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Fractional exclusion statistics and the universal quantum of thermal conductance:
A unifying approach

Luis G. C. Rego and George Kirczenow
Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

~Received 14 September 1998!

We introduce a generalized approach to one-dimensional~1D! conduction based on Haldane’s@Phys. Rev.
Lett. 67, 937 ~1991!# concept of fractional exclusion statistics~FES! and the Landauer formulation@IBM J.
Res. Dev.1, 223~1957!; Phys. Lett.85A, 91 ~1981!# of transport theory. We show that the 1D ballistic thermal
conductance is independent of the statistics obeyed by the carriers and is governed by the universal quantum
kuniv5(p2/3)(kB

2T/h) in the degenerate regime. By contrast, the electrical conductance of FES systems is
statistics dependent. This work unifies previous theories of electron and phonon systems, and explains an
interesting commonality in their behavior.@S0163-1829~99!08119-9#
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I. INTRODUCTION

Recent theoretical investigations of quantum transp
have revealed an intriguing commonality in the behavior
some apparently very dissimilar systems: It has been
dicted that in one dimension the low-temperature ballis
thermal conductances of ideal electron gases,1,2 phonons,3

and interacting electrons that form chiral4 or normal5 Lut-
tinger liquids should all be quantized in integer multiples
a universal quantumkuniv5(p2/3)(kB

2T/h), whereT is the
temperature,kB the Boltzmann constant, andh is Planck’s
constant. That is, a one-dimensional~1D! band populated
with bosons described by a Planck distribution~phonon
modes! has been predicted to transport thesameamount of
heat as one populated by fermions~the ideal electron gas! or
a Luttinger liquid. Also, experimental evidence has been
ported that ropes of single-walled nanotubes conduct hea
amounts proportional tokuniv.6 However each of these sys
tems was studied separately using a different theoretical
proach. Thus it has been unclear whether the convergenc
the results that have been obtained is simply a coincidenc
whether it has a deeper significance and broad ramificati
The purpose of this work is to resolve this question with
help of the concept of fractional exclusion statistics~FES!,
proposed by Haldane,7 that allows one to discuss the beha
ior of bosons, fermions, and particles having fractional s
tistical properties, all on the same footing. Besides the u
versal thermal conductance, from this theory we a
naturally obtain the quantized electrical conductance for b
listic electrons in 1D quantum wires and in the fraction
quantum Hall~FQH! regime.

FES~Ref. 7! extends the concept of anyons,8 i.e., particles
with fractional statistics, from two dimensions to arbitra
spatial dimensions by introducing a generalization of
Pauli exclusion principle, and has yielded insights into fra
tional quantum Hall systems,7,9 spinons in antiferromagneti
spin chains,7 systems of interacting electrons in 2D quantu
dots,10 and the Calogero-Sutherland model.11 In Haldane’s
sense the statistics of a system composed of different spe
of particles ~or quasiparticles! is defined by the relation
Ddi52( jgi j DNj , whereNi is the number of particles o
PRB 590163-1829/99/59~20!/13080~7!/$15.00
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speciesi, anddi is the dimension of theNi-particle Hilbert
space, holding the coordinates of theNi21 particles fixed.
The parametergi j is the statistical interaction. For a syste
of identical particles,g is a scalar quantity, withg51 ~0! for
fermions ~bosons!. Wu12 used this definition of FES to es
tablish the statistical distribution function for an ideal gas
particles with fractional statistics. It has been proposed t
such ideal FES gases provide an accurate representatio
the physics of a number of interacting electron systems.10,11

While much attention has been given to the thermo
namic properties of FES systems,11–16their transport proper-
ties have not received the same consideration. In this pa
we use the Landauer formulation of transport theory17 to
study conduction in ideal one-dimensional FES systems.
markably, we find that their low-temperature thermal co
ductance is quantized in integer multiples of the univer
quantumkuniv5(p2/3)(kB

2T/h), irrespective of the value o
the statistical parameter gi j . Thus we demonstrate that th
quantization of thermal conductance and the associa
quantum are statistics independent and truly universal.
contrast we find the electrical conductances of FES syst
to be statistics dependent.

II. SINGLE SPECIES

Consider a two-terminal transport experiment where t
infinite reservoirs are adiabatically connected to each o
by a one-dimensional channel. Each reservoir is charac
ized by a temperature~T! and a chemical potential (m), con-
sidered to be independent variables. In the case of reserv
with charged particles,m can be redefined as the electr
chemical potential, that is, a combination of the chemi
potential and an electrostatic particle energy governed by
external field. In terms ofT andm the electric~I! and energy
(U̇) currents in the linear response regime are

dI 5
]I

]m U
T

dm1
]I

]TU
m

dT, ~1!

dU̇5
]U̇

]m
U

T

dm1
]U̇

]T
U

m

dT, ~2!
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wheredT5TR2TL anddm5mR2mL , with R ~L! represent-
ing the right~left! reservoir.

Using Landauer theory we write the fluxes between
two reservoirs as

I 5(
n

qE
0

` dk

2p
vn~k!@hR2hL#zn~k!, ~3!

U̇5(
n
E

0

` dk

2p
«n~k!vn~k!@hR2hL#zn~k!. ~4!

The sum overn takes into account the independent prop
gating modes admitted by the channel.«n(k) andvn(k) are
the energy and velocity of the particle with wave vectork,
zn(k) is the particle transmission probability through t
channel,h i represents the statistical distribution functions
the reservoirs, andq is the particle charge. In one dimensio
the particle velocityvn(k)5\21(]«n /]k), is canceled by
the 1D density of statesD(«n)5]k/]«n, and the fluxes be-
come independent of the dispersion:

I 5
q

h (
n
E

«n(0)

`

d«@hR2hL#zn~«!, ~5!

U̇5
1

h (
n
E

«n(0)

`

d««@hR2hL#zn~«!. ~6!

Throughout the remainder of this paper we will assu
zn(«)51, which corresponds to ballistic transport and a p
fectly adiabatic coupling between the reservoirs and the
system. This assumption can be considered realistic in v
of the present stage of the mesoscopics technology. Su
tution of expressions~5! and ~6! for the fluxes into Eqs.~1!
and ~2!, while taking the limitdT→0 anddm→0, gives us
the transport coefficients.

Having introduced the model, we consider systems
generalized statistics, which can be investigated within F
theory. Initially we concentrate on identical particle syste
and the distribution function derived by Wu12 for an ideal
gas of particles obeying FES,

hg5
1

W~x,g!1g
, ~7!

with x[b(«2m), b[1/(kBT), andW(x,g) given by the
implicit equation

W g~x,g!@11W~x,g!#12g5ex. ~8!

Making g50 or 1, Eq. ~7! becomes the Bose-Einstein o
Fermi-Dirac distribution function, respectively.

For a system of generalized statistics, the transport c
ficients are

L115
]I

]m U
T

5
q

h (
n
E

x0n

`

dxF~x,g!, ~9!

L125
]I

]T U
m

5
q

h
kB(

n
E

x0n

`

dxxF~x,g!, ~10!
e

-

e
-
D
w
ti-

f
S
s

f-

L215
]U̇

]m
U

T

5
1

hb (
n
E

x0n

`

dx~x1mb!F~x,g!, ~11!

L225
]U̇

]T
U

m

5
kB

hb (
n
E

x0n

`

dx~x21xmb!F~x,g!, ~12!

with x0n[b(«n(0)2m) and

F~x,g!5
W~x,g!@W~x,g!11#

@W~x,g!1g#3
. ~13!

Fermions and bosons are the special cases of the the
however, our interest is to develop a formalism able to tr
all FES systems. Analytic solutions of Eq.~8! can also be
obtained for the special casesg5 1

4 , 1
3 , 1

2 ,2,3, and 4, but for
generalg the approach of analytically solving the equatio
for W is not possible. We now present a comprehens
method to treat this problem. Initially, solve Eq.~8! for x
5b(«2m)

x~W,g!5 ln~W11!1@ ln~W!2 ln~W11!#g. ~14!

We notice that limW→0x52` for g5” 0, which corresponds
to the lowest energy for the degenerate nonbosons. M
over, limW→0x50 when g50, which corresponds to the
lowest energy modes of bosons described by the Planck
tribution. On the other hand, limW→`x5` for any g>0.
This shows thatx can be supplanted byW as the variable of
integration in our general FES expressions forLi j , with W
ranging from 0 to infinity. Notice that no other specificatio
on the functional form of the particle spectra is made in t
derivation. Then, using Eq.~14!, we can write

F~x,g!dx5
dW

~W1g!2
. ~15!

The transport coefficientsLi j can then be evaluated analyt
cally for arbitraryg. Wheng.0,

L115M
q

hE0

` dW
~W1g!2

5M
q

h

1

g
, ~16!

L125M
q

h
kBE

0

`

dW
x~W,g!

~W1g!2
50, ~17!

L215M
1

hbE0

`

dW
x~W,g!1mb

~W1g!2
5M

m

h

1

g
, ~18!

and, for allg>0,

L225M
kB

2T

h E
0

`

dW
x2~W,g!1mbx~W,g!

~W1g!2

5M
kB

2T

h

p2

3
, ~19!

with x(W,g) given by Eq.~14!. HereM is an integer number
that takes into account the number of occupied modes~as-
suming a degenerate population in each one of them!. There-
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fore, the transport equations for a system of identical p
ticles of generalized statistics are

dI 5
1

g

q

h
Mdm, ~20!

dU̇5
1

g

m

h
Mdm1

p2

3

kB
2T

h
MdT. ~21!

One important result that we obtain with this formalism
the universal thermal conductance,valid for all ballistic FES
systems. Since the electrochemical potential is an indep
dent variable in this model, we can setdm50, so that no
electric current flows between the reservoirs. This also eli
nates the energy flow that is due to a net flux of partic
between the two reservoirs, leaving us with only the coe
cientL22. In this case the energy current is equal to the h
current that is generated bydT, and so the 1D universa
thermal conductance is

kuniv5
p2

3

kB
2T

h
. ~22!

Therefore a 1D subband populated with bosons describe
the Planck distribution transports the same amount of hea
one populated by fermions, despite the fact these syst
have very different statistical behaviors. The thermopow
vanishes because of the assumptions made: degenerate
tems and unitary transmission coefficients independent of
energy. For Planck bosons,m is not a parameter describin
the system; therefore, onlyL22 is present, and result~22! is
recovered.

We note that, in contrast to the thermal conductance,
1D ballistic electrical conductance isnot statistics indepen-
dent, sinceg appears explicitly in Eq.~20! for the electric
current. For instance, whendT50, the fermion case is
readily obtained by settingg51, and we obtain the well-
known 1D electrical conductanceG5(e2/h)M for ballistic
electrons.

Equations~20! and~21! should also describe the transpo
properties of the Laughlin states of the FQH effect, for wh
the Landau-level filling fractionn51/(2m11) with m inte-
ger. We use the composite fermion~CF! picture18 to derive
the statistical interaction parameterg of these particles. Inte
grating the expressionDd52gDN for g5gCF, we obtain
dN5d0

CF2gCF(N21), wheredN is the dimension of the one
particle Hilbert space whenN composite fermions exist in
the system, whereasd0

CF is its analog in the absence of CF
The termd0

CF is the degeneracy of the CF Landau level, th
can be written in terms of the CF density asd0

CF5(eB/hc)
22mN, with B representing the external magnetic field. U
ing this relation in the expression fordN along with the fact
that the CF’s behave like fermions (gCF51), we obtaindN
5(eB/hc)2(2m11)N11. This means that, from the pe
spective of the FES theory, the transport properties of th
states are due to particles of chargeuqu5e, and a fractional
exclusion rule given byg5(2m11) in the thermodynamic
limit. In other words, each electron added to the system
cludes 2m11 single-particle states. Returning to the tran
port equations, substitution ofg5(2m11) in Eq. ~20! im-
mediately gives us the well-known values of the conducta
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plateaus of the Laughlin states, G5@1/(2m
11)#(e2/h). Since on the FQH plateaus the two-termin
conductance is equal to the quantized Hall conductance,
result is in agreement with experimental data20 on FQH de-
vices. It is important to mention that, since we are concer
with transport, our analysis applies to the electrons the
selves as distinct from the quasiparticle excitations studie
Ref. 19, which was concerned with thermodynamics.

The universality presented by the degenerate 1D syst
at finite T can be physically understood if we consider t
total energy flux for a single band,

U̇5
m2

2gh
1

p2

6

~kBT!2

h
5U̇pot1U̇thermal, ~23!

which shows that the energy current flowing through t
one-dimensional system can be divided into two independ
components: one due exclusively to the flux of particles a
carrying no heat (U̇pot), and the other entirely determined b
the temperature of the emitting reservoir irrespective of
number of particles (U̇thermal). The last term gives rise to th
thermal conductance being the same for Planck bosons
all other FES particles. This division is possible because
the cancellation of the density of states by the particle vel
ity in the 1D system along with the degenerate condition
the system. On the other hand, the electric current for deg
erate systems depends only on the number of particles
gardless their temperature, which leads toL1250.

III. GENERALIZED EXCLUSION AND FQH EQUATION

In Sec. II we have shown that the generalized exclus
approach for a system of identical particles leads naturall
the transport coefficients of the Laughlin fractions of t
FQH effect. In the remainder of this paper we extend t
formalism to treat systems composed of multiple spec
with a mutual statistical interaction acting among them.

A. Exclusion statistics for various species

In its most general form the occupation numbersh i of
each species that assembles into an ideal gas of FES par
are given by

Wi5
1

h i
2(

j 51

S

gi j

h j

h i
~24!

and

~11Wi !)
j 51

S S Wj

Wj11D gji

5exi, ~25!

wherexi5b i(e i2m i), andS is the number of species. De
tails of this derivation can be found in Ref. 12.

To proceed with the construction of the statistics of t
model, it is convenient to introduce the actual values ofgi j .
To do so we use Jain’s composite fermion picture18 and the
generalized exclusion principle

Ge f f,i5Gi2(
j

gi j ~Nj2d i j !. ~26!
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The main properties of the FQH effect can be underst
if we attach an even number of fictitious flux quanta to ea
single electron by a Chern-Simons gauge transformatio21

In this picture a dressed particle is formed which has
same charge as well as the statistical properties of the e
tron. In the mean-field approximation the CF’s form a Fer
liquid. From this perspective the FQH effect is then seen
the integer quantum Hall effect~IQHE! of the CF particles,
which experience aneffectivemagnetic field that depends o
the density of carriersBe f f5B22mNF0, where B is the
external magnetic field,F05ch/e is the quantum of mag
netic flux, andN is the total density of CFs in the mean-fie
approximation~the same as the electronic density!. There-
fore, according to this picture, the quasi-Landau-lev
~qLL’s! occupied by the CF have a degeneracy that is

GCF5Be f f /F05B/F022m(
j 51

S

Nj , ~27!

with the indexj representing the qLL index. Moreover, b
cause CF’s are fermions, we havegi j

CF5d i j , and expression
~26! can be written as

Ge f f,i5Gi
CF2(

j
gi , j

CF~Nj2d i j !

5
B

F0
2(

j
~2m1d i j !Nj11. ~28!

Regrouping the elements according to the densitiesNj of
each qLL, we obtaingii 52m11 andgi j 52m, for i 5” j . In
the FES theory the diagonal terms are the self-interac
parameters and rule the exclusion properties among part
of the same species, whereas the nondiagonal terms ar
statistical mutual interaction parameters which describe
exclusion relations among particles of different species
this case the population of each qLL is viewed as a dist
species. What expression~28! shows is that we can incorpo
rate the physics of Jain’s fractionsn5p/(2mp11) (m andp
integers! into the generalized exclusion principle of particl
in the FES theory. These particles have the same charg
the electron (uqu5e), but their exclusion statistics is gov
erned bygi j .

The knowledge ofgi j allows us to solve Eq.~24! to obtain
the occupation functionsh i for each species. For a syste
composed of a numberS of species that obey the exclusio
rules derived above, we have

h i5

)
j Þ i

S

~Wj11!

)
j 51

S

~Wj12m11!2L

, ~29!

with

Wi)
j 51

S S Wj

Wj11D 2m

5exi. ~30!

The quantityL is given by the series
d
h

e
c-
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L5l01l1(
j 51

S

Wj1l2(
j

(
k, j
WjWk1•••, ~31!

whose coefficients are (l 50,1,2, . . . ,S21)

l l5~2m11!S2 l2@2~S2 l !m11#. ~32!

According to the equations above, limWi→`h i50, leaving

us with S21 species in the system. In this case, Eqs.~29!
and ~30! will automatically converge to represent a syste
with the shortage of one species. However, due to the en
structure of the CF’s there is a hierarchy in the values ofWi .
The ratioWi 11 /Wi can be obtained from Eq.~30!,

Wi 11

Wi
5exi 112xi5eb[« i 11(k)2« i (k)] , ~33!

where we have assumed a common temperature and ch
cal potential for all species. Therefore, we see that if« i(k) is
the energy of the ith qLL, thenWi,Wi 11.

If this model is intended to reproduce the behavior
CF’s some caution is necessary because the gap ene
depend on the total densityN(xW ) self-consistently:

Ed5\ve f f5
\ueu

m* c
BF122m(

j
Nj~xW !G . ~34!

In Fig. 1 we represent the occupation values of the th
lowest qLL’s as a function of the generalized chemical p
tential m of the FES particles. The parameterm51 and the
density is assumed to be homogeneous. The occupation
ues were calculated self-consistently using Eqs.~29!, ~30!,
and~34!. The generalized chemical potential is given in un
of Ed, and the temperature is defined bybEd

0530, whereEd
0

is given by Eq.~34! whenNj (xW )50. We see that the occu
pation values have plateaus that correspond to the fract
1/(2pm11). These become poorly defined as the chem
potential rises, sinceEd decreases with a increasing densi

Having defined the statistical properties of these partic
we procced with a calculation of the transport coefficients
Sec. III B.

FIG. 1. Occupation values of the three lowest qLL’s as a fu
tion of the generalized chemical potential. The indices indicate
occupation due to each level, and the highest curve is the t
occupation. The energy of the qLL’s areE15

1
2 Ed , E25

3
2 Ed and

E35
5
2 Ed . The occupation andEd are obtained self-consistently fo

m51.
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B. Transport coefficients

The transport coefficientsLi j for any filling factor n
5p/(2pm11) can be obtained numerically using the dist
butionsh i , these being calculated self-consistently with t
gap energy. Nonetheless, for degenerate conditions ana
cal solutions are possible.

The result of Sec. II for the Laughlin fractions can b
obtained from the general formalism above when we m
Wi→` for all i 5” 1. In this limiting case,

h15
1

W112m11
, ~35!

with g52m11.
We now consider the situation in which two qLL’s a

populated. This means thath i50 for i .2 and

h15
W211

~W112m11!~W212m11!24m2
, ~36!

h25
W111

~W112m11!~W212m11!24m2
, ~37!

whereh1 describes the lowest band andh2 the highest one.
Relation~33! is now

W15W 2e2bEd(k), ~38!

whereEd(k) is the wave-vector-dependent spectral gap
tween the bands

Ed~k!5e2~k!2e1~k!. ~39!

For positiveEd(k), at low temperatures,bEd(k)@1, which
leads to the other important relationW1!W2.

In Fig. 2, a schematic band structure shows the ene
dispersion of the three lowest bands as a function of posit
from the bulk toward the right edge of the sample. The g
eralized chemical potential is indicated by the horizon
line. The vertical line is a reference, it divides the band str

FIG. 2. This scheme of the band structure shows the ene
dispersion of the three lowest bands as a function of position, f
the bulk toward the right edge of the sample. The generali
chemical potential is indicated by the horizontal line. The verti
line is a reference. The energy valuese28 ande18 indicate the points
where this reference line crosses the bands.
ti-

e

-

y
n,
-
l
-

ture into regionsA andB, whose meaning will be discusse
bellow. The energy valuese28 and e18 indicate the points
where this reference line crosses the bands. We assume
the system is degenerate, so thatbe18!bm and be28@bm.
Notice that the generalized chemical potential (m) is above
the lowest unoccupied state and lies over the third qLL ba
This does not mean, however, that this level is populated
occurs because the statistical mutual interaction modifies
electronic chemical potential.

Because of the mutual statistical interaction, the occu
tion functionsh i depend on bothe2(k) ande1(k). We take
advantage of the degenerate condition of the system to
cumvent this difficulty. Since composite fermions at t
same position in space have the samek, if kBT!(e282e18)
eachWi should go from 0 tò at different values ofk,
although around the same energy (m). In other words, the
transitions ofWi from 0 to` are decoupled. We haveregion
A, whereW1!1, whileW2 makes the transition 0→`; and
region B, whereW2@1, whileW1 makes the transition 0
→`.

Therefore, the following approximations are possible. F
cusing initially on the highest band, in regionA,

h2~k!5
1

~2m11!W214m11
, ~40!

W 2
4m11

~W211!2m
5ex2(k)12mbEd(k), ~41!

while h250 in regionB. Thus integration over regionA is
enough to give usI 2 and U̇2 for the highest edge state.

For the lowest band the entire energy dispersion ough
be considered. In regionA,

h1
A~k!5

W211

~2m11!W214m11
, ~42!

with W2(k) given by Eq.~41!. In regionB,

h1
B~k!5

1

W112m11
, ~43!

W 1
2m11

~W111!2m
5ex1(k). ~44!

Therefore, for this band we haveI 15I 1
A1I 1

B and U̇15U̇1
A

1U̇1
B .

Consider the current due to the highest band,

I 25qE
0

` dk

2p
v2~k!h2~k!, ~45!

with h2 given by Eq. ~40!. It is convenient to define the
variable E2(k)5e2(k)12mEd(k), in terms of which we
write the velocity

v2~k!5
1

\

de2

dk
5

1

\ S dE2

dk
22m

dEd

dk D . ~46!

Using E2 as the variable of integration,I 2 is rewritten as

y
m
d
l
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I 25
q

hEE2
0

` F122m
dEd

dE2
Gh2~E2!dE2 . ~47!

The lower limit of integrationE2
05e2

012mE2
bulk is a con-

stant, withE2
bulk representing the value of the gap in the bu

of the sample.
Another transformation eliminates the explicit depe

dence on the energy. From Eq.~41!, we obtainE2 as a func-
tion ofW2,

dE2

dW2
5

1

bF

dF

dW2
, ~48!

with

F~W2![
W 2

4m11

~W211!2m
. ~49!

The gapEd can also be written in terms ofW2. With this
purpose we return to the CF picture that gives usEd
ra

ua
he

p
le

-
tio
-

5\vef f5\(eBef f /m*c). The effective magnetic field depend
on the local density of particles and so does the gap. Th
fore,

Ed~k!5
\uqu

m* c
B@122mn# ~50!

5Ed
0$122m@h1~k!1h2~k!#%, ~51!

where we have definedEd
05(\uquB/m* c). In the limitW1

!1, which characterizes regionA,

h11h2'
W212

~2m11!W214m11
. ~52!

We are now able to writeI 2 in a form that is independen
of the details of the particle spectra. Substituting expressi
~48!–~52! into Eq. ~47!, we obtain
I 25
q

hb
lim
W 2

0→0

E
W 2

0

` F 1

F

dF

dW2
1am

d~h11h2!

dW2
Gh2~W2!dW2 , ~53!
sys-

ce
ical
ffi-

e

wheream54m2bEd
0 . Separating this expression, the integ

tion of the first part gives us

q

hbEW 2
0

` h2

F

dF

dW2
dW25

q

hb
@ ln~W 2

011!2 ln~W 2
0!#,

~54!

whereas the integration of the second term produces a q
tity independent of temperature and chemical potential w
we makeW 2

050, which will make no contribution to the
transport coefficients. The limitW 2

0→0 of expression~54!
can be obtained from Eq.~41!, which gives us

W 2
05eb(E2

0
2m)/(4m11)~W 2

011!2m/(4m11). ~55!

Substituting this result into Eq.~54!, the limitW 2
0→0 of I 2

can be easily obtained. It depends only on the chemical
tential and, therefore, the coefficients that describe the e
trical current for the highest band are

]I 2

]m
5

1

4m11

q

h
,

]I 2

]T
50. ~56!

The electrical currentI 1 due to the lowest band is ob
tained by the same approach. We perform the integra
dividing the whole domain in two regions~see Fig. 2!. Along
the first portion, designated byA, W1!1 throughout the
range, whereasW2 increases fromW2!1 toW2@1. In the
second part, represented byB, W2 remains very large while
W1 makes the transitionW1!1 toW1@1.

Along regionA the occupationh1 is given by Eq.~42!
and the group velocity for this band is
-

n-
n

o-
c-

n

v1~k!5
1

\

de1

dk
5

1

\ S dE2

dk
2~2m11!

dEd

dk D . ~57!

Using Eq. ~57! along with the identities~48!–~52!, we are
able to write

I 1
A5

q

hEAF12~2m11!
dEd

dE2
Gh1
A~E2!dE2 ~58!

5
q

hb
lim
W 2

0→0

E
W 2

0

W28F 1

F

dF

dW2
1bm

d~h11h2!

dW2
Gh1
A~W2!dW2 ,

~59!

wherebm52m(2m11)bEd
0 , andW285W(«28) is indepen-

dent of the thermodynamical parameters for degenerate
tems.

Once again the second term in the integrand will produ
a quantity that is independent of temperature and chem
potential, and therefore irrelevant for the transport coe
cients. On the other hand, the first term is

q

hbEW 2
0

W28h1
A

F

dF

dW2
dW25

q

hb
@ ln~W28!2 ln~W 2

0!#. ~60!

Then, using Eq.~55!, we obtain

]I 1
A

]m
5

1

4m11

q

h
,

]I 1
A

]T
50. ~61!

As for regionB, its contribution to the current due to th
lowest band is



n

sm

by
F
of

2,
ion.

e-

y of
stic

is

e-
on
de-
for

re-
d
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I 1
B5

q

hbEW18

` h1
B

H

dH

dW1
dW1 , ~62!

with

H~W1!5
W 1

2m11

~W111!2m
. ~63!

The lower limitW185W1(«18) corresponds to a continuatio
from W28 ~see Fig. 2!. The differentiation of Eq.~62! with
respect to the thermodynamical parameters vanishes.

Therefore, we sum up the results of this calculation as

L115
]~ I 11I 2!

]m
5

2

4m11

q

h
, ~64!

L1250. ~65!

The calculations leading to the coefficientsL21 and L22
are not presented since they follow the same formali
However, we write the final results

dI 5
2

4m11

q

h
dm ~66!

dU̇5H 2

4m11

m

h
1Cm

Ed

h J dm12
p2

3

kB
2T

h
dT, ~67!
v.

th
s
o
d

-

s,
.

tt.
.

whereCm is a nonuniversal coefficient that depends onm.
Although m differs from the electrochemical potentialdm
does not when the system is in a FQH plateau, as shown
Eq. ~66!. Despite the statistical coupling between the two C
quasi-Landau-levels, once again the universal quantum
thermal conductance is obtained, this time multiplied by
which reflects the presence of the two modes of propagat
The two-terminal electrical conductanceG52/(4m11)
3(e2/h) is also obtained for this family of states, in agre
ment with experiment.

IV. CONCLUSIONS

In conclusion, we have presented a generalized theor
transport of 1D systems. We have shown that the balli
thermal conductance of one-dimensional systems
statistics independent and thus truly universal:kuniv

5(p2/3)(kB
2T/h). This result is valid in the degenerate r

gime for systems of particles obeying fractional exclusi
statistics, whether they present a Fermi surface or are
scribed by a Planck distribution. Electrical conductances
ballistic electrons in 1D quantum wires and in the FQH
gime, although not universal~in the sense that they depen
on statistics!, also follow naturally from this theory.
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