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We introduce a generalized approach to one-dimensidma)l conduction based on HaldangBhys. Rev.
Lett. 67, 937 (1991)] concept of fractional exclusion statistiSES and the Landauer formulatidiBM J.
Res. Devl, 223(195%; Phys. Lett85A, 91(1981)] of transport theory. We show that the 1D ballistic thermal
conductance is independent of the statistics obeyed by the carriers and is governed by the universal quantum
K“”ivz(wzls)(szT/h) in the degenerate regime. By contrast, the electrical conductance of FES systems is
statistics dependent. This work unifies previous theories of electron and phonon systems, and explains an
interesting commonality in their behavidS0163-1829)08119-9

I. INTRODUCTION specied, andd; is the dimension of thé\;-particle Hilbert
space, holding the coordinates of tNe—1 particles fixed.
Recent theoretical investigations of quantum transporfhe parameteg;; is the statistical interaction. For a system
have revealed an intriguing commonality in the behavior ofof identical particlesg is a scalar quantity, witg=1 (0) for
some apparently very dissimilar systems: It has been préermions (bosong. Wu'? used this definition of FES to es-
dicted that in one dimension the low-temperature ballistictablish the statistical distribution function for an ideal gas of
thermal conductances of ideal electron ga‘!-s?ephonons’)’, particles with fractional statistics. It has been proposed that
and interacting electrons that form chfrair norma? Lut- ~ Such ideal FES gases provide an accurate representation of
tinger liquids should all be quantized in integer multiples ofthe physics of a number of interacting electron systehis.
a universal quantunx'" = (7%/3)(k3T/h), whereT is the W,h'le much attention has bef"lQ given to the thermody-
temperaturekg the Boltzmann constant, ardis Planck’s namic properties of FES systertfs, their transport proper-

constant. That is, a one-dimensior@dD) band populated ties have not received the same consideration. In this paper

: ; oo we use the Landauer formulation of transport thébrp
with bosons descrlbe_d by a Planck distributigahonon study conduction in ideal one-dimensional FES systems. Re-
mode$ has been predicted to transport tEmeamount of

) ) markably, we find that their low-temperature thermal con-
heat as one populated by fermiaftise ideal electron ga®r  y,ctance is quantized in integer multiples of the universal

a Luttinger liquid. Also, experimental evidence has been re,QUantumK””‘”=(w2/3)(kéT/h), irrespective of the value of

ported that ropes of single- V\galled nanotubes conduct heat ifhe gtatistical parameterg. Thus we demonstrate that the
1 univ . . .
amounts proportional ta""".” However each of these sys- gyantization of thermal conductance and the associated

proach. Thus it has been unclear whether the convergence ghntrast we find the electrical conductances of FES systems
the results that have been obtained is simply a coincidence @b be statistics dependent.

whether it has a deeper significance and broad ramifications.

The purpose of this work is _to resolve th_is ques_tion with the Il. SINGLE SPECIES

help of the concept of fractional exclusion statistiE€S), _ . .

proposed by Haldankthat allows one to discuss the behav- ~ Consider a two-terminal transport experiment where two

ior of bosons, fermions, and particles having fractional stainfinite reservoirs are adiabatically connected to each other

tistical properties, all on the same footing. Besides the uniby a one-dimensional channel. Each reservoir is character-

versal thermal conductance, from this theory we alsdzed by a temperaturdl) and a chemical potential(, con-

naturally obtain the quantized electrical conductance for balsidered to be independent variables. In the case of reservoirs

listic electrons in 1D quantum wires and in the fractionalwith charged particlesy can be redefined as the electro-

guantum Hall(FQH) regime. chemical potential, that is, a combination of the chemical
FES(Ref. 7) extends the concept of anyohse., particles ~ potential and an electrostatic particle energy governed by an

with fractional statistics, from two dimensions to arbitrary external field. In terms of andu the electric(l) and energy

spatial dimensions by introducing a generalization of the(U) currents in the linear response regime are
Pauli exclusion principle, and has yielded insights into frac-

tional quantum Hall systenfs, spinons in antiferromagnetic dl dl

. . . . . Ol=—| ou+ —| oT, 1)
spin chaing, systems of interacting electrons in 2D quantum apl, oT
dots!® and the Calogero-Sutherland modkln Haldane’s "
sense the statistics of a system composed of different species a0 aU
of particles (or quasiparticlesis defined by the relation SU=— Su+ —| oT, 2)
Adi=—-Z2,g;;AN;, whereN; is the number of particles of b Jr o
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wheredT=Tg— T, andSu= ug— u , With R(L) represent- U 1 o
ing the right(left) reservoir. La=271 =h3 > f dx(x+uB)F(x,9), (11
Using Landauer theory we write the fluxes between the mly NBER Jxon

two reservoirs as .
U

=dk 22:_’
=S af ookl ndat. @ Tl
with Xo=B(&,(0)— 1) and

_ks 2
—hﬁg fxondx(x +XxuB)F(x,9), (12

gy XDV 1]
' [W(x,9)+9]®

Fermions and bosons are the special cases of the theory;
however, our interest is to develop a formalism able to treat
all FES systems. Analytic solutions of E(B) can also be
obtained for the special casgs-3,%,3,2,3, and 4, but for
generalg the approach of analytically solving the equation
for W is not possible. We now present a comprehensive
method to treat this problem. Initially, solve E@) for x

. > dk
=3 | Srentunine-mlb. @

n

(13

The sum oven takes into account the independent propa-
gating modes admitted by the channgl(k) andv,(k) are
the energy and velocity of the particle with wave vedtor
{n(k) is the particle transmission probability through the
channel,; represents the statistical distribution functions in
the reservoirs, and is the particle charge. In one dimension
the particle velocityv,(k)=%"1(de,/dk), is canceled by
the 1D density of state®(e,) = dk/de,, and the fluxes be-

come independent of the dispersion: =Ble—p)
Xx(W,9)= InOV+ 1) +[InONV) — InOW+1)]g. (14
q o
=5 > f de[ 7r— mL1¢n(e), (5 We notice that lin,_,ox=— for g#0, which corresponds
o Len(0) to the lowest energy for the degenerate nonbosons. More-
1 over, limy,_,x=0 when g=0, which corresponds to the
: ” lowest energy modes of bosons described by the Planck dis-
O=2 J deel 7g— | 6 gy y
h ; £n(0) eelar=mlén(e) © tribution. On the other hand, lig,..x= for any g=0.

) ) ) This shows thak can be supplanted by as the variable of
Throughout the remainder of this paper we will assumgnptegration in our general FES expressions lfgr, with W
¢n(#)=1, which corresponds to ballistic transport and a peryanging from 0 to infinity. Notice that no other specification

fectly adiabatic coupling between the reservoirs and the 1Ry the functional form of the particle spectra is made in this
system. This assumption can be considered realistic in vieWerivation. Then, using Eq14), we can write

of the present stage of the mesoscopics technology. Substi-

tution of expression$s) and(6) for the fluxes into Eqs(l) dw
and(2), while taking the limit6T—0 andSu—0, gives us F(X,9)dx= ———. (15
the transport coefficients. (W+g)

Having introduced the model, we consider systems Ofrpg rangport coefficients;; can then be evaluated analyti-
generalized statistics, which can be investigated within FE%aIIy for arbitraryg. Wheng>0

theory. Initially we concentrate on identical particle systems

and the distribution function derived by Wufor an ideal q(= dw q1
gas of particles obeying FES, Li1=M 0 m =M hg' (16)
o (W+g
1
:—, 7 o]
g W(x,9)+9 ) L =|\/|9k J dyvmzo (17
12 h B 0 (W+g)2 !

with x=B(e—u), B=1/(kgT), and W(x,g) given by the
implicit equation

1 (= x(W0Q)+upB w1
_ L,;=M —f d =M-——, 18
WA G)[L+ Wx,g)]' 9= e ®) 2Mig e M ovrgz  Mhg 19
Making g=0 or 1, Eq.(7) becomes the Bose-Einstein or and, for allg=0,
Fermi-Dirac distribution function, respectively.
For a system of generalized statistics, the transport coef- K3T (= x2(W,g)+ uBx(W,g)
ficients are Lx=M Tfo : W+ g)?
ol q fx kZT 2
Lyy=—o / =— dxF(x,9), 9 BT
11 ‘9:“«1- h; Xon ( g) () _MT?’ (19)

q o with x(W,g) given by Eq.(14). HereM is an integer number
:EKBE J dxxF(x,9), (10)  that takes into account the number of occupied mddss
n Jxon suming a degenerate population in each one of jh&imere-

L al
12_0-)_1—
s
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fore, the transport equations for a system of identical parplateaus of the Laughlin  states, G=[1/(2m

ticles of generalized statistics are +1)](e?h). Since on the FQH plateaus the two-terminal
conductance is equal to the quantized Hall conductance, this
_1q result is in agreement with experimental ddtan FQH de-
Sl=—=-Méu, (20 ; . : .

gh vices. It is important to mention that, since we are concerned

with transport, our analysis applies to the electrons them-

A7) a2 kéT selves as distinct from the quasiparticle excitations studied in

oU= gh Mou+—> = ~M4T. (21)  Ref. 19, which was concerned with thermodynamics.

The universality presented by the degenerate 1D systems
One important result that we obtain with this formalism is at finite T can be physically understood if we consider the
the universal thermal conductaneglid for all ballistic FES  total energy flux for a single band,
systemsSince the electrochemical potential is an indepen-
dent variable in this model, we can sét=0, so that no opr o w(kgT)? :
electric current flows between the reservoirs. This also elimi- U= 2gh t 5 T~ Yot Utherman, (23
nates the energy flow that is due to a net flux of particles
between the two reservoirs, leaving us with only the coeffiwhich shows that the energy current flowing through the
cientL,,. In this case the energy current is equal to the hea@ne-dimensional system can be divided into two independent
current that is generated b§T, and so the 1D universal COmponents: one due exclusively to the flux of particles and

thermal conductance is carrying no heat( pot)» @and the other entirely determined by
) 2 the temperature of the emitting reservoir irrespective of the
KuniU:W_ kB_T 22) number of particlelemermao. The last term gives rise to the
3 h’ thermal conductance being the same for Planck bosons and

. , all other FES particles. This division is possible because of
Therefore a 1D subband populated with bosons described QYo cancellation of the density of states by the particle veloc-

the Planck distribution transports the same amount of heat in the 1D system along with the degenerate condition of

one populated by fermions, despite the fact these systempe qystem. On the other hand, the electric current for degen-
have very different statistical behaviors. The thermopowe%rate systems depends only on the number of particles re-
vanishes because of the assumptions made: degenerate s Stdless their temperature, which leadd tg=0

tems and unitary transmission coefficients independent of th ’ '

energy. For Planck bosong, is not a parameter describing
the system; therefore, only,, is present, and resu{f2) is

recovered. ) In Sec. Il we have shown that the generalized exclusion

We note that, in contrast to the thermal conductance, thgpproach for a system of identical particles leads naturally to
1D ballistic electrical conductance ot statistics indepen- the transport coefficients of the Laughlin fractions of the
dent, sinceg appears explicitly in Eq(20) for the electric  FQH effect. In the remainder of this paper we extend this
current. For instance, wheaT=0, the fermion case is formalism to treat systems composed of multiple species

readily obtained by setting=1, and we obtain the well- with a mutual statistical interaction acting among them.
known 1D electrical conductand@=(e*/h)M for ballistic

electrons.

Equationg20) and(21) should also describe the transport
properties of the Laughlin states of the FQH effect, for which  In its most general form the occupation numbessof
the Landau-level filling fraction'=1/(2m+ 1) with m inte-  €ach species that assembles into an ideal gas of FES particles
ger. We use the composite fermi¢@F) picture® to derive ~ are given by
the statistical interaction parametgpf these particles. Inte-
grating the expressiond=—gAN for g=g°F, we obtain 12 Ul
dy=dS$"—g®F(N—1), wheredy is the dimension of the one W ) _le 9i (24)
particle Hilbert space wheh composite fermions exist in
the system, whereas§" is its analog in the absence of CF. and
The termdgF is the degeneracy of the CF Landau level, that s
can be written in terms of the CF density ®§F=(eB/hc) (1+W‘)H
—2mN, with B representing the external magnetic field. Us- e
ing this relation in the expression fdg, along with the fact
that the CF’s behave like fermiong%"=1), we obtaindy,  Wherex;=pBi(& — u;), andSis the number of species. De-
=(eB/hc)—(2m+1)N+1. This means that, from the per- tails of this derlvgtlon can be four_ld in Ref. 12. o
spective of the FES theory, the transport properties of these T0 proceed with the construction of the statistics of the
states are due to particles of chaigé=e, and a fractional Model, itis convenient to introduce the actual valueg;pf
exclusion rule given byg=(2m-+1) in the thermodynamic T© do so we use Jain's composite fermion pictband the
limit. In other words, each electron added to the system exg@eneralized exclusion principle
cludes 2n+ 1 single-particle states. Returning to the trans-

ort equations, substitution @f=(2m+1) in Eqg. (20) im- — N _ S

Enedia?ely gives us the WeII-k(EI;OV\Sn value)s of thqe conductance Gerr1=Ci EJ: 9y (N; = 01p)- (28

IIl. GENERALIZED EXCLUSION AND FQH EQUATION

A. Exclusion statistics for various species

9ji

W4
L_| =eX, (25)

Wit1
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The main properties of the FQH effect can be understood 05
if we attach an even number of fictitious flux quanta to each
single electron by a Chern-Simons gauge transformation. 04|
In this picture a dressed particle is formed which has the z
same charge as well as the statistical properties of the elec- 203t
tron. In the mean-field approximation the CF’s form a Fermi %
liquid. From this perspective the FQH effect is then seen as go2r
the integer quantum Hall effe¢tQHE) of the CF patrticles, o
which experience aeffectivemagnetic field that depends on 0.1
the density of carrier8q;=B—2mN®,, whereB is the
external magnetic fieldp,=ch/e is the quantum of mag- 00 - . ™ 5
netic flux, andN is the total density of CFs in the mean-field W (E,)

approximation(the same as the electronic denkityhere-

fore, according to this picture, the quasi-Landau-levels FIG. 1. Occupation values of the three lowest gLL’s as a func-
(gLL’s) occupied by the CF have a degeneracy that is tion of the generalized chemical potential. The indices indicate the
occupation due to each level, and the highest curve is the total
occupation. The energy of the gLL’s aEa_z%E(s, E2:%E5 and
GCF=B¢t{/Po=B/Dy— 2ij1 N;, (27)  E;=3E;. The occupation anl ; are obtained self-consistently for

B m=1.

S

with the indexj representing the gLL index. Moreover, be-
cause CF's are fermions, we hag%Fz dij » and expression
(26) can be written as

S
A=No+ N1 2 Witho2 k}‘, WWet---, (3D
=1 k<

whose coefficients ard €0,1,2 . ..,S—1)
Geff,i:GiCF_Ej: gi(?jF(Nj_éij)

N=(2m+1)5"'—[2(S—1)m+1]. (32
_ (; _ 2 (2m+ 6N +1. (28) Ac_cording to theT eq_uations above, U&}Lm_m =0, leaving
0o J us with S—1 species in the system. In this case, EQ9)

) , and (30) will automatically converge to represent a system
Regrouping the elements according to the densiesdf  \yith the shortage of one species. However, due to the energy
each gLL, we obtaig; =2m+1 andg;=2m, fori#j. In  gyycture of the CF’s there is a hierarchy in the valueB\pf

the FES theory the diagonal terms are the self-interactiofpe ratioW, . ; /W, can be obtained from Eq30)
parameters and rule the exclusion properties among particles ' ' ’

of the same species, whereas the nondiagonal terms are the Wi
statistical mutual interaction parameters which describe the W
exclusion relations among particles of different species. In !
this case the population of each gLL is viewed as a distinctvhere we have assumed a common temperature and chemi-
species. What expressi@B8) shows is that we can incorpo- cal potential for all species. Therefore, we see that(k) is
rate the physics of Jain’s fractioms=p/(2mp+1) (mandp  the energy of the ith gLL, thelV,<W, ;.
integers into the generalized exclusion principle of particles  If this model is intended to reproduce the behavior of
in the FES theory. These particles have the same charge &'s some caution is necessary because the gap energies
the electron [g|=e), but their exclusion statistics is gov- depend on the total density(x) self-consistently:
erned byg;; .

The knowledge o§;; allows us to solve Eq24) to obtain file|
the occupation functiong); for each species. For a system Eazhweff:TB
composed of a numbes of species that obey the exclusion m-c

= gXi+17 X = ghlei+ 1K) —& ()] (33

. (34

1-2m>, Nj(x)
J

rules derived above, we have

S

IT ow+1)

J#I

S
II ov+2m+1)-A
1

with

W\
] — X
Wj+1) -

S
will
=1

The quantityA is given by the series

In Fig. 1 we represent the occupation values of the three
lowest gLL's as a function of the generalized chemical po-
tential u of the FES particles. The parametae=1 and the
density is assumed to be homogeneous. The occupation val-
ues were calculated self-consistently using E@9), (30),
and(34). The generalized chemical potential is given in units
of E;, and the temperature is defined B %= 30, whereE

is given by Eq.(34) when N,-()Z)zo. We see that the occu-
pation values have plateaus that correspond to the fractions
1/(2pm+1). These become poorly defined as the chemical
potential rises, sinc& s decreases with a increasing density.

Having defined the statistical properties of these particles,
we procced with a calculation of the transport coefficients in
Sec. llIB.
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ture into regions4 and 5, whose meaning will be discussed
bellow. The energy valueg; and e; indicate the points
where this reference line crosses the bands. We assume that
the system is degenerate, so tifat; <Bu and Be;> Bu.
Notice that the generalized chemical potentia) (is above

" the lowest unoccupied state and lies over the third gLL band.
This does not mean, however, that this level is populated. It
occurs because the statistical mutual interaction modifies the
g electronic chemical potential.

Because of the mutual statistical interaction, the occupa-
tion functions#; depend on botl,(k) and e;(k). We take
Al|B advantage of the degenerate condition of the system to cir-
cumvent this difficulty. Since composite fermions at the
same position in space have the saknéf kgT<(e;— €;)
eachW, should go from 0 tox at different values ok,

FIG. 2. This scheme of the band structure shows the energglthough around the same energy)( In other words, the
dispersion of the three lowest bands as a function of position, frontransitions oflV; from 0 to« are decoupled. We havegion
the bulk toward the right edge of the sample. The generalized4, whereWV; <1, while W, makes the transition-8-oc; and
chemical potential is indicated by the horizontal line. The verticalregion B, where W,>1, while YW, makes the transition 0
line is a reference. The energy valugsande; indicate the points o0,
where this reference line crosses the bands. Therefore, the following approximations are possible. Fo-
cusing initially on the highest band, in regioh

ot

bulk edge
position (x)

B. Transport coefficients

The transport coefficientd;; for any filling factor »

=p/(2pm+1) can be obtained numerically using the distri- 72(K)= 2m+)Wr+4m+1’ (40

butions 7;, these being calculated self-consistently with the

gap energy. Nonetheless, for degenerate conditions analyti- Wémﬂ O+ 2

cal solutions are possible. ————— =g 2mBE(l), (41)
The result of Sec. Il for the Laughlin fractions can be (Wp+1)

obtained from the general formalism above when we make,ile 7,=0 in regionB. Thus integration over regiod is

Wi—e forall i#1. In this limiting case, enough to give u$, andU, for the highest edge state.

1 For the lowest band the entire energy dispersion ought to
nlzm, (35 be considered. In regioA,

with g=2m+1. Ak = Wo+1 42
We now consider the situation in which two gLL’s are n 2m+1)Wr+4m+1’
populated. This means thgt=0 fori>2 and ) ) .
with W,(k) given by Eq.(41). In regionB,
Wo+1 36
Vite ’ B —
(W1 +2m+1)(W,+2m+ 1) — 4m? nl(k)——wl+2m+1, (43
Wi+l 2m+1
— w
= — (37) Tt _ea® 44
(Wy+2m+ 1) (W, +2m+1) — 4m Vet 12" (44)
where 5, describes the lowest band amd the highest one. ] 4B . -
Relation(33) is now Therefore, for this band we havg=17+17 andU;=Uy
e +U5.
Wi=W,e PR, (38 Consider the current due to the highest band,
whereE 4(k) is the wave-vector-dependent spectral gap be- - dk
tween the bands |2:qfo Evz(k) 72(K), (45)

Es(k)= €2(k) — €1(k). (39 _ _ _ _ _
N ] with 7, given by Eq.(40). It is convenient to define the
For positiveE 5(k), at low temperatures3E 5(k)>1, which  yariaple E,(k) = e,(k) + 2mE;(k), in terms of which we

leads to the other important relatioft; < W,. write the velocity
In Fig. 2, a schematic band structure shows the energy
dispersion of the three lowest bands as a function of position, lde, 1(dE, dE;
from the bulk toward the right edge of the sample. The gen- v2(K) =7 G :g(w —me» (46)

eralized chemical potential is indicated by the horizontal
line. The vertical line is a reference, it divides the band strucUsing E, as the variable of integratiom; is rewritten as
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% E =hweri=h(eBys/m*c). The effective magnetic field depends
q s ; -
la=1 o 1—2md—E2 72(E2)dE;. (47)  on the local density of particles and so does the gap. There-
2 fore,
The lower limit of integrationEy= €3+ 2mE3"' is a con-
stant, withE5"'* representing the value of the gap in the bulk %l
of the sample Es(k)= m—B[l 2mv] (50

Another transformation eliminates the explicit depen-
dence on the energy. From Eg1), we obtainE, as a func-

tion of W, =E§{1-2m[ 7,(k) + 7o(k) I}, (51)
dg, 1 dF 49) where we have defineB%= (#%|q|B/m*c). In the limit W,
dw, BF dW,’ <1, which characterizes regiaA,

with

Wor+2 52
pim+ N Gmy D)Wy Ame 1 (52
FOWV)=———-. (49
Wp+1)

We are now able to writé, in a form that is independent
The gapE can also be written in terms af),. With this  of the details of the particle spectra. Substituting expressions
purpose we return to the CF picture that gives Eg (48)—(52) into Eq.(47), we obtain

q 1 dF d( 71+ 72)
|2 hﬂ ||m fwg{E dW2+am sz 7]2(W2)dW2, (53)
|
wherea,,=4m?BES. Separating this expression, the integra- lde; 1/dE, dE;
tion of the first part gives us nil=2 =7\ gk ~ @Mt D45 6D
Using Eq.(57) along with the identitieg48)—(52), we are
0
hﬂj oF dW Wo= ﬁ[ln(Werl) In(Wa)l, able to write
(54) q
S
whereas the integration of the second term produces a quan- |f:HL[1—(2m+ DT 71 (Ep)dE, (58)

tity independent of temperature and chemical potential when
we makeW$=0, which will make no contribution to the

11 dF d(n,+
transport coefficients. The limiky9—0 of expressior(54) :hi lim fwg[f d +bn, (7;1 72) nf(Wz)dWZ,
can be obtained from Ed@41), which gives us 'ngﬂo W W, W,
(59

0_ ~B(E-w)/(4m+1) 04 1)2m/(4m+1)
Wa=emm (Wat1) ' ®9  \here bn=2m(2m+1)BES, and W;y=W(e}) is indepen-

Substituting this result into Ed54), the limit Wg—>0 of I, dent of the thermodynamical parameters for degenerate sys-
can be easily obtained. It depends only on the chemical pdems. _ _ _ _
tential and, therefore, the coefficients that describe the elec- Once again the second term in the integrand will produce

trical current for the highest band are a quantity that is independent of temperature and chemical
potential, and therefore irrelevant for the transport coeffi-
al, 1 q dl, cients. On the other hand, the first term is
du  4m+1h’ T o (56)
fwz 7 I = OV —In9) 1. (60)
The electrical current, due to the lowest band is ob- hBJwo F dw, 2 hp 2 2

tained by the same approach. We perform the integration _ .
dividing the whole domain in two regiorisee Fig. 2 Along ~ Then, using Eq(55), we obtain
the first portion, designated byl, WW;<<1 throughout the

range, whereasV, increases fromh,<1 to W,>1. In the ﬂ_ 1 q '”_14_0 61
second part, represented By W, remains very large while duw  4m+1h’ 9T (61)
W; makes the transitiomV;<<1 to W;>1.

Along region A the occupationy, is given by Eq.(42) As for regionB, its contribution to the current due to the

and the group velocity for this band is lowest band is
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|f=%JW1% ;—V';ldwl, (62
with
Wim+l
HOWV1) = (W1+—1)2m (63

The lower limitW;=W,(e;) corresponds to a continuation

from W, (see Fig. 2 The differentiation of Eq(62) with

respect to the thermodynamical parameters vanishes.
Therefore, we sum up the results of this calculation as

_ali+l) 2 q
U5 on  4m+1lh’ 64)
L12:O. (65)

The calculations leading to the coefficierts; and L,,

LUIS G. C. REGO AND GEORGE KIRCZENOW
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where C,, is a nonuniversal coefficient that dependsmn
Although p differs from the electrochemical potentidju
does not when the system is in a FQH plateau, as shown by
Eq. (66). Despite the statistical coupling between the two CF
quasi-Landau-levels, once again the universal quantum of
thermal conductance is obtained, this time multiplied by 2,
which reflects the presence of the two modes of propagation.
The two-terminal electrical conductanc&=2/(4m+1)

X (e?/h) is also obtained for this family of states, in agree-
ment with experiment.

IV. CONCLUSIONS

In conclusion, we have presented a generalized theory of
transport of 1D systems. We have shown that the ballistic
thermal conductance of one-dimensional systems is
statistics independent and thus truly universa“"?
=(772/3)(k§T/h). This result is valid in the degenerate re-
gime for systems of particles obeying fractional exclusion

are not presented since they follow the same formalismstatistics, whether they present a Fermi surface or are de-

However, we write the final results

ol 2 q5 66
“4m+1h°H (66
su=| 2 2o By om e

“|amrin FOnq om0 (€0

scribed by a Planck distribution. Electrical conductances for
ballistic electrons in 1D quantum wires and in the FQH re-
gime, although not universdin the sense that they depend
on statistick also follow naturally from this theory.
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