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The random magnetic-flux problem on a lattice in a quasi-one-dimensiwira) geometry is studied both
analytically and numerically. The first two moments of the conductance are obtained analytically. Numerical
simulations for the average and variance of the conductance agree with the theory. We find that the center of
the bands =0 plays a special role. Away from=0, transport properties are those of a disordered quantum
wire in the standard unitary symmetry class. At the band centdd, the dependence on the wire length of the
conductance departs from the standard unitary symmetry class and is governed by a different universality class,
the chiral unitary symmetry class. The most remarkable property of this universality class is the existence of an
even-odd effect in the localized regime: Exponential decay of the average conductance for an even number of
channels is replaced by algebraic decay for an odd number of chafB@l63-18209)06419-X|

[. INTRODUCTION scaling theory closely related to that of the Kosterlitz-
Thouless transition controls the localization properties of the
The concepts of scalifg® and of the renormalization random magnetic-flux problem. They predicted that states
groug' have provided crucial insights into the localization are localized in the tails of the spectrum whereas close to the
properties of a quantum particle in a random but staticcenter of the band a line of critical points of the Kosterlitz-
environmenf Beyond a typical length scale depending onThouless type is formed. Related point of views can be found
the microscopic details of the disorder, the localization probin Refs. 25-32. Finally, it has been proposed in Ref. 33 that
lem can be described by an effective field theory that ighe random-flux model shows critical behavior at the band
uniquely specified by the dimensionality of space and thecenter e=0 only, whereas its localization properties are
fundamental symmetries of the microscopic Hamiltorfian. those of the unitary ensemble for energiesO0.
Correspondingly, the disorder is said to belong to the or- In the third scenario, the behavior &t 0 is governed by
thogonal, unitary, and symplectic ensembles, depending oan additional symmetry, the so-called chiral or particle-hole
whether time-reversal symmetry and spin-orbit coupling aresymmetry. The chiral symmetry can also be found in the
present or not:® related problem of a particle hopping on a lattice with ran-
However, not all disordered systems belong to one oflom (rea) hopping amplitude®> In the one-dimensional
these three standard symmetry classes. One example is thersion of this problem, it is well established that the
integer quantum Hall effect, for which the scaling theory inensemble-averaged density of states diverges at the band
the unitary universality class cannot explain the observedenter e=0 (Refs. 36 and 37 and that the ensemble-
jumps in the Hall resistancesince it predicts that all states averaged conductance decays algebraically with the ldngth
are localized in two dimensions. Instead, a special scalingf the systeni® For comparison, in the unitary symmetry
theory was proposed for the integer quantum Hall effectgclass, the density of states is continuous &t0,3° while the
where, in addition to the longitudinal conductivity that con- conductance decays exponentially with. (The one-
trols the scaling flow in the unitary ensemble, the Hall con-dimensional random-hopping problem has been studied in
ductivity appears as a second paramé&tet. many incarnations, cf. Refs. 40-4@&or two-dimensional
In this paper we consider a different example. It is thesystems, the effect of the chiral symmetry was studied by
so-called random-flux model, which describes the localizaGade and Wegnét(see also Refs. 48—E8They argued that
tion properties of a particle moving in a plane perpendiculathe presence of the chiral symmetry results in three addi-
to a static magnetic field of random amplitude and vanishingional symmetry classes, called chiral orthogonal, chiral uni-
meant?=3* In the literature, different points of view have tary, and chiral symplectic. For disordered systems with chi-
been offered with regard to the localization properties andal unitary symmetry, all states are localized except at the
the appropriate symmetry class of the random-flux problemsingular energy =0 at which the average density of states
In Refs. 18—24 it has been claimed that, since the magnetidiverges. The relevance of the chiral unitary symmetry class
field has a vanishing mean, the only effect of the randonto the random-flux problem was pointed out by Miller and
magnetic field is to break time-reversal invariance, and henc&/ang>® (Only the chiral unitary class is of relevance, since
that the localization properties are those of the standard untime-reversal symmetry is broken in the random-flux mgdel.
tary symmetry class. On the other hand, Zhang and Afdvas  For the two-dimensional random-flux problem, suffi-
have argued that this argument might be too naive and that@ently accurate numerical data are notoriously hard to ob-
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tain. Although a consensus has emerged that states are locHtat we consider here. In the latter case, the average conduc-
ized in the tails of the spectrum, it is impossible to decidetance(g) decays algebraically, while the conductance fluc-
solely on the basis of numerical simulations whether statetuations are larger than the mean. We analyze how the even-
are truly delocalized upon approaching the center of th@dd effect follows from the exact solution of the Fokker-
band, or only deceptively appear so as the localization lengtRlanck equation of Ref. 62 and compare with numerical
is much larger than the system sizes that are accessible to tgnulations of the random-flux model.
current computers. Moreover, it is very easy to smear out a We close the introduction by pointing out that the
diverging density of states in a numerical simulati@om- random-flux prqblem is also relevant to some strongly cor-
pare Refs. 13, and 22, and)34n short, no conclusion has relatgq eI%gt(Sré)mc systems. In both the qua}n-tu[)nlrall effect at
been reached in the debate about the localization propertié@lf-filling®>®® and highT, superconductivity'* strong
of the two-dimensional random-flux problem. electronic correlations can be implemented by auxiliary
Here, we focus on the simpler problem of the random-fluxgauge fields. In this context, the random-flux problem cap-
problem on a lattice and in a quasi-one-dimensional geom{{res the contrlbutl_ons from the static transverse gauge fl_elds.
etry of a(thick) quantum wire with weak disorder, and re- Notice that the chiral symmetry is not required on physmal
strict our attention to transport properties, notably the congrounds both for the quantum Hall effect at half-filling and
ductanceg. For a wire geometry, numerical simulations canfor high T superconducting. Another area of applicability
be performed with very high accuracy, and very good statisf0r our results is the passive advection of a scalar
tics can be obtained. Moreover, precise theoretical predicnd non-Hermitian quantum mechaniés’***#inally, the
tions for the transport properties can be made, both for thétriking sensitivity of the localization properties in the
unitary symmetry class, and for the chiral unitary symmetryrandom-flux problem to the parity of the numberof chan-
class. The wire geometry allows us to quantitatively compard€lS is remarkably similar to that of the low-energy sector of
the analytical predictions for the various symmetry classed Single antiferromagnetic sph2 chain to the parity of
and the numerical simulations for the random-flux model N, on the one hand, or to the sensitivity of the low-energy
This comparison shows that, away from the critical energys€Ctor ofN coupled antiferromagnetic spin-1/2 chains to the
£=0, theL dependence of the average and variance of th@arity of N,"" on the other hand.
conductance are those of the unitary ensemble. At the band  The paper is organized as follows. The random-flux prob-
centere=0, (g) and varg are given by the chiral unitary Iem_ in a wire geometry is defined in Sec. Il. The average an_d
ensemble. Hence, we unambiguously show that in a qua¥@riance of thg conduc_:tance are calculated analytically in
one-dimensional geometry, the localization properties of the>€C- Ill. Analytical predictions are compared to the numeri-
random-flux model are described by the third scenario above&@l simulations in Sec. IV. We conclude in Sec. V.
in which thee =0 is a special point, governed by a separate
symmetry class. Although our theory is limited to a quasi- Il. THE RANDOM MAGNETIC-FLUX MODEL
one-dimensional geometry, it does show the importance of In the random-flux model one considers a spinless elec-

the c_hlral symmetry at the band cenmt_o a_nd may thl.JS on on a rectangular lattice in the presence of a random
contribute to the debate about the localization properties o agnetic field with vanishing mean. The magnetic field is
theTrhe}ndom—frIl&( pr?:'%? lndhlt(;:]hter spatial t(jlmelr<13|?:r]s.t . _perpendicular to the plane in which the electron moves. In

S paperwas motivated by to recent Works. FIrst, in &y,;q paper, we study the random-flux model in a wire geom-

recent paper, one of the auth%ﬁ'rsompgted(g) and vamg etry and for weak disorder. This system is described by the
numerically for the random-flux model in a wire geometry to Hamiltonian

a very high accuracy. While for nonzero energieghe re-

sult was found to agree with analytical calculations for the Y= —Udbme 1+ ¥m-1]1— (L= 8 )

unitary symmetry class, 5for =0 a clear difference with ’ , ’ ' >

the unitary symmetry class was observed. Second, for the X e Mmign i1 —t(1— & e mi-ty g,
chiral symmetry classes, a scaling equation for the distribu- (2.2

tion of the transmission eigenvalues in a quasi-one-
dimensional geometry was derived and solved exactly in th&vhere i, ; is the wave function at the lattice siten(j),
chiral unitary case by Simons, Altland, and two of thelabeled by the chain indek=1,... N and by the column
authors®? This scaling equation is the chiral analog of theindex m, see Fig. 1a). The Peierls phase&,; result from
so-called Dorokhov-Mello-Pereyra-Kumar (DMPK)  the flux ® ;= 0. 1j— 0 through the plaquette between
equatior?3-®° which describes the three standard symmetrythe sites fn,j), (m+1,j), (m+1,j+1), and fm,j+1).(The
classes and was solved exactly in the unitary case bflux ©,,; does not uniquely determine all the phases along
Beenakker and Rejaéfi, However, for the chiral unitary all the bonds. We have used this freedom to choose the non-
case, analytical results for thedependence dfg) and varg zero phases along the transverse bonds pnly.
were lacking, so that a comparison between the theory and We consider a system with Hamiltonid@.1) where the
the numerical results of Ref. 34 was not possible. In thephasesd ,,; take random values in a disordered strig i@
present work this gap is bridged. <M only, and are zero outsidé We assume that the disor-
In a wire geometry, the chiral unitary universality classdered region is quasi-one-dimensional, id3>N>1, cor-
undergoes a striking even-odd effect noticed by Miller andresponding to a thick quantum wire. In the disordered region,
Wang>*%" The conductancg decays exponentially with the the Peierls phaseg;, ; are chosen at random in such a way
lengthL if the number of channelll is even, while critical ~ that the magnetic flu® , ;= 61,4 1;— 0 j is uniformly dis-
behavior is shown iN is odd, even in the limit of larg®&l  tributed in[ —p,p7] with 0<p<1. To be precise, with
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(a) where cok,=—¢&/2t —cog vw/(N+1)]. The prefactor 1/sik,

j=3 is chosen such that an equal current is carried in each chan-
nel. The numbeN. is the total number of propagating chan-

0 | 02| O12| 22| 32| Oup . nels at the energg, i.e., the total numberpof Eea?l Wa\?e vec-

torsk,. We are interested in the transport properties gor

0 [Oo1]O1,1] 0921|031 04, close to 0, wherdl.=N, and ignore the distinction between

j=1 N, and N henceforth. The coefficients’, . and c?_ are

m=0 m=5 related by the transfer matrix1 [see Fig. 1b)],

C|§+ N CI;I+
( R’ ): 2 MV,V’(CL’ ) (22)

C vr=1 vr,—

v,—

I ) Note thatM,, . is a 2X2 matrix in Eq.(2.2). Current con-
Gt 77 \ 7 Gy servation requires
e +— —

° L

>

MIMT=3,, 2.3

whereX;=03®1ly, o3 being the Pauli matrix andy the

NN unit matrix. In addition, at the special poiat=0, the

chiral symmetry of the Hamiltoniat2.1) results in the addi-
tional symmetry

FIG. 1. (a) Lattice with N=3 threaded by random magnetic
fluxes®, ; in the disordered regionOm<M. (b) Quantum wire
with a disordered region of length=Ma. Incoming amplitudes

arect ., and c® _, whereas outgoing amplitudes _ and _
R, ,V;,v’ =1, . N, in the left angd right Ie;)ds, resp::%vely. Ina 2 ME =M, (2.4
quasi-one-dimensional geometiyi,> N. where3 =o1®ly.

The eigenvalues aMM T, which occur in inverse pairs
Om,j given, Oy.q1; is chosen from the interval 6, exp(*2x;), determine the transmission eigenvaluds
—pr,0m;+pm] with uniform probability 1/p7. The pa- =1/costx; and hence the_dimensionless conductagce

rameterp controls the strength of disorder. We assume weakhrough the Landauer formufa’
disorder, i.e.p<1. \ \

The boundary conditions in the transverse directions that B _ 1
are implied by the Hamiltoniaf2.1) are “open,” i.e., there g_zl TJ_].:l cosix;’
are no bonds between the chajasl andj = N. In this case,

H has a special discrete symmetry, called the particle-hole dn the absence of disorder, all exponerjsare zero, and
chiral symmetry: Under the transformationyn,; conduction is perfecg=N. On the other hand, transmission
—>(—1)m“1pm'j , one has{— —H. Hence, for each realiza- is exponentially suppressed if al|’s are larger than unity.
tion of the random magnetic flux, the chiral symmetry en-The smallesk; determines the localization properties of the
sures that there exists an eigenstaté/ofith energy—e for ~ quantum wire.

each eigenstate off with energy +&. Note that the band For the quasi-one-dimensional geomeiie>N>1 that
centers =0 is a special point. The chiral symmetry is brokenwe consider here and on length scales much larger than the
by the addition of a random on-site potential to the Hamil-mean free path associated to the random magnetic field, the
tonian(2.1). Another way to break the chiral symmetry is to microscopic details of the microscopic Hamiltonigh

add bonds between the chaijs 1 andj=N and to impose should no longer be important. Rather, the crucial ingredi-
periodic boundary conditions in the transverse direction folents are the symmetries ®f. For nonzero energy, the only

N odd. The presence of the chiral symmetry may have drasymmetry of M is given by current conservation, E@.3).
matic consequences for charge transport through the disoln this case, for quasi-one-dimensional systems with suffi-
dered wire, as we shall see in more detail in the next secsiently weak disorder, the probability distribution
tions. P(X1, ... Xy;L) of the parameters; is governed by the

In order to find the conductangeof the disordered region so-called Dorokhov-Mello-Pereyra-Kumar (DMPK)
with the random flux, we first compute the transfer matrixequatior’;>~°°
M. To the left and to the right of the disordered region, the N
wave function ¢, ; that solves the Schdinger equation JP i D K
‘Hip= e can be written as a sum of plane waves moving to dL 4N =1 o
the right (+) and to the left ¢-),

(2.5

Jf(le)}, (2.6

J=|1_[. |sinhzxj—sinhzxk|21;[ sinh(2x;)].  (2.6b)
>

N¢ etikym Vj o
Yim=2 2 Ch.— SN, m<0,
v=1"% SInkK, + HereL=Ma is the length of the disordered regiampeing
the lattice constant. The mean free patdepends on the
Ne sikm , disorder strength and on the details of the microscopic
_ R & YT model. The derivation of Eq(2.6) assumed>\, \ being
wj m 2 2 CV + H 1 m> M ’ . T .
=1 F "= sink,  N+1 the wavelength at the Fermi energy. The initial condition
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corresponding to perfect transmission dt=0 is (xj>=(N+1—2j)L/NI, ji=1,...N. (2.9
P(X1, ... XN;0)=1II;6(x;). The Fokker-Planck equation _ _ . .

(2.6) describes the unitary symmetry class. Eer0, in ad-  In the unitary symmetry class and in the chiral unitary class
dition to current conservation, the chiral symmet?y4) has  With evenN the net force on each paramesgris finite, and

to be taken into account. In Ref. 62 it was shown that forthey grow linearly with the length. Hence, by Eq(2.5), the

weak disorder g<1) the distributionP(x,, . .. xy;L) sat- ~ conductance is exponentially suppressed foe-NI. How-
isfies again a Fokker-Planck equation of the fo@r6), but ever, for the chiral disordered wire with an odd number of
with a different Jacobiad, channelsN, the net force on the middle eigenvalkg,. 1y,
vanishes: it remains in the vicinity of the origin and the
P 1N 97 4 conductance is not exponentially suppres¥e@hus, the
L 2N Zl x| JK(J_lp)}, (2.7a  quantum wire with random flux with an odd numbigrof
! ! ! channels goes through a quantum critical point at zero en-
ergy whereas it remains noncritical for an even nunitberf
=11 |sinh(x; —x,)|2. (2.79  channels. A more quantitative description of this even-odd
k>] effect is developed in the next section.
This Jacobian describes the chiral unitary symmetry class.
As was shown in Ref. 62, and as we shall see in more detail Iil. MOMENTS OF THE CONDUCTANCE
in the next section, as a result of the replacement of the A. Method of biorthonormal functions

Jacobian(2.6b by the Jacobiari2.7b), the statistical distri-
To calculate the moments of the conductagceve make

bution and the. dependence of the conductargat energy . )
£=0 is quantitatively and qualitatively different from that ?25% of the exact solution of the Fokker-Planck equation

away frome=0. In Ref. 62 it was shown that there exists a
guantum critical point induced by the randomness wiNes N
odd within the chiral unitary symmetry class. Away from . (NI2L)2 .
zero energy, the transport properties of the disordered wire Xt - - XN 'L)“J-Hl e (M2 ’JHk (%=X sinh(X; — Xy
are those expected from the standard unitary symmetry class. (3.2
A derivation of Eq.(2.7) is given in Appendix A. ) ) o o

The physical picture underlying Eqé2.6) and (2.7) is The pr(_)portl(_)na_llty constant is flxe_zd by normallza_t|on of the
that the parametens undergo a “Brownian motion” as the probab|!|ty d|str|bl_Jt|on. A derivation of Eq(3.1) is pre-
lengthLL of the disordered region is increased. The Jacobiagented in Appendix B. .
J describes the “interaction” between the parametersn The moments of can be computed from thepoint cor-
this Brownian motion process. The key difference betweerelation functiond!
the unitary case and the chiral unitary case is the presence of

an interaction with “mirror imaged” eigenvalues in Eq. Rn(X1, .+ XnsL)

(2.6b, which is absent in Eq2.7b. To see this, we note

that both for the unitary and for the chiral unitary cases, the _ N! J’*“d f*"“d p L
Jacobian] vanishes if a parametes; coincides withx,, k T(N=my ), P | BN (X, XL,
#]. However, in the unitary cag@.6b), J also vanishes ix; (3.2

coincides with a mirror image- Xy, k#j, or if x;=0 (i.e., x; _
coincides with its own mirror image The vanishing of the and the Landauer formulg.5). For example, the first and
JacobianJ implies a repulsion of the parametexsin the second moments df are

underlying Brownian motion process. Hence, where&as

feels a repulsion from the oth&—1 parameters,, k#j, +o  Ry(x;L)
in the chiral unitary cas€2.7), x; feels an additional repul- (9)= fﬁm dx cosfix (3.33
sion from theN—1 mirror images—x,, k# j, and from its
own mirror image—X; in the standard unitary casg.6).

It can be showfP®* that the parameters; repel each 2 _J'*“d f”d Ra(X1,Xz;L)
other by a constant force in the largelimit, irrespective of (9= I chosﬁxlcosﬁxz
their separation. This long-range repulsion results in the so-
called “crystalization of transmission eigenvalues:” The +e  Ry(X;L)
fluctuations of the parametexs are much smaller than the + f_w dx cosffx (3.3b
spacings between their average positithaway from zero
energy, i.e., in the unitary symmetry class, &llcan be  Here we computeR,(X, ... X,;L) using the method of
chosen positive because of repulsion from their mirror im-yigrthonormal functions developed by Muttaffb, and
ages, and their average positions°are Frahm®! for a disordered wire in the unitary symmetry class.

The idea is to construct, for any givéthandL, a function

(x))=(2j—1)L/2NI,  j=1,...N. (2.8 K. (x,y) with the following properties:

In the chiral unitary symmetry class, thkgcan be both posi- .
Five and negative since there is no repulsion from the mirror f dx K (x,x)=N, (3.43
images, and one h&s .
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tee ~ [ 1
f ) dy K.(X,y)K (y,2)=K(X,2), (3.4b 7 (X) = me—(x—sja)2/201 (3.9

P({xi};L)=cydet[ Ky (X, x)]ij=1,...n- (340 where we abbreviated

If such a function exists, it is known from random-matrix o=L/NIl, &=N+1-2j. (3.10
theory’? that cy=1/N! and
The functions?i)j, being linear combinations of;(x)
Ra({xiy;L)=defK (X ,.x))]ij=1,...n- 35  =xi-1 are polynomials themselves, too. Théinaxima)
degree iN—1. As a first step towards their construction, we

Our construction of the functiof, (x,y) starts with a define the polynomials

representation oP(x,, ... Xy;L) in Eqg. (3.1) as a product
of two determinants. Making use of the identities \/T "
()= [ — : i—1a-(y+ix)220
N P 0= \5ms | _dy(ivlo)i e ,
Jl;[k (Xe—=Xj)=detxy “Jjk=1,... N> (3.11

which satisfy the special property

i<k | axpoomoo=eoi (3.12
we find o
) Notice thatp;(x) is of degreg — 1. According to Eq(3.12,
P(ixiyiL)xdel;(xid]j-1,.. ndeL7;(X) ]j k=1, . the overlap matrix between the polynomigisand the Gaus-
(3.63 N . .
sians; is independent of. Construction of biorthonormal
where functions ¢; and 7; is thus achieved by choosing
bi(x)=xi1 (3.6D L-independent linear combinations of the polynomiglshat
! ' ' diagonalize the overlap matr(ﬁ.lgi;sThis is done using the
4 Lagrange interpolation polynomi
nj(x):e—(Nl/zL)x2+(N+1—21)x_ (3.60 grang P poly
Note that the way we writ® as a product of two determi- L,(x)= H X" &n (3.13
nants in Eq(3.6) is not unique. In particular, we are free to m n#m €m=&n’

replace the sets of functiofig;} and{ »;} by an arbitrary set

of linear combinationg$;} and{7;}. This freedom is cru-
cial for the construction of the functioq, (x,y), as we shall
see below.

which are of degredl—1 and obeyt (g) = 6y n . We infer
that the desired ponnomiaE]-(x) are given by

Since the product of two determinants equals the determi- B(x)= 1 / 1 f+xdy Li(iy/o) e~ (y+ix)?20
nant of the product of the corresponding matrices and since ) 2w ) - )
transposition of a matrix leaves the determinant unchanged, (3.19

it is tempting to identifyK, (x,y) with EJ-N:1¢J-(X) 7;(y). In ) . ]
this way, Eq.(3.40 is satisfied. However, with this choice, ~ Putting everything together, we find that
the remaining two conditiong3.49 and (3.4b are not
obeyed. This problem can be solved by making use of the
above-mentioned freedom to replace the sets of functions
{#;} and{#;} by linear combination§;} and{7;}. One
easily verifies that if we choose these linear combinations Xexr{
such that they are biorthonornf#l,

1 & (e
Kz =5 = 2 f_mdy Li(iy/o)

B (y+ix)?+(z—¢&j0)?

o (3.19

v Now, moments of the conductangecan be calculated with
f dx () m(X)= 6, j.k=1,...N, (3.7  the help of Eq(3.5. In particular, we find that the average
o and variance ofj are given by
all three condition$3.4) are met if we set

te CKL(X,X)
A <g>=J dx— o (3.16
KL<x,y>=]§1 B 7(Y). (39 o coshix
The construction of the biorthonormal functiogs andz; is varg=— j+mdxlf+och2KL(X2’Xl)KL(XliXZ)
done below. — — costx;costx,
First, we define the sé%j(x)}, j=1,... N, by complet- te K
ing the square in the exponent gf(x) and then normalizing n f dx L(XX) ' (3.17)
7i(X), —»  costix
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B. Average conductance

After some shifts of integration variables and with the
help of the Fourier transform of cosfx,
) -1

j+mdx
- (3.18

we obtain from Egs(3.15 and (3.16 an expression for the
average conductandg) at the energye =0 that involves
one integration and onginite) summation only,

[

2]

k=1

eiyx Ty 2

costix  sinh(myi2)

y

a2

N
2
<g> = 2 Cmeigmalza
m=1

+ oo
cmzf dy

where, as beforer=L/NI. In the limit N> 1 at fixedo (the
so-called thick-wire limit, Eq. (3.19 can be further simpli-
fied. Hereto we use the second identity of E18 to can-

(3.19

Lo(em— iy)ye—(y+ism)20/2
2 sini(7yl2) '
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3.0
— NI
——-- N=2
——— N=3
‘ —-— N=4
N>>1 (oddN) |
20 - --- N>>1(evenN) | |
i~
& ‘i;\*
1.0 e‘“
. t ‘
10’ 10°
L/E
i et
0.0 e
LIt

FIG. 2. Average conductance at zero energy as a function of
L/¢ (é=NI) for a quantum wire with a finite number of channels
N=1,2,3,4 and in the chiral unitary symmetry class. The even-odd
effect is clearly visible fot./£>1: (i) Exponential decay ofg) for
N even,(ii) Algebraic decay ofg) for N odd.

cel the Lagrange interpolation polynomial in the coefﬂuent,[his case, we again defie=NI, although it is now merely a

Cm»
+edy 2 iyten|
_ 72 A—yal2 _
Cm jﬁx T e k]g:/[\m (1 2k 1
Ap=Z—{-—m+1,... —m+N}. (3.20

In the limit N—oo, only m’s close to N+ 1)/2 contribute to
(g). For thosem, we may replace the infinite product on the
right-hand side of EQ.(3.20 by unity, and find ¢,
=(2/mwa)Y? Hence, forN>1 even,

— 2 i = 2 —m2o/2
(g)—\/%ﬁz(oﬁlalw):\/%gz e M2

m odd
(3.213
whereas folN>1 odd,
2 2 2
= _ i = - —m‘o/2
(g) \/Wag(opm/w) — EZ e .
m even
(3.21h

Here 9, and 95 are the Jacobi's theta functiofs.

The dramatic difference between even and odd channel B
numbers discovered in Refs. 33 and 62 follows immediately (9)= [+

from Eqgs.(3.19 or (3.2]) in the regimeL>NI. For evenN,
each term in the summation decays exponentially with
The exponential decay dfg) is governed by the slowest
decaying terms in the summation in E8.19, i.e., the con-
tributions frome,= *£1, i.e., fromm=N/2 or m=N/2+1.
Hence forL>NI we find

<g>%\/%e‘”2§, E=NI, N even. (3.22

Equation(3.22 allows us to identify¢ as the localization
length® For odd N, there is one term in the summation
(3.19 that does not decay exponentially with It is the
contribution from the channel with,,=0, m=(N+1)/2. In

crossover length scale, to be the characteristic length scale
above which the slow algebraic decay(gf) sets in,

(g)m\/%, N odd, L>¢.

In Fig. 2 we have shown the average conductanceNor
=1,2,3,4 as a function df/¢ and the asymptotic result for
large N.

To study the average conductance in the diffusive regime
|<L<&, we use the Poisson summation formula

(3.23

> S(x—2m—1)=

meZ

1o
> nEZ el (3.249

2 5(X—m)22 eZvTinx'

meZ neZ

(3.24b

to convert Eq(3.2]) into

2 o]
2 > (—1)ne ™ML N>1 even,
£ L i=1

> e %2l N>1 odd.

2¢
L i=1

(3.29

Hence the even-odd effect is nonperturbativé ii§ and we

see thatt= NI is the characteristic length scale at which the
even-odd effect shows up. Whereas the leading terms are
identical, the first nonperturbative correction {g) differs

by a sign for even and odu.

In Fig. 3 we plot the average conductance ffor-1 as a
function of L/¢ and compare with the unitary symmetry
class, which is appropriate for energieg 0. In the unitary
symmetry class({g) decays exponentialR’ ! irrespective
of the parity ofN, but with a different localization length,,
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o J* (Y3+4y)L (e q—iy)e” 0 iem o2
L 12 sin 7y/2)

We plot varg, which is computed from Eq(3.27) for N
=1,2,3,4, in Fig. 4, together with the thick wire limit>1.
The even-odd effect is clearly seen whetg>1 .1

In the limit N—oo at fixed NI/L further simplifications
are possible. We find

2. foofamt 27 fh,

n==

varg=— mz;

LIk

2 1
FIG. 3. Average conductance as a function.6f for a quantum ~ f,, =/ — g iz =[(m—n) erf(mya/2)—|m—n|],
wire in the limit N>1. Curves(a) and (b) are for large odd and o 2
evenN at zero energy, when the system is in the chiral unitary
symmetry class. Curvéc) shows(g) for a quantum wire in the , 2 s m2ol2
unitary symmetry class with the same mean free path &a)iand fn= 18770-(4_ m=+o- e "7 (3.28
(b).
where the primed summations are restricted to goeld) m
(gyxe Hu, g =2NI. (3.26  andn for N odd (even. The error function erf) is defined

The unitary symmetry class is appropriate for the random®S

flux model if the energy is nonzero. Hence, moving the

energye away from zero causes a factor 2 increase in the erf(x) = iJ'the*tz
localization length if the number of channels is even, and a Jato '
dramatic decrease in the average conductanbkisf odd.

with the coefficients

For L> ¢ EqQ. (3.28 simplifies to
C. Variance of the conductance

Proceeding as in the previous subsection, we find from /ﬁeq_/zg N>1 even
Egs.(3.19, (3.27), and(3.18), L ' '
N N var g= (3.29
varg= 3 e h e S ope Ves, N>1 odd
m,n=1 ' m=1 9L’
(3.2

The variance of the conductance decays exponentially for
large everN with the same decay length as the averegje
while varg decays algebraically for large odd Note that

Jw Yilm(eq—iys)e Vatien a2

Con= dy, > Sini 2) (g) and vamg decay with the same power of
— Y1 After some tedious algebra starting from E&.29 to
, (yptieg)2ol2 extract an expression well suited for an asymptotic expan-
% f”’ dy Yebn(em—iy2)e " sion in smallL, we find for the diffusive regimé<L<¢,
e 72 2sinh(7y,/2) '
2 77.2 3 7725
: —+—| =] e 2+ ... >
0.20 i 53 L) e 2C , N>1 even,
—— N=2 varg= 2 3 2
—_ N 2 T (f) s
N=3 =
———|—| e 2+ ..., N>1 odd.
—-—- N=4 i '
0.15 TN 15 3\L 530
---- N>>1(even N) '

Again, we see that the difference between even and odd
channel numbers shows up in terms that are nonperturbative
in L/£. The leading term 2/15 in varis universal and twice
the value of its counterpart for a disordered gquantum wire in
the unitary ensemb&~®'Hence, moving the energyaway
from zero decreases the conductance fluctuations by a factor
s two in the diffusive regime. The factor of two decrease of
10 varg upon breaking the chiral symmetry is reminiscent of
the factor 2 difference for the conductance fluctuations be-
tween the standard orthogonal and unitary symmetry
FIG. 4. Same as Fig. 2, but for the variance of the conductanceclasse$® The enhancement of the conductance fluctuations

0.05

0.00
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0.20 - - The initial conditions atn=0 are those of a Green function
at the edge of an isolated perfect lead:
015 1 E (0)=G(0)— 2 %ik_vjﬂ'_vkﬂ'
. ik(0)=Gj( )———N+1V:1e rSing 7SN
§ 010 (4.3
where cok,=—¢&/2t—co§va/(N+1)], see Sec. Il. The scat-
0.05 | tering channels are those modes with real wave vedtprs
The Green function that we need is obtained by taking into
account the perfect lead boundary condition on the right of
0.00

0 5 10 15 the disordered region,

LIE
F(M)=[F(0) '—t?F(M—-1)]"*,
FIG. 5. Same as Fig. 3, but for the variance of the conductance.

G(M)=—tG(M—1)F(M).
at e=0 had been observed previously in numerical simula- ; . . :
tions of the two-dimensional random-flux problem by Oht- The matrix Green functio®(M) describes the propagation

17 from m=0 tom= M. The absolute value of the transmission

suki et a . X .

Figure 5 contains a plot of varversusL/¢, and offers a malrix element at energy is then given by
comparison with the unitary symmetry cl&8s%!In the uni- It,.,|2=4sink,
tary symmetry class, var takes the universal value 1/15 in ' N 5
the diffusive regimeL <NI, while vargxexp(—L/2¢,), &, , 2 _pjm vk
=2NlI, in the localized regimé > NI. xsink, T jél Ci(M)sing78ing 7 -

This procedure is repeated for each disorder configuration,
and the average and variance of the conductance are obtained

. . . . . by taking an average overx210* samples. The transverse
In this section we present numerical simulations for the, y g 9 P

: boundary conditions are those of Eg.1), i.e., open bound-
c?]r&d\ycrtiar;ceg in \tAr;er rar;dcd)im;jﬂu;( \r/r;odelaz-bl)-;\zeha‘;erlazge aries, unless explicitly indicated otherwise. We present the
an b? ghtcsilggt alelgfcs)rlfuheerarr)w;on?ﬂlii myodelsi’nl; saq.uare numerical results as a function bf ¢, whereé is the char-
geometry. However, for a comparison with the theory of gecacteristic length entering E¢3.22 and Eq.(3.23. We de-

[l and to identify the symmetry class it is necessary to studyt(,:la sr)r/nrr;r;)?cigyr ecsour}:gg rzlg)g ;Eg(guzrg)encal data foe>¢ to the

a wire geometry and Iargt_a system sizes. This is done below. Figure 6 shows the average and variance of the conduc-
For each disorder configuration, we calculate the conduct-

. : i ance ate =0 of the random-flux mode(2.1) with N=15
tance using the Landauer formuyfa5), which we use in the = ; - N
more conventional form and N=16 and disorder strength=0.2. WhenL> ¢, (g)

decreases algebraically fdf=15 whereas it decays expo-

IV. NUMERICAL SIMULATIONS

N, nentially forN=16. This is precisely the even-odd eff&&?
g= >, It, 2. (4.1  that we discussed at length in the last section. We find ex-
mr=1""" cellent agreement between the numerical data and the theory

é)f Sec. lll, which is indicated by the solidbdd N) and
dashedevenN) lines in the figure. The characteristic length
that governs the crossover to the slow algebraic decay of
g.(3.23 is estimated to be 280for N=15. The localiza-
tion length¢ that governs the exponential decay of E2j22)
is estimated to be 283for N=16. As in the case of the
gverage conductance, for \@rthe even-odd effect can be
clearly seen forL=¢, where the numerical data coincide
with the analytic result in the largd-limit, Eq. (3.28. The
slight discrepancy at very smdllhappens aM ~N and may
be understood as a crossover from quasi-one-dimensional to
uasi-two-dimensional behavior. This type of one- to two-
imensional crossover was reported in a numerical work by
Tamura and And8’ The Fokker-Planck approach employed

Here N, is the number of propagating channels in the lead
andt is the N;X N, transmission matrix, which relates the
amplitudes of the incoming and outgoing waves on the le
and the right of the disordered sample. The eigenvalyes
the matrixtt™ are the same as in E(.5). (The simulations
are aimed at energies close to zero, wheré&l, equalsN.
Hence, as before, we drop the notational distinction betwee
N andN.)

The transmission matrikis computed through the recur-
sive Green function methd4-%In this method Nx N ma-
trix Green functiond~;, for reflection andG for transmis-
sion through the disordered region are computed using th
recursive rule,

F(m+1)=[s—H™t2F(m)]" %, in Secs. Il and Il is specifically devised for a quasi-one-
dimensional geometry and is, therefore, inapplicable to de-
G(m+1)=—tG(m)F(m+1), (4.2  scribe the regiméM<N. .
_ In Figs. 7 and 8 we consider the dependencégyfand
where the matrix elements 6™ are varg on N, p, and . Figure 7a) shows the average and

" o o variance ofg for odd N at e =0 for two choices oN andp.
k= "UL1= 6 n)€ MGy 1 —U(L— Gy ) & ImITIG gy We see that the numerical data show fairly good agreement
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4 o N=15, p=1 2 a
o N=15, p=0.2 \ (@
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A
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LIk
0.0
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L/
0.20 0.4 ‘
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®) L o N=16, p=1
<50 0 N=16, p=0.2 _
015 + & % 03 kL aN=32,p=0.2,pb.c.10° |
° A
= 010 o  [o Vol b
s o N=16, p=0.2 § 0217
B
o N=16, p=0.2 3&% o2 L
0.05 01 | 3
0.00
0 5 10 0.0
L/E 0

LIE
FIG. 6. The averagés) and the variancéb) of the conductance
g for the random-flux mode(2.1) at e =0 for N=15 (circle) and
N=16 (diamond with disorder strengttp=0.2. For these param-
eters, we find tha=280a for N=15 and¢{=283 for N=16. The
solid (dashedllines in(a) are the theoretical resu8.19 for (g) for
N=15 (16); the soliddashegllines in(b) are the large od¢even
N analytical result$3.28 for varg.

FIG. 7. The average and the variance of the conductgrfoe
the random-flux mode(2.1) at =0 for oddN (a) and evenN (b).
(a) The circles, squares, and triangles are the results Ngp)X
=(15,1.0), (15,0.2), and (31,1.0), respectively. The characteristic
length ¢ is numerically found to b&=23.7a, 280, and 39.8,
respectively. The solid lines are the large dddanalytical result
(3.28. (b) The circles, squares, and triangles are the results for
(N,p)=(16,1.0), (16,0.2), and (32,0.2), respectively. In the last
case, periodic boundary conditiofys.b.c) in the transverse direc-
cases we examined. For larger disorder strepgthe devia- tions are used, whereas for the first two cases open boundary con-
tions from the analytical resu(B.28 is more prominent, the ditions are assumed. The localization lengéhare found to bet
stronger disorder data being closer to the onset of quasi-two= 27.22, 283, and 47@, respectively. The white solid lines are the
dimensional behavior for small. The agreement between large everN analytical result for the chiral-unitary class of Sec. Ill.
the numerical data fop=1 and the theory of Sec. Il for
L>¢ is remarkable, in view of the fact that the theory wasization properties of the random-flux modeleat O are gov-
derived under the assumption of weak disorder, whepeas erned by the chiral unitary universality class, independent of
=1 corresponds to the strongest possible disorder in ththe disorder strength.
random-flux model. In Fig. 8 we show some results where the chiral symmetry

Figure 1b) shows{g) and vamg for the random-flux is broken. In this case, charge transport is no longer gov-
model(2.1) at e =0 for an even numbeN of channels. We erned by the Fokker-Planck equatith7) for the chiral uni-
show the data for three caseN,p)=(16,1),(16,0.2, and tary symmetry class, but by the Fokker-Planck equatio6)
(32,0.2. In the last example we used periodic boundary conthat is valid for the standard unitary cl&€85%°In the figure,
ditions in the transverse direction instead of the open boundaumerical results are shown for three cases away from the
ary conditions of Eq.(2.1). SinceN is even, the periodic critical energy as well as for one case where the chiral sym-
boundary conditions do not destroy the chiral symmetry, sanetry does not exist because of the periodic boundary con-
that the system remains in the chiral unitary symmetry clasgdition imposed for oddN. With the exception of very short
We see that the results of numerical simulations are indistinlengths, where the system becomes quasi-two-dimensional,
guishable from the theoretical curvésolid lineg for both  all the data fo{g) and for varg agree with the theoretical
(g) and var g except in the quasi-two-dimensional regime prediction for the unitary clas$-5!The results indicate that
M=N. We conclude from Fig. (8 and 7b) that the local- the small nonzero energy=0.02 is sufficient to cause a

with the analytic largeN result (solid lineg for the three
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0.2 . .‘ . ‘ TABLE I. Average and variance of the conductamref a dis-
T ordered quantum wire withi>1 channels and mean free patim

the unitary and chiral unitary symmetry classes, for the diffusive
regimeL<NI and for the localized regime>NI. The results for
the unitary ensemble are taken from Refs. 59—61.

A
< - v
5 %% 10" Unitary Chiral unitary
g 01 EvenN Odd N
‘ Diffusive
\ 12 3 4 5
NI NI NI
o N=15, £=0.02, p=1 LIE, (9) - N ~
o N-16, £=0.021, p—1 L L L
o N=15,&=0, p=1,p.bc. 1 2 2
N- pL02.pbe. varg = = =
00 N=32,e=0.1,p=02, pb.c . : 15 15 15
0 1 2 3 4 5
Lig, Localized
_ . NI\32
FIG. 8. Average and variance of for disorder strengttp=1 (9) 2(77_) e LN 8_N|efL/2NI ﬂ
away from the critical energy=0. The circles and squares are the L 7L 7l
data forN=15 ande=0.02 (£,=47.82) and for N=16 ande 1/ NI\32 oN] 8NI
=0.02 (£,=50.6a), respectively. The diamonds and triangles are varg _<W_> e L/ANI LN 9mL
the data forN=15 ande=0 (£,=45.0a) and forN=32 ande 2\ L L

=0.1 (¢£,=1041a), which are calculated for the periodic boundary
condition. For odd\, periodic boundary conditions break the chiral

symmetry. The white solid lines are the lafganalytical result for | lized . h diff . . |
the unitary class, taken from Refs. 59—61. ocalized regime. These differences are summarized in Table

I. The most striking feature of the chiral unitary symmetry
change from the chiral unitary symmetry clasg at0 to the ~ Class is the even-odd effett®f the number of channels
standard unitary symmetry class. Another interesting featurt the wire is even, the average conductafgg decays ex-
to note is that the localization lengthin Fig. 8 is roughly ~Ponentially with lengthL in the localized regime.>NI,
twice as large as that in the chiral cagéig. 7). (For ex- Whereas for oddN, the decay 9(9) is algebraic. The sensi-
ample, compare the two cases-0 and e=0.02 for N fivity to the chiral symmetry in transport properties is very
—16 andp=1, where we findt=27.22 and £,=50.6, re- strong. For example, removing the_ <_:h|ral symmetry by a
spectively) This behavior was observed earlier in Refs.change in boundary condition is sufficient to change the uni-
88,33,34. This result is consistent with the analytic result tha¥€rsality class to the standard unitary one, even in the thick-
¢ differs by a factor of 2 between the chiral£NI) and the ~ Wire limit N>1. S _ _ _
unitary class €,=2NI), assuming that the mean free path Although our theory is limited to a quasi-one-dimensional
determined by the short-distance physics is identical in th§€0Metry and cannot account for the crossover from one to
two classes(For the numerical results we may expect thattwo dimensions, it does show the importance of the chiral
the mean free path should not have strong energy depeﬁymmetry to the transport properties of the random-flux-

dence on the scale ¢§<0.1t.) problem. Taking the prominent role played by symmetry for
the random-flux model in quasi-one-dimension as a guide-
V. CONCLUSION line, we speculate that a similar picture is appropriate for the

two-dimensional random-flux problem. Hence, following

In this paper we studied transport properties of a particléade and Wegné¥, and Miller and Wang we expect that
on a rectangular lattice in the presence of uncorrelated rarthe localization properties of the two-dimensional random-
dom fluxes of vanishing mean. This problem is commonlyflux problem are controlled by the unitary symmetry class
known as the random-flux problem. We considered a wireaway from the band center=0, whereas the band center
geometry and weak disorder and showed that the symmetries=0 plays the role of a critical energy. The random-flux
of the random-flux problem have dramatic consequences gproblem would thus share with the integer quantum Hall
the statistical distribution of the conductargdf the energy  effect, and with the problem of Dirac fermions in a random
¢ is away from the band center=0, the system belongs to vector potential the existence of a single critical energy that
the standard unitary symmetry class, while at0, transport  lies between energies with localized states. There are, how-
is governed by an additional symmetry of the random-fluxever, two important differences with the integer quantum
model, the particle-hole, or chiral symmetry. We have com-Hall effect. First, there is no symmetry that fixes the value of
pared numerical simulations of the average and variance dhe critical energy in the integer quantum Hall effect, while
the conductancg in the random-flux model in a thick quan- the chiral symmetry of the random-flux model implies that
tum wire to analytical calculations for the standard unitarycriticality occurs at the band center=0. Second, in contrast
and the chiral unitary symmetry classes, and found goodio the smooth density of states in the integer quantum Hall
agreement foe #0 ande =0, respectively. effect, one expects that the density of states in the random-

There are important differences between the conductandéux problem is singular at=0. Such a singularity of the
distribution in the chiral unitary symmetry class and the standensity of states at=0 was observed in the single chain
dard unitary symmetry class, both in the diffusive and therandom hopping problem, is suggested by the numerical
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simulations of Refs. 49 and 34, and is consistent with Gade’s oL
analysis of the two-dimensional nonlineamrmodel with chi-
ral symmetry?’ and with exact results on the problem of
Dirac fermions in a random vector potentiaf! (The latter
problem shares the same chiral symmetry as the random-flux L
problem although it differs from the random-flux problem in
that the magnetic fluxes are strongly correlated on all lengt
scales.

FIG. 9. A thin slice of lengthbL with a< L <I<L is added to
rt1he disordered region of length
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APPENDIX A: DERIVATION oL, respectively:

OF THE FOKKER-PLANCK EQUATION

In this paper, we described the transport properties of a M=MME. (Ad)
guantum wire in the chiral unitary symmetry class in termsWe also use that the matrix
of its transfer matrixM. Our theoretical analysis was fo- ‘ _ :
cused on a solution of the Fokker-Planck equat®) that 2MpM p=USINN2X) U (A5)
governs thel evolution of the probability distribution
P(Xq, ... Xy;L) of the eigenvaluee®?i of MMT. A
derivation of this Fokker-Planck equation from a different
microscopic mode! was _pre'sented in Ref. .62. Herg we 2M11M12=U(sinh2X+2A)uT,
present an alternative derivation of E§.7) that is closer in
spirit to derivations of the Fokker-Planck equation for the _ A
unitary class existing in the literatufé. A=UN My M= MM U, (AB)

For the statistical distribution of the parametets the  Making use of the symmetries ot ' and of the parametri-
symmetries of the transfer matrik{(e) are of fundamental zation (A3) we can rewriteA as

importance. For the random-flux model, there are two sym-

is Hermitian and has eigenvalues sinh,2j=1,... N.
Hence we find that

metries(cf. Sec. I): A= coshXVM M1,V TsinhX
M(e)2sMT(e)=35, flux conservation, (A1) +sinhX VM ,M1,"V TcoshX
S M(e)2,=M(—¢g), chiral symmetry. (A2) +coshXV MM, VTcoshX
Here the transfer matrix\ is defined in Eq(2.2) and +sinhXVM32/\/lilTVTsinhX. (A7)
=0®ly, whereo; is the Pauli matrix {=1,3) andly is the .

NX N unit matrix. We take the lengtidL of the added slice small compared to
Because of flux conservatidil) M(e) can be param- the mean free path Within the thin slice the disorder is
etrized a&® assumed to be uncorrelated beyond a length scale of the or-

der of the lattice spacing<<éL. In this case one hast’
(Mu Mlz) (u 0\ [ coshX sinhX)(V 0 ) =1+ 0O(8L)*2 so that the matrix is of order (L) 2 itself
= o uw inhx , ] and we can treat it in perturbation theory. As a result, we find
s coshx/10 v that the addition of the slice of widtldL results in the
Ma My, u A

change
whereld, U', V, andV' areNX N unitary matrices an is

a diagonal matrix containing the parametgfson the diag- oA , AjAy

onal. We are interested in the case of zero energy, when the Sinh 2 —sinh ;=24 +4I;j sinh 2 —sinh 2,
chiral symmetry(A2) results in the further constraintg J

=y{/' andV=V'. Notice that in this case, with the param- +0O(8L%?), (A8)
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or equivalently 1
Q=-3 > In[sinh(x;— x|, (B1b)
A Afsinhx J<k
' cosh ¥ cosﬁij where the initial condition is
+2, Sty +0O(8L3?) P(X, xN'O)zﬁ 8(x)) (B10)
7j (sinh 2x;—sinh 2x,)cosh X; ' T jz1

(A9) The key step towards the exact solution of Eg{l) is the

It remains to find the first two moments df; . Hereto transformation

we make an ansatz for the distribution of the transfer matrix
M'. BecauseM ' is close to 1, it is natural to parametrize P({xj};L)=

v{x}HL), (B2
it in terms of its generator,

H sinh(x; —Xy)
1<k

, which changes the Fokker-Planck equati@®l) into a
M’ =expA. (A10) Schralinger equation,
From the symmetry requirement81) and (A2) we deduce

that A has the form

ov 1 P 1 aN\? 920
A=iVel+W A1l o= 2 Y 2 ] e
VelL,+Weoy, (A11) JL 2N =1 ox5 2N (= [\ ox X
whereV andW are HermitianN X N matrices. We choose a 1 N g2
convenient statistical distribution g¥ ', by assuming tha¥ =——— > ——+UD. (B3)
and W have independent, Gaussian distributions with zero 2N =1 X

mean and with variance

SL Here U=(N—1)(N72)/6+(N—1)/2. Thus, ¥(xq, ...,
<ViijI>:<WijWkl>:5iI5jkm- (A12) Xn:;L) obeys a Schminger equation in imaginary timé
that describedN identical free particles on the line; o <<x
Then we find that the first two moments afare given by ~ <®- (For comparison, in the unitary symmetry class, one
finds thatW obeys a Schringer equation folN identical
SL particles moving in the presence of a potentiadinh 22x
(Aji) = Sjsinh(2x})——, which repels the’s away from the origir?®)
Since the probability distributiorP(x;, ... Xy;L) is
SL symmetric under a permutation of the's, it follows from
<AjkAkj>=COSH(Xj+Xk)m- Eq. (B2) that‘.lf(xl, _ ,xN.;L) m_ust be anti.symmetric_, ie.,
it must describe the imaginary-time evolution fidentical
Combining this with Eq(A9), we conclude that under addi- fermi_ong. AtL=0, thg _initial condition(B1c) implies that gll
tion of a narrow slice of widthsL<I, the parameters; X coincide at the origin. Hence, &t=0, the transformation
undergo a shifi; — x; + éx; with (BZ) is smgqlar. We avoid this problem by starting with the
o initial conditiorf®

(5) - S cothi—x),  (Al3a N
iJoLT T ] CcO Xj_Xk s 1
=y P} 01yid) = 7 > ;1:[1 O(X; = Yo(j))
oL

<5X15Xk>§L:m51k! (A13b) yJZG(J —l), (B4)
all higher moments vanishing to first order &, Equation where all the initial values are different, and seni zero at
(A13) is equivalent to the Fokker-Planck equaﬁ@ﬂ) the end of the calculation. The summation is over all permu-

’ tationso of 1, ... N.

To solve Eq.(B3), we denote byG(x;L|y) the single-

APPENDIX B: SOLUTION particle Green function of the diffusion equation obeying

TO THE FOKKER-PLANCK EQUATION

2
In this appendix, we present an exact solution for the |E:i£ G(x;0]y)=8(x—Yy) (B5)
Fokker-Planck equatiof®.7), closely following the exact so- gL 2N ox*’ ' '

lution of the DMPK equation in the unitary symmetry class . :

by Beenakker and Rejafi.We start by rewriting Eq(2.7)  °ution of Eq.(BS) yields

as NI
_ —_v)2
N G(x;Lly)= /5 e ("WEIe”, (B6)
IaP_ 1 S J aP+2P(m” (B13 .
dL 2N {1 ox| ax X’ Then the Slater determinant
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(B7)

is antisymmetric inx,, ... Xy and obeys the Schdinger
equation(B3). Using the inverse of the transformatiéB2),
we obtain that

| B _ sinh(x; —Xy)
PUOGHLIYD =¥ (LD I Gy =y

(B8)
is the solution to the Fokker-Planck equati@il) with the
regularized initial condition(B4).
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We finally take the limite—0. This limit must be treated
with care in view of the denominator of EB8). With the
help of

— L 2
defe”(N2D0G—vW lik=1,...N
N | N(N-1)
_ 2(Nley 2
=e 121 (N”ZL)XJ(I) H (Xj_xk)+0(€2)r
1<k

(B9)

the singularityc e "N(N=1)/2 coming from the denominator in
Eqg. (B8) is canceled. We thus recover E§.1).
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