z)11#21:

P09~Q,v!5E ddk

~2p!d $ f @«~k!#2 f @«~k1Q!#%

3d@v2«~k1Q!1«~k!#. ~10!

Defining a variable z5«(k)52«(k1Q) and then per-
forming the one-dimensional integral over thed function,
one obtains

PNFL,09 ~Q,v!5
p

2
N0 tanhS v

4TD , ~11!

which is a function ofv/T only, and is proportional tov/T
for v!T, and then becomes constant forv@T.

By contrast, a conventional electron gas susceptibility
linear in v ~with a negligible temperature dependence!, and
this analytic structure produces the weak Fermi-liquid dam
ing in Eq. ~1!.

When electrons scatter between nested orbit regions,
scaling leads to the anomalous damping in the Born appr
mation. Taking the imaginary part of the self-energy in E
~7!, and using the leading vertex termG51, gives

SNFL9 ~v!52
1

2
U2N0E dv8H cothS v8

2TD2tanhS v82v

2T D J
3PNFL,09 ~Q,v8!. ~12!

Given the scaling ofPNFL,09 (Q,v8) as a function ofy
5v8/T, it is readily seen that the quasiparticle damping~in
the staticv50 limit! is proportional toT. At zero tempera-
ture, the thermal factors in Eq.~12! reduce to Heaviside
functions, and the polarizability saturates toPNFL9 (Q,v8)
.(p/2)N0.const; then the frequency integration gives
simple derivation ofSNFL9 52pv@UN0#2/2, which exhibits

FIG. 1. Diagrams for the Dyson equation for the full self-ener
S and the dressed susceptibilityP. The shaded triangles represe
the vertex, the double wavy line is the screened Coulomb repuls
and double solid straight lines indicate that the electron Gree
function includes the self-energy. The lowest-order Born appro
mation for the self-energyS (2) emanates from the Hubbard on-si
coupling ~wavy line! between electrons of opposite spin.
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1326 PRB 59A. VIROSZTEK AND J. RUVALDS
the surprising linear frequency variation that is typical
high-temperature superconductors.

III. SELF-ENERGY AND VERTEX CORRECTIONS

A. General formulas and Ward identity

The on-site Hubbard interactionU in Eq. ~4!, ~hereU has
the dimension energy3unit-cell volume!, allows us to de-
compose the screened interaction, the polarizability, and
vertex according to the subscriptsi and' that indicate the
relative spin orientation of the interacting electrons as pa
lel and antiparallel respectively. Then we obtain

D i~q,in!5
2U2P i~q,in!

@11UP'~q,in!#22@UP i~q,in!#2 , ~13!

D'~q,in!5
U@11UP'~q,in!#

@11UP'~q,in!#22@UP i~q,in!#2 , ~14!

P i ;'~q,in!52E ddk

~2p!d T(
v

G~k,iv!G~k1q,iv1 in!

3G i ;'~k,iv;q,in!, ~15!

and

S~k,iv!52E ddq

~2p!d T(
n

G~k1q,iv1 in!

3@D i~q,in!G i~k,iv;q,in!

1D'~q,in!G'~k,iv;q,in!#. ~16!

Charge conservation yields the Ward identity

G i~k,iv;q50,in!512
S~k,iv1 in!2S~k,iv!

in
, ~17!

and

G'~k,iv;q50,in!50. ~18!

In this formulation the charge susceptibility becomes

xc~q,in!52
P i~q,in!1P'~q,in!

11U@P i~q,in!1P'~q,in!#
. ~19!

and the spin susceptibility is defined as

xs~q,in!52
P i~q,in!2P'~q,in!

12U@P i~q,in!2P'~q,in!#
. ~20!

If we neglect vertex corrections in the self-energy, w
make an error of only second order in the interaction~as
opposed to first order in the general scheme!: then

S~k,iv!52E ddq

~2p!d T(
n

G~k1q,iv1 in!D i~q,in!.

~21!

This self-energy approximation and the Ward ident
suggest the following equations for the vertices~as displayed
in Fig. 2!:
f

e

l-

G i~k,iv;q,in!512E ddk8

~2p!d T(
v8

D i~k2k8,iv2 iv8!

3G~k8,iv8!G~k81q,iv81 in!

3G i~k8,iv8;q,in! ~22!

and

G'~k,iv;q,in!50. ~23!

This last equation implies

P'~q,in!50, ~24!

while

P i~q,in!52E ddk

~2p!d T(
v

G~k,iv!

3G~k1q,iv1 in!G i~k,iv;q,in!. ~25!

Equations~23! and~24! appear to be rather restrictive, bu
will gain support in Sec. III B.

Finally, due to Eq.~24!, the screened interactions simplif
to

D i~q,in!5
2U2P i~q,in!

12@UP i~q,in!#2 ~26!

and

D'~q,in!5
U

12@UP i~q,in!#2 . ~27!

B. Perturbation theory

In this section we calculate the corrections to the cha
and spin susceptibilities to second order inU. The corre-
sponding Feynman diagrams for the polarizabilityP i are
shown in Fig. 3. ForP i the simple noninteracting quasipa
ticle bubble is given by

P i
~0!~q,in!52E ddk

~2p!d T(
v

G0~k,iv!G0~k1q,iv1 in!

52E ddk

~2p!d

f @«0~k!#2 f @«0~k1q!#

in2«0~k1q!1«0~k!
. ~28!

The self-energy insertions in Fig. 2 yield

FIG. 2. Graphs for the~shaded! full vertex functionG, and the
leading-order correction that is quadratic inU.
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P i
~2!~q,in!S52E ddk

~2p!d T(
v

@G0~k,iv!#2S~2!~k,iv!

3@G0~k1q,iv1 in!1G0~k2q,iv2 in!#,

~29!

where the leading term in the self-energy is

S~2!~k,iv!5U2E ddk8

~2p!d T(
v8

3P i
~0!~k2k8,iv2 iv8!G0~k8,iv8!. ~30!

The vertex correction to the polarizability in Fig. 3 is give
by

P i
~2!~q,in!G52E ddk

~2p!d T(
v

G0~k,iv!

3G0~k1q,iv1 in!G i
~2!~k,iv;q,in!

~31!

with the leading correction to the vertex

G i
~2!~k,iv;q,in!5U2E ddk8

~2p!d T(
v8

P i
~0!~k2k8,iv2 iv8!

3G0~k8,iv8!G0~k81q,iv81 in!. ~32!

The expression forP' is cumbersome in second orde
but its contribution may be finessed by means of the follo
ing theorem.

1. Particle-hole symmetry theorem

In the case of a symmetric half-filled energy band, D
japutra and Ruvalds14 proved a theorem that shows that di
grams with an odd number of particle lines are cance
exactly by the corresponding graphs that have hole prop

FIG. 3. The noninteracting electron polarizability is a ba
bubble, in comparison to polarizabilities that include the self-ene
contributions and the vertex correction to second order inU.
-

-

d
a-

tors. Charge-conjugation symmetry is the physical origin
this cancelation by analogy to the Furry theorem in quant
electrodynamics. However, band structures of metals li
the applicability of the theorem to a short-range interacti
such as the HubbardU.

This theorem is relevant to nearly half-filled tight-bindin
models that yield nesting when the chemical potential
close to half filling. For perfect nesting, the Green’s functi
identity G(2k1Q,2 iv)52G(k,iv) shows that graphs
like the second orderP'

(2) corrections in Fig. 4 cancel eac
other exactly. Thus we neglect these contributions, e
though nesting conditions away from half filling could pr
duce a small correction.

2. Nesting approximation

If the noninteracting electron energy satisfies the nes
property defined in Eq.~3!, then

P i
~0!~Q,in!5E d«N0~«!

tanh~«/2T!

in12«
, ~33!

whereN0(«) is the density of states. For a symmetric fl
density of statesN0(«)5N0Q(W/22u«u) the above expres
sion is logarithmically divergent in the static limit:

P i
~0!~Q,in50!5N0E

2W/4T

W/4T

dx
tanh~x!

2x
5N0 ln~gW/pT!.

~34!

Hereg51.781 . . . is related to the Euler constant.
Furthermore, thenesting approximation5 suggests the re

placement ofP i
(0) in Eqs. ~30! and ~32! by its value at the

nesting vectorQ:

P i
~0!~k2k8,iv2 iv8!→P i

~0!~Q,iv2 iv8!. ~35!

y

FIG. 4. Diagrams forP' that cancel each other exactly whe
particle-hole symmetry is valid.
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When this change is made simultaneously in both the s
energy and vertex, it is a conserving approximation. T
self-energy can now be expressed as

S~2!~k,iv!5
U2

2 E d«8N0~«8!E d«9N0~«9!

3
@ tanh~«8/2T!1coth~«9/T!#tanh~«9/2T!

iv2 «̃
,

~36!

which is independent ofk, with «̃5«812«9.
For the polarization at the nesting vector, we need

evaluate the vertex atQ as
a
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G i
~2!~k,iv;Q,in!

5
U2

2 E d«8N0~«8!E d«9N0~«9!

3
@ tanh~«8/2T!1coth~«9/T!#tanh~«9/2T!

in12«8

3S 1

iv2 «̃
2

1

iv1 in1 «̃
D , ~37!

which is also independent ofk.
Finally, using the above expressions we obtain the follo

ing formulas for the self-energy and vertex corrections
P i :
P i
~2!~Q,in!S5

U2

2 E d«N0~«!E d«8N0~«8!E d«9N0~«9!@ tanh~«8/2T!1coth~«9/T!#tanh~«9/2T!

3H tanh~«/2T!

~ in12«!2 F 1

in1«1 «̃
2

1

«2 «̃ G1
1

~«2 «̃ !2 F tanh~ «̃/2T!

in1«1 «̃
2

tanh~«/2T!

in12« G1
cosh22~«/2T!/2T

~ in12«!~«2 «̃ ! J , ~38!

and

P i
~2!~Q,in!G52

U2

2 E d«N0~«!E d«8N0~«8!E d«9N0~«9!
@ tanh~«8/2T!1coth~«9/T!#tanh~«9/2T!

~ in12«!~ in12«8!

3F tanh~«/2T!2tanh~ «̃/2T!

«̃2«
1

tanh~«/2T!1tanh~ «̃/2T!

in1«1 «̃ G . ~39!
3. Scaling conservation

The key ingredient of scaling refers to the property th
the noninteracting electron susceptibility is a function on
of v/T in case of nesting. The proof that this behavior
sustained by self-energy and vertex corrections is obvi
from Eqs.~38! and~39!. Transforming the threefold integra
tion to dimensionless variablesy5«/T, etc., one sees tha
the imaginary part of the resulting polarizabilities are simp
functions ofv/T by analytic continuation.

This result assures that the vertex corrections as we
the self-energy terms yield the qualitative scaling of the s
ceptibility that generates the linearT variation of the damp-
ing in the NFL theory. Quantitative corrections, and possi
effects for the frequency variation of the damping requ
evaluation of the above integrals, which is unfortunately
feasible analytically in the general case of finite frequenc

4. Static limit

Since according to Eq.~34! the static polarizability at the
nesting vector diverges logarithmically, we focus on corr
tions for in50. Taking this limit in Eqs.~38! and ~39! we
obtain
t

s

as
-

e

t
.

-

P i
~2!~Q,in50!S

5
U2

2
N0

3E
2x0

x0
dxE

2x0

x0
dx8E

2x0

x0
dx9@ tanh~x8!

1coth~2x9!#tanh~x9!

3H 1

~x2 x̃!2 F tanh~ x̃!

x1 x̃
2

tanh~x!

2x G1
cosh22~x!

2x~x2 x̃! J ~40!

and

P i
~2!~Q,in50!G52

U2

4
N0

3E
2x0

x0
dxE

2x0

x0
dx8E

2x0

x0

3dx9@ tanh~x8!1coth~2x9!#

3tanh~x9!
tanh~x!1tanh~ x̃!

xx8~x1 x̃!
, ~41!

where we introducedx̃5x812x9 andx05W/4T.
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Equations~40! and ~41! are logarithmically divergent for
largex0 . The leading logarithmic terms can be evaluated

P i
~2!~Q,in50!S52N0Ū2F1

2
ln2~gW/pT!1O~ ln!G ,

~42!

and

P i
~2!~Q,in50!G52N0Ū2F1

3
ln3~gW/pT!1O~ ln2!G ,

~43!

whereŪ5N0U is the dimensionless on-site interaction.
We now summarize our results for the polarizabilities

the nesting vector in the static limit. Up to second order inU,
the leading logarithmically divergent terms from self-ener
and vertex corrections give

P i~Q,in50!5P i
~0!~Q,in50!1P i

~2!~Q,in50!S

1P i
~2!~Q,in50!G

5N0 ln~gW/pT!H 12Ū2F1

3
ln2~gW/pT!

1O~ ln!G J ~44!

and

P'~Q,in50!S1G50. ~45!

IV. CORRESPONDENCE TO RPA

A. Spin susceptibility

The random-phase approximation~RPA! is a standard
method in many-body physics. It picks out a geometric se
of polarizability bubbles that can be easily summed to yi
the spin susceptibility

xS,RPA[
2x0

12Ux0
. ~46!

wherex05P i
(0) is the bare polarizability defined in Eq.~33!.

Obviously the RPA preserves the scaling feature of the s
ceptibility in the case of nesting. A common application
the RPA is to estimate the transition temperature for a SD
phase transition, which occurs when the denominator in
~46! vanishes; i.e.,

Ux08~Q,v50,TSDW!51. ~47!

Since our analytic results for the self-energy and vertex c
rections are valid to second order inU, we compare them to
the similar leading terms in the RPA series, which are sho
in Fig. 5 and have the static limit
s

t

s
d

s-
f

q.

r-

n

xS,RPA
~2! ~Q,in50!52N0 ln~gW/pT!$11Ū ln~gW/pT!

1Ū2 ln2~gW/pT!%. ~48!

By contrast to the RPA enhancement, both principal s
energy~S! and vertex~G! corrections in Eqs.~42! and ~43!
reduce the susceptibility. Their combined influence in lea
ing logarithmic approximation can be expressed as

DxS,S1G~Q,in50!52
2

3
Ū2N0 ln3~gW/pT!. ~49!

A comparison of these contributions in Fig. 6 reveals th
the self-energy and vertex terms substantially reduce
RPA enhancement of the spin susceptibility, although the

FIG. 5. Leading-order terms for the polarizabilitiesP i andP'

in the random-phase approximation.

FIG. 6. Comparison of spin-susceptibility corrections as a fu
tion of temperature. The noninteracting 2x0 ~dotted curve! diverges
logarithmically as a result of nesting. The standard RPA dot-d
curve ~to orderU2! overestimates the susceptibility enhanceme
Self-energy and vertex correctionsDx ~dashed curve! reduce the
susceptibility. The net result of these contributions is the total s
ceptibility ~solid curve! that exceeds the bare 2x0 by a significant
amount when a Coulomb couplingU5W51 eV and a density of
statesN050.2 eV21 are used in these calculations.
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1330 PRB 59A. VIROSZTEK AND J. RUVALDS
result of their combined influence is still an increased s
ceptibility. The curves in Fig. 6 indicate that the RPA ove
estimate of the spin susceptibility tends to exaggerate
SDW phase-transition temperature by a significant amo
for this choice of a Coulomb repulsionU.W51 eV. It
should be noted thatN0 refers to the the density-of-state
portion originating from a nested region, and is chosen
N050.2 eV21 in the present analysis. Physically one m
view nested parallel sides of a nearly square Fermi surfac
a source of a modest density-of-states value, while the
ners dominateN0 by virtue of a small quasiparticle grou
velocity. Hence a realistic model may have rounded corn
that yield the main part of the totalN0 whereas nested re
gions determine the remainder.

These results imply that theories ofd-wave superconduc
tivity cannot rely solely on the RPA to elevate the coupli
parameter. Nevertheless, there remains a limited net incr
in the susceptibility from the combined RPA1self-energy
1vertex terms~by less than a factor of 2!, and this positive
influence reduces the need for large-U values to fit experi-
mental conductivity data on high-temperature supercond
ors. However, acceptableU values cannot dip to the weak
coupling regimeU!W, where these many-body correction
become negligible. Further studies of the susceptibility
hancement at finite frequency are warranted by the pre
indications in the static limit.

Our analytic results are relevant to the general theory
many-body systems that seeks to identify key diagrams
properly describe physical properties. DuBois15 originally
noted that the self-energy of an electron gas can offset
vertex influence, but the mathematical complexity of the m
mentum and frequency variation of the Coulomb poten
vertex has thwarted a full rigorous solution. Neverthele
progress has been achieved for special cases, with reaso
simplifying approximations. Rajagopal16 solved the integral
equation for a vertex function originating from a Yukaw
potential by means of a variational approach. Many gro
have applied physical insight and sum rule constraints
derive local-field corrections to the susceptibility.1 Engel and
Vosko17 obtained self-energy and vertex corrections for
Coulomb gas at zero temperature, and reduced the resu
one-dimensional integrals in the special limitv50.

The case of the Hubbard model has also been analyze
many groups. A particular conserving approximation~named
FLEX! was developed by Bickers and Scalapino,18 which
emphasizes the Parquet ladder series of graphs. Their
merical computations19 on a tight-binding lattice model re
veal a net increase in the susceptibility that is qualitatively
accord with our analytic results—even though their Fer
surface is not nested. Their Monte Carlo simulations a
provide a convenient target susceptibility for comparison
the large temperature regime. Another numerical study of
second order self-energy and vertex corrections for a tig
binding model by Hotta and Fujimoto20 shows the trend of a
susceptibility reduction by self-energy and vertex corr
tions. Tremblay’s group also found a susceptibility in Mon
Carlo simulations21 that implies that the vertex and sel
energy terms~to all orders inU! partially cancel the RPA
graphs.
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B. Charge susceptibility

A striking suppression of the charge susceptibility
strong Coulomb correlations occurs because the leading R
term has opposite sign, as seen below:

xC,RPA
~2! ~Q,in50!52N0 ln~gW/pT!

3$12Ū ln~gW/pT!1Ū2 ln2~gW/pT!%.

~50!

On the other hand, the relevant self-energy and ver
corrections are both negative, and the leading logarith
term of Eq.~49! also serves to yield the total charge susce
tibility

xC,Total
~2! ~Q,in50!52N0 ln~gW/pT!

3H 12Ū ln~gW/pT!

1
2

3
Ū2 ln2~gW/pT!J . ~51!

Thus the total charge susceptibility is severely diminish
by the combination of these correlations, as illustrated by
solid curve in Fig. 7 withU5W51 eV andN050.2 eV21.
This type of reduction for the charge susceptibility has be
noted previously by others20,21 in numerical computations o
tight-binding models without nesting.

The above reduction in the charge susceptibility ste
primarily from the vertex correction~shown by the dashed
curve in Fig. 7!, and may explain why some organic meta
and high-temperature superconductors are not inclined
form charge-density waves22 ~CDW!. Balseiro and Falicov23

proved that a nested Fermi surface favors a CDW phase t
sition over a standard BCS superconducting state for a fi
value of the electron-phonon couplingl, and many organic
metals with partial nesting indeed exhibit CDW states at h
temperatures.

FIG. 7. Suppression of the charge susceptibility by self-ene
and vertex corrections~dashed curve! overwhelms the RPA serie
~dot-dash curve! and leads to a total susceptibility~solid curve! that
is below the noninteracting case shown by the dotted curve
Coulomb coupling U5W51 eV and a density of statesN0

50.2 eV21 are used in these calculations.
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But other organic metals—and superconduct
cuprates—transform to antiferromagnetic materials wh
their chemical composition is changed slightly. Traditiona
such tendencies toward SDW order indicate that the C
lomb U dominates the electron-phonon couplingl in these
materials. Moreover, the present results demonstrate
strong electron correlations deplete the charge susceptib
and thus reduce the likelihood of CDW formation even wh
a normal value ofl occurs.

For a given intermediate strengthU5W, the renormal-
ized charge susceptibility in Fig. 7 is much weaker than
spin susceptibility in Fig. 6. Within the Hubbard model,
therefore appears that the exchange of charge fluctua
will be less important than the pairing induced by spin flu
tuations in theories ofd-wave superconductivity.

V. CONCLUSIONS

The basic scaling, which originates from a nested Fe
surface, is maintained when self-energy, vertex, and R
corrections are calculated in leading orders of perturba
theory. Although self-energy and vertex contributions cou
teract the standard RPA series enhancement of the spin
ceptibility, the total renormalized spin susceptibility remai
considerably larger than the noninteracting case.

If the renormalized susceptibility is used to compute
anomalous damping that is a key property of hig
temperature superconductors, the prerequisite scaling f
of the enhanced susceptibility allows the NFL theory to
conductivity experiments on cuprates with values of
Coulomb repulsionU that are smaller than the original Bor
approximation estimates ofU5W. Hence the magnitude o
the quasiparticle scattering cross section suggests an inte
diate strength ofU that is less than the bandwidth.

Conventional treatments of spin-density-wave phase t
sitions by the RPA approximation may be improved by
cluding self-energy and vertex corrections. In the static lim
our analytic expressions for the polarizability~with self-
energy and vertex corrections in leading order! reveal that
the standard RPA approach overestimates the SDW p
transition temperature for a nested Fermi surface. At l
temperatures the self-energy and vertex corrections div
logarithmically, in line with similar divergences in the ba
susceptibility and the RPA terms. Thus the validity of t
present perturbation analysis breaks down at lowT. Within
RPA the SDW phase-transition temperature sets an app
mate lower limit, although the vertex correction reduces t
barrier somewhat.

In realistic situations the nesting approximation brea
down at some temperatureT* that marks the crossover t
ordinary Fermi-liquid behavior belowT* . Hence, for
T,T* there will not be any logarithmic singularities in th
self-energy, vertex, or polarizability. This physical bounda
represents actual materials that have Fermi surfaces an
nite effective-mass enhancements, even though they ex
CDW or SDW phase transitions at reasonably high temp
tures. In the case of high-temperature superconductors
crossover temperatureT* can be varied by adjusting th
oxygen content or distorting the Fermi surface by oth
means; thus a crossover from the anomalous~linearT! damp-
ing to a standardT2 Fermi-liquid variation is often seen. It i
n
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interesting to note that high superconducting transition te
peratures are found only in those cuprate alloys where
chemical composition suits the condition for anomalo
damping.

Considering the recent widespread evidence ford-wave
superconductivity in cuprates, the prospect of pairing el
trons ~or holes! by a spin-fluctuation exchange method r
quires reliable information for the susceptibility. Althoug
the self-energy and vertex parts produce a detrimental p
ing impact, as implied by our results for the spin susceptib
ity, the RPA terms exceed the combinedS andG contribu-
tions: Hence a limited net increase~up to a factor of 2! may
be plausible for the momentum average of the spin susc
tibility that determines thed-wave pairing. However, claims
for a much larger pairing enhancement by higher-order R
terms~whose sum diverges near a SDW instability! are not
trustworthy without examination of competing higher-ord
self-energy and vertex corrections.

A revival of interest in the possibility of room
temperature superconductivity in metallic hydrogen24 has
stimulated new studies of the effective interactions betw
two electrons in a Coulomb gas. Kukkonen and Overhaus25

used a self-consistent perturbation theory to derive an ef
tive electron-electron coupling that includes exchange
correlation effects. Vignale and Singwi26 employed diagram-
matic techniques to derive a similar potential, with nonloc
additions, and Richardson and Ashcroft24 have extended
these results to include self-energy contributions. Toget
with our present results for a nesting approximation, th
theories should provide guidance for future computations
superconducting pairing in metals with nested Fermi s
faces.

Charge-fluctuation effects are diminished notably by
vertex and self-energy terms that counteract the leading R
contributions to the charge susceptibility. We find that t
total charge susceptibility is significantly smaller than t
bare susceptibility, to second order inU, when the Coulomb
repulsion is comparable to the bandwidth. Hence these e
tron correlations diminish the chances for creating char
density waves in nesting situations where the electr
phonon coupling would otherwise enable a CDW instabil
to compete with classic BCS superconductivity.

Furthermore, since the renormalized spin susceptibility
much larger than the charge susceptibility—as a con
quence of these second-order interactions—it appears
spin fluctuations should dominate the quasiparticle collis
cross section. By the same token, spin fluctuations shoul
favored as a mechanism ford-wave pairing interactions in a
Hubbard model with nesting.

Our analytic results are compatible with research on v
tex corrections for alternate nesting models. Numerical co
putations for a square Fermi surface yield vertex correcti
as a function of momentum as well as frequency27 and the
magnitude of the vertex at the nesting vector is similar to
present analytic expression. Another nesting model, i.e.
approximate square with rounded corners, has been inv
gated by the Parquet diagram method, which clarifies
competition betweend-wave superconductivity and th
SDW.28 Sum rules and conservation principles for vario
theoretical techniques~including the RPA! have recently
been surveyed by Tremblay’s group.21
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