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Random magnetic flux problem in a quantum wire
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The random magnetic-flux problem on a lattice in a quasi-one-dimensional~wire! geometry is studied both
analytically and numerically. The first two moments of the conductance are obtained analytically. Numerical
simulations for the average and variance of the conductance agree with the theory. We find that the center of
the band«50 plays a special role. Away from«50, transport properties are those of a disordered quantum
wire in the standard unitary symmetry class. At the band center«50, the dependence on the wire length of the
conductance departs from the standard unitary symmetry class and is governed by a different universality class,
the chiral unitary symmetry class. The most remarkable property of this universality class is the existence of an
even-odd effect in the localized regime: Exponential decay of the average conductance for an even number of
channels is replaced by algebraic decay for an odd number of channels.@S0163-1829~99!06419-X#
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I. INTRODUCTION

The concepts of scaling1–3 and of the renormalization
group4 have provided crucial insights into the localizatio
properties of a quantum particle in a random but sta
environment.5 Beyond a typical length scale depending
the microscopic details of the disorder, the localization pr
lem can be described by an effective field theory that
uniquely specified by the dimensionality of space and
fundamental symmetries of the microscopic Hamiltonia6

Correspondingly, the disorder is said to belong to the
thogonal, unitary, and symplectic ensembles, depending
whether time-reversal symmetry and spin-orbit coupling
present or not.6–8

However, not all disordered systems belong to one
these three standard symmetry classes. One example i
integer quantum Hall effect, for which the scaling theory
the unitary universality class cannot explain the obser
jumps in the Hall resistance,9 since it predicts that all state
are localized in two dimensions. Instead, a special sca
theory was proposed for the integer quantum Hall effe
where, in addition to the longitudinal conductivity that co
trols the scaling flow in the unitary ensemble, the Hall co
ductivity appears as a second parameter.10,11

In this paper we consider a different example. It is t
so-called random-flux model, which describes the locali
tion properties of a particle moving in a plane perpendicu
to a static magnetic field of random amplitude and vanish
mean.12–34 In the literature, different points of view hav
been offered with regard to the localization properties a
the appropriate symmetry class of the random-flux proble
In Refs. 18–24 it has been claimed that, since the magn
field has a vanishing mean, the only effect of the rand
magnetic field is to break time-reversal invariance, and he
that the localization properties are those of the standard
tary symmetry class. On the other hand, Zhang and Arov27

have argued that this argument might be too naive and th
PRB 590163-1829/99/59~20!/13221~14!/$15.00
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scaling theory closely related to that of the Kosterlit
Thouless transition controls the localization properties of
random magnetic-flux problem. They predicted that sta
are localized in the tails of the spectrum whereas close to
center of the band a line of critical points of the Kosterlit
Thouless type is formed. Related point of views can be fou
in Refs. 25–32. Finally, it has been proposed in Ref. 33 t
the random-flux model shows critical behavior at the ba
center «50 only, whereas its localization properties a
those of the unitary ensemble for energies«Þ0.

In the third scenario, the behavior at«50 is governed by
an additional symmetry, the so-called chiral or particle-h
symmetry. The chiral symmetry can also be found in t
related problem of a particle hopping on a lattice with ra
dom ~real! hopping amplitudes.35 In the one-dimensiona
version of this problem, it is well established that th
ensemble-averaged density of states diverges at the
center «50 ~Refs. 36 and 37! and that the ensemble
averaged conductance decays algebraically with the lengL
of the system.38 For comparison, in the unitary symmetr
class, the density of states is continuous at«50,39 while the
conductance decays exponentially withL. ~The one-
dimensional random-hopping problem has been studied
many incarnations, cf. Refs. 40–46.! For two-dimensional
systems, the effect of the chiral symmetry was studied
Gade and Wegner47 ~see also Refs. 48–58!. They argued that
the presence of the chiral symmetry results in three ad
tional symmetry classes, called chiral orthogonal, chiral u
tary, and chiral symplectic. For disordered systems with c
ral unitary symmetry, all states are localized except at
singular energy«50 at which the average density of stat
diverges. The relevance of the chiral unitary symmetry cl
to the random-flux problem was pointed out by Miller an
Wang.33 ~Only the chiral unitary class is of relevance, sin
time-reversal symmetry is broken in the random-flux mode!

For the two-dimensional random-flux problem, suf
ciently accurate numerical data are notoriously hard to
13 221 ©1999 The American Physical Society
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tain. Although a consensus has emerged that states are l
ized in the tails of the spectrum, it is impossible to dec
solely on the basis of numerical simulations whether sta
are truly delocalized upon approaching the center of
band, or only deceptively appear so as the localization len
is much larger than the system sizes that are accessible t
current computers. Moreover, it is very easy to smear o
diverging density of states in a numerical simulation~com-
pare Refs. 13, and 22, and 34!. In short, no conclusion ha
been reached in the debate about the localization prope
of the two-dimensional random-flux problem.

Here, we focus on the simpler problem of the random-fl
problem on a lattice and in a quasi-one-dimensional ge
etry of a ~thick! quantum wire with weak disorder, and re
strict our attention to transport properties, notably the c
ductanceg. For a wire geometry, numerical simulations c
be performed with very high accuracy, and very good sta
tics can be obtained. Moreover, precise theoretical pre
tions for the transport properties can be made, both for
unitary symmetry class, and for the chiral unitary symme
class. The wire geometry allows us to quantitatively comp
the analytical predictions for the various symmetry clas
and the numerical simulations for the random-flux mod
This comparison shows that, away from the critical ene
«50, theL dependence of the average and variance of
conductanceg are those of the unitary ensemble. At the ba
center«50, ^g& and varg are given by the chiral unitary
ensemble. Hence, we unambiguously show that in a q
one-dimensional geometry, the localization properties of
random-flux model are described by the third scenario abo
in which the«50 is a special point, governed by a separ
symmetry class. Although our theory is limited to a qua
one-dimensional geometry, it does show the importance
the chiral symmetry at the band center«50 and may thus
contribute to the debate about the localization properties
the random-flux problem in higher spatial dimensions.

This paper was motivated by two recent works. First, i
recent paper, one of the authors34 computed^g& and varg
numerically for the random-flux model in a wire geometry
a very high accuracy. While for nonzero energies«, the re-
sult was found to agree with analytical calculations for t
unitary symmetry class,59–61for «50 a clear difference with
the unitary symmetry class was observed. Second, for
chiral symmetry classes, a scaling equation for the distri
tion of the transmission eigenvalues in a quasi-o
dimensional geometry was derived and solved exactly in
chiral unitary case by Simons, Altland, and two of t
authors.62 This scaling equation is the chiral analog of t
so-called Dorokhov-Mello-Pereyra-Kumar ~DMPK!
equation,63–65 which describes the three standard symme
classes and was solved exactly in the unitary case
Beenakker and Rejaei.66 However, for the chiral unitary
case, analytical results for theL dependence of̂g& and varg
were lacking, so that a comparison between the theory
the numerical results of Ref. 34 was not possible. In
present work this gap is bridged.

In a wire geometry, the chiral unitary universality cla
undergoes a striking even-odd effect noticed by Miller a
Wang:33,67 The conductanceg decays exponentially with the
lengthL if the number of channelsN is even, while critical
behavior is shown ifN is odd, even in the limit of largeN
al-
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that we consider here. In the latter case, the average con
tance^g& decays algebraically, while the conductance flu
tuations are larger than the mean. We analyze how the e
odd effect follows from the exact solution of the Fokke
Planck equation of Ref. 62 and compare with numeri
simulations of the random-flux model.

We close the introduction by pointing out that th
random-flux problem is also relevant to some strongly c
related electronic systems. In both the quantum Hall effec
half-filling68,69 and high-Tc superconductivity,70,14 strong
electronic correlations can be implemented by auxilia
gauge fields. In this context, the random-flux problem c
tures the contributions from the static transverse gauge fie
Notice that the chiral symmetry is not required on physi
grounds both for the quantum Hall effect at half-filling an
for high Tc superconducting. Another area of applicabili
for our results is the passive advection of a scalar field71,33,72

and non-Hermitian quantum mechanics.73–75,58,62Finally, the
striking sensitivity of the localization properties in th
random-flux problem to the parity of the numberN of chan-
nels is remarkably similar to that of the low-energy sector
a single antiferromagnetic spin-N/2 chain to the parity of
N,76 on the one hand, or to the sensitivity of the low-ener
sector ofN coupled antiferromagnetic spin-1/2 chains to t
parity of N,77 on the other hand.

The paper is organized as follows. The random-flux pro
lem in a wire geometry is defined in Sec. II. The average a
variance of the conductance are calculated analytically
Sec. III. Analytical predictions are compared to the nume
cal simulations in Sec. IV. We conclude in Sec. V.

II. THE RANDOM MAGNETIC-FLUX MODEL

In the random-flux model one considers a spinless e
tron on a rectangular lattice in the presence of a rand
magnetic field with vanishing mean. The magnetic field
perpendicular to the plane in which the electron moves.
this paper, we study the random-flux model in a wire geo
etry and for weak disorder. This system is described by
Hamiltonian

Hcm, j52t@cm11,j1cm21,j #2t~12d j ,N!

3eium, jcm, j 112t~12d j ,1!e
2 ium, j 21cm, j 21 ,

~2.1!

where cm, j is the wave function at the lattice site (m, j ),
labeled by the chain indexj 51, . . . ,N and by the column
index m, see Fig. 1~a!. The Peierls phasesum, j result from
the flux Qm, j5um11,j2um, j through the plaquette betwee
the sites (m, j ), (m11,j ), (m11,j 11), and (m, j 11). ~The
flux Qm, j does not uniquely determine all the phases alo
all the bonds. We have used this freedom to choose the n
zero phases along the transverse bonds only.!

We consider a system with Hamiltonian~2.1! where the
phasesQm, j take random values in a disordered strip 0,m
,M only, and are zero outside.12 We assume that the disor
dered region is quasi-one-dimensional, i.e.,M@N@1, cor-
responding to a thick quantum wire. In the disordered regi
the Peierls phasesum, j are chosen at random in such a w
that the magnetic fluxQm, j5um11,j2um, j is uniformly dis-
tributed in @2pp,pp# with 0,p<1. To be precise, with
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um, j given, um11,j is chosen from the interval@um, j
2pp,um, j1pp# with uniform probability 1/2pp. The pa-
rameterp controls the strength of disorder. We assume we
disorder, i.e.,p!1.

The boundary conditions in the transverse directions
are implied by the Hamiltonian~2.1! are ‘‘open,’’ i.e., there
are no bonds between the chainsj 51 andj 5N. In this case,
H has a special discrete symmetry, called the particle-hol
chiral symmetry: Under the transformationcm, j
→(21)m1 jcm, j , one hasH→2H. Hence, for each realiza
tion of the random magnetic flux, the chiral symmetry e
sures that there exists an eigenstate ofH with energy2« for
each eigenstate ofH with energy1«. Note that the band
center«50 is a special point. The chiral symmetry is brok
by the addition of a random on-site potential to the Ham
tonian~2.1!. Another way to break the chiral symmetry is
add bonds between the chainsj 51 and j 5N and to impose
periodic boundary conditions in the transverse direction
N odd. The presence of the chiral symmetry may have d
matic consequences for charge transport through the d
dered wire, as we shall see in more detail in the next s
tions.

In order to find the conductanceg of the disordered region
with the random flux, we first compute the transfer mat
M. To the left and to the right of the disordered region, t
wave function cm, j that solves the Schro¨dinger equation
Hc5«c can be written as a sum of plane waves moving
the right (1) and to the left (2),

c j ,m5 (
n51

Nc

(
6

cn,6
L e6 iknm

sinkn
sin

n j p

N11
, m,0,

c j ,m5 (
n51

Nc

(
6

cn,6
R e6 iknm

sinkn
sin

n j p

N11
, m.M ,

FIG. 1. ~a! Lattice with N53 threaded by random magnet
fluxesQm, j in the disordered region 0,m,M . ~b! Quantum wire
with a disordered region of lengthL5Ma. Incoming amplitudes
are cn,1

L and cn8,2
R , whereas outgoing amplitudes arecn,2

L and
c
8,1
R , n,n851, . . . ,N, in the left and right leads, respectively. In

quasi-one-dimensional geometry,M@N.
k

at

or

-

-

r
a-
r-

c-

o

where coskn52«/2t2cos@np/(N11)#. The prefactor 1/sinkn

is chosen such that an equal current is carried in each c
nel. The numberNc is the total number of propagating cha
nels at the energy«, i.e., the total number of real wave vec
tors kn . We are interested in the transport properties fo«
close to 0, whereNc5N, and ignore the distinction betwee
Nc and N henceforth. The coefficientscn,6

L and cn,6
R are

related by the transfer matrixM @see Fig. 1~b!#,

S cn,1
R

cn,2
R D 5 (

n851

N

Mn,n8S cn8,1
L

cn8,2
L D . ~2.2!

Note thatMn,n8 is a 232 matrix in Eq.~2.2!. Current con-
servation requires

MS3M †5S3 , ~2.3!

where S35s3^ 1N , s3 being the Pauli matrix and1N the
N3N unit matrix. In addition, at the special point«50, the
chiral symmetry of the Hamiltonian~2.1! results in the addi-
tional symmetry

S1MS15M, ~2.4!

whereS15s1^ 1N .
The eigenvalues ofMM †, which occur in inverse pairs

exp(62xj), determine the transmission eigenvaluesTj
51/cosh2xj and hence the dimensionless conductanceg
through the Landauer formula78,79

g5(
j 51

N

Tj5(
j 51

N
1

cosh2xj
. ~2.5!

In the absence of disorder, all exponentsxj are zero, and
conduction is perfect,g5N. On the other hand, transmissio
is exponentially suppressed if allxj ’s are larger than unity.
The smallestxj determines the localization properties of th
quantum wire.

For the quasi-one-dimensional geometryM@N@1 that
we consider here and on length scales much larger than
mean free path associated to the random magnetic field
microscopic details of the microscopic HamiltonianH
should no longer be important. Rather, the crucial ingre
ents are the symmetries ofH. For nonzero energy, the onl
symmetry ofM is given by current conservation, Eq.~2.3!.
In this case, for quasi-one-dimensional systems with su
ciently weak disorder, the probability distributio
P(x1 , . . . ,xN ;L) of the parametersxj is governed by the
so-called Dorokhov-Mello-Pereyra-Kumar ~DMPK!
equation,63–65

l
]P

]L
5

1

4N (
j 51

N
]

]xj
FJ

]

]xj
~J21P!G , ~2.6a!

J5)
k. j

usinh2xj2sinh2xku2)
k

usinh~2xj !u. ~2.6b!

HereL5Ma is the length of the disordered region,a being
the lattice constant. The mean free pathl depends on the
disorder strength and on the details of the microsco
model. The derivation of Eq.~2.6! assumesl @l, l being
the wavelength at the Fermi energy. The initial conditi
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corresponding to perfect transmission atL50 is
P(x1 , . . . ,xN ;0)5) jd(xj ). The Fokker-Planck equatio
~2.6! describes the unitary symmetry class. For«50, in ad-
dition to current conservation, the chiral symmetry~2.4! has
to be taken into account. In Ref. 62 it was shown that
weak disorder (p!1) the distributionP(x1 , . . . ,xN ;L) sat-
isfies again a Fokker-Planck equation of the form~2.6!, but
with a different JacobianJ,80

l
]P

]L
5

1

2N (
j 51

N
]

]xj
FJ

]

]xj
~J21P!G , ~2.7a!

J5)
k. j

usinh~xj2xk!u2. ~2.7b!

This Jacobian describes the chiral unitary symmetry cla
As was shown in Ref. 62, and as we shall see in more de
in the next section, as a result of the replacement of
Jacobian~2.6b! by the Jacobian~2.7b!, the statistical distri-
bution and theL dependence of the conductanceg at energy
«50 is quantitatively and qualitatively different from tha
away from«50. In Ref. 62 it was shown that there exists
quantum critical point induced by the randomness whenN is
odd within the chiral unitary symmetry class. Away fro
zero energy, the transport properties of the disordered w
are those expected from the standard unitary symmetry c
A derivation of Eq.~2.7! is given in Appendix A.

The physical picture underlying Eqs.~2.6! and ~2.7! is
that the parametersxj undergo a ‘‘Brownian motion’’ as the
lengthL of the disordered region is increased. The Jacob
J describes the ‘‘interaction’’ between the parametersxj in
this Brownian motion process. The key difference betwe
the unitary case and the chiral unitary case is the presenc
an interaction with ‘‘mirror imaged’’ eigenvaluesxj in Eq.
~2.6b!, which is absent in Eq.~2.7b!. To see this, we note
that both for the unitary and for the chiral unitary cases,
JacobianJ vanishes if a parameterxj coincides withxk , k
Þ j . However, in the unitary case~2.6b!, J also vanishes ifxj
coincides with a mirror image2xk , kÞ j , or if xj50 ~i.e.,xj
coincides with its own mirror image!. The vanishing of the
JacobianJ implies a repulsion of the parametersxj in the
underlying Brownian motion process. Hence, whereasxj
feels a repulsion from the otherN21 parametersxk , kÞ j ,
in the chiral unitary case~2.7!, xj feels an additional repul
sion from theN21 mirror images2xk , kÞ j , and from its
own mirror image2xj in the standard unitary case~2.6!.

It can be shown65,62 that the parametersxj repel each
other by a constant force in the large-L limit, irrespective of
their separation. This long-range repulsion results in the
called ‘‘crystalization of transmission eigenvalues:’’ Th
fluctuations of the parametersxj are much smaller than th
spacings between their average positions.65 Away from zero
energy, i.e., in the unitary symmetry class, allxj can be
chosen positive because of repulsion from their mirror i
ages, and their average positions are65

^xj&5~2 j 21!L/2Nl, j 51, . . . ,N. ~2.8!

In the chiral unitary symmetry class, thexj can be both posi-
tive and negative since there is no repulsion from the mir
images, and one has62
r
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^xj&5~N1122 j !L/Nl, j 51, . . . ,N. ~2.9!

In the unitary symmetry class and in the chiral unitary cla
with evenN the net force on each parameterxj is finite, and
they grow linearly with the lengthL. Hence, by Eq.~2.5!, the
conductanceg is exponentially suppressed forL@Nl. How-
ever, for the chiral disordered wire with an odd number
channelsN, the net force on the middle eigenvaluex(N11)/2
vanishes: it remains in the vicinity of the origin and th
conductance is not exponentially suppressed.62 Thus, the
quantum wire with random flux with an odd numberN of
channels goes through a quantum critical point at zero
ergy whereas it remains noncritical for an even numberN of
channels. A more quantitative description of this even-o
effect is developed in the next section.

III. MOMENTS OF THE CONDUCTANCE

A. Method of biorthonormal functions

To calculate the moments of the conductanceg, we make
use of the exact solution of the Fokker-Planck equat
~2.7!,62

P~x1 , . . . ,xN ;L !})
j 51

N

e2(Nl/2L)xj
2

)
j ,k

~xj2xk!sinh~xj2xk!.

~3.1!

The proportionality constant is fixed by normalization of t
probability distribution. A derivation of Eq.~3.1! is pre-
sented in Appendix B.

The moments ofg can be computed from then-point cor-
relation functions81

Rn~x1 , . . . ,xn ;L !

5
N!

~N2n!! E2`

1`

dxn11 . . . E
2`

1`

dxNP~x1 , . . . ,xN ;L !,

~3.2!

and the Landauer formula~2.5!. For example, the first and
second moments ofg are

^g&5E
2`

1`

dx
R1~x;L !

cosh2x
, ~3.3a!

^g2&5E
2`

1`

dx1E
2`

1`

dx2

R2~x1 ,x2 ;L !

cosh2x1cosh2x2

1E
2`

1`

dx
R1~x;L !

cosh4x
. ~3.3b!

Here we computeRn(x1 , . . . ,xn ;L) using the method of
biorthonormal functions developed by Muttalib,82 and
Frahm,61 for a disordered wire in the unitary symmetry clas
The idea is to construct, for any givenN and L, a function
KL(x,y) with the following properties:

E
2`

1`

dx KL~x,x!5N, ~3.4a!
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E
2`

1`

dy KL~x,y!KL~y,z!5KL~x,z!, ~3.4b!

P~$xi%;L !5cN det@KL~xi ,xj !# i , j 51, . . . ,N . ~3.4c!

If such a function exists, it is known from random-matr
theory82 that cN51/N! and

Rn~$xi%;L !5det@KL~xi ,xj !# i , j 51, . . . ,n . ~3.5!

Our construction of the functionKL(x,y) starts with a
representation ofP(x1 , . . . ,xN ;L) in Eq. ~3.1! as a product
of two determinants. Making use of the identities

)
j ,k

~xk2xj !5det@xk
j 21# j ,k51, . . . ,N ,

)
j ,k

sinh~xk2xj !5det@ 1
2 e(N1122 j )xk# j ,k51, . . . ,N ,

we find

P~$xi%;L !}det@f j~xk!# j ,k51, . . . ,Ndet@h j~xk!# j ,k51, . . . ,N ,
~3.6a!

where

f j~x!5xj 21, ~3.6b!

h j~x!5e2(Nl/2L)x21(N1122 j )x. ~3.6c!

Note that the way we writeP as a product of two determi
nants in Eq.~3.6! is not unique. In particular, we are free
replace the sets of functions$f j% and$h j% by an arbitrary set
of linear combinations$f̃ j% and $h̃ j%. This freedom is cru-
cial for the construction of the functionKL(x,y), as we shall
see below.

Since the product of two determinants equals the dete
nant of the product of the corresponding matrices and s
transposition of a matrix leaves the determinant unchang
it is tempting to identifyKL(x,y) with ( j 51

N f j (x)h j (y). In
this way, Eq.~3.4c! is satisfied. However, with this choice
the remaining two conditions~3.4a! and ~3.4b! are not
obeyed. This problem can be solved by making use of
above-mentioned freedom to replace the sets of funct

$f j% and $h j% by linear combinations$f̃ j% and $h̃ j%. One
easily verifies that if we choose these linear combinati
such that they are biorthonormal,82

E
2`

1`

dx f̃ j~x!h̃k~x!5d jk , j ,k51, . . . ,N, ~3.7!

all three conditions~3.4! are met if we set

KL~x,y!5(
j 51

N

f̃ j~x!h̃ j~y!. ~3.8!

The construction of the biorthonormal functionsf̃ j andh̃ j is
done below.

First, we define the set$h̃ j (x)%, j 51, . . . ,N, by complet-
ing the square in the exponent ofh j (x) and then normalizing
h j (x),
i-
e
d,

e
ns

s

h̃ j~x!5A 1

2ps
e2(x2« js)2/2s, ~3.9!

where we abbreviated

s5L/Nl, « j5N1122 j . ~3.10!

The functionsf̃ j , being linear combinations off j (x)
5xj 21, are polynomials themselves, too. Their~maximal!
degree isN21. As a first step towards their construction, w
define the polynomials

pj~x!5A 1

2psE2`

`

dy ~ iy /s! j 21e2(y1 ix)2/2s,

~3.11!

which satisfy the special property

E
2`

`

dx pj~x!h̃k~x!5~«k!
j 21. ~3.12!

Notice thatpj (x) is of degreej 21. According to Eq.~3.12!,
the overlap matrix between the polynomialspj and the Gaus-
siansh̃ j is independent ofL. Construction of biorthonorma
functions f̃ j and h̃ j is thus achieved by choosin
L-independent linear combinations of the polynomialspj that
diagonalize the overlap matrix~3.12!. This is done using the
Lagrange interpolation polynomials61

Lm~x!5 )
nÞm

x2«n

«m2«n
, ~3.13!

which are of degreeN21 and obeyLm(«n)5dm,n . We infer
that the desired polynomialsf̃ j (x) are given by

f̃ j~x!5A 1

2psE2`

1`

dy Lj~ iy /s! e2(y1 ix)2/2s.

~3.14!

Putting everything together, we find that

KL~x,z!5
1

2ps (
j 51

N E
2`

1`

dy Lj~ iy /s!

3expF2
~y1 ix !21~z2« js!2

2s G . ~3.15!

Now, moments of the conductanceg can be calculated with
the help of Eq.~3.5!. In particular, we find that the averag
and variance ofg are given by

^g&5E
2`

1`

dx
KL~x,x!

cosh2x
, ~3.16!

varg52E
2`

1`

dx1E
2`

1`

dx2

KL~x2 ,x1!KL~x1 ,x2!

cosh2x1cosh2x2

1E
2`

1`

dx
KL~x,x!

cosh4x
. ~3.17!
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B. Average conductance

After some shifts of integration variables and with t
help of the Fourier transform of cosh22x,

E
2`

1`

dx
eiyx

cosh2x
5

py

sinh~py/2!
52)

k51

` S 11
y2

4k2D 21

,

~3.18!

we obtain from Eqs.~3.15! and ~3.16! an expression for the
average conductancêg& at the energy«50 that involves
one integration and one~finite! summation only,

^g&5 (
m51

N

cme2«m
2 s/2, ~3.19!

cm5E
2`

1`

dy
Lm~«m2 iy !ye2(y1 i«m)2s/2

2 sinh~py/2!
,

where, as before,s5L/Nl. In the limit N@1 at fixeds ~the
so-called thick-wire limit!, Eq. ~3.19! can be further simpli-
fied. Hereto we use the second identity of Eq.~3.18! to can-
cel the Lagrange interpolation polynomial in the coefficie
cm ,

cm5E
2`

1`dy

p
e2y2s/2 )

kPLm

S 12
iy1«m

2k D 21

,

Lm5Z2$2m11, . . . ,2m1N%. ~3.20!

In the limit N→`, only m’s close to (N11)/2 contribute to
^g&. For thosem, we may replace the infinite product on th
right-hand side of Eq.~3.20! by unity, and find cm
5(2/ps)1/2. Hence, forN@1 even,

^g&5A 2

ps
q2~0u2is/p![A 2

ps (
mPZ
m odd

e2m2s/2,

~3.21a!

whereas forN@1 odd,

^g&5A 2

ps
q3~0u2is/p![A 2

ps (
mPZ

m even

e2m2s/2.

~3.21b!

Hereq2 andq3 are the Jacobi’s theta functions.83

The dramatic difference between even and odd chan
numbers discovered in Refs. 33 and 62 follows immediat
from Eqs.~3.19! or ~3.21! in the regimeL@Nl. For evenN,
each term in the summation decays exponentially withL.
The exponential decay of̂g& is governed by the slowes
decaying terms in the summation in Eq.~3.19!, i.e., the con-
tributions from«m561, i.e., fromm5N/2 or m5N/211.
Hence forL@Nl we find

^g&'A8j

pL
e2L/2j, j5Nl, N even. ~3.22!

Equation ~3.22! allows us to identifyj as the localization
length.65 For odd N, there is one term in the summatio
~3.19! that does not decay exponentially withL. It is the
contribution from the channel with«m50, m5(N11)/2. In
t

el
ly

this case, we again definej5Nl, although it is now merely a
crossover length scale, to be the characteristic length s
above which the slow algebraic decay of^g& sets in,

^g&'A2j

pL
, N odd, L@j. ~3.23!

In Fig. 2 we have shown the average conductance foN
51,2,3,4 as a function ofL/j and the asymptotic result fo
largeN.

To study the average conductance in the diffusive reg
l !L!j, we use the Poisson summation formula

(
mPZ

d~x22m21!5
1

2 (
nPZ

eipn(x21), ~3.24a!

(
mPZ

d~x2m!5 (
nPZ

e2p inx, ~3.24b!

to convert Eq.~3.21! into

^g&5
j

L
15

2j

L (
n51

`

~21!ne2p2n2j/2L, N@1 even,

2j

L (
n51

`

e2p2n2j/2L, N@1 odd.

~3.25!

Hence the even-odd effect is nonperturbative inL/j and we
see thatj5Nl is the characteristic length scale at which t
even-odd effect shows up. Whereas the leading terms
identical, the first nonperturbative correction to^g& differs
by a sign for even and oddN.

In Fig. 3 we plot the average conductance forN@1 as a
function of L/j and compare with the unitary symmetr
class, which is appropriate for energies«Þ0. In the unitary
symmetry class,̂g& decays exponentially,59–61 irrespective
of the parity ofN, but with a different localization lengthju ,

FIG. 2. Average conductance at zero energy as a function
L/j (j5Nl) for a quantum wire with a finite number of channe
N51,2,3,4 and in the chiral unitary symmetry class. The even-
effect is clearly visible forL/j@1: ~i! Exponential decay of̂g& for
N even,~ii ! Algebraic decay of̂ g& for N odd.
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^g&}e2L/2ju, ju52Nl. ~3.26!

The unitary symmetry class is appropriate for the rando
flux model if the energy« is nonzero. Hence, moving th
energy« away from zero causes a factor 2 increase in
localization length if the number of channels is even, an
dramatic decrease in the average conductance ifN is odd.

C. Variance of the conductance

Proceeding as in the previous subsection, we find fr
Eqs.~3.15!, ~3.27!, and~3.18!,

varg5 (
m,n51

N

cm,n e2(«m
2

1«n
2)s/21 (

m51

N

cm8 e2«m
2 s/2,

~3.27!

with the coefficients

cm,n52E
2`

`

dy1

y1Lm~«n2 iy1!e2(y11 i«n)2s/2

2 sinh~py1 /2!

3E
2`

`

dy2

y2Ln~«m2 iy2!e2(y21 i«m)2s/2

2sinh~py2 /2!
,

FIG. 3. Average conductance as a function ofL/j for a quantum
wire in the limit N@1. Curves~a! and ~b! are for large odd and
even N at zero energy, when the system is in the chiral unit
symmetry class. Curve~c! shows^g& for a quantum wire in the
unitary symmetry class with the same mean free path as in~a! and
~b!.

FIG. 4. Same as Fig. 2, but for the variance of the conducta
-

e
a

cm8 5E
2`

`

dy
~y314y!Lm~«m2 iy !e2(y1 i«m)2s/2

12 sinh~py/2!
.

We plot varg, which is computed from Eq.~3.27! for N
51,2,3,4, in Fig. 4, together with the thick wire limitN@1.
The even-odd effect is clearly seen whenL/j@1.14

In the limit N→` at fixed Nl/L further simplifications
are possible. We find

varg52 ( 8
m52`

`

( 8
n52`

`

f m,nf n,m1 ( 8
m52`

`

f m8 ,

f m,n5A 2

ps
e2m2s/21

1

2
@~m2n! erf~mAs/2!2um2nu#,

f m8 5A 1

18ps
~42m21s21!e2m2s/2, ~3.28!

where the primed summations are restricted to even~odd! m
andn for N odd ~even!. The error function erf(x) is defined
as

erf~x!5
2

Ap
E

0

x

dt e2t2.

For L@j Eq. ~3.28! simplifies to

var g'5A
2j

pL
e2L/2j, N@1 even,

A 8j

9pL
, N@1 odd.

~3.29!

The variance of the conductance decays exponentially
large evenN with the same decay length as the average^g&,
while varg decays algebraically for large oddN. Note that
^g& and varg decay with the same power ofL.

After some tedious algebra starting from Eq.~3.28! to
extract an expression well suited for an asymptotic exp
sion in smallL, we find for the diffusive regimel !L!j,

varg5H 2

15
1

p2

3 S j

L D 3

e2
p2j
2L 1 . . . , N@1 even,

2

15
2

p2

3 S j

L D 3

e2
p2j
2L 1 . . . , N@1 odd.

~3.30!

Again, we see that the difference between even and
channel numbers shows up in terms that are nonperturba
in L/j. The leading term 2/15 in varg is universal and twice
the value of its counterpart for a disordered quantum wire
the unitary ensemble.59–61Hence, moving the energy« away
from zero decreases the conductance fluctuations by a fa
two in the diffusive regime. The factor of two decrease
varg upon breaking the chiral symmetry is reminiscent
the factor 2 difference for the conductance fluctuations
tween the standard orthogonal and unitary symme
classes.65 The enhancement of the conductance fluctuati

y

e.
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at «50 had been observed previously in numerical simu
tions of the two-dimensional random-flux problem by Oh
suki et al.17

Figure 5 contains a plot of varg versusL/j, and offers a
comparison with the unitary symmetry class.59–61 In the uni-
tary symmetry class, varg takes the universal value 1/15 i
the diffusive regimeL!Nl, while varg}exp(2L/2ju), ju
52Nl, in the localized regimeL@Nl.

IV. NUMERICAL SIMULATIONS

In this section we present numerical simulations for
conductanceg in the random-flux model~2.1!. The average
and variance ofg were studied previously by Avishaiet al.25

and by Ohtsukiet al.17 for the random-flux model in a squar
geometry. However, for a comparison with the theory of S
III and to identify the symmetry class it is necessary to stu
a wire geometry and large system sizes. This is done be

For each disorder configuration, we calculate the cond
tance using the Landauer formula~2.5!, which we use in the
more conventional form

g5 (
m,n51

Nc

utm,nu2. ~4.1!

HereNc is the number of propagating channels in the lea
and t is the Nc3Nc transmission matrix, which relates th
amplitudes of the incoming and outgoing waves on the
and the right of the disordered sample. The eigenvaluesTj of
the matrixtt† are the same as in Eq.~2.5!. ~The simulations
are aimed at energies« close to zero, whereNc equalsN.
Hence, as before, we drop the notational distinction betw
Nc andN.!

The transmission matrixt is computed through the recu
sive Green function method.84–86 In this method,N3N ma-
trix Green functionsF jk for reflection andGjk for transmis-
sion through the disordered region are computed using
recursive rule,

F~m11!5@«2Hm2t2 F~m!#21,

G~m11!52tG~m!F~m11!, ~4.2!

where the matrix elements ofHm are

H j ,k
m 52t~12d j ,N!eium, jd j 11,k2t~12d j ,1! e2 ium, j 21d j 21,k .

FIG. 5. Same as Fig. 3, but for the variance of the conducta
-

e

.
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The initial conditions atm50 are those of a Green functio
at the edge of an isolated perfect lead:

F jk~0!5Gjk~0!52
2

N11 (
n51

N

eiknsin
n j p

N11
sin

nkp

N11
,

~4.3!

where coskn52«/2t2cos@np/(N11)#, see Sec. II. The scat
tering channels are those modes with real wave vectorskn .
The Green function that we need is obtained by taking i
account the perfect lead boundary condition on the right
the disordered region,

F~M !5@F~0!212t2 F~M21!#21,

G~M !52tG~M21!F~M !.

The matrix Green functionG(M ) describes the propagatio
from m50 to m5M . The absolute value of the transmissio
matrix element at energy« is then given by

utm,nu254 sinkm

3sinknU 2

N11 (
j ,k51

N

Gjk~M !sin
m j p

N11
sin

nkp

N11U
2

.

This procedure is repeated for each disorder configurat
and the average and variance of the conductance are obta
by taking an average over 23104 samples. The transvers
boundary conditions are those of Eq.~2.1!, i.e., open bound-
aries, unless explicitly indicated otherwise. We present
numerical results as a function ofL/j, wherej is the char-
acteristic length entering Eq.~3.22! and Eq.~3.23!. We de-
terminej by comparing the numerical data forL@j to the
asymptotic results~3.22! and ~3.23!.

Figure 6 shows the average and variance of the cond
tance at«50 of the random-flux model~2.1! with N515
and N516 and disorder strengthp50.2. WhenL@j, ^g&
decreases algebraically forN515 whereas it decays expo
nentially forN516. This is precisely the even-odd effect33,62

that we discussed at length in the last section. We find
cellent agreement between the numerical data and the th
of Sec. III, which is indicated by the solid~odd N) and
dashed~evenN) lines in the figure. The characteristic leng
j that governs the crossover to the slow algebraic deca
Eq. ~3.23! is estimated to be 280a for N515. The localiza-
tion lengthj that governs the exponential decay of Eq.~3.22!
is estimated to be 283a for N516. As in the case of the
average conductance, for varg, the even-odd effect can b
clearly seen forL*j, where the numerical data coincid
with the analytic result in the large-N limit, Eq. ~3.28!. The
slight discrepancy at very smallL happens atM;N and may
be understood as a crossover from quasi-one-dimension
quasi-two-dimensional behavior. This type of one- to tw
dimensional crossover was reported in a numerical work
Tamura and Ando.87 The Fokker-Planck approach employe
in Secs. II and III is specifically devised for a quasi-on
dimensional geometry and is, therefore, inapplicable to
scribe the regimeM&N.

In Figs. 7 and 8 we consider the dependence of^g& and
varg on N, p, and «. Figure 7~a! shows the average an
variance ofg for odd N at «50 for two choices ofN andp.
We see that the numerical data show fairly good agreem

e.
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with the analytic large-N result ~solid lines! for the three
cases we examined. For larger disorder strengthp, the devia-
tions from the analytical result~3.28! is more prominent, the
stronger disorder data being closer to the onset of quasi-
dimensional behavior for smallL. The agreement betwee
the numerical data forp51 and the theory of Sec. III for
L@j is remarkable, in view of the fact that the theory w
derived under the assumption of weak disorder, whereap
51 corresponds to the strongest possible disorder in
random-flux model.

Figure 7~b! shows ^g& and varg for the random-flux
model ~2.1! at «50 for an even numberN of channels. We
show the data for three cases (N,p)5(16,1), ~16,0.2!, and
~32,0.2!. In the last example we used periodic boundary c
ditions in the transverse direction instead of the open bou
ary conditions of Eq.~2.1!. Since N is even, the periodic
boundary conditions do not destroy the chiral symmetry,
that the system remains in the chiral unitary symmetry cla
We see that the results of numerical simulations are indis
guishable from the theoretical curves~solid lines! for both
^g& and var g except in the quasi-two-dimensional regim
M&N. We conclude from Fig. 7~a! and 7~b! that the local-

FIG. 6. The average~a! and the variance~b! of the conductance
g for the random-flux model~2.1! at «50 for N515 ~circle! and
N516 ~diamond! with disorder strengthp50.2. For these param
eters, we find thatj5280a for N515 andj5283a for N516. The
solid ~dashed! lines in~a! are the theoretical result~3.19! for ^g& for
N515 (16); the solid~dashed! lines in ~b! are the large odd~even!
N analytical results~3.28! for varg.
o-

e

-
d-

o
s.
-

ization properties of the random-flux model at«50 are gov-
erned by the chiral unitary universality class, independen
the disorder strength.

In Fig. 8 we show some results where the chiral symme
is broken. In this case, charge transport is no longer g
erned by the Fokker-Planck equation~2.7! for the chiral uni-
tary symmetry class, but by the Fokker-Planck equation~2.6!
that is valid for the standard unitary class.63–65 In the figure,
numerical results are shown for three cases away from
critical energy as well as for one case where the chiral sy
metry does not exist because of the periodic boundary c
dition imposed for oddN. With the exception of very shor
lengths, where the system becomes quasi-two-dimensio
all the data for̂ g& and for varg agree with the theoretica
prediction for the unitary class.59–61The results indicate tha
the small nonzero energy«50.02t is sufficient to cause a

FIG. 7. The average and the variance of the conductanceg for
the random-flux model~2.1! at «50 for oddN ~a! and evenN ~b!.
~a! The circles, squares, and triangles are the results for (N,p)
5(15,1.0), (15,0.2), and (31,1.0), respectively. The character
length j is numerically found to bej523.7a, 280a, and 39.8a,
respectively. The solid lines are the large oddN analytical result
~3.28!. ~b! The circles, squares, and triangles are the results
(N,p)5(16,1.0), (16,0.2), and (32,0.2), respectively. In the l
case, periodic boundary conditions~p.b.c.! in the transverse direc
tions are used, whereas for the first two cases open boundary
ditions are assumed. The localization lengthsj are found to bej
527.2a, 283a, and 476a, respectively. The white solid lines are th
large evenN analytical result for the chiral-unitary class of Sec. I
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change from the chiral unitary symmetry class at«50 to the
standard unitary symmetry class. Another interesting fea
to note is that the localization lengthj in Fig. 8 is roughly
twice as large as that in the chiral case~Fig. 7!. ~For ex-
ample, compare the two cases«50 and «50.02t for N
516 andp51, where we findj527.2a andju550.6a, re-
spectively.! This behavior was observed earlier in Re
88,33,34. This result is consistent with the analytic result t
j differs by a factor of 2 between the chiral (j5Nl) and the
unitary class (ju52Nl), assuming that the mean free pa
determined by the short-distance physics is identical in
two classes.~For the numerical results we may expect th
the mean free path should not have strong energy de
dence on the scale ofu«u,0.1t.!

V. CONCLUSION

In this paper we studied transport properties of a part
on a rectangular lattice in the presence of uncorrelated
dom fluxes of vanishing mean. This problem is commo
known as the random-flux problem. We considered a w
geometry and weak disorder and showed that the symme
of the random-flux problem have dramatic consequence
the statistical distribution of the conductanceg. If the energy
« is away from the band center«50, the system belongs t
the standard unitary symmetry class, while at«50, transport
is governed by an additional symmetry of the random-fl
model, the particle-hole, or chiral symmetry. We have co
pared numerical simulations of the average and varianc
the conductanceg in the random-flux model in a thick quan
tum wire to analytical calculations for the standard unita
and the chiral unitary symmetry classes, and found g
agreement for«Þ0 and«50, respectively.

There are important differences between the conducta
distribution in the chiral unitary symmetry class and the st
dard unitary symmetry class, both in the diffusive and

FIG. 8. Average and variance ofg for disorder strengthp51
away from the critical energy«50. The circles and squares are th
data for N515 and«50.02t (ju547.8a) and for N516 and«
50.02t (ju550.6a), respectively. The diamonds and triangles a
the data forN515 and«50 (ju545.0a) and for N532 and«
50.1t (ju51041a), which are calculated for the periodic bounda
condition. For oddN, periodic boundary conditions break the chir
symmetry. The white solid lines are the largeN analytical result for
the unitary class, taken from Refs. 59–61.
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localized regime. These differences are summarized in Ta
I. The most striking feature of the chiral unitary symmet
class is the even-odd effect:33,62 If the number of channelsN
in the wire is even, the average conductance^g& decays ex-
ponentially with lengthL in the localized regimeL@Nl,
whereas for oddN, the decay of̂ g& is algebraic. The sensi
tivity to the chiral symmetry in transport properties is ve
strong. For example, removing the chiral symmetry by
change in boundary condition is sufficient to change the u
versality class to the standard unitary one, even in the th
wire limit N@1.

Although our theory is limited to a quasi-one-dimension
geometry and cannot account for the crossover from on
two dimensions, it does show the importance of the ch
symmetry to the transport properties of the random-flu
problem. Taking the prominent role played by symmetry
the random-flux model in quasi-one-dimension as a gui
line, we speculate that a similar picture is appropriate for
two-dimensional random-flux problem. Hence, followin
Gade and Wegner,47 and Miller and Wang33 we expect that
the localization properties of the two-dimensional rando
flux problem are controlled by the unitary symmetry cla
away from the band center«50, whereas the band cente
«50 plays the role of a critical energy. The random-flu
problem would thus share with the integer quantum H
effect, and with the problem of Dirac fermions in a rando
vector potential the existence of a single critical energy t
lies between energies with localized states. There are, h
ever, two important differences with the integer quantu
Hall effect. First, there is no symmetry that fixes the value
the critical energy in the integer quantum Hall effect, wh
the chiral symmetry of the random-flux model implies th
criticality occurs at the band center«50. Second, in contras
to the smooth density of states in the integer quantum H
effect, one expects that the density of states in the rand
flux problem is singular at«50. Such a singularity of the
density of states at«50 was observed in the single cha
random hopping problem, is suggested by the numer

TABLE I. Average and variance of the conductanceg of a dis-
ordered quantum wire withN@1 channels and mean free pathl in
the unitary and chiral unitary symmetry classes, for the diffus
regimeL!Nl and for the localized regimeL@Nl. The results for
the unitary ensemble are taken from Refs. 59–61.

Unitary Chiral unitary
EvenN Odd N

Diffusive

^g& Nl

L

Nl

L

Nl

L

varg 1
15

2
15

2
15

Localized

^g& 2SpNl

L D3/2

e2L/4Nl A8Nl

pL
e2L/2Nl A2Nl

pL

varg
1

2SpNl

L D3/2

e2L/4Nl A2Nl

pL
e2L/2Nl A8Nl

9pL
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simulations of Refs. 49 and 34, and is consistent with Gad
analysis of the two-dimensional nonlinear-s model with chi-
ral symmetry,47 and with exact results on the problem
Dirac fermions in a random vector potential.50,51 ~The latter
problem shares the same chiral symmetry as the random
problem although it differs from the random-flux problem
that the magnetic fluxes are strongly correlated on all len
scales.!
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APPENDIX A: DERIVATION
OF THE FOKKER-PLANCK EQUATION

In this paper, we described the transport properties o
quantum wire in the chiral unitary symmetry class in ter
of its transfer matrixM. Our theoretical analysis was fo
cused on a solution of the Fokker-Planck equation~2.7! that
governs theL evolution of the probability distribution
P(x1 , . . . ,xN ;L) of the eigenvaluese62xj of MM †. A
derivation of this Fokker-Planck equation from a differe
microscopic model was presented in Ref. 62. Here
present an alternative derivation of Eq.~2.7! that is closer in
spirit to derivations of the Fokker-Planck equation for t
unitary class existing in the literature.64

For the statistical distribution of the parametersxj , the
symmetries of the transfer matrixM(«) are of fundamenta
importance. For the random-flux model, there are two sy
metries~cf. Sec. II!:

M~«!S3M †~«!5S3 , flux conservation, ~A1!

S1M~«!S15M~2«!, chiral symmetry. ~A2!

Here the transfer matrixM is defined in Eq.~2.2! and S j
5s j ^ 1N , wheres j is the Pauli matrix (j 51,3) and1N is the
N3N unit matrix.

Because of flux conservation~A1! M(«) can be param-
etrized as65

M5SM11 M12

M21 M22
D 5S U 0

0 U8D S coshX sinhX

sinhX coshXD S V 0

0 V8D ,

~A3!

whereU, U 8, V, andV 8 areN3N unitary matrices andX is
a diagonal matrix containing the parametersxj on the diag-
onal. We are interested in the case of zero energy, when
chiral symmetry~A2! results in the further constraintsU
5U 8 andV5V 8. Notice that in this case, with the param
’s

ux

th

er

s
r

tter
l
a

a
s

t
e

-

he

etrization~A3!, the parametersxj are uniquely determined by
M. This is an important difference with the unitary symm
try class, where eachxj is only defined up to a sign. As a
result, in the unitary class, the distributionP(x1 , . . . ,xN ;L)
has to be symmetric under a transformationxj→2xj for
eachj individually, while no such symmetry requirement e
ists in the chiral unitary class.89

As the lengthL of the disordered region is increased~see
Fig. 9!, the parametersxj , j 51, . . . ,N are subjected to a
Brownian motion process: AsL is increased by an amoun
dL, the parametersxj will undergo a~random! shift xj→xj
1dxj . We first seek the appropriate Langevin equations t
describe the statistical distribution of the incrementsdxj .
Hereto we note that the transfer matrixM̂[M(0;L1dL) is
the product of the individual transfer matricesM
[M(0;L) andM 8[M(0;dL) for wires of lengthL and
dL, respectively:

M̂5MM 8. ~A4!

We also use that the matrix

2M11M 12
† 5U sinh~2X! U † ~A5!

is Hermitian and has eigenvalues sinh 2xj , j 51, . . . ,N.
Hence we find that

2M̂11M̂12
† 5U~sinh 2X12D!U †,

D5U †~M̂11M̂12
† 2M11M 12

† !U. ~A6!

Making use of the symmetries ofM 8 and of the parametri-
zation ~A3! we can rewriteD as

D5coshXVM128 M128
†V †sinhX

1sinhX VM128 M128
†V †coshX

1coshXVM118 M128
†V †coshX

1sinhXVM128 M118
†V † sinhX. ~A7!

We take the lengthdL of the added slice small compared
the mean free pathl. Within the thin slice the disorder is
assumed to be uncorrelated beyond a length scale of the
der of the lattice spacinga!dL. In this case one hasM 8
511O(dL)1/2, so that the matrixD is of order (dL)1/2 itself
and we can treat it in perturbation theory. As a result, we fi
that the addition of the slice of widthdL results in the
change

sinh 2x̂ j2sinh 2xj52D j j 14(
kÞ j

D jkDk j

sinh 2xj2sinh 2xk

1O~dL3/2!, ~A8!

FIG. 9. A thin slice of lengthdL with a!dL! l !L is added to
the disordered region of lengthL.
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or equivalently

dxj5
D j j

cosh 2xj
2

D j j
2 sinh 2xj

cosh32xj

12(
kÞ j

D jkDk j

~sinh 2xj2sinh 2xk!cosh 2xj
1O~dL3/2!.

~A9!

It remains to find the first two moments ofD jk . Hereto
we make an ansatz for the distribution of the transfer ma
M 8. BecauseM 8 is close to 1, it is natural to parametriz
it in terms of its generator,

M85expA. ~A10!

From the symmetry requirements~A1! and ~A2! we deduce
thatA has the form

A5 iV ^ 121W^ s1 , ~A11!

whereV andW are HermitianN3N matrices. We choose
convenient statistical distribution ofM 8, by assuming thatV
and W have independent, Gaussian distributions with z
mean and with variance

^Vi j Vkl&5^Wi j Wkl&5d i l d jk

dL

Nl
. ~A12!

Then we find that the first two moments ofD are given by

^D jk&5d jksinh~2xj !
dL

l
,

^D jkDk j&5cosh2~xj1xk!
dL

Nl
.

Combining this with Eq.~A9!, we conclude that under add
tion of a narrow slice of widthdL! l , the parametersxj
undergo a shiftxj→xj1dxj with

^dxj&dL5
dL

Nl (
kÞ j

coth~xj2xk!, ~A13a!

^dxjdxk&dL5
dL

Nl
d jk , ~A13b!

all higher moments vanishing to first order indL. Equation
~A13! is equivalent to the Fokker-Planck equation~2.7!.

APPENDIX B: SOLUTION
TO THE FOKKER-PLANCK EQUATION

In this appendix, we present an exact solution for
Fokker-Planck equation~2.7!, closely following the exact so
lution of the DMPK equation in the unitary symmetry cla
by Beenakker and Rejaei.66 We start by rewriting Eq.~2.7!
as

l
]P

]L
5

1

2N (
j 51

N
]

]xj
F ]P

]xj
12PS ]V

]xj
D G , ~B1a!
x

o

e

V52
1

2 (
j ,k

lnusinh~xj2xk!u2, ~B1b!

where the initial condition is

P~x1 , . . . ,xN ;0!5)
j 51

N

d~xj !. ~B1c!

The key step towards the exact solution of Eq.~B1! is the
transformation

P~$xj%;L !5F)
j ,k

sinh~xj2xk!GC~$xj%;L !, ~B2!

which changes the Fokker-Planck equation~B1! into a
Schrödinger equation,

2 l
]C

]L
52

1

2N (
j 51

N
]2C

]xj
2 1

1

2N
C (

j 51

N F S ]V

]xj
D 2

2
]2V

]xj
2 G

52
1

2N (
j 51

N
]2C

]xj
2 1UF. ~B3!

Here U5(N21)(N22)/61(N21)/2. Thus, C(x1 , . . . ,
xN ;L) obeys a Schro¨dinger equation in imaginary timeL
that describesN identical free particles on the line,2`,x
,`. ~For comparison, in the unitary symmetry class, o
finds thatC obeys a Schro¨dinger equation forN identical
particles moving in the presence of a potential}sinh222x
which repels thex’s away from the origin.66!

Since the probability distributionP(x1 , . . . ,xN ;L) is
symmetric under a permutation of thexj ’s, it follows from
Eq. ~B2! that C(x1 , . . . ,xN ;L) must be antisymmetric, i.e.
it must describe the imaginary-time evolution ofN identical
fermions. AtL50, the initial condition~B1c! implies that all
xj coincide at the origin. Hence, atL50, the transformation
~B2! is singular. We avoid this problem by starting with th
initial condition65

P~$xj%;0u$yk%!5
1

N! (
s

)
j 51

N

d~xj2ys( j )!,

yj5e~ j 21!, ~B4!

where all the initial values are different, and sende to zero at
the end of the calculation. The summation is over all perm
tationss of 1, . . . ,N.

To solve Eq.~B3!, we denote byG(x;Luy) the single-
particle Green function of the diffusion equation obeying

l
]G

]L
5

1

2N

]2G

]x2 , G~x;0uy!5d~x2y!. ~B5!

Solution of Eq.~B5! yields

G~x;Luy!5A Nl

2pL
e2(Nl/2L)(x2y)2

. ~B6!

Then the Slater determinant
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C~$xj%;Lu$yk%!5
1

N!
det@G~xj ;Luyk!# j ,k51, . . . ,Ne2UL/ l

~B7!

is antisymmetric inx1 , . . . ,xN and obeys the Schro¨dinger
equation~B3!. Using the inverse of the transformation~B2!,
we obtain that

P~$xj%;Lu$yk%!5C~$xj%;Lu$yk%!)
j ,k

sinh~xj2xk!

sinh~yj2yk!
~B8!

is the solution to the Fokker-Planck equation~B1! with the
regularized initial condition~B4!.
We finally take the limite→0. This limit must be treated
with care in view of the denominator of Eq.~B8!. With the
help of

det@e2(Nl/2L)(xj 2yk)2
# j ,k51, . . . ,N

5e2(
j 51

N

(Nl/2L)xj
2S Nle

2L D
N~N21!

2

)
j ,k

~xj2xk!1O~e2!,

~B9!

the singularity}e2N(N21)/2 coming from the denominator in
Eq. ~B8! is canceled. We thus recover Eq.~3.1!.
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