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Noise in multiterminal diffusive conductors: Universality, nonlocality, and exchange effects

Eugene V. Sukhorukov* and Daniel Loss
†

Department of Physics and Astronomy, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
~Received 17 September 1998!

We study noise and transport in multiterminal diffusive conductors. Using a Boltzmann-Langevin equation
approach we reduce the calculation of shot-noise correlators to the solution of diffusion equations. Within this
approach we prove the universality of shot noise in multiterminal diffusive conductors of arbitrary shape and
dimension for purely elastic scattering as well as for hot electrons. We show that shot noise in multiterminal
conductors is a nonlocal quantity and that exchange effects can occur in the absence of quantum phase
coherence even at zero electron temperature. It is also shown that the exchange effect measured in one contact
is always negative — in agreement with the Pauli principle. We discuss a new phenomenon in which current
noise is induced by thermal transport. We propose a possible experiment to measure locally the effective noise
temperature. Concrete numbers for shot noise are given that can be tested experimentally.
@S0163-1829~99!06019-1#
n
th
s
n-

of
an

de
ie
n

er
hil
ce
et

rs

re
t

o

n
ic

ac
l
-

ce
h

la
th
wa
a

to
of

tors

and
m

ol-
d-
ap-

trary
ap-
ua-

n-

ium

ee-
r
c-

e
e of
on-

e

the

is-
ce
ll-
I. INTRODUCTION

Shot noise is a nonequilibrium fluctuation of the curre
in mesoscopic conductors caused by random flow of
charge. It can be thought of as an uncorrelated Pois
process1 giving rise to a simple formula for the spectral de
sity of the shot noise,Sc5eI, whereI is the current through
the conductor ande is the electron charge. Being the result
charge quantization, the shot noise is an interesting
highly nontrivial physical phenomenon.2 In contrast to the
thermal fluctuations of the current, the shot noise provi
important information about microscopic transport propert
of the conductors beyond the linear response coefficie
such as the conductance. For instance, the shot noise s
as a sensitive tool to study correlations in conductors: w
shot noise assumes the Poissonian value in the absen
correlations, it becomes suppressed when correlations s
as, e.g., imposed by the Pauli principle.3–7 In particular, the
shot noise is completely suppressed in ballistic conducto8

and it appears thus only in the presence of a disorder.
In diffusive mesoscopic two-terminal conductors whe

the inelastic scattering lengths exceed the system size
shot-noise suppression factor for ‘‘cold’’ electrons~i.e., for
vanishing electron temperature! was predicted9–14 to be 1/3.
The suppression of shot noise in diffusive conductors is n
experimentally confirmed.15–19 While some derivations are
based on a scattering matrix approach9,11 or conventional
Green’s function technique12,13 and thusa priori include
quantum phase coherence, no such effects are included i
semiclassical Boltzmann-Langevin equation approach, wh
nevertheless leads to the same result.10,14 However, while in
the quantum approach for a two-terminal conductor the f
tor 1/3 was even shown to be universal,12 the semiclassica
derivations given so far10,2 are restricted to quasi-one
dimensional conductors. Thus, although phase coheren
believed not to be essential for the suppression of s
noise,20 the equivalence of different approaches for calcu
ing noise in mesoscopic conductors is not evident. In
regime of hot electrons the noise suppression factor
found21,22 to beA3/4. Again, this result, which is based on
PRB 590163-1829/99/59~20!/13054~13!/$15.00
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Boltzmann-Langevin equation approach, is restricted
quasi-one-dimensional conductors. The generalization
these results to the case of arbitrary multiterminal conduc
is not obvious.

We present here the systematic study of transport
noise in multiterminal diffusive conductors. This proble
has been recently addressed by Blanter and Bu¨ttiker in Ref.
23, where they use the scattering-matrix formulation f
lowed by an impurity averaging procedure. Having the a
vantage of including quantum phase coherence, this
proach is somewhat cumbersome to generalize to an arbi
geometry and arbitrary disorder. In contrast to this, our
proach is based on semiclassical Boltzmann-Langevin eq
tion, which greatly simplifies the calculations.

We consider a multiterminal mesoscopic diffusive co
ductor@see Fig. 1~a!# connected to an arbitrary numberN of
perfect metallic reservoirs at the contact surfacesLn , n
51, . . . ,N, where the voltagesVn or outgoing currentsI n
are measured. The reservoirs are maintained at equilibr
and have in general different lattice temperaturesTn . Unless
specified otherwise the conductor has an arbitrary thr
dimensional~3D! or 2D geometry with an arbitrary disorde
distribution. Our goal is to calculate the multiterminal spe
tral densities of current fluctuationsdI n(t) at zero frequency
v50,

Snm
c 5E

2`

`

dt^dI n~ t !dI m~0!&, ~1.1!

where the bracketŝ. . . & indicate an ensemble average. W
consider the effects of purely elastic scattering and thos
energy relaxation due to electron-electron and electr
phonon scattering on the same basis.

Starting our analysis with a brief summary of th
Boltzmann-Langevin kinetic equation approach,24,25 we then
apply the standard diffusion approximation and reduce
problem of evaluating Eq.~1.1! to the solution of a diffusion
equation. First, we solve the diffusion equation for the d
tribution function to obtain the multiterminal conductan
matrix and energy-transport coefficients in terms of we
13 054 ©1999 The American Physical Society
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PRB 59 13 055NOISE IN MULTITERMINAL DIFFUSIVE . . .
defined ‘‘characteristic potentials.’’26 We formulate the
Wiedemann-Franz law for the case of a multiterminal co
ductor. Then we turn to the calculation of the noise sp
trum. We derive the exact general formula~3.16! for the
multiterminal spectral density of the noise, which togeth
with Eqs.~4.3!, ~5.2!, ~6.2!, and~6.5! is the central result of
our paper. Using this formula we demonstrate that the s
noise suppression factor of 1/3 isuniversalalso in the semi-
classical Boltzmann-Langevin approach, in the sense th
holds for a multiterminal diffusive conductor of arbitrar
shape, electron spectrum, and disorder distribution. We
prove this for cold electrons and then for the case of
electrons where the suppression factor isA3/4. Thereby we
extend previous semiclassical investigations21,22 for two-
terminal conductors to an arbitrary multiterminal geomet
This allows us then to compare our semiclassical appro
with the scattering-matrix approach for multitermin
conductors,7,27,28 in particular with some explicit results re
cently obtained for diffusive conductors.23 The universality
of shot noise proven here gives further support to
suggestion29 that phase coherence is not essential for the s
pression of shot noise in diffusive conductors.30

Another remarkable property of shot noise in mesosco
conductors is the exchange effect introduced by Bu¨ttiker.27

Although this effect is generally believed to be phase se
tive, we will show that this need not be so. Indeed, for t
particular case of an H-shaped conductor@see Fig. 1~d!# we
show that exchange effects can be of the same order a

FIG. 1. ~a! Multiterminal diffusive conductor of arbitrary 2D o
3D shape and with arbitrary impurity distribution. There areN leads
with metallic contacts of areaLn , andI m is themth outgoing cur-
rent. S denotes the remaining surface of the conductor where
current can pass through.~b! Conductor of a star geometry withN
long leads, which join each other at a small crossing region.
resistance of this region is assumed to be much smaller than
resistance of the leads.~c! Wide conductor: the contacts are co
nected through a wide region, so that the resistance of the cond
comes mainly from the regions near the contacts, while the re
tance of the wide region is negligible.~d! H-shaped conductor with
four leads of equal conductances,G/4, connected by a wire in the
middle of conductanceG0.
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shot noise itself even in the framework of the semiclass
Boltzmann approach. We prove that while the exchange
fect measured in different contacts~cross-correlations! can
change the sign, it is always negative when measured in
same contact~autocorrelations!. Thus, the autocorrelation
are always suppressed, in agreement with the Pauli princ
Formally, these exchange effects are shown to come fro
nonlinear dependence on the local distribution functio
Similarly we show that the same nonlinearities are resp
sible for nonlocal effects such as the suppression of s
noise by open leads even at zero electron temperature.

Finally, we discuss a new phenomenon, namely the c
rent noise in multiterminal diffusive conductors induced
thermal transport. We consider the cases of hot and c
electrons and prove the universality of noise in the prese
of thermal transport. We also propose a possible experim
which would allow one to measure locally the effective no
temperature. Throughout the paper we illustrate the gen
formalism introduced here by concrete numbers for vario
conductor shapes that are of direct experimental interest.
note that some of the results of the present paper has
published in Ref. 31 in less general form. Here we pres
the details of the derivation of these results and genera
them to a finite temperature and an arbitrary electron sp
trum ~band structure!.

II. BOLTZMANN-LANGEVIN EQUATION:
DIFFUSIVE REGIME

To calculate the spectral density of current fluctuations
use the Boltzmann-Langevin kinetic equation24,25 for the
fluctuating distribution function F(p,r ,t)5 f (p,r )
1d f (p,r ,t), which depends on the momentump, positionr ,
and timet,

~] t1v•] r1eE•]p!F2I @F#2I im@F#5dFs, ~2.1!

where E(r ,t)5E(r )1dE(r ,t) is the fluctuating electric
field, v5¹p« is the velocity of the electron, and« is its
kinetic energy. I @F#5I ee@F#1I e2ph@F# contains the
electron-electron and electron-phonon collision integrals,
spectively~we do not need to specify them here!, andI im@F#
is the impurity collision integral,

I im@F#5(
p8

~Jp8p2Jpp8!,

Jpp8~r ,t !5Wpp8~r !F~p,r ,t !@12F~p8,r ,t !#, ~2.2!

where the elastic scattering rate fromp into p8, Wpp8(r ),
depends on the positionr in the case of disorder considere
here.

The Langevin source of fluctuationsdFs(p,r ,t) is in-
duced by the random~stochastic! process of the electron
scattering, which is also responsible for the momentum
laxation of the electron gas. On the other hand, electr
electron scattering conserves total momentum of the elec
gas, and therefore does not contribute todFs. Furthermore,
we neglect the momentum relaxation due to electron-pho
scattering and electron-electron Umklapp processes, ass
ing that they are weak compared to the scattering by im
rities in diffusive conductors~phonon induced shot noise i
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13 056 PRB 59EUGENE V. SUKHORUKOV AND DANIEL LOSS
ballistic wires has been studied in Ref. 32!. In other words,
we assume that the collision integralsI ee@F# and I e2ph@F#
describe only energy relaxation process in the electron
but it is only impurity scattering that gives rise to momentu
relaxation and to the shot noise in diffusive conductors.

To describe the fluctuationsdFs we make use of the
Langevin formulation introduced by Kogan and Shul’man25

In this approach there are two contributions to the fluct
tions of the impurity collision integral. First, there is th
contribution I im@d f # due to the fluctuations of the distribu
tion function, which has already been included in Eq.~2.2!.
The second contribution,dI im@ f #, stems from the random
character of the electron scattering, which is the extra sou
of fluctuation dFs occurring on the right-hand side of Eq
~2.1!, i.e.,

dFs5(
p8

~dJp8p2dJpp8!, ~2.3!

where the random variablesdJpp8 are intrinsic fluctuations of
the incoming and outgoing fluxesJpp8 .

Assuming now that the flow of electrons, say, from statp
to statep8 is described by a Poisson process we can wri25

^dJpp8~r ,t !dJp1p
18
~r1 ,t1!&

5d~ t2t1!d~r2r1!dpp1
dp8p

18
^Jpp8~r ,t !&,

~2.4!

where

^Jpp8~r ,t !&5Wpp8~r ! f ~p,r !@12 f ~p8,r !#. ~2.5!

Using the preceding two equations together with Eq.~2.3!,
we obtain the correlator of the Langevin sources,

^dFs~p,r ,t !dFs~p8,r 8,t8!&

5d~ t2t8!d~r2r 8!(
p9

~dpp82dp9p8!Wpp9@ f ~12 f 9!

1 f 9~12 f !#, ~2.6!

with f 9[ f (p9,r ), andWpp95Wp9p .
Next, we consider the left-hand side of Eq.~2.1!. Since

we are only interested in thev50 limit of the spectral den-
sity ~the effect of screening on frequency dependent s
noise in quasi-one-dimensional diffusive conductors
been studied recently in Refs. 33 and 34!, we may drop the
first term ]F/]t in Eq. ~2.1!. The termeE•]pF can be re-
written as follows:eE•]pF

F1ev•E]«F, wherepF is the mo-
mentum at the Fermi surface. From this we see that the e
tric field E induced by an applied voltage plays a twofo
role: it effects the trajectories and changes the energy
electrons. The first effect,eE•]pF

F;eE/pF , is weak com-

pared tov•] rF;vF /L (L is the size of the conductor! and
gives contribution of order eV/«F , which can be
neglected.35 The second effect can be taken into account
the replacement«→«2eV(r ,t) in the argument of the dis
tribution function F, so that « now is the total ~kinetic
s,
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1 potential! energy of the electron. Then, the two term
v•] rF1eE•]pF in Eq. ~2.1! can be replaced by the tota
derivativev•¹F.

In a next step we apply the standard diffusion approxim
tion to the kinetic equation36 where the distribution function
is split into two parts,

F~p,r ,t !5F0~«,r ,t !1 l~pF ,r !•F1~«,r ,t !, ~2.7!

where the vectorl obeys the equation,

(
p8

Wpp8~r !@ l~pF ,r !2 l~pF8 ,r !#5v. ~2.8!

The choice of the distribution functionF in the form~2.7! is
dictated by the fact that the impurity collision integralI im@F#
does not affect the energy dependence of the distribu
function. Inserting this ansatz into Eq.~2.1! and averaging
subsequently over the momentum first weighted with o
and then withl, we arrive at

¹•D̂F12I @F#50, ~2.9!

D̂~¹F01F1!5 ldFs. ~2.10!

Here the overbar means averaging overpF at the Fermi sur-
face inside the Brillouin zone, ( . . . )
5*dpFvF

21( . . . )/*dpFvF
21 , and we introduced the diffu-

sion tensor,

D̂~r ![Dab~r !5val b~pF ,r !. ~2.11!

We also useddFs̄50, which follows from Eq.~2.6!, and
which reflects the conservation of the number of electron
the scattering process.

Using the distribution function~2.7! we can calculate the
current densityj1d j5enFD̂*d«F1 and due to charge neu
trality ~neglecting accumulation of charge! we get the poten-
tial, eV1edV5*«c

` d«F0, where«c is a constant energy nea

the Fermi level and chosen so thatFu«c
51, and nF

5*dpFvF
21 is the density of states at the Fermi level. Up

integration of Eqs.~2.9! and ~2.10! over the energy« the
collision integrals vanish and we arrive at the diffusion equ
tions for the potential and density of current, respectively

¹•ŝ¹V50, j52ŝ¹V, ~2.12!

d j1ŝ¹dV5d j s, ¹•d j50, ~2.13!

where the conductivity tensorŝ(r )5e2nFD̂(r ) depends in
general on the positionr , and d j s5enF*d« ldFs is the
Langevin source of fluctuations of the current density. Af
integrating over« in Eq. ~2.6! and averaging overp ~at the
Fermi surface! we use then Eqs.~2.8! and ~2.11! to obtain
the correlation function of the Langevin sources

^d j a
s ~r ,t !d j b

s ~r 8,t8!&5d~ t2t8!d~r2r 8!sab~r !P~r !,

P~r !52E d« f 0~«,r !@12 f 0~«,r !#, ~2.14!
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PRB 59 13 057NOISE IN MULTITERMINAL DIFFUSIVE . . .
where f 0 is the symmetric part of the average distributi
function f 5 f 01 l•f1.

The physical interpretation of Eq.~2.14! is now transpar-
ent: the functionP describes the local broadening of th
distribution function and can be thought of as an effect
~noise! temperature. Then we see that the correlator~2.14!
takes an equilibriumlike form of the fluctuation-dissipatio
theorem. This is a direct consequence of our diffusion
proximation. In the diffusive regime all microscopic deta
of the transport and fluctuation mechanisms are hidden in
same conductivity matrix, which appear in the correlator
the fluctuation sources@Eq. ~2.14!# as well as in the diffusion
equations@Eqs.~2.12! and~2.13!#. It is this fact which leads
to the universality of shot noise that is independent of mic
scopic mechanisms of the noise.

Next, subtracting the fluctuating part from Eqs.~2.9! and
~2.10! we get the equations for the average distribution fu
tion f,

¹•ŝ¹ f 01e2nFI @ f #50, f 5 f 02 l•¹ f 0 , ~2.15!

which complete the set of coupled equations to be solv
Now we specify the boundary conditions to be imposed
Eqs. ~2.12!, ~2.13!, and ~2.15!. First, we assume that for
given energy there is no current through the surfaceS @see
Fig. 1~a!#. Second, since the contacts with areaLn are perfect
conductors the average potentialV and its fluctuationsdV
are independent of positionr on Ln . Third, the contacts are
assumed to be in thermal equilibrium with outsi
reservoirs.37 Then we write the boundary conditions fo
~2.12! and ~2.13!, respectively, as

ds• j ~r !uS50, V~r !uLn
5Vn , ~2.16!

ds•d j ~r ,t !uS50, dV~r ,t !uLn
5dVn~ t !, ~2.17!

and for Eq.~2.15!,

f 0~«,r !uLn
5 f Tn

~«2eVn!, ds•ŝ~r !¹ f 0~«,r !uS50,
~2.18!

where f Tn
(«)5@11exp(«/Tn)#

21 is the equilibrium distribu-

tion function at temperatureTn , andds is a vector area ele
ment perpendicular to the surface.

Equations~2.12!, ~2.13!, and ~2.15! with the boundary
conditions~2.16!, ~2.17!, and~2.18! are now a complete se
of equations. In principle, these equations can be solved
actly, which would allow us to evaluateSnm

c for an arbitrary
multiterminal geometry of the conductor and for an arbitra
disorder distribution.

III. SOLUTION OF THE DIFFUSION EQUATIONS

A. Multiterminal conductance matrix

The multiterminal conductance matrix is defined as f
lows: I n5(mGnmVm ~throughout the paper the sum over t
contactsm runs fromm51 to m5N, and we omit the limits
for convenience!. To calculateGnm we need to solve Eqs
~2.12! with boundary conditions~2.16!. Following Büttiker26

we introduce characteristic potentialsfn(r ), n51, . . . ,N,
associated with the corresponding contacts. These funct
satisfy the diffusion equation and the boundary condition
e

-

e
f

-

-

d.
n

x-

-

ns

¹•ŝ¹fn50, ~3.1!

ds•ŝ¹fnuS50, fnuLm
5dnm , ~3.2!

so that they are always positivefn(r )>0, n51, . . . ,N and
obey the sum rule~see Appendix A!,

(
n

fn~r !51. ~3.3!

The potentialV can be expressed in terms of characteris
potentials

V~r !5(
n

fn~r !Vn ~3.4!

to satisfy the diffusion Eq.~2.12! and boundary conditions
~2.16!. Then the outgoing current through themth contact is
I m5*Lm

ds• j52(n*Lm
ds•ŝ¹fnVn , and using the defini-

tion of the conductance matrix we get

Gmn52E
Lm

ds•ŝ¹fn . ~3.5!

We note here that the multiplication of the integrand byfm
does not change the integral in the right-hand side of
equation. Moreover, the boundary conditions~3.2! for the
characteristic potentials allows us to extend the integra
the entire surface. Doing so and taking into account
~3.1!, we then replace the surface integral by an integral o
the volume of the conductor. We are then left with anoth
useful formula forGnm ,

Gmn52E dr¹fm•ŝ¹fn . ~3.6!

From this expression and from the sum rule forfn it imme-
diately follows thatGnm5Gmn , (nGnm50, andGnn,0, as
it should be. In Appendix A we use a similar procedure
prove another quite natural property of the conductance
trix: Gnm.0 for nÞm.

B. Energy transport coefficients

We have already seen that the local source of nois
defined by the effective noise temperatureP @see Eq.
~2.14!#, which describes the broadening of the distributi
function. Another important quantity is given by the ener
densityY(r ) acquired by the electron gas due to the broa
ening of the distribution function~effective heat density!. It
is given explicitly by the integral

Y5nFE
«c

`

d««@ f 02u~«2eV!#5L2
1

2
nF~eV!2,

~3.7!

whereu(«2eV) is the local equilibrium distribution func-
tion at zero temperature, andL(r )5nF*«c

` d«« f 0(«,r )

2nF«c
2/2 is the total energy density~up to irrelevant con-

stant!.
To calculateY we integrate the first of Eqs.~2.15! over«

with the weight of« and use the expression~3.7! for L. Then
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13 058 PRB 59EUGENE V. SUKHORUKOV AND DANIEL LOSS
the electron-electron collision integral vanishes, and we
rive at the following equation:38

¹•D̂¹L5¹•D̂¹Y1 j•E5q, ~3.8!

where we introduced the rate of energy relaxation~or absorp-
tion! due to phonons,q(r )52nF*«c

d««I e2ph@ f #. Equation
~3.8! expresses energy conservation: the work done on
system by the electric field,j•E, is equal to the energy flux to
the lattice, q, plus the heating of the electron ga
2¹•D̂¹Y. Integration of Eqs.~2.18! gives us the boundary
conditions forL,

LuLn
5Ln5nFFp2

6
Tn

21
1

2
~eVn!2G ,

ds•D̂¹LuS50. ~3.9!

We assume now that electron-phonon interaction is w
~the general case is discussed in Sec. III C!. Then the energy
exchange between the electron gas and the lattice occu
the metallic reservoirs far away from the conductor, and
side the conductor we haveq50. Equation~3.8! for L with
the boundary conditions~3.9! can be solved in terms offn :
L(r )5(nfn(r )Ln . Substituting this expression into Eq
~3.7! and using Eq.~3.4! for V, we obtainY,

Y5nF(
n,m

fnfmFp2

6
Tn

21
e2

4
~Vn2Vm!2G . ~3.10!

On the other hand, in perfect metallic reservoirs~where
s→`) the term j•E; j2/s can be neglected in Eq.~3.8!.
Integration of this equation over the volume of thenth me-
tallic reservoir gives the total amount of energy transferred
~or absorbed from! the lattice in this reservoir,Qn

5*drq(r )52*Ln
ds•D̂¹Y. In the particular case of ther

mal equilibrium between the reservoirs, i.e.,Tn5T, n
51, . . . ,N, we can use Eq.~3.10! to get the Joule heat in th
nth reservoir,

Qn5
1

2 (
m

Gnm~Vn2Vm!2. ~3.11!

For a two-terminal conductor (V12V2)25V2, G125G21
5G, we haveQ15Q25GV2/2, while the total Joule heat i
Q11Q25IV. We see in this case that the heat contributio
released on each side of the two-terminal conductor
equal.39 This general conclusion holds for an arbitrary sha
of the conductor and arbitrary disorder distribution. This fa
is a consequence of electron-hole symmetry.

The following simple analysis of the Eq.~3.11! exhibits
its physical meaning. On one hand, the total amount of Jo
heat, 1

2 (nmGnm(Vn2Vm)252(nI nVn5*drj •E, is simply
equal to the total work done by the electric field on the s
tem. On the other hand, the value1

2 e2nF(Vn2Vm)2 can be
thought of as the gauge invariant difference of energy d
sities L @i.e., minus the density of the potential ener
e2nF(Vm2Vn)Vn] applied to the contacts of the conducto
Then the energy transport coefficients,Gnm /e2nF , are deter-
mined by the conductance matrix. The last fact is a mani
tation of the Wiedemann-Franz law, which holds for diff
r-

e

k
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sive conductors@together with Eqs.~3.10! and~3.11!# in the
cases of cold and hot electrons, as soon as the elec
phonon interaction is weak enough. To show t
Wiedemann-Franz law in its usual form, we consider t
thermal transport in multiterminal conductors in the abse
of charge transportVn50, n51, . . . ,N. In this case we can
use again Eq.~3.10! to calculate the thermal currentQn ,

Qn5
p2

6e2 (
m

GnmTm
2 . ~3.12!

In particular, close to thermal equilibriumTm5T1DTm , we
have

Qn5
p2T

3e2 (
m

GnmDTm , DTm!T, ~3.13!

where (p2T/3e2Gnm) is the thermal conductance matrix
This is now the Wiedemann-Franz law in its usual form.

C. Multiterminal spectral density of noise

In this section we derive the general formula for the m
titerminal spectral density of shot noise in the case of a
trary electron-phonon interaction. We multiply the first
Eqs. ~2.13! by ¹fn and integrate it over the volume of th
conductor. Then we evaluate the first term in the left-ha
side of the equation integrating by parts and using the sec
of Eqs. ~2.13!, *dr¹fn•d j5rds•d jfn . Taking into ac-
count the boundary conditions~2.17! for d j and~3.2! for fn
we get*dr¹fn•d j5dI n . Integration by parts in the secon
term of the left-hand side of this equation give
*dr¹fn•ŝ¹dV5rds•ŝ¹fndV52(kGnkdVk(t), where
we used Eqs.~3.1! and~3.2! for fn , the boundary condition
~2.17! for dV, and Eq.~3.5! for the conductance matrixGnm .
This leads us to the solution of the Langevin equation~2.13!
in terms of characteristic potentials:

d Ĩ n[dI n2(
m

GnmdVm5E dr¹fn•d j s. ~3.14!

Now, using the correlator~2.14! for the Langevin sources
d j s, we express the generalized multiterminal spectral d
sity Snm defined as

Snm5E
2`

`

dt^d Ĩ n~ t !d Ĩ m~0!& ~3.15!

in terms of characteristic potentials,

Snm5E dr¹fn•ŝ¹fmP, ~3.16!

with the properties:Snm5Smn , (nSnm50, andSnn.0. In
equilibrium P(r )52T, and Eq. ~3.16! together with Eq.
~3.6! lead to the result for the thermal noise,

Snm522GnmT, ~3.17!

which is again a manifestation of the fluctuation-dissipat
theorem.

The formula ~3.16! is one of the central results of th
paper. It is valid for elastic and inelastic scatterings and
an arbitrary multiterminal diffusive conductor. The relatio
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of Snm to the measured noise is now as follows. If, say,
voltages are fixed, thendI n(t)5d Ĩ n(t), and the matrixSnm

5Snm
c is directly measured. On the other hand, when curre

are fixed,Snm can be obtained from the measured volta
correlator Snm

v 5*2`
` dt^dVn(t)dVm(0)& by tracing it with

conductance matrices:Snm5(n8m8Gnn8Gmm8Sn8m8
v . The

physical interpretation of Eq.~3.16! becomes now transpar
ent: P describes the broadening of the distribution functi
~effective temperature! that is induced by the voltage applie
to the conductor andŝP can thus be thought of as a loc
noisesource@see the discussion following Eq.~2.14!#, while
fn can be thought of as theprobe of this local noise. In
particular, this means that onlySnm is of physical relevance
but not the current or voltage correlators themselves.

Let us consider now one important application of E
~3.16!. In an experiment one can measure the local broad
ing P of the nonequilibrium distribution functionf 0 ~effec-
tive noise temperatureP) at some pointr5r0 on the surface
of the conductor by measuring the voltage fluctuations i
noninvasive voltage probe. This is an open contact wit
small area on the surface of the conductor around
point r5r0. The contact is not attached to the reservoir
that it does not cause the equilibration of the electron g
and as a resultP5const around the pointr0. Then, Eq.
~3.16! can be rewritten as follows:S5*dr¹f•ŝ¹fP

5P(r0)*dr¹f•ŝ¹f, wheref is the characteristic poten
tial corresponding to the noninvasive probe. Using Eqs.~3.6!
we getS5R21P(r0), whereR is the resistance of the con
tact that comes from the volume aroundr0. Finally, taking
into account Eqs.~3.14! and~1.1! and the fact that there is n
current through the voltage probedI 50, we obtain

Sv5RP~r0!. ~3.18!

This means thatP can be directly measured, which gives
important information about nonequilibrium processes in
conductor. Equation ~3.18! resembles the fluctuation
dissipation theorem. This is so because there is no trans
through the noninvasive probe, and therefore one can th
of the probe as being in local equilibrium with the effecti
temperatureP. For this reason our consideration restricted
the diffusion regime can in principle be applied to the case
the tunnel coupling between the probe and conductor. A p
sible experiment that could measure shot noise at local
neling contacts is discussed in detail in Ref. 40. The ab
result can be easily generalized to take into account
equilibration by the contact~see Sec. VI!. There will be then
an additional noise suppression factor in Eq.~3.18!.

We note that Eq.~3.16! together with Eqs.~2.9!, ~2.10!,
and ~2.18! for the average distribution functionf and Eqs.
~3.1! and~3.2! for the characteristic potentials can serve a
starting point for numerical evaluations ofSnm . For purely
elastic scattering as well as for hot electrons it is even p
sible to get closed analytical expressions forSnm as we will
show next. The physical conditions for different transp
regimes are discussed in Ref. 21. In Secs. IV and V we
consider the charge transport (Tn5T, n51, . . . ,N), and in
Sec. VI we will discuss the thermal transport (Vn50, n
51, . . . ,N).
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IV. ELASTIC SCATTERING

In the case of purely elastic scattering,I @ f #50, the aver-
age distribution function satisfies the diffusion equation

¹•ŝ¹ f 050, ~4.1!

and the boundary conditions~2.18! with Tn5T ~i.e., in the
charge-transport regime!. Using this equation one can prov
~see Appendix A! that for elastic scattering cross correlatio
(nÞm) are always negative, in agreement with the gene
conclusion of Ref. 27.

Equation ~4.1! can be solved in terms offn : f 0
5(nfnf T(«2eVn). Substituting this solution into Eq
~2.14! and using the sum rule~3.3! for fn , we can expressP
in the following form:41

P52E d«(
k,l

fkf l f T~«2eVk!@12 f T~«2eVl !#.

~4.2!

Performing the integration over« we obtain,

P5e(
k,l

fkf l~Vk2Vl !cothFe~Vk2Vl !

2T G , ~4.3!

which in combination with Eq.~3.16! gives the final expres-
sion for Snm , which is valid for purely elastic scattering
Equation~4.3! describes the crossover from the shot noise
multiterminal diffusive conductors (T→0),

P5e(
k,l

fkf l uVk2Vl u, ~4.4!

to the equilibrium Johnson-Nyquist noise given by E
~3.17!.

A. Universality of noise

Now we are in the position to generalize the proof
universality of the 1/3-suppression of shot noise9–12 to the
case of an arbitrarymultiterminaldiffusive conductor. To be
specific, we chooseVn50, for nÞ1, i.e., only contactn
51 has a nonvanishing voltage. Then, using the sum
~3.3! for fn , we get

P52ef1~12f1!V1coth~eV1/2T!12T~12f1!212Tf1
2 .

To get S1n we substitute this equation into Eq.~3.16! and
evaluate the first term as follows:*dr¹fn•ŝ¹f1f1(1
2f1)5rds•ŝ¹fn(f1

2/22f1
3/3)52G1n/6, where we used

Eqs.~3.1! and~3.2!. Similarly, for the integrals in the secon
and third term we get: *dr¹fn•ŝ¹f1(12f1)2

5*dr¹fn•ŝ¹f1f1
252G1n/3. Combining these results w

arrive at

S1n52
1

3
G1n@4T1eV1coth~eV1/2T!#. ~4.5!

WhenV150 we getS1n522G1nT, and the formula for the
Johnson-Nyquist noise is recovered. WhenT50, we express
S1n in terms of outgoing currents,I n5G1nV1:
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S1n52
1

3
euI nu, nÞ1,

S115
1

3
euI 1u. ~4.6!

We note that the above derivation is valid for arbitrary im
purity distribution and shape of the conductor, and for
arbitrary electron spectrum~band structure!. In this sense the
suppression factor13 is indeed universal. This generalizes t
known universality of a two-terminal conductor12 to a mul-
titerminal geometry.

Finally, we mention here some inequalities~derived in
Appendix A!, which can be used to estimate the spec
density Snm in the T50 limit. First, the correlations are
bounded from below,

Snn>
1

3
euI nu, ~4.7!

but due to the nonlocality of the noise~see the discussion in
Sec. IV C! there can be no upper bound in terms of t
currentI n through the same contact. In other words, the c
rent I n flowing through thenth contact creates the noise1

3 eIn
in this contact. However, other contacts also contribute to
noise in thenth contact, and this contribution is not univers
and makes the noise arbitrarily larger compared to the va
1
3 eIn . Nevertheless, we can write:P,max$uVk2Vlu%, k,l
51, . . . ,N, which gives the rough estimate

Snn,euGnnumax$uVk2Vl u%. ~4.8!

In contrast, the cross correlations possess an upper bou

uSnmu<
1

2
~Snn1Smm!. ~4.9!

Snm vanishes when thenth andmth contacts are completel
disconnected.

B. Wide and star-shaped conductors

Next we specialize to two experimentally important cas
First we consider a multiterminal conductor of a star geo
etry with N long leads~but with otherwise arbitrary shape!,
which join each other at a small crossing region@see Fig.
1~b!#. The resistance of this region is assumed to be m
smaller than the resistance of the leads. In the second
the contacts are connected through a wide region@see Fig.
1~c!#, where again the resistance of the conductor com
mainly from the regions near the contacts, while the re
tance of the wide region is negligible.

Both shapes are characterized by the requirement
w/L!1, wherew and L are the characteristic sizes of th
contact and of the entire conductor, respectively. In b
cases the conductor can be divided~more or less arbitrary!
into N subsectionsGk , k51, . . . ,N, associated with a par
ticular contact so that the potentialV is approximately con-
stant ~for w/L!1) on the dividing surfacesCk . Each sub-
section then can be thought of as a two-terminal condu
with the corresponding characteristic potentialuk(r ),
n

l
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e
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se
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h

or

¹•ŝ¹uk50, ds•ŝ¹ukuS5ukuLk
50, ukuCk

51.
~4.10!

We will show now that both the multiterminal conductan
matricesGnm and the spectral densitiesSnm , can be ex-
pressed in terms of the conductancesGk of these subsec
tions,

Gk52E
Lk

ds•ŝ¹uk5E
Ck

ds•ŝ¹uk . ~4.11!

Since each potentialfn is approximately constant in th
central region of the multiterminal conductor, we can wri

fn~r !uCk
5an5const., (

n
an51, ~4.12!

for an arbitraryk51, . . . ,N, where the second equation fo
lows from the sum rule forfn . Comparing Eqs.~3.1!, ~3.2!,
and ~4.12! with the definition ofuk Eq. ~4.10!, we immedi-
ately obtain

fn~r !urPGk
5anuk~r !1@12uk~r !#dnk . ~4.13!

The calculation ofGnm and Snm is now straightforward.
We substitute Eq.~4.13! into Eq. ~3.5! and use Eq.~4.11! to
get

Gnm5~am2dnm!Gn , am5Gm /G, ~4.14!

where G[(nGn , and the equation foram follows from
(nGnm50. Substituting Eq.~4.13! into Eq. ~3.16! and ap-
plying similar arguments as above in the proof of the 1
suppression we find the explicit expressions~for details of
the derivation see Appendix B!

Snm5
1

3
e(

k
anak~Jk1Jn!~dnm2dkm!2

2

3
GnmT,

Jn5(
l

Gl~Vn2Vl !cothFe~Vn2Vl !

2T G . ~4.15!

We note that this result is a consequence of the above
proximation~4.12!. Comparing the resistance of the subse
tions to the resistance of the central region of the condu
~which is neglected! we find that the corrections to Eq.~4.12!
and consequently to Eq.~4.15! are of orderw/L in 3D and
for a star geometry in 2D, and up to corrections of ord
@ ln(L/w)#21 for wide conductors in 2D.

In principle, Eq.~4.15! and ~4.14! allow us to calculate
the noise for arbitrary voltages and temperature, but for
lustrative purposes we consider the simple case of a cr
shaped conductor with four equivalent leads~i.e., an51/4)
and T50. Suppose the voltage is applied to only one co
tact, sayV1.0, VnÞ150, and I 52I 153I nÞ1.0. Then,
from Eq. ~4.15! we obtain: S115

1
3 eI, S125S135S14

52 1
9 eI, all being in agreement with the univers

1/3-suppression proven above. Then,S225S335S445
2
9 eI,

and S235S245S3452 1
18 eI. These numbers seem to b

new42 and it would be interesting to test them experime
tally.
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C. Nonlocality and exchange effect

We are now in the position to address the issue ofnonlo-
cality andexchangeeffect in shot noise (T50) in multiter-
minal conductors. For this we consider for instance a s
geometry and assume that the current enters the cond
through thenth contact, i.e.,I n52I , and leaves it through
the mth contact, i.e.,I m5I , while the other contacts ar
open, i.e.,I k50 for kÞn,m. From Eq.~4.14! we obtain for
the conductanceGnGm /(Gn1Gm) ~two contacts are in se
ries!, and we see that it does not depend on the other le
which simply reflects thelocal nature of diffusive transport
However, contrary to one’s first expectation, this local
doesnot carry over to the noise in general. Indeed, from E
~4.15! it follows that Snm52 1

3 (an1am)eI. The additional
suppression factor 0,an1am,1 for N.2 reflects thenon-
locality of the current noise. For instance, for a cross w
N54 equivalent leads we haveam5an51/4, and thusSnm
52 1

6 eI. An analogous reduction factor was obtained in R
9 under a different point of view. Hence, one cannot dis
gard open contacts simply because no current is flow
through them; on the contrary, these open contacts, w
are still connected to the reservoir induce equilibration of
electron gas and thereby reduce its current noise. We em
size that this nonlocality is a classical effect in the sense
no quantum phase interference is involved~phase coheren
effects arenot contained in our Boltzmann approach!. On the
other hand, the origin of this nonlocality can be traced ba
to the nonlinear dependence ofP on the distributionf in Eq.
~2.14!, which is a consequence of the Pauli exclusion pr
ciple.

Next we discuss exchange effects27 in a four terminal con-
ductor. According to Blanter and Bu¨ttiker23 they can be
probed by measuringS13 in three ways:Vn5V0dn2 ~A!, Vn
5V0dn4 ~B!, and Vn5V0dn21V0dn4 ~C!. Then we take
DS135S13

C 2S13
A 2S13

B as a measure of the exchange effe
This experiment is analogous to the experiment of Hanb
Brown and Twiss in optics.43 It measures the interference o
electrons coming from mutually incoherent sources, which
caused by the indistinguishability of the electrons. Naive
one might expect that this interference effect averages
zero in diffusive conductors. However, it comes now
some surprise that in our semiclassical Boltzmann appro
DS13 turns out to be nonzero in general and can even b
the order of the shot noise itself. Again, the reason for tha
that P is nonlinear inf 0 @see Eq.~2.14!#, which is the con-
sequence of the Pauli exclusion principle. So, the valuePC

2PA2PB, which entersDS13 is not necessarily zero. In
deed, while exchange effects vanish for cross-shaped
ductors~in agreement with Ref. 23 up to corrections of ord
w/L, which are neglected in our approximation!, it is not so
for an H-shaped conductor@see Fig. 1~d!#. Calculations simi-
lar to those leading to Eq.~4.15! give for this case:

DS135
1

24

eV0G2G0

~G14G0!2 , ~4.16!

whereGn5G/4 are the conductances~all being equal! of the
outer four leads, while the conductance of the connec
wire in the middle is denoted byG0. This exchange term
DS13 vanishes forG0→`, because then the case of a simp
cross is recovered, and also forG0→0, because then the firs
r
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and third contacts are disconnected.DS13 takes on its maxi-
mum value forG05Gn and becomes equal to160 eIA, where
I A is the current through the second contact for case~A!.

Although DS13 is positive in the example considere
above this is not the case in general. For an arbitrary fo
terminal geometry of the conductor the exchange effect
be expressed in terms of characteristic potentials:

DSnm524eV0E dr¹fn•ŝ¹fmfkf l , ~4.17!

where all indices are different. From this general formula
follows thatDSnm5DSkl , andDSnm1DSnl1DSnk50. The
last equation means that the exchange effect can change
i.e., cross correlations can be either suppressed or enha

On the other hand, the setup can be slightly modifi
instead of cross correlations, the noise density in one of
contacts of a multiterminal (N.2) diffusive conductor is
measured, sayS11, while the electrons are injected throug
the contacts 2~A!, 3 ~B!, and 2 and 3~C!. Again, DS11

5S11
C 2S11

A 2S11
B is a measure of the exchange effect. Then

follows from Eq.~4.17! that

DS11524eV0E dr¹f1•ŝ¹f1f2f3,0, ~4.18!

i.e., the correlations are always suppressed due to the in
ference effect, which is a direct manifestation of the Pa
principle. In the particular case of star-shaped conductors
have

DS1152
4

3
eV0

G1G2G3

G2
, G5 (

n51

N

Gn . ~4.19!

The suppression of noise due to the interference of mutu
incoherent electrons was recently observed in an experim
with a ballistic electron beam splitter.44 We have shown here
that this effect is also observable in mesoscopic diffus
conductors.

V. HOT ELECTRONS

We consider now the case of ‘‘hot’’ electrons whereI ee
Þ0, but still I e2ph50, and we assume that electron-electr
scattering is sufficiently strong to cause thermal equilibrat
of the electron gas~i.e., l ee5ADtee!L, whereD is the dif-
fusion coefficient andtee the electron-electron relaxatio
time!. The average distribution then assumes the Fer
Dirac form:

f 0~«,r !5H 11expF«2eV~r !

Te~r ! G J 21

, ~5.1!

with the local electron temperatureTe(r ). Substituting this
f 0 into Eq.~2.14! we immediately getP(r )52Te(r ). On the
other hand, from Eq.~3.7! it follows that @Te(r )#2

5(6/p2nF)Y(r ), where Y(r ) is given by Eq.~3.10! with
Tn5T ~i.e., in the charge-transport regime!. Thus, we finally
obtain
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P52TF112(
n,m

fnfm~bn2bm!2G1/2

, bn5
A3eVn

2pT
,

~5.2!

which in combination with Eq.~3.16! gives the general so
lution for the case of hot electrons. We would like to no
here that the cross correlations are always negative als
the case of hot electrons~the proof is given in Appendix A!.

A. Universality of noise

Next we show that the shot-noise suppression factorA3/4
~Refs. 21 and 22! for hot electrons in a multiterminal con
ductor is alsouniversal. As before we can consider the ca
where the voltage is applied to only one contact:Vn
5V1dn1. Then

P52TA114b2~f12f1
2!, ~5.3!

whereb[b1. Using the relation

2A12F2¹F5¹$arcsinF1FA12F2%,

F5b~11b2!21/2~2f121!, ~5.4!

we transform the volume integral in Eq.~3.16! into a surface
integral and obtain the spectral density of noise:

S1n52G1nTF11S b1
1

b Darctanb G , b5
A3eV1

2pT
.

~5.5!

This expression describes the crossover from the ther
noise (b!1) given by Eq.~3.17! to the transport noise (b
@1)

S1n52
A3

4
euI nu, nÞ1,

S115A3

4
euI 1u. ~5.6!

This general result shows that in the case of hot electrons
shot-noise suppression factorA3/4 is indeed universal, i.e., i
does not depend on the shape of the multiterminal diffus
conductor nor on its disorder distribution.45

The origin of this universality becomes clear from t
following argumentation. We have seen that the distribut
of the effective noise temperatureP(r ) for the case of hot
electrons is controlled by the transport equations for the
ergy @Eqs. ~3.8! and ~3.9!# through the heat densityY(r ).
The spectral density of noise, in turn, is given byP(r )
through the transport equations for charge,@Eqs. ~2.13! and
~2.17!#. On the other hand, according to the Wiedema
Franz law, both the energy and charge transports are d
mined by the same kinetic coefficients, namely, byŝ(r ).
Thus, the physical origin of the universality of the suppre
sion factorA3/4 can be traced back to the Wiedemann-Fra
law. Conversely, a violation of the Wiedemann-Franz l
will cause deviations from universality.

We would like to note here that the universality of th
noise~for cold and hot electrons! has been proven here fo
the case where the voltage is applied to only one contact
in
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he
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-
z

f a

multiterminal diffusive conductor, which made it possible
express the spectral densitiesSnm in terms of conductance
Gnm . This is no longer possible in general. Nevertheless
the case of a 2D geometry and isotropic conductivi
sab(r )5s(r )dab , both Gnm and Snm are of the same uni-
versality class. Indeed, one can easily see that they are
variant under conformal transformation of coordinates.Gnm
andSnm can be expressed in terms of characteristic potent
fn , which satisfy the conformal invariant diffusion equatio
~3.1! and boundary conditions~3.2!. Moreover, the combina-
tion dr¹fn•¹fm does not change with the conformal tran
formation of coordinates, which finally makes the integra
for Gnm @Eq. ~3.6!# and for Snm @Eq. ~3.16!# conformal in-
variant.

We close this section by another illustrative example. L
us consider again a cross-shaped conductor with four equ
lent leads,46 Gn5G/4, at T50 and where we chooseVn

5V1d1n , I 52I 153I nÞ1.0. We then findS115(A3)/4eI,
and S1n52(1/4A3)eI, for nÞ1, while Snn5(35A3/108
22/3p)eI, and SnÞm52(13A3/10821/3p)eI, for n,m
Þ1. These new numbers are consistent with the unive
factor A3/4.

VI. NOISE INDUCED BY THERMAL TRANSPORT

In this section we address a new phenomenon, namely
current noise in multiterminal diffusive conductors in th
presence of thermal transport. We assume no energy re
ation in the conductor due to phonons,I e2ph50, and no
voltage is applied to the contacts,Vn50, n51, . . . ,N,
which are kept in equilibrium at different temperaturesTn .
The thermal transport is considered in Sec. III B, where
outgoing thermal currentsQn are calculated@see Eqs.~3.12!
and ~3.13!#. We turn now to the calculation of the spectr
density of noise.

A. Elastic scattering

To calculateP we need to know the distribution functio
f 0. It obeys Eq.~4.1! with the boundary conditions~2.18! in
the contacts. The solution then reads explicitly,

f 05(
n

fnf Tn
, ~6.1!

and with the help of Eq.~3.3! we get,

P5(
kl

fkf lZkl ,

Zkl5TkTlE
2`

`

ds@12tanh~Tks!tanh~Tls!#. ~6.2!

This together with Eq.~3.16! gives the spectral density o
noiseSnm .

In equilibriumTn5T, Zkl52T and Eq.~6.2! and we find
for the equilibrium noise,Snm522GnmT. On the other
hand, if for exampleTk@Tl , thenZkl5(2 ln 2)Tk . We con-
sider then two situations, where, e.g., eitherT15T and
TnÞ150, or T150 andTnÞ15T. In other words, only one
contact is either heated up to high enough temperatureT or
cooled down to zero temperature and the other contacts
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kept at the same temperature. Using the sum rule forfn and
carrying out the integration in Eq.~3.16! we obtain for both
cases,

S1n52
2

3
~11 ln 2!G1nT. ~6.3!

S1n for these two situations can be expressed in terms
thermal currentsQn

S1n564~11 ln 2!~e/p!2T21Qn , ~6.4!

with the sign depending on the sign ofQn .

B. Hot electrons

We consider now the case of hot electrons, whereP
52Te , while Te

25(kfkTk
2 @see Eq.~3.10!#. Substituting this

into Eq. ~3.16! we get,

Snm52E dr¹fn•ŝ¹fmA(
k

fkTk
2. ~6.5!

In particular, if the electron gas in the conductor is push
out of equilibrium by heating~or cooling! one of the contacts
~with n51) while the other contacts are kept at the tempe
ture Tn5T2 , nÞ1, the integral can be calculated explicitl
and we have

S1n52
4

3
G1n

T1
21T2

21T1T2

T11T2
. ~6.6!

In the cases whereT15T@T2, and T25T@T1, we obtain
with the help of Eq.~3.13! that the spectral densityS1n can
be expressed in terms of thermal currents:

S1n568~e/p!2T21Qn . ~6.7!

Expressions~6.4! and ~6.7! are analogous to Eqs.~4.6! and
~5.6! and reflect the universality of the noise in the prese
of thermal transport.

VII. CONCLUSION

In conclusion, we have systematically studied the tra
port and noise in multiterminal diffusive conductors. Appl
ing a diffusion approximation to the Boltzmann-Langev
kinetic equation we have derived the diffusion equations
the distribution function and its fluctuations. We then solv
these equations in general terms of well defined ‘‘charac
istic potentials’’ and we derived exact formulas for the co
ductance matrix, energy-transport coefficients, and the m
titerminal spectral density of noise. In this way we ha
obtained the following results. In both regimes of cold a
hot electrons the shot noise turns out to be universal in
sense that it depends neither on the geometry of a mult
minal conductor and the spectrum of carriers, nor on
disorder distribution. We have studied the noise in the pr
ence of thermal transport and find that being expresse
terms of thermal currents it is also universal. We believe t
of

d

-

e

-

r
d
r-
-
l-

e
r-
e
s-
in
t

the origin of this universality lies in the fact that in the di
fusive regime the correlator of the local current densit
~Langevin sources! takes an equilibriumlike form of the
fluctuation-dissipation theorem involving an effective noi
temperature. Thus, the transport and noise properties are
termined by the same conductivity tensor. One can surm
then that the proven universality holds as long as the ene
transport is governed by the Wiedemann-Franz law.

The exchange effect is proven to be nonzero even wit
our semiclassical Boltzmann approach. The exchange e
can change sign when measured in cross-correlations, an~in
agreement with the Pauli principle! it gives always negative
contribution to the autocorrelations. The exchange eff
comes from a nonlinear dependence on the local distribu
function. Similarly, we show that the same nonlinearities
responsible for nonlocal effects such as the suppressio
shot noise by open leads even at zero electron temperat

Finally, we have proposed a possible experiment t
would allow one to locally measure the effective noise te
perature, and we have given new suppression factors for
noise in various geometries, which can be tested experim
tally.
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APPENDIX A

In this appendix we derive some properties of the char
teristic potentialsfn , multiterminal conductance matrix
Gnm, and spectral density of shot noiseSnm . First, we show
thatfn>0 in the conductor. According to the boundary co
dition ~3.2!, being negativefn would take on its minimum
value at some pointr5r0 in the conductor. If this happene
inside the conductor, then ¹fn(r0)50, and ¹

•ŝ(r0)¹fn(r0).0, becauseŝ is a positive definite matrix.
This, however, would then contradict Eq.~3.1!. If fn took on
its minimum value on the open surface of the conduc
(r0PS), then ¹ ifn(r0)50, and according to Eq.~3.2!
¹'fn(r0)50. Again,¹•ŝ(r0)¹fn(r0).0 in contradiction
with Eq. ~3.1!. Thus, we see that the characteristic potenti
cannot be negativefn>0.

The sum rule~3.3! for fn follows from the observation
that the functionf(r )[1 is a unique solution of the diffu-
sion equation¹•ŝ¹f50 with the boundary conditions
ds•ŝ¹fuS50, andfuLm

51, ;m. It follows from Eqs.~3.1!

and~3.2! that the function(nfn(r ) obeys the same equatio
and boundary conditions, and thereforef5(nfn(r )51.
This sum rule can also be deduced from the fact that phys
observables are invariant under a global shift of the ene
scale by a constant value.26

Now we prove thatGnm.0 for nÞm. We note that the
multiplication of the integrand in Eq.~3.5! by fm

2 and exten-
sion of the integral to the whole surface does not change
integral, so thatGnm52rds•ŝ¹fnfm

2 . Then, using Eq.
~3.1! we replace the surface integral by the integral over
volume of the conductor,Gnm522*dr¹fn•ŝ¹fmfm . Fi-
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nally, we calculate this integral by parts and take into
count the boundary conditions~3.2! for fn to get for the
conductance matrix,

Gnm52E dr¹fm•ŝ¹fmfn , nÞm, ~A1!

from which it follows thatGnm.0. Interestingly, a similar
procedure forn5m gives,

Gnn522E dr¹fn•ŝ¹fnfn , ~A2!

andGnn,0.
Now we prove that in the case of elastic scattering cr

correlationsSnm , nÞm, are always negative. We calcula
Snm in Eq. ~3.16! with P from Eq. ~2.14! integrating by
parts,

Snm5
1

2 R ds•ŝ~¹fnfm1¹fmfn!P

2
1

2E dr¹P•ŝ~¹fnfm1¹fmfn!.

From Eq.~2.18! it follows that only contact surfaces contrib
ute to the first integral, and with Eq.~3.5! we get for the first
term:2Gnm(Tn1Tm). In the second term we again calcula
the integral by parts and use Eq.~2.14! to get:
2 1

2 rds•ŝ¹Pfnfm22**drd«fnfm¹ f 0•ŝ¹ f 0. Accord-
ing to Eqs.~2.18! and ~3.2! the surface integral disappea
and we arrive at the following result:

Snm52Gnm~Tn1Tm!22E E drd«fnfm¹ f 0•ŝ¹ f 0 ,

~A3!

for nÞm, from which it follows that the cross correlation
are negative.

We apply similar arguments to prove that the cross co
lations are always negative also in the case of hot electr
We calculate the integral inSnm52*dr¹fn•ŝ¹fmTe and
use the boundary conditions forfn andTe to get

Snm52Gnm~Tn1Tm!1E drfnfm¹•ŝ¹Te .

Then we use@Te(r )#25(6/p2nF)Y(r ) and Eq. ~3.8! (q
50) to write Te¹•ŝ¹Te52¹Te•ŝ¹Te23(e/
p)2¹V•ŝ¹V. Substituting this into the above equation w
obtain

Snm52Gnm~Tn1Tm!2E drfnfmTe
21@¹Te•ŝ¹Te

13~e/p!2¹V•ŝ¹V#, ~A4!
-

s

-
s.

which shows the negativity of cross correlations.
The inequality~4.7! can be derived as follows. First, w

note that according to Eq.~4.3! correlations grow with tem-
perature. Therefore, without loss of generality we can
T50 in the following. Then, one can easily see that

P5e(
k,l

fkf l uVk2Vl u>2efn(
l

f l uVl2Vnu

>2efnu(
l

f l~Vl2Vn!u52efnuV2Vnu.

We substitute this into Eq.~3.16! and write another set o
inequalities,

Snn>2eE dr¹fn•ŝ¹fnfnuV2Vnu

>2eU E dr¹fn•ŝ¹fnfn~V2Vn!U.
Integrating by parts,

2E dr¹fn•ŝ¹fnfn~V2Vn!

5 R ds•ŝ¹fnfn
2~V2Vn!2E dr¹V•ŝ¹fnfn

2

52
1

3 R ds•ŝ¹Vfn
35

1

3
I n ,

we obtain expression~4.7!. The inequality Eq.~4.9! imme-
diately follows from

2u¹fn•ŝ¹fmu<¹fn•ŝ¹fn1¹fm•ŝ¹fm , ~A5!

and evidently holds also for inelastic scattering.

APPENDIX B

The derivation of Eq.~4.15! proceeds as follows. We us
Eq. ~4.13! to replace the integral in Eq.~3.16! over the vol-
ume of the conductor by the sum of integrals over subs
tions Gk ,

Snm5(
k

~an2dnk!~am2dmk!E
Gk

dr¹uk•ŝ¹ukP.

~B1!

Using the contraction

Zlq5e~Vl2Vq!cothFe~Vl2Vq!

2T G ~B2!

we expressP in terms ofuk ,
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PuGk
5(

lq
@a luk1~12uk!d lk#@aquk1~12uk!dqk#Zlq .

~B3!

Then we substitute this expression into Eq.~B1!, calculate
the integrals overGk with the help of Eqs.~4.11!,

E
Gk

dr¹uk•ŝ¹ukuk
252E

Gk

dr¹uk•ŝ¹ukuk~12uk!

5E
Gk

dr¹uk•ŝ¹uk~12uk!
25

1

3
Gk ,

~B4!
ia
o

na

.

,

v

e

.

and use the symmetryZlq5Zql to get

Snm5
1

3 (
klq

~an2dnk!~am2dmk!

3~a laq1a ldqk1d lkdqk!GkZlq . ~B5!

Finally, introducing the notation,Jq5e21( lGlZql , and us-
ing Zkk52T and ak5Gk /G, we carry out the summation
over k in Eq. ~B5! to arrive at Eq.~4.15! for Snm .
-
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7M. Büttiker, Phys. Rev. Lett.65, 2901~1990!.
8I. O. Kulik and A. N. Omel’yanchuk, Fiz. Nizk. Temp.10, 305

~1984! @Sov. J. Low Temp. Phys.10, 158 ~1984!#.
9C. W. J. Beenakker and M. Bu¨ttiker, Phys. Rev. B46, 1889

~1992!.
10K. E. Nagaev, Phys. Lett. A169, 103 ~1992!.
11M. J. M. de Jong and C. W. J. Beenakker, Phys. Rev. B46, 13

400 ~1992!.
12Yu. V. Nazarov, Phys. Rev. Lett.73, 134 ~1994!.
13B. L. Altshuler, L. S. Levitov, and A. Yu. Yakovets, Pis’ma Zh
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