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Susceptibility scaling and vertex corrections for a nested Fermi liquid
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An unusual scaling of the spin susceptibility, as a function of frequency/temperature, was discovered for
noninteracting electrons on a nested Fermi surface. This scaling has been confirmed by neutron-scattering
experiments on high-temperature superconductors, and it can explain the anomalous quasiparticle damping in
cuprates if electron collisions are dominant. The present work proves that self-energy and vertex corrections
preserve the scaling features of the susceptibility to leading order in the Hubbard on-site Coulomb ré&pulsion
Analytic results for the static susceptibility show how self-energy and vertex terms modify the traditional
random-phase approximation results for a spin-density-wave instability and suppress the charge susceptibility.
These results are relevant dewave superconductors, organic metals, and chromium.
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. INTRODUCTION go(k+Q)=—gq(k), )

The Landau Fermi-liquid theory of weakly interacting the phase space for collisions is dominated by parallel orbit
quasiparticles is valid in simple metals because the Pauliegions.

exclusion principle limits accessible Scattering Stét‘?.ﬁll- When the NFL damping formula is fit to experimental
tinger proved that the damping for electron collisions on a transport data on cuprates, the estimated Hubbard on-site
Fermi sphere takes the Fermi-liquieiL) form Coulomb repulsiorlJ is similar to the bandwidthW. Thus
5 higher-order corrections are needed to test the self-
e =AL(7T)"+ o7, &y consistency of the NFL theory.

where the small prefactok is determined by the Coulomb  The primary goal of the present analysis is to compute the
potential. Higher-order self-energy and vertex corrections€lf-energy and vertex corrections to the spin susceptibility,

renormalize the constam, but otherwise yield corrections Since the susceptibility scaling as a function efT) deter-

of higher powers in the frequeneyand temperatur@. This ~ Mines the anomalous NFL damping. We find a strong renor-
perturbation theory justifies the free-electron response offalization of the susceptibility by the self-energy and the

electrons in a simple metal, which Drude deduced a hundre¥ertex terms, and prove that the scaling is conserved in lead-

years ago from the optical conductivity spectra of metals likdng orders ofu. _ _
copper, silver, and even lead. Vertex corrections cancel divergent self-energy contribu-

However, many metals exhibit anomalous damping that i¢ions to the optical conductivity in the long-wavelength limit,
dominated by electron collisions. For example, high-aS shown by a charge-conserving analysis that satisfies the
temperature ~ superconductors, such as the cuprai@ard identity” These NFL calculations provide a micro-
YBa,Cu,0;, display a damping that is linear mup to large ~ SCOpic explanation for two mysterious features of supercon-
frequencies~1 eV and that becomes linear in the static ~ducting cuprates: The strange decrease in the optical reflec-
limit.2 If the linear damping persists to zero frequency, caudiVity as a function ofw;”> and a flat electronic Raman
sality forces the effective mass to diverge at zero temperaturgPectrum that persists to 1 €V.

ginal” Fermi-liquid hypothesié. d-wave superconductivity theories and defines a phase dia-

The present analysis is motivated by the nested Fermigram for the competing spin-density-way8DW) phase

liquid theory® (NFL) that derives the unconventional damp- transition? Decades ago, B%rk and Schrieffeand indepen-
ing dently Kohn and Luttinget’ showed that pairing by ex-

change of spin or charge fluctuations lacks substance for
T electrons with a spherical Fermi surface. However, recent
Inpe= E[U/W]Z maXw,(m—2)T]| (20 compelling evidence for a-wave symmetry of the energy
gap in high-temperature superconductors has rejuvenated in-
by applying the Born approximation to electrons scatteringterest in such pairing mechanisms for charge carriers that are
between nearly parallel segments of the Fermi surface, whichoupled solely by a repulsive Coulomb potential.
are separated by a momentuth When the quasiparticle Scalapino and othets computed numerically the spin-
energy spectrum satisfies the nesting condition fluctuation exchange for two-dimensional tight-binding mod-
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els and found very small superconducting transition tempera-

tures for ad-state in lowest order. Nevertheless, they pointed
out that the random-phase approximati@PA) series for i §
the susceptibility may boost the pairing strength. In this con-

hX

text, vertex corrections may reduce the RPA enhancement,
as pointed out by Schriefféf.

A nested Fermi-surface topology enhances theave ¥
pairing interaction to yield al-wave superconducting state
with T,=100 K in the leading order spin-fluctuation process, 2(2) =
even though the high, regime is constrained to a narrow
range of nesting vectorS. Higher-order terms are also
needed to test this nesting mechanism for enhaksite
superconductivity.

We develop the many-body formalism in Sec. Il, includ-

FIG. 1. Diagrams for the Dyson equation for the full self-energy
3, and the dressed susceptibilil. The shaded triangles represent
the vertex, the double wavy line is the screened Coulomb repulsion,

. imole derivati f1h i d NEL d . | and double solid straight lines indicate that the electron Green’s
INg a simple erlv.a lon. 0. € scaling {;m amping. Mg, ction includes the self-energy. The lowest-order Born approxi-
Sec. IIl the Ward identity is used to guide the vertex formal- ..o o1 the self-energ} @ emanates from the Hubbard on-site

ism and a perturbation theory calculation verifies that :~:calin%up"ng(Wavy line) between electrons of opposite spin.

is preserved. The static limit for the susceptibility is com-

puteq an_alytically in Sec. lll, and then self-energy and VerteXs also displayed in Fig. 1.

contributions are compared to thg .standard RPAterms inthe 4 noninteracting system exhibits the nesting property in

context of the SDW phase transition addvave supercon- gq (3) for some nesting vectdd, then the imaginary part of

ductivity in Sec. IV. Conclusions of our study are in Sec. V. ha pare polarizabilifydevelops scaling im/T. An elemen-
tary proof of this scaling phenomena follows from the polar-

Il. MANY-BODY METHOD izability formula in terms of the Fermi functiorf(z)
. I =[exp@+1]t:
We consider the Hubbard Hamiltonian
; ddk
H:kz So(k)C;’oCk’” HO(in):f (Zw)a{f[s(k)]—f[s(kﬂ—Q)]}
X w—e(k+Q)+e(k)]. (10
2 > ¢ .C c c (4)
ok’ —q —o k' r—o%k,o e .
2V kk',q,0 raok! Defining a variable z e(k)=—¢(k+ Q) and then per-
forming the one-dimensional integral over tléefunction,

whereU defines the on-site Coulomb repulsion, and the elec-

) one obtains
tron energy issq(k).
The noninteracting quasiparticle Green’s function is . ©
- 1 HNFL,O(Q'(U):ENO tanl‘(ﬁ>, (11)
Go(k,iw)=——. )
lw—go(k) which is a function ofw/T only, and is proportional ta/T
Dyson’s equation for o<T, and then becomes constant forT. o
By contrast, a conventional electron gas susceptibility is
G Yk,iw)=Gg (K iw)—3(K,iw) (6) Iin_ear in w_(with a negligible temperature depende};_cm‘nd
this analytic structure produces the weak Fermi-liquid damp-
defines the self-energy ing in Eq. ().

d When electrons scatter between nested orbit regions, the
. d%q L scaling leads to the anomalous damping in the Born approxi-
2(kjiw)= _f (QW)HTZV G(k+a,iw+iv) mation. Taking the imaginary part of the self-energy in Eq.
(7), and using the leading vertex ted=1, gives

XD(q,iv)I'(K,iw;q,iv), (7
which is shown diagrammatically in Fig. 1. The screened E;QFL(Q,):_}U2NOJ dw'[coﬂ—(w_ —tanl‘(w _“’)]
interaction is defined as 2 2T 2T
XHKJFL,O(Q,(U')- (12
D(q,iv)= 77—, (8)
1+UTl(q,iv) Given the scaling ofll{ «(Q,w’) as a function ofy
and the polarizability =w'lT, it is readily seen that the quasiparticle dampiirg

the staticw=0 limit) is proportional toT. At zero tempera-
d% ture, the thermal factors in Eq12) reduce to Heaviside
H(q,iV)Z—Zf WTE G(k,iw) functions, and the polarizability saturates Kt (Q, ")
¢ =(m/2)Ny=const; then the frequency integration gives a
XG(k+q,io+iv)I'(K,iw;q,iv) (9) simple derivation of2, -, = — mw[ UNg]%/2, which exhibits
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the surprising linear frequency variation that is typical of
high-temperature superconductors.

I = % = 1
Ill. SELF-ENERGY AND VERTEX CORRECTIONS

A. General formulas and Ward identity

The on-site Hubbard interactids in Eq. (4), (hereU has A
the dimension energyunit-cell volume, allows us to de- r  _ v
compose the screened interaction, the polarizability, and the I -
vertex according to the subscriptsand L that indicate the
relative spin orientation of the interacting electrons as paral-

lel and antiparallel respectively. Then we obtain FIG. 2. Graphs for théshaded full vertex functionI’, and the

leading-order correction that is quadraticln
Dy(q,iv)= — UM (q,iv)
N NV AP ) U CAR)

(13 o d’k’ o
l—‘H(k,Iw;q,lv)Zl—f (2—77)dT2 Dy(k—k',iw—iw")

U[1+UII, (q,iv)]

O = UM, (qin P-[um,@ing ¥ xelclenelcTa o)

XTy(K'iw';q,iv) (22)

d%
H,M(q,iv)=—J WT%} G(K,iw)G(k+q,io+iv) and

o T, (kiw:q,iv)=0. (23)
XTI (Kiw;q,iv), (15 . T
’ This last equation implies
and
IT, (q,iv)=0, (24
dY
z(k,iw):—f WTE G(k+0q,iw+iv) while
. S _ d )
X[Dy(aq,in)I'y(k,iw;q,iv) HH(q,w)=—f WTE G(k,io)
4D, (qin)T, (Kiw:qiv)]. (16) v

_ _ . . XG(k+q,io+iv)[(kjiw;q,iv). (25
Charge conservation yields the Ward identity
Equationg23) and(24) appear to be rather restrictive, but
will gain support in Sec. Il B.

S(kiw+iv)—2(k,iw)

ik iwg=0jv)=1- iy 17 Finally, due to Eq(24), the screened interactions simplify
to
and
I (kio:g=0im=0 18 Du(a.ip)= —U?II(q,iv) 26
L( vlw!q_ 1' V)_ . ( ) H(QJV)_ 1_[UH||(q,iV)]2 ( )
In this formulation the charge susceptibility becomes and
. I (q,iv)+1I, (q,iv)
xc(Q,iv)=2 : —. (19 L U
1+U[HH(q,|V)+HJ_(q,|V)] Di(q,lv) 1—[UH”(q’i]})]2. (27)
and the spin susceptibility is defined as
. . B. Perturbation theory
(q,iv)=2 (qiv) -1, (qiv) (20 In this section we calculate the corrections to the charge
XSS 10 (i)~ T, (g, )] J

and spin susceptibilities to second orderUn The corre-
sponding Feynman diagrams for the polarizability are
shown in Fig. 3. FollI; the simple noninteracting quasipar-
ticle bubble is given by

If we neglect vertex corrections in the self-energy, we
make an error of only second order in the interact{as
opposed to first order in the general schgntieen

d

. d’ — , %q iv)z—f —dd X T, Go(K,iw)Go(k+0q,iw+iv)
E(k,lw)=—f WTEV G(k+q,iw+iv)Dy(q,iv). A (2m)d & T 0 '

(21)
Thi If imati d the Ward identit = dk Ieo]—floolktq)] (28)

is self-energy approximation an e Ward identity =- G A o+ .
suggest the following equations for the verti¢as displayed (2m)" Tv=so(k+Q)+eo(k)
in Fig. 2): The self-energy insertions in Fig. 2 yield
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A \
(2) , (a)
Oz = +
A
\
e y b
||F = } ( )
FIG. 3. The noninteracting electron polarizability is a bare (2)

bubble, in comparison to polarizabilities that include the self-energy
contributions and the vertex correction to second orddd.in

FIG. 4. Diagrams folll, that cancel each other exactly when
particle-hole symmetry is valid.

2 (q,iv)s= f—dTZ [Go(K,iw)]ZZ @ (k,iw)

tors. Charge-conjugation symmetry is the physical origin of
X[Go(k+q,io+iv)+Gok—q,iw—iv)], this cancelation by analogy to the Furry theorem in quantum
electrodynamics. However, band structures of metals limit
(29) the applicability of the theorem to a short-range interaction,
such as the Hubbard.

where the leading term in the self-energy is This theorem is relevant to nearly half-filled tight-binding
4o’ models that yield nesting when the chemical potential is
SO (K,iw)= sz TE close to half filling. For perfect nesting, the Green’s function
(2m)¢ identity G(—k+Q,—iw)=—G(k,iw) shows that graphs

like the second orde¥I(?) corrections in Fig. 4 cancel each
xHﬁ")(k—k’,iw—iw’)Go(k’,iw’). (30) other exactl_y. Thus_\_/ve neglect these co_n;ributions, even
though nesting conditions away from half filling could pro-

The vertex correction to the polarizability in Fig. 3 is given duce a small correction.

by

_ d% _ , L
HﬁZ)(q,IV)r=—J am TS Gylk,iw) 2. Nesting approximation
@ If the noninteracting electron energy satisfies the nesting
property defined in Eq3), then
X Go(k+qio+in) TP (k,iw;q,iv)

tanh(e/2T)

(0) i) = R
(31 Q0= [ deNo(e) g, (@9

with the leading correction to the vertex

where Ny(¢e) is the density of states. For a symmetric flat
density of statedNy(e)=Ny0 (W/2—|e|) the above expres-

(2) O L L i1
7k iw;q,iv) f (27 HTE I7(k=k"lo=i0")  gjon is logarithmically divergent in the static limit:

XGo(k/,i(J)’)Go(k"l‘q,iw,"’iV). (32) W/AT tanl'(x)

Hﬁ‘”(Q,iy:O)zNof dx

=Np In(yW/ = T).

The expression fokl, is cumbersome in second order, —wi4t 2X
but its contribution may be finessed by means of the follow- (34)
ing theorem. )
Herey=1.78L ... isrelated to the Euler constant.
Furthermore, thaesting approximatiohsuggests the re-
1. Particle-hole symmetry theorem placement oflT{”) in Egs. (30) and (32) by its value at the

nesting vectoQ:
In the case of a symmetric half-filled energy band, Dja- ng v R

japutra and Ruvald$ proved a theorem that shows that dia-
grams with an odd number of particle lines are canceled ©) o Y
exactly by the corresponding graphs that have hole propaga- 7 (k=K io—ie")=I[[7(Qiv—iw"). (39
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When this change is made simultaneously in both the selff (K, iw;Q,iv)
energy and vertex, it is a conserving approximation. The '
self-energy can now be expressed as

u
=7fds’N0(8’)J'ds”No(s")

U2
3@k iw)= > J ds'NO(s')f de"No(e") [tanr(s'/2T)+cotr(s"/T)]tanr(s"/zT)
iv+2¢e’
[tanh(s’IZT)+cotl~(s”/T)]tanr(s”/2T) 1 1
iw—7 ' X| ——=——=], (37)
(36) o Iw—.s lo+lv+e
which is also independent &.
which is independent df, withE=¢'+2¢". Finally, using the above expressions we obtain the follow-
For the polarization at the nesting vector, we need tdng formulas for the self-energy and vertex corrections to
evaluate the vertex & as I1,:
M2 (Q,iv)s =5 f dsNo(a)f de'No(e’ )f de"Ny(&")[tank( &’ /2T)+ coth(&"/T)JtanK &"/2T)
tan &/2T) 1 1 1 [tanhE/2T) tanh(e/2T)] cosh 2(&/2T)/2T a8
(iv+2e)? |ivte+d e—%| (e—%)°| iv+te+? iv+2e (iv+2e)(e—%) |’ (38
and
u? [tanH &'/2T) + coth(e”/T)]tanH &"/2T)
(2) i _ ’ ! 4 4
IT,7(Q,iv)r 5 J'dsNo(s)f de’'Ng(e )J de"Ng(e") (vt 2e)(iv+2e)
tanr(s/ZT)—tan}"(s/ZT) N tanr(sIZT)HanI"(s/ZT) 39
T—¢ ivte+e (39
|
3. Scaling conservation Hﬁz)(Q iv=0)s
The key ingredient of scaling refers to the property that
the noninteracting electron susceptibility is a function only :U—N3JXO dxfxo dX'fXO dx[tanh(x")
of /T in case of nesting. The proof that this behavior is 0 -
sustained by self-energy and vertex corrections is obvious
from Egs.(38) and(39). Transforming the threefold integra- + coth(2x") Jtanh(x")
tion to dimensionless variablgs=¢/T, etc., one sees that
the imaginary part of the r_esultm_g pol_anzablhtles are simply 1 tanh(X) tanhx)] cost (x)
functions ofw/T by analytic continuation. . - — — (40)
This result assures that the vertex corrections as well as (x=%X)" [ x+X 2X 2X(X—X)
the self-energy terms yield the qualitative scaling of the sus-
ceptibility that generates the linedrvariation of the damp- and
ing in the NFL theory. Quantitative corrections, and possible
effects for the frequency variation of the damping require
evaluation of the above integrals, which is unfortunately not ~ 11{?(Q,iv=0);= Ngf dxf dx’ f
feasible analytically in the general case of finite frequency.
4. Static limit X dx"[tan(x") + coth(2x")]
Since according to Eq34) the static polarizability at the . tanh(x) +tanhX)
nesting vector diverges logarithmically, we focus on correc- Xtanh(x") XX (x+%) (41)

tions foriv=0. Taking this limit in Egs.(38) and (39) we
obtain where we introduce@=x'+2x" andxy=W/4T.
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Equations(40) and (41) are logarithmically divergent for A ¥ A

largexy. The leading logarithmic terms can be evaluated as QQQ
A \ A

I1{2(Q,iv=0)s=—NoU?

1
Elnz(yW/wT) + O(In)},

2
(42) HI(| ’%{P A
and
A \
(2) i 1)2 1 3 2
M{?(Q,iv=0)r=~NoU? 5 In*(yW/ 7T) +O(In?) |, <:>WW<:>
(43) ) \
whereU = NoU is the dimensionless on-site interaction. H(1)
We now summarize our results for the polarizabilities at L,RPA

the nesting vector in the static limit. Up to second ordedjn

the leading logarithmically divergent terms from self-energy. FIG. 5. Leading-order terms for the polarizabilititl andII,
. . in the random-phase approximation.
and vertex corrections give

hpa(Q.iv=0)=2N, IN(yW/7T){1+U In(yW/ =T
I1,(Q,i v=0)=TT{(Q,i v=0) + TI?(Q,i v=0)5 Xsrpa(Q,iv=0) o IN(yW/7T){ n(yW/=T)

+I2(Qiv=0)r +02 In?(yW/#rT)}. (49)

By contrast to the RPA enhancement, both principal self-
energy(2) and vertex(I') corrections in Eqs(42) and (43
reduce the susceptibility. Their combined influence in lead-
] (44) ing logarithmic approximation can be expressed as

1
§In2( YW/ 7T)

=N, In(yW/ﬂ'T)[l—Uz

+0(In)

. 2
and AXS’EH«(Q,IV:0)=—§ U2Ng IN*(yW/#T). (49

— _ A comparison of these contributions in Fig. 6 reveals that
11, (Qiv=0)5:r=0. (45 the self-energy and vertex terms substantially reduce the
RPA enhancement of the spin susceptibility, although the net

IV. CORRESPONDENCE TO RPA

12

A. Spin susceptibility

The random-phase approximatidRPA) is a standard
method in many-body physics. It picks out a geometric series
of polarizability bubbles that can be easily summed to yield
the spin susceptibility

\
8T\ "
A

IS
T

2Xo

XSRPA= T Uxo’ (46)

Spin Susceptibility ¥

wherexo=TI{?) is the bare polarizability defined in EB3).
Obviously the RPA preserves the scaling feature of the sus-
ceptibility in the case of nesting. A common application of 2
the RPA is to estimate the transition temperature for a SDW
phase transition, which occurs when the denominator in Eqg.
(46) vanishes; i.e.,

10 80 90 130 170 210 250 200

FIG. 6. Comparison of spin-susceptibility corrections as a func-
tion of temperature. The noninteracting2(dotted curvé diverges
/ _ _ logarithmically as a result of nesting. The standard RPA dot-dash
Uxo(Q,@=0,Tspw) =1. @7 curve (to orderU?) overestimates the susceptibility enhancement.
Self-energy and vertex correctiodsy (dashed cunjereduce the
Since our analytic results for the self-energy and vertex corsusceptibility. The net result of these contributions is the total sus-
rections are valid to second orderlih we compare them to ceptibility (solid curve that exceeds the bareyg by a significant
the similar leading terms in the RPA series, which are showrmmount when a Coulomb coupling=W=1 eV and a density of
in Fig. 5 and have the static limit statesN,=0.2 eV ! are used in these calculations.
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result of their combined influence is still an increased sus- N
ceptibility. The curves in Fig. 6 indicate that the RPA over- i
estimate of the spin susceptibility tends to exaggerate the
SDW phase-transition temperature by a significant amount
for this choice of a Coulomb repulsiod=W=1eV. It
should be noted thall, refers to the the density-of-states
portion originating from a nested region, and is chosen as §
No=0.2 eV ! in the present analysis. Physically one may 3
view nested parallel sides of a nearly square Fermi surface as&
a source of a modest density-of-states value, while the cor-%’
ners dominateN, by virtue of a small quasiparticle group
velocity. Hence a realistic model may have rounded corners
that yield the main part of the toté, whereas nested re-
gions determine the remainder. T(K)

These results imply that theories dfwave superconduc-
tivity cannot rely solely on the RPA to elevate the coupling FIG. 7. Suppression of the charge susceptibility by self-energy
parameter. Nevertheless, there remains a limited net increadgd vertex correctionglashed curveoverwhelms the RPA series
in the susceptibility from the combined RR#A&elf-energy _(dot-dash curv)ean_d Ieads_to a total susceptibilitgolid curve that
+vertex termg(by less than a factor of)2and this positive is below the nqnlnteractlng case shown by t_he dotted curve. A
. . . Coulomb couplingU=W=1eV and a density of statedl,
influence reduces the need for larigevalues to fit experi- —0.2 eV are used in these calculations.
mental conductivity data on high-temperature superconduct-
ors. However, acceptabld values cannot dip to the weak- B. Charge susceptibility
coupling regimeJ <W, where these many-body corrections o . .
become negligible. Further studies of the susceptibility en- A striking suppression of the charge susceptibility by

hancement at finite frequency are warranted by the preseﬁ’frong Coulomb_corr_elauons oceurs bec.ause the leading RPA
S . o term has opposite sign, as seen below:
indications in the static limit.

Our analytic results are relevant to the general theory of (2) C A —
many-body systems that seeks to identify key diagrams thz}{c'RPA(Q'I v=0)=2No In(yW/=T)
properly describe physical properties. DuBdiriginally X{1—-U In(yW/zT)+U2 In?(yWi=T)}.
noted that the self-energy of an electron gas can offset the

vertex influence, but the mathematical complexity of the mo- (50

mentum and frequency variation of the Coulomb potential o the other hand, the relevant self-energy and vertex
vertex has thwarted a full rigorous solution. Neverthelesseorrections are both negative, and the leading logarithmic
progress has been achieved for special cases, with reasonakdém of Eq.(49) also serves to yield the total charge suscep-
simplifying approximations. Rajagopélsolved the integral tibility

equation for a vertex function originating from a Yukawa

ptibility e

SC

potential by means of a variational approach. Many groups Xg)Tota,(Q,i v=0)=2Ng In(yW/ 7 T)
have applied physical insight and sum rule constraints to

derive local-field corrections to the susceptibifttEngel and x{1-U In(yW/ 7 T)
Voska'’ obtained self-energy and vertex corrections for the

Coulomb gas at zero temperature, and reduced the results to 2
one-dimensional integrals in the special limit=0. + 2 U2 In¥( yW/ﬂ'T)]. (51)

The case of the Hubbard model has also been analyzed by 3
many groups. A particular conserving approxm%\(oamed Thus the total charge susceptibility is severely diminished
FLEX) was developed by Bickers gnd Scalap 0/yh|ch_ by the combination of these correlations, as illustrated by the
emphasizes the Parquet ladder series of graphs. Their NY3lid curve in Fig. 7 withU=W=1 eV andN,=0.2 eV L.
merical co_mputatlor_wlé on a tight-binding lattice model re- 1his tyne of reduction for the charge susceptibility has been
veal a net increase in the susceptibility that is qualitatively in,qieq previously by othe?$2*in numerical computations of
accord with our analytic results—even though their Fermiignt-hinding models without nesting.
surface is not nested. Their Monte Carlo simulations also The above reduction in the Charge Suscept|b|||ty stems
provide a convenient target susceptibility for comparison inprimarily from the vertex correctioishown by the dashed
the large temperature regime. Another numerical study of theurve in Fig. 7, and may explain why some organic metals
second order self-energy and vertex corrections for a tightand high-temperature superconductors are not inclined to
binding model by Hotta and Fujimctbshows the trend of a form charge-density wav&s(CDW). Balseiro and Falicc¥/
susceptibility reduction by self-energy and vertex correcproved that a nested Fermi surface favors a CDW phase tran-
tions. Tremblay’s group also found a susceptibility in Montesition over a standard BCS superconducting state for a fixed
Carlo simulation&" that implies that the vertex and self- value of the electron-phonon coupling and many organic
energy termgto all orders inU) partially cancel the RPA metals with partial nesting indeed exhibit CDW states at high
graphs. temperatures.
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But other organic metals—and superconductinginteresting to note that high superconducting transition tem-
cuprates—transform to antiferromagnetic materials whemperatures are found only in those cuprate alloys where the
their chemical composition is changed slightly. Traditionally chemical composition suits the condition for anomalous
such tendencies toward SDW order indicate that the Coudamping.
lomb U dominates the electron-phonon couplingn these Considering the recent widespread evidence davave
materials. Moreover, the present results demonstrate th%bperconductivity in CuprateS, the prospect of pairing elec-

strong electron correlations deplete the charge susceptibilityons (or holeg by a spin-fluctuation exchange method re-
and thus reduce the likelihood of CDW formation even whengires reliable information for the susceptibility. Although

a normal value oh occurs. the self-energy and vertex parts produce a detrimental pair-
For a given intermediate strength=W, the renormal-

. Lo 2 ) ing impact, as implied by our results for the spin susceptibil-
ized charge susceptibility in Fig. 7 is much weaker than t.hqty' the RPA terms exceed the combinBdand T’ contribu-

spin susceptibility in Fig. 6. Within the Hubbard model, it tions: Hence a limited net increagep to a factor of 2 may
b plausible for the momentum average of the spin suscep-
“tibility that determines the-wave pairing. However, claims
for a much larger pairing enhancement by higher-order RPA
terms(whose sum diverges near a SDW instabjliaye not
V. CONCLUSIONS trustworthy without examinatio_n of competing higher-order
self-energy and vertex corrections.

The basic scaling, which originates from a nested Fermi A revival of interest in the possibility of room-
surface, is maintained when self-energy, vertex, and RPAemperature superconductivity in metallic hydrotfehas
corrections are calculated in leading orders of perturbatiostimulated new studies of the effective interactions between
theory. Although self-energy and vertex contributions coun+wo electrons in a Coulomb gas. Kukkonen and Overh&tiser
teract the standard RPA series enhancement of the spin sugsed a self-consistent perturbation theory to derive an effec-
ceptibility, the total renormalized spin susceptibility remainstive electron-electron coupling that includes exchange and
considerably larger than the noninteracting case. correlation effects. Vignale and Singivemployed diagram-

If the renormalized susceptibility is used to compute thematic techniques to derive a similar potential, with nonlocal
anomalous damping that is a key property of high-additions, and Richardson and Ashcfbfhave extended
temperature superconductors, the prerequisite scaling forminese results to include self-energy contributions. Together
of the enhanced susceptibility allows the NFL theory to fitwith our present results for a nesting approximation, these
conductivity experiments on cuprates with values of thetheories should provide guidance for future computations of
Coulomb repulsiort that are smaller than the original Born superconducting pairing in metals with nested Fermi sur-
approximation estimates & =W. Hence the magnitude of faces.
the quasiparticle scattering cross section suggests an interme- Charge-fluctuation effects are diminished notably by the
diate strength ol that is less than the bandwidth. vertex and self-energy terms that counteract the leading RPA

Conventional treatments of spin-density-wave phase trancontributions to the charge susceptibility. We find that the
sitions by the RPA approximation may be improved by in-total charge susceptibility is significantly smaller than the
cluding self-energy and vertex corrections. In the static limit,oare susceptibility, to second orderlih when the Coulomb
our analytic expressions for the polarizabilifwith self-  repulsion is comparable to the bandwidth. Hence these elec-
energy and vertex corrections in leading ojdesveal that tron correlations diminish the chances for creating charge-
the standard RPA approach overestimates the SDW phasinsity waves in nesting situations where the electron-
transition temperature for a nested Fermi surface. At lowphonon coupling would otherwise enable a CDW instability
temperatures the self-energy and vertex corrections diverge compete with classic BCS superconductivity.
logarithmically, in line with similar divergences in the bare  Furthermore, since the renormalized spin susceptibility is
susceptibility and the RPA terms. Thus the validity of themuch larger than the charge susceptibility—as a conse-
present perturbation analysis breaks down at TowVithin  quence of these second-order interactions—it appears that
RPA the SDW phase-transition temperature sets an approxgpin fluctuations should dominate the quasiparticle collision
mate lower limit, although the vertex correction reduces thiscross section. By the same token, spin fluctuations should be
barrier somewhat. favored as a mechanism fdrwave pairing interactions in a

In realistic situations the nesting approximation breaksHubbard model with nesting.
down at some temperatufé* that marks the crossover to  Our analytic results are compatible with research on ver-
ordinary Fermi-liquid behavior belowT*. Hence, for tex corrections for alternate nesting models. Numerical com-
T<T* there will not be any logarithmic singularities in the putations for a square Fermi surface yield vertex corrections
self-energy, vertex, or polarizability. This physical boundaryas a function of momentum as well as frequeéi@nd the
represents actual materials that have Fermi surfaces and finagnitude of the vertex at the nesting vector is similar to the
nite effective-mass enhancements, even though they exhihiresent analytic expression. Another nesting model, i.e., an
CDW or SDW phase transitions at reasonably high temperaapproximate square with rounded corners, has been investi-
tures. In the case of high-temperature superconductors, thgated by the Parquet diagram method, which clarifies the
crossover temperatur€* can be varied by adjusting the competition betweend-wave superconductivity and the
oxygen content or distorting the Fermi surface by otherSDW?28 Sum rules and conservation principles for various
means; thus a crossover from the anomaltinearT) damp-  theoretical techniquesincluding the RPA have recently
ing to a standard? Fermi-liquid variation is often seen. Itis been surveyed by Tremblay’s groép.

will be less important than the pairing induced by spin fluc
tuations in theories ofi-wave superconductivity.
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