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Noise in multiterminal diffusive conductors: Universality, nonlocality, and exchange effects
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We study noise and transport in multiterminal diffusive conductors. Using a Boltzmann-Langevin equation
approach we reduce the calculation of shot-noise correlators to the solution of diffusion equations. Within this
approach we prove the universality of shot noise in multiterminal diffusive conductors of arbitrary shape and
dimension for purely elastic scattering as well as for hot electrons. We show that shot noise in multiterminal
conductors is a nonlocal quantity and that exchange effects can occur in the absence of quantum phase
coherence even at zero electron temperature. It is also shown that the exchange effect measured in one contact
is always negative — in agreement with the Pauli principle. We discuss a new phenomenon in which current
noise is induced by thermal transport. We propose a possible experiment to measure locally the effective noise
temperature. Concrete numbers for shot noise are given that can be tested experimentally.
[S0163-182609)06019-1

I. INTRODUCTION Boltzmann-Langevin equation approach, is restricted to
guasi-one-dimensional conductors. The generalization of
Shot noise is a nonequilibrium fluctuation of the currentthese results to the case of arbitrary multiterminal conductors
in mesoscopic conductors caused by random flow of thés not obvious.
charge. It can be thought of as an uncorrelated Poisson We present here the systematic study of transport and
proces$ giving rise to a simple formula for the spectral den- noise in multiterminal diffusive conductor§. This problem
sity of the shot noiseS°=el, wherel is the current through has been recently addressed by Blanter andilgu in Ref.
the conductor and s the electron charge. Being the result of 23, where they use the scattering-matrix formulation fol-
charge quantization, the shot noise is an interesting antpwed by an impurity averaging procedure. Having the ad-
highly nontrivial physical phenomendnin contrast to the vantage of including quantum phase coherence, this ap-
thermal fluctuations of the current, the shot noise provideproach is somewhat cumbersome to generalize to an arbitrary
important information about microscopic transport propertiesgeometry and arbitrary disorder. In contrast to this, our ap-
of the conductors beyond the linear response coefficientgroach is based on semiclassical Boltzmann-Langevin equa-
such as the conductance. For instance, the shot noise sentisg, which greatly simplifies the calculations.
as a sensitive tool to study correlations in conductors: while We consider a multiterminal mesoscopic diffusive con-
shot noise assumes the Poissonian value in the absence difctor[see Fig. 1a)] connected to an arbitrary numbidrof
correlations, it becomes suppressed when correlations set perfect metallic reservoirs at the contact surfatgs n

as, e.g., imposed by the Pauli principfé.In particular, the =1, ... N, where the voltage¥, or outgoing currents,,
shot noise is completely suppressed in ballistic conduétorsare measured. The reservoirs are maintained at equilibrium
and it appears thus only in the presence of a disorder. and have in general different lattice temperatufgs Unless

In diffusive mesoscopic two-terminal conductors wherespecified otherwise the conductor has an arbitrary three-
the inelastic scattering lengths exceed the system size thdimensional3D) or 2D geometry with an arbitrary disorder
shot-noise suppression factor for “cold” electrofie., for  distribution. Our goal is to calculate the multiterminal spec-
vanishing electron temperatyreras predictedy*to be 1/3.  tral densities of current fluctuatior® ,(t) at zero frequency
The suppression of shot noise in diffusive conductors is noww =0,
experimentally confirmedf=1° While zggnhe derivations are
based on a scattering matrix appr or conventional *

Green’s function techgniq&%”' anF()JIpthusa priori include Shm= j_ocdtwln(t)él m(0)), (1.0
guantum phase coherence, no such effects are included in the

semiclassical Boltzmann-Langevin equation approach, whickvhere the bracket§. . .) indicate an ensemble average. We
nevertheless leads to the same re¥iAf. However, while in  consider the effects of purely elastic scattering and those of
the quantum approach for a two-terminal conductor the facenergy relaxation due to electron-electron and electron-
tor 1/3 was even shown to be univer§athe semiclassical phonon scattering on the same basis.

derivations given so fa?? are restricted to quasi-one- Starting our analysis with a brief summary of the
dimensional conductors. Thus, although phase coherence Boltzmann-Langevin kinetic equation appro&tf®we then
believed not to be essential for the suppression of shaspply the standard diffusion approximation and reduce the
noise?’ the equivalence of different approaches for calculat-problem of evaluating E¢(1.1) to the solution of a diffusion
ing noise in mesoscopic conductors is not evident. In theequation. First, we solve the diffusion equation for the dis-
regime of hot electrons the noise suppression factor wasibution function to obtain the multiterminal conductance
found??2to be \/3/4. Again, this result, which is based on a matrix and energy-transport coefficients in terms of well-
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shot noise itself even in the framework of the semiclassical

Im
! Boltzmann approach. We prove that while the exchange ef-
L fect measured in different contactsross-correlationscan
; change the sign, it is always negative when measured in the
N same contactautocorrelations Thus, the autocorrelations
are always suppressed, in agreement with the Pauli principle.
Formally, these exchange effects are shown to come from a
a) b) Similarly we show that the same nonlinearities are respon-
)

nonlinear dependence on the local distribution function.
sible for nonlocal effects such as the suppression of shot

1 2 noise by open leads even at zero electron temperature.
Finally, we discuss a new phenomenon, namely the cur-
rent noise in multiterminal diffusive conductors induced by
thermal transport. We consider the cases of hot and cold
electrons and prove the universality of noise in the presence
of thermal transport. We also propose a possible experiment

which would allow one to measure locally the effective noise

temperature. Throughout the paper we illustrate the general
d) formalism introduced here by concrete numbers for various
FIG. 1. (a) Multiterminal diffusive conductor of arbitrary 2D or conductor shapes that are of direct experimental interest. We

3D shape and with arbitrary impurity distribution. There Hrkeads note_ that some of the_ results of the present paper has been
with metallic contacts of aref, , andl,, is themth outgoing cur-  Published in Ref. 31 in less general form. Here we present
rent. S denotes the remaining surface of the conductor where ndh€ details of the derivation of these results and generalize
current can pass througtb) Conductor of a star geometry witd  them to a finite temperature and an arbitrary electron spec-
long leads, which join each other at a small crossing region. Thdrum (band structure

resistance of this region is assumed to be much smaller than the

resistance of the lead¢éc) Wide conductor: the contacts are con- Il. BOLTZMANN-LANGEVIN EQUATION:

nected through a wide region, so that the resistance of the conductor DIFEUSIVE REGIME

comes mainly from the regions near the contacts, while the resis-

tance of the wide region is negligibléd) H-shaped conductor with To calculate the spectral density of current fluctuations we
four leads of equal conductances/4, connected by a wire in the use the Boltzmann-Langevin kinetic equafidf? for the
middle of conductanc&,,. fluctuating  distribution  function F(p,r,t)="f(p,r)

+ of(p,r,t), which depends on the momentympositionr,

and timet,

C

defined “characteristic potentials’® We formulate the
Wiedemann-Franz law for the case of a multiterminal con- _ sps
ductor. Then we turn to the calculation of the noise spec- (Gt v-9rteE-Gp)F = I[F]=lim[ F]=0F% (2.1
trum. We derive the exact general formua.16 for the  where E(r,t)=E(r)+ 8E(r,t) is the fluctuating electric
multiterminal spectral density of the noise, which togetherfield, v=V,e is the velocity of the electron, and is its
with Eqs.(4.3), (5.2), (6.2, and(6.9) is the central result of kinetic energy. I[F]=1¢dF]+Il._,,[F] contains the
our paper. Using this formula we demonstrate that the shotelectron-electron and electron-phonon collision integrals, re-
noise suppression factor of 1/3usiversalalso in the semi-  spectively(we do not need to specify them hgrandl;,[F]
classical Boltzmann-Langevin approach, in the sense that i§ the impurity collision integral,

holds for a multiterminal diffusive conductor of arbitrary

shape, electron spectrum, and disorder distribution. We first

prove this for cold electrons and then for the case of hot Iim[F]:Z (Jprp= Jpp1),
electrons where the suppression factok/&/4. Thereby we P
extend previous semiclassical investigatforf8 for two- 3o (1D =Wop (NE(P.EO[L—F(p D], (22

terminal conductors to an arbitrary multiterminal geometry.

This allows us then to compare our semiclassical approacihere the elastic scattering rate fragminto p’, Wy, (r),

with the scattering-matrix approach for multiterminal depends on the positianin the case of disorder considered

conductors;?”?in particular with some explicit results re- here.

cently obtained for diffusive conductof$.The universality The Langevin source of fluctuation8F3(p,r,t) is in-

of shot noise proven here gives further support to theduced by the randontstochastig process of the electron

suggestioff that phase coherence is not essential for the supscattering, which is also responsible for the momentum re-

pression of shot noise in diffusive conductd?s. laxation of the electron gas. On the other hand, electron-
Another remarkable property of shot noise in mesoscopi@lectron scattering conserves total momentum of the electron

conductors is the exchange effect introduced bytiBer?’  gas, and therefore does not contributes®®. Furthermore,

Although this effect is generally believed to be phase sensiwe neglect the momentum relaxation due to electron-phonon

tive, we will show that this need not be so. Indeed, for thescattering and electron-electron Umklapp processes, assum-

particular case of an H-shaped condudsee Fig. 1d)] we ing that they are weak compared to the scattering by impu-

show that exchange effects can be of the same order as thiéies in diffusive conductorgphonon induced shot noise in
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ballistic wires has been studied in Ref.)3th other words, + potentia) energy of the electron. Then, the two terms

we assume that the collision integralg[F] and I, [F] v-d,F+eE-d,F in Eq. (2.1) can be replaced by the total

describe only energy relaxation process in the electron gaslerivativev- VF.

but it is only impurity scattering that gives rise to momentum In a next step we apply the standard diffusion approxima-

relaxation and to the shot noise in diffusive conductors.  tion to the kinetic equatiofi where the distribution function
To describe the fluctuation§F* we make use of the is split into two parts,

Langevin formulation introduced by Kogan and Shul’nfan.

In this approach there are two contributions to the fluctua- F(p,r,t)=Fo(e,r,t) +1(pg,r)-Fi(e,r,t), (2.7

tions of the impurity collision integral. First, there is the

contribution|;,,[ f] due to the fluctuations of the distribu-

tion function, which has already been included in E22).

The second contributiory?lim[f],. stems. fro_m the random z pr'(f)U(PF,f)—'(p'F'r)]=V- (2.9

character of the electron scattering, which is the extra source p’

of fluctuation sF*

(2.0, i.e.,

where the vectol obeys the equation,

occurring on the right-hand side of Eq. The choice of the distribution functidf in the form(2.7) is
dictated by the fact that the impurity collision integrgl[ F]
does not affect the energy dependence of the distribution

SFS=> (8351p— 83pp1), (2.3  function. Inserting this ansatz into E(.1) and averaging

p' subsequently over the momentum first weighted with one

. L . and then withl, we arrive at
where the random varlableﬁslpp, are intrinsic fluctuations of

the incoming and outgoing fluxek,, . vV.DE _mzo 2.9
Assuming now that the flow of electrons, say, from state ! ' '
to statep’ is described by a Poisson process we can firite

D(VFo+F,)=I5FS. (2.10
<5‘]pp’(r't)5‘]p1p1(r1't1)> Here the overbar means averaging opgerat the Fermi sur-
face inside the Brillouin zone, (...)

= 8(t=1t1) 8(r =11) 8pp, Sprpy{Jppr (1,1)), =[dpevg (.. .)/fdprvgt, and we introduced the diffu-

(2.4  sion tensor,
where D(r)=D ,5(r)=v4l 5(Pe.1). (2.1

(Jppr (1, 1)) =Wy (r)f(p,r)[1—f(p",r)]. (2.5  We also usedsF3=0, which follows from Eg.(2.6), and
_ _ _ _ which reflects the conservation of the number of electrons in
Using the preceding two equations together with Efj3),  the scattering process.

we obtain the correlator of the Langevin sources, Using the distribution functiori2.7) we can calculate the
current densityj + 5j =eveD fdeF; and due to charge neu-
trality (neglecting accumulation of chargee get the poten-
tial, eV+ e5V=f‘;°cds Fo, wheree is a constant energy near

(8F3(p,r,t)SFS(p’,r',t"))

:5(t—t’)5(r—r’)2 (Sppr = By ) Wi F(1— ") the Fermi level and chosen so th5t|sc=1, and vg
p” =fdpFu;l is the density of states at the Fermi level. Upon
+E(1-1)], (2.69  integration of Egs(2.9 and (2.10 over the energy the
collision integrals vanish and we arrive at the diffusion equa-
with f"=f(p”,r), andWpy =Wy, . tions for the potential and density of current, respectively,
Next, we consider the left-hand side of E.1). Since A A
we are only interested in the=0 limit of the spectral den- V-aVV=0, j=-0oVV, (2.12
sity (the effect of screening on frequency dependent shot
noise in quasi-one-dimensional diffusive conductors has Si+oVeV=24js, V-8=0, 2.13

been studied recently in Refs. 33 and,34e may drop the

first term gF/4dt in Eq. (2.1). The termeE- d,F can be re- \where the conductivity tensar(r)=e?v:D(r) depends in
written as followseE- d,_F +ev-Ed,F, wherepg is the mo-  general on the positior, and §j=evg[delSFS is the
mentum at the Fermi surface. From this we see that the elet-angevin source of fluctuations of the current density. After
tric field E induced by an applied voltage plays a twofold integrating overe in Eqg. (2.6) and averaging ovep (at the
role: it effects the trajectories and changes the energy dfermi surfacgwe use then Eqg2.8) and(2.11) to obtain
electrons. The first effeceE- 0pFF~eE/pF, is weak com- the correlation function of the Langevin sources

pared tov- d,F~vg/L (L is the size of the conductpand o < ) ,

gives contribution of ordereV/er, which can be (0 (1, 1) 8 p(r" ")) =8(t=t") 8(r—r") o 5(r)IL(r),
neglected®® The second effect can be taken into account by

the replacement — ¢ —eV(r,t) in the argument of the dis- _

tribution function F, so thate now is the total (kinetic 1I(r)=2 | defo(e,r)[1=Tfoe,N)], (2.14
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where f is the symmetric part of the average distribution V.oV $,=0, (3.1
functionf="fy+1-f;.

The physical interpretation of E¢2.14) is now transpar-
ent: the functionll describes the local broadening of the
distribution function and can be thought of as an effectivesg that they are always positive,(r)=0, n=1, ... N and
(noisg temperature. Then we see that the correlét4)  opey the sum rulésee Appendix A
takes an equilibriumlike form of the fluctuation-dissipation
theorem. This is a direct consequence of our diffusion ap-
proximation. In the diffusive regime all microscopic details En: ¢n(r)=1. 33
of the transport and fluctuation mechanisms are hidden in the
same conductivity matrix, which appear in the correlator of The potentiaV can be expressed in terms of characteristic
the fluctuation sourcd€q. (2.14)] as well as in the diffusion  potentials
equationdEqgs.(2.12 and(2.13]. It is this fact which leads
to the universality of shot noise that is independent of micro-
scopic mechanisms of the noise. V(r)=; $n(N)Vy

Next, subtracting the fluctuating part from Eg@2.9 and
(2.10 we get the equations for the average distribution functo satisfy the diffusion Eq(2.12 and boundary conditions
tion f, (2.16. Then the outgoing current through theh contact is
. , —— Im=JL dsj=—Z2,fL _ds aV¢,V,, and using the defini-

V-oVfo+evel[f]=0, f=fo=I1-Vfo, (219  jon of the conductance matrix we get
which complete the set of coupled equations to be solved.
Now we specify the boundary conditions to be imposed on G. = _f ds- oV, . (3.5
Egs.(2.12, (2.13, and (2.15. First, we assume that for a mn L A
given energy there is no current through the surf@dsee
Fig. 1(@)]. Second, since the contacts with atggare perfect
conductors the average potentiland its fluctuationssV
are independent of positianon L, . Third, the contacts are
assumed to be in thermal equilibrium with outside
reservoirs’ Then we write the boundary conditions for
(2.12 and(2.13), respectively, as

ds oV ¢uls=0, nlL_=Snm, (3.2

(3.9

We note here that the multiplication of the integrandday

does not change the integral in the right-hand side of this
equation. Moreover, the boundary conditiof®&2) for the

characteristic potentials allows us to extend the integral to
the entire surface. Doing so and taking into account Eg.
(3.1), we then replace the surface integral by an integral over
the volume of the conductor. We are then left with another

dsj(ns=0, V(N =V, (2.1  useful formula forGnp,
ds-8i(r,h)]s=0, SV(rbl, =dVo(t), (2.17) Go= —f drv e, oV, . (3.6
and for Eq.(2.15, From this expression and from the sum rule #gy it imme-
- diately follows thatG,,,=Gmnn, 2,.Gnm=0, andG,,<0, as
fole.n)|L, =f1 (e—eVy), ds o(r)Vig(e,r)[s=0, it should be. In Appendix A we use a similar procedure to

(2.18 prove another quite natural property of the conductance ma-

wherefr (&)=[1+exp@/T)] " is the equilibrium distribu- trix: Gym=>0 for n#m.

tion function at temperatur€,, andds is a vector area ele-
ment perpendicular to the surface.

Equations(2.12, (2.13, and (2.15 with the boundary We have already seen that the local source of noise is
conditions(2.16), (2.17), and(2.18 are now a complete set defined by the effective noise temperatufe [see Eq.
of equations. In principle, these equations can be solved ex2.14], which describes the broadening of the distribution
actly, which would allow us to evalua® ., for an arbitrary ~ function. Another important quantity is given by the energy
multiterminal geometry of the conductor and for an arbitrarydensity Y (r) acquired by the electron gas due to the broad-
disorder distribution. ening of the distribution functioeffective heat densijy It

is given explicitly by the integral

B. Energy transport coefficients

[ll. SOLUTION OF THE DIFFUSION EQUATIONS 1
A. Multiterminal conductance matrix Y= fo dee[fo—O(e—eV)]=A— EVF(e\/)Z,
ec

The multiterminal conductance matrix is defined as fol- 3.7
lows: | ,=2,G,mVm (throughout the paper the sum over the . A o
contactam rEnsn?rorr?\Enzl ?o m=N ar;]dpwe omit the limits _ Where 6(s —eV) is the local equilibrium distribution func-
for convenienck To calculateG,, we need to solve Eqs. 10N at zero temperature, and(r)=ve/, deefo(e,r)
(2.12 with boundary condition§2.16). Following Blitiker®®  — st§/2 is the total energy densitup to irrelevant con-
we introduce characteristic potentiads,(r), n=1,... N, stanj.
associated with the corresponding contacts. These functions To calculateY we integrate the first of Eq$2.15 overe
satisfy the diffusion equation and the boundary conditions: with the weight ofe and use the expressié8.7) for A. Then
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the electron-electron collision integral vanishes, and we arsive conductor$together with Eqs(3.10 and(3.11)] in the

rive at the following equatiof® cases of cold and hot electrons, as soon as the electron-
R R phonon interaction is weak enough. To show the
V.-DVA=V.DVY+j-E=q, (3.8  Wiedemann-Franz law in its usual form, we consider the

thermal transport in multiterminal conductors in the absence

where we introduced the rate of energy relaxatmnabsorp- :
tion) due to phononsg(r)= — ve dssﬁ Equation of charge transpoi¥/,,=0,n=1, ... N. In this case we can
Flec e-phl 7l use again Eq(3.10 to calculate the thermal curref,,

(3.8) expresses energy conservation: the work done on the
system by the electric fielgl; E, is equal to the energy flux to T )
the lattice, g, plus the heating of the electron gas, Qn:@ %: CATLIE 312
—~V-DVY. Integration of Eqs(2.18 gives us the boundary
conditions forA,

2

In particular, close to thermal equilibriuf,=T+AT,,, we

have
2
Al =An=ve W_Tﬁ+i(evn)2}, T
n 6 2 anﬁé GrmATm, ATH<T, (3.13
ds-DVA[s=0. (3.9  where @?T/3e?G,,,) is the thermal conductance matrix.

. L This is now the Wiedemann-Franz law in its usual form.
We assume now that electron-phonon interaction is weak

(the general case is discussed in Sec. )lIThen the energy

exchange between the electron gas and the lattice occurs in
the metallic reservoirs far away from the conductor, and in- In this section we derive the general formula for the mul-
side the conductor we hawp=0. Equation(3.8) for A with  titerminal spectral density of shot noise in the case of arbi-

C. Multiterminal spectral density of noise

the boundary condition€.9) can be solved in terms @, : trary electron-phonon interaction. We multiply the first of
A(r)=2,¢,(r)A,. Substituting this expression into Eq. Egs.(2.13 by V¢, and integrate it over the volume of the
(3.7) and using Eq(3.4) for V, we obtainY,, conductor. Then we evaluate the first term in the left-hand
side of the equation integrating by parts and using the second
2 e? of Egs. (2.13, [drV¢,- §j=¢ds 8j¢,,. Taking into ac-

T
Y= VF%] Pndm FTﬁJF Z(Vn_vm)z - (310 count the boundary conditior{g.17) for 8j and(3.2) for ¢,
we getfdrV¢,- j=4l, . Integration by parts in the second
On the other hand, in perfect metallic reservdinhere term of the left-hand side of this equation gives
o—) the termj-E~j?/o can be neglected in Eq3.8).  [drV¢,-oVeV=¢ds oV d,0V=—3,GoV,(t), where
Integration of this equation over the volume of thth me-  we used Eqgs(3.1) and(3.2) for ¢,, the boundary condition
tallic reservoir gives the total amount of energy transferred tq2.17 for 5§V, and Eq.(3.5) for the conductance matri@,,.
(or absorbed from the lattice in this reservoir,Q,  This leads us to the solution of the Langevin equat@i3
=[drg(r)=—f ds-DVY. In the particular case of ther- in terms of characteristic potentials:

mal equilibrium between the reservoirs, i.el,=T, n
=1,... N, we can use E(¢3.10 to get the Joule heat in the S =0l,— > Ganm:J drVe,- 6.  (3.14
nth reservoir, m
1 Now, using the correlato(2.14) for the Langevin sources
Qn== > Gum(Vn—Vp)2. (3.1)  di° we express the generalized multiterminal spectral den-
2 “w sity S, defined as

For a two-terminal conductorM;—V,)2=V?, G;,=G,; ” L

=G, we haveQ;=Q,=GV?/2, while the total Joule heat is Snm:f dt( sl (1) 81,(0)) (3.195

Q1+ Q,=1V. We see in this case that the heat contributions *°°

released on each side of the two-terminal conductor arg, terms of characteristic potentials,

equal®® This general conclusion holds for an arbitrary shape

of the conductor and arbitrary disorder distribution. This fact -

is a consequence of electron-hole symmetry. Snm=f drVe¢,- oV o.ll, (3.16
The following simple analysis of the E¢3.11) exhibits ) .

its physical meaning. On one hand, the total amount of Joul®ith the propertiesS,n=Syn, 2,S,m=0, andS,;>0. In

heat, 13, Gnr(Vo— Vi)2= — =1 V= [drj -E, is simply equilibrium II(r)=2T, and Eq.(3.16 together with Eq.

equal to the total work done by the electric field on the sys{3-6) lead to the result for the thermal noise,

tem. On the other hand, the valde?v(V,—V,)? can be e oG T (3.17)

thought of as the gauge invariant difference of energy den- Shm= nmee ’

sities A [i.e., minus the density of the potential energy which is again a manifestation of the fluctuation-dissipation

e?ve(Vi—V,)V,] applied to the contacts of the conductor. theorem.

Then the energy transport coefficien®,/e’vg , are deter- The formula(3.16 is one of the central results of the

mined by the conductance matrix. The last fact is a manifespaper. It is valid for elastic and inelastic scatterings and for

tation of the Wiedemann-Franz law, which holds for diffu- an arbitrary multiterminal diffusive conductor. The relation
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of S, to the measured noise is now as follows. If, say, the IV. ELASTIC SCATTERING

voltages are fixed, thesl ,(t)= 81 ,(t), and the matrixS,, In the case of purely elastic scatterinff]=0, the aver-
= S;m is directly measured. On the other hand, when currentgge distribution function satisfies the diffusion equation
are fixed,S,, can be obtained from the measured voltage

correlator S} .= [~ ..dt( 8V, (t) 5Vin(0)) by tracing it with V.aVf,=0, (4.2)
conductance matricesS, == n'm'Gnn' Gmmy Sy - The
physical interpretation of Eq3.16) becomes now transpar-
ent: II describes the broadening of the distribution function
(effective temperatudehat is induced by the voltage applied

to the conductor and@ I can thus be thought of as a local
noisesource[see the discussion following E(R.14)], while
¢, can be thought of as thprobe of this local noise. In
particular, this means that ony,,, is of physical relevance
but not the current or voltage correlators themselves.

Let us consider now one important application of Eg.
(3.16. In an experiment one can measure the local broaden-
ing II of the nonequilibrium distribution functiofy, (effec- H=2J de>, ddfr(e—eVi)[1—fr(e—eW)].
tive noise temperaturd) at some point =r, on the surface kil

and the boundary condition®.18 with T,=T (i.e., in the
charge-transport regimeUsing this equation one can prove
(see Appendix Athat for elastic scattering cross correlations
(n#m) are always negative, in agreement with the general
conclusion of Ref. 27.

Equation (4.1) can be solved in terms ofp,: fg
=3,0.,fr(e—eV,). Substituting this solution into Eq.
(2.14) and using the sum rul@.3) for ¢,,, we can expresd
in the following form#

of the conductor by measuring the voltage fluctuations in a (4.2
noninvasive voltage probe. This is an open contact with @erforming the integration over we obtain,

small area on the surface of the conductor around the

point r=r,. The contact is not attached to the reservoir so e(V,—V))

that it does not cause the equilibration of the electron gas, H=e§ ¢k¢l(vk_VI)COU{T}a (4.3

and as a resulfl=const around the pointy,. Then, Eq.
(3.16 can be rewritten as followsS=[drV¢- oV oIl which in combination with Eq(3.16) gives the final expres-
=H(r0)fdrV¢~8-V¢, where ¢ is the characteristic poten- sion for Sy, which is valid for purely elastic scattering.
tial corresponding to the noninvasive probe. Using E§$) Equation(4.3) describes the crossover from the shot noise in
we getS=R™I(r,), whereR is the resistance of the con- multiterminal diffusive conductorsT(—0),

tact that comes from the volume aroungl Finally, taking

into account Egs3.14 and(1.1) and the fact that there is no

current througﬂsfhe \?oltagé pr)obiia:O, we obtain H:esz HelVivil, .4

to the equilibrium Johnson-Nyquist noise given by Eqg.
S'=RI(ro). 3189 (3.17.

This means thakl can be directly measured, which gives an A. Universality of noise
important information about nonequilibrium processes in the Now we are in the position to generalize the proof of

e s oo e e sarspfVeralty of he 1 suporesion of shot 1o he
P S P fase of an arbitrarynultiterminaldiffusive conductor. To be
through the noninvasive probe, and therefore one can thin

R P . . Specific, we choos&/,,=0, for n#1, i.e., only contacn
of the probe as being in local equilibrium with the effective ™" . N .
; ; . ; =1 has a nonvanishing voltage. Then, using the sum rule
temperaturdl. For this reason our consideration restricted to 3.3 for .. we get
the diffusion regime can in principle be applied to the case 0{ ' n 9
the tunnel coupling between the probe and conductor. A POSTy
sible experiment that could measure shot noise at local tun-

neling contacts is discussed in detail in Ref. 40. The abovgg getS,, we substitute this equation into E(.16) and

result can be easily generalized to take into account th : ~

equilibration by the contadsee Sec. VIl There will be then Bvaluate the first te2rm asg followsfdrV - oV 1.4 (1

an additional noise suppression factor in E18). — $1)=9ds 0V ¢y (¢1/2— $1/3)=—G,,/6, where we used
We note that Eq(3.16 together with Eqs(2.9), (2.10), Egs.(3.1) and(3.2). Similarly, for the mteg@ls in the second

and (2.18 for the average distribution functiohand Egs. and third term we get: [drVeé, oV (1— )2

(3.1) and(3.2) for the characteristic potentials can serve as a= [drV ¢,,- oV ¢, 2= — G;,/3. Combining these results we

starting point for numerical evaluations 8f,,. For purely arrive at

elastic scattering as well as for hot electrons it is even pos-

sible to get closed analytical expressions $yf, as we will 1

show next. The physical conditions for different transport Sin=— §G1n[4T+ eV,coth(eV,/2T)]. 4.5

regimes are discussed in Ref. 21. In Secs. IV and V we will

consider the charge transpoft=T, n=1, ... N), and in  WhenV;=0 we getS;,= —2G;,,T, and the formula for the

Sec. VI we will discuss the thermal transpoN =0, n  Johnson-Nyquist noise is recovered. WHen0, we express

=1,...N). S;, in terms of outgoing current$,=G,V;:

=2e¢1(1— ¢1)Vicoth eVy/2T) +2T(1— ¢y)%+ 2T¢>§ .
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V-oV6=0, dsaVé|s= 0L, =0, Oilc,=1.

1
Sin=—ze€ll,, n#1,
1n 3 | n| (41@

1 We will show now that both the multiterminal conductance
Sp=xellyl. (4.6) matricesQnm and the spectral densiti€s,,,, can be ex-
3 pressed in terms of the conductandgg of these subsec-

We note that the above derivation is valid for arbitrary im- tions,

purity distribution and shape of the conductor, and for an
arbitrary electron spectrufiband structure In this sense the Gy=—| ds-oVe,= f ds- oV 6. (4.11
suppression factoy is indeed universal. This generalizes the Lk Ck
known universality of a two-terminal conductétto a mul-
titerminal geometry.

Finally, we mention here some inequalitiéderived in
Appendix A), which can be used to estimate the spectral
density S, in the T=0 limit. First, the correlations are én()|c. = a,=const., E ay=1, (4.12
bounded from below, X n

Since each potentiap, is approximately constant in the
central region of the multiterminal conductor, we can write

1 for an arbitraryk=1, . .. N, where the second equation fol-
San= €14, 4.7y  lows from the sum rule forp,. Comparing Eqgs(3.1), (3.2),
3 and (4.12 with the definition ofg, Eq. (4.10, we immedi-

but due to the nonlocality of the noigsee the discussion in ately obtain

Sec. IV Q there can be no upper bound in terms of the r = a0 +T1= 0u(r)16 4.1
currentl , through the same contact. In other words, the cur- n(Dlren = and(N 1= 0010w (413
renrtllnflowing through thent:l] contact crea’:es the n(i)iéeln ) The calculation ofG,, and S, is now straightforward
in this contact. However, other contacts also contribute to t : ! '
noise in thenth contact, and this contribution is not universal ?AS substitute Eqe4.13 into Bq. (3.5 and use Eq(4.13 to
and makes the noise arbitrarily larger compared to the valué
1 :
sel,. Nevertheless, we can writdl<max|V,—V|}, k,I G = (e 6.G e 41
=1,... N, which gives the rough estimate nm=(@m= 0 Gn. - an=Cn /G, (4.19
where G=X,G,,, and the equation for,, follows from
San<e|G,max|V,—V||}. (4.8  =,G,,=0. Substituting Eq(4.13 into Eg. (3.16 and ap-
) plying similar arguments as above in the proof of the 1/3-
In contrast, the cross correlations possess an upper bou”dsuppression we find the explicit expressidfar details of

the derivation see Appendix)B

1
|Surl < 5 (San+ S 4.9 1 )
Sm=362 ana( It In) (Oam= Sm) ~ 3 GomT,
S,m vanishes when thath andmth contacts are completely
disconnected. ’-{

J.=> G|(V,—V,)cot

e(vn_vl)}
‘ — .

o7 (4.15

B. Wide and star-shaped conductors

Next we specialize to two experimentally important casesWe note that this result is a consequence of the above ap-
First we consider a multiterminal conductor of a star geomroximation(4.12. Comparing the resistance of the subsec-
etry with N long leads(but with otherwise arbitrary shape tions to the resistance of the central region of the conductor
which join each other at a small crossing regisee Fig. (which is neglectedwe find that the corrections to EG.12
1(b)]. The resistance of this region is assumed to be muchnd consequently to E¢4.15 are of orderw/L in 3D and
smaller than the resistance of the leads. In the second caf® a star geometry in 2D, and up to corrections of order
the contacts are connected through a wide redgme Fig. [In(L/w)] ! for wide conductors in 2D.

1(c)], where again the resistance of the conductor comes In principle, Eg.(4.15 and (4.14) allow us to calculate
mainly from the regions near the contacts, while the resisthe noise for arbitrary voltages and temperature, but for il-
tance of the wide region is negligible. lustrative purposes we consider the simple case of a cross-

Both shapes are characterized by the requirement thahaped conductor with four equivalent ledds., a,=1/4)
w/L<1, wherew andL are the characteristic sizes of the and T=0. Suppose the voltage is applied to only one con-

contact and of the entire conductor, respectively. In bothact, sayV,>0, V,.1=0, andl=-1,=3I,.,>0. Then,
cases the conductor can be dividgdore or less arbitra)y from Eq. (4.15 we obtain: S;;=3el, S;,=S;5=Si4
into N subsectiond”,, k=1, ... N, associated with a par- =—3el, all being in agreement with the universal

ticular contact so that the potentidlis approximately con-  1/3-suppression proven above. TheBy,= S;3=Sy,=3el,
stant(for w/L<1) on the dividing surface€,. Each sub- and S,3=S,,=S;,= —i5el. These numbers seem to be
section then can be thought of as a two-terminal conductonew'? and it would be interesting to test them experimen-
with the corresponding characteristic potentig{r), tally.
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C. Nonlocality and exchange effect and third contacts are disconnect&®, ; takes on its maxi-

_ A
We are now in the position to address the issueaflo- ~ MUM value forG,= G, and becomes equal gel”, where
cality and exchangeeffect in shot noise T=0) in multiter- " IS the current through the second contact for daee
minal conductors. For this we consider for instance a star Although AS5 is positive in the example considered

geometry and assume that the current enters the conductBPOVe this is not the case in general. For an arbitrary four-
through thenth contact, i.e.),= —1, and leaves it through terminal geometry of the conductor the exchange effect can

the mth contact, i.e.,| =1, while the other contacts are P€ €xpressed in terms of characteristic potentials:

open, i.e. | =0 for k#n,m. From Eq.(4.14) we obtain for

the conductanc&,G,,/(G,+ G, (two contacts are in se-
ries), and we see that it does not depend on the other leads,
which simply reflects théocal nature of diffusive transport.
However, contrary to one’s first expectation, this locality where all indices are different. From this general formula it
doesnot carry over to the noise in general. Indeed, from Eg.follows thatAS,,=AS,;, andAS,,+AS,+AS,=0. The

(4.19 it follows that S,,= — 3(a,+ ay)el. The additional last equation means that the exchange effect can change sign,
suppression factor€Q a,+ a,<1 for N>2 reflects thenon-  i.e., cross correlations can be either suppressed or enhanced.
locality of the current noise. For instance, for a cross with On the other hand, the setup can be slightly modified:
N=4 equivalent leads we hawe,= a,=1/4, and thusS,,,  instead of cross correlations, the noise density in one of the
= —t%el. An analogous reduction factor was obtained in Ref.contacts of a multiterminalN>2) diffusive conductor is

9 under a different point of view. Hence, one cannot disremeasured, sag;;, while the electrons are injected through
gard open contacts simply because no current is flowinghe contacts 2A), 3 (B), and 2 and 3(C). Again, AS,;
through them; on the contrary, these open contacts, whicks S7;— Sy— SF; is a measure of the exchange effect. Then, it
are still connected to the reservoir induce equilibration of thefollows from Eq.(4.17) that

electron gas and thereby reduce its current noise. We empha-

size that this nonlocality is a classical effect in the sense that .

no quantum phase interference is involvgthase coherent AS;= —49Vof drV¢i-oV¢i1¢,$3<0, (4.18
effects arenot contained in our Boltzmann approackn the

other hand, the origin of this nonlocality can be traced back e the correlations are always suppressed due to the inter-
to the nonlinear dependenceldfon the distributiorfin Eq.  ference effect, which is a direct manifestation of the Pauli
(2.14), which is a consequence of the Pauli exclusion prin-yrinciple. In the particular case of star-shaped conductors we

ciple. _ _ . have
Next we discuss exchange efféétm a four terminal con-

ductor. According to Blanter and “Biker”® they can be

probed by measuring,s in three waysV,,=V,d,, (A), V, AS, = — iev G1G2G3
=V6ns (B), and V,=V(n+ Vo (C). Then we take 370 g2
AS,3=S5— S,— S}, as a measure of the exchange effect.

This experiment is analogous to the experiment of HanburyThe suppression of noise due to the interference of mutually
Brown and Twiss in optic&® It measures the interference of incoherent electrons was recently observed in an experiment
electrons coming from mutually incoherent sources, which iswith a ballistic electron beam splitt&t We have shown here
caused by the indistinguishability of the electrons. Naively that this effect is also observable in mesoscopic diffusive
one might expect that this interference effect averages toonductors.
zero in diffusive conductors. However, it comes now as

some surprise that in our semiclassical Boltzmann approach

AS,3 turns out to be nonzero in general and can even be of

the order of the shot noise itself. Again, the reason for thatis We consider now the case of “hot” electrons wheg
thatIl is nonlinear inf, [see Eq(2.14], which is the con- 0, but stilll_,,=0, and we assume that electron-electron
sequence of the Pauli exclusion principle. So, the vdle scattering is sufficiently strong to cause thermal equilibration
—IIA~TI®, which entersAS,; is not necessarily zero. In- of the electron ga$i.e., | = VD 7ee<L, whereD is the dif-
deed, while exchange effects vanish for cross-shaped cofusion coefficient andr., the electron-electron relaxation
ductors(in agreement with Ref. 23 up to corrections of ordertime). The average distribution then assumes the Fermi-
w/L, which are neglected in our approximatjpit is not so  Dirac form:
for an H-shaped conductfsee Fig. 1d)]. Calculations simi-

lar to those leading to Ed4.15 give for this case:

AS\n= _4evof drVe,: &V(bm(ﬁk(ﬁl ) (4.17

N
, Gz}_}len. (4.19

V. HOT ELECTRONS

fo(e,r)=

F{s—eV(r)H -1
1texgo— b (5.1)

1 eVy,G%G, Te(r)

ASiz= = ==, (4.19

24(G+4Go) with the local electron temperatufg,(r). Substituting this
whereG,,=G/4 are the conductancéall being equalof the  f; into Eq.(2.14 we immediately gefI(r)=2T4(r). On the
outer four leads, while the conductance of the connectingther hand, from EQq.(3.7) it follows that [Te(r)]?
wire in the middle is denoted bg,. This exchange term =(6/7?vg)Y(r), where Y (r) is given by Eq.(3.10 with
AS 3 vanishes foiGy— <, because then the case of a simpleT,=T (i.e., in the charge-transport regiin@&hus, we finally

cross is recovered, and also f8g— 0, because then the first obtain
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1/2 J3eV, multiterminal diffusive conductor, which made it possible to
=271 1+22 Dnbm(Bn—Bm)2| . Bn= ST express the spectral densitiSg,, in terms of conductances
nm m 55  Cnm- Thisis no longer possible in general. Nevertheless, in
(52 the case of a 2D geometry and isotropic conductivity,
which in combination with Eq(3.16 gives the general so- o ,4(r)=0(r)8,s, both G, and S, are of the same uni-
lution for the case of hot electrons. We would like to noteversality class. Indeed, one can easily see that they are in-
here that the cross correlations are always negative also wariant under conformal transformation of coordinat®s,,
the case of hot electrorithe proof is given in Appendix A andS,,, can be expressed in terms of characteristic potentials
&, , Which satisfy the conformal invariant diffusion equation
A. Universality of noise (3.1) and boundary condition@.2). Moreover, the combina-
tion drV ¢,-V ¢, does not change with the conformal trans-
formation of coordinates, which finally makes the integrals
for G, [Eq. (3.6)] and for S, [EQ. (3.16] conformal in-
variant.
We close this section by another illustrative example. Let

Next we show that the shot-noise suppression fa¢&t
(Refs. 21 and 2pRfor hot electrons in a multiterminal con-
ductor is alsauniversal As before we can consider the case
where the voltage is applied to only one contabt;

= V1. Then us consider again a cross-shaped conductor with four equiva-
M=2T 1+ 4821 2, (5.3 lent leads® G,=G/4, at T=0 and where we choos¥,
. _ =V,8;,, | =—1,=3l,.,>0. We then findS;;=(/3)/4el,
where 8= ;. Using the relation and S;,= —(1/4\3)el, for n#1, while S,,=(35/3/108
—— , — —2/3m)el, and S,.n,=—(13y3/108-1/3m)el, for n,m
2V1-0°Vd=Viarcsin® + & y1- 7, #1. These new numbers are consistent with the universal
®=B(1+ ) (24, 1), (5.4 factory3ia
we transform the volume integral in E(.16 into a surface VI. NOISE INDUCED BY THERMAL TRANSPORT

integral and obtain the spectral density of noise: . )
In this section we address a new phenomenon, namely the

\/§evl current noise in multiterminal diffusive conductors in the

, B= 2T presence of thermal transport. We assume no energy relax-

(5.5) ation in the conductor due to phonorig, ,,=0, and no

voltage is applied to the contacty,,=0, n=1,... N,
This eXpreSSion describes the crossover from the therm@bhwh are kept in equ”ibrium at different temperatufas-
noise (3<1) given by Eq.(3.17) to the transport noised  The thermal transport is considered in Sec. Il B, where the
>1) outgoing thermal current®,, are calculatedsee Eqs(3.12
and (3.13]. We turn now to the calculation of the spectral

V3 density of noise.

1+

1
Sin=—Gq, T B+ ,E arctang

3
San—Te||n|, n#l,

A. Elastic scattering

S;= \ﬁe“ﬂ. (5.6) To calculatell we need to know the distribution function
4 fo. It obeys Eq.(4.1) with the boundary condition€.18) in

This general result shows that in the case of hot electrons tH&€ contacts. The solution then reads explicitly,
shot-noise suppression factgd/4 is indeed universal, i.e., it
does not depend on the shape of the multiterminal diffusive fo= >, dnfr, (6.1
conductor nor on its disorder distributién. n "
Thg origin of this_ universality becomes clear _fror_n the and with the help of Eq(3.3) we get,
following argumentation. We have seen that the distribution
of the effective noise temperatuk@(r) for the case of hot
electrons is controlled by the transport equations for the en- H:% VAR
ergy [Egs. (3.8) and (3.9)] through the heat density (r).
The spectral density of noise, in turn, is given bi(r) o
through the transport equations for charffegs.(2.13 and Zk,szT,J d9 l1—-tannT,s)tanh(T;s)]. (6.2
(2.17]. On the other hand, according to the Wiedemann- o
Franz law, both the energy and charge transports are deterhis together with Eq(3.16 gives the spectral density of
mined by the same kinetic coefficients, namely, dfr). noiseS, -
Thus, the physical origin of the universality of the suppres- In equilibriumT,=T, Z,,=2T and Eq.(6.2 and we find
sion factory/3/4 can be traced back to the Wiedemann-Franor the equilibrium noise,S,n=—2G,T. On the other
law. Conversely, a violation of the Wiedemann-Franz lawhand, if for examplel,>T,, thenZ,,=(2 In 2)T,. We con-
will cause deviations from universality. sider then two situations, where, e.g., eithtey=T and
We would like to note here that the universality of the T,.1=0, orT;=0 andT,.;=T. In other words, only one
noise (for cold and hot electronshas been proven here for contact is either heated up to high enough temperature
the case where the voltage is applied to only one contact of @ooled down to zero temperature and the other contacts are
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kept at the same temperature. Using the sum rulepfpand  the origin of this universality lies in the fact that in the dif-
carrying out the integration in E¢3.16 we obtain for both  fusive regime the correlator of the local current densities
cases, (Langevin sourcestakes an equilibriumlike form of the
fluctuation-dissipation theorem involving an effective noise
temperature. Thus, the transport and noise properties are de-
termined by the same conductivity tensor. One can surmise
then that the proven universality holds as long as the energy
transport is governed by the Wiedemann-Franz law.

o . The exchange effect is proven to be nonzero even within
Sy, for these two situations can be expressed in terms of, semiclassical Boltzmann approach. The exchange effect
thermal current®, can change sign when measured in cross-correlationgjrand
agreement with the Pauli principlé gives always negative
contribution to the autocorrelations. The exchange effect

2
Sin= " 5(1+I2)Gy,T. 6.3

— 2171
Sin=*4(1+In2)(e/m)7T"Qn, ©.4 comes from a nonlinear dependence on the local distribution
function. Similarly, we show that the same nonlinearities are
with the sign depending on the sign @f, . responsible for nonlocal effects such as the suppression of
shot noise by open leads even at zero electron temperature.
B. Hot electrons Finally, we have proposed a possible experiment that

W i th f hot elect HEr would allow one to locally measure the effective noise tem-
_ € consi ezr_now z.e case of hot electrons, whtre perature, and we have given new suppression factors for shot
=2T,, while Te=2¢,T [see Eq(3.10]. Substituting this e in various geometries, which can be tested experimen-
into Eq. (3.16 we get, tally.

Snm=2f drV e oVém\/ > bT2 (6.5 ACKNOWLEDGMENTS
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(with n=1) while the other contacts are kept at the tempera-
tureT,=T,, n#1, the integral can be calculated explicitly,

and we have APPENDIX A

In this appendix we derive some properties of the charac-
(6.6) teristic potentials ¢,,, multiterminal conductance matrix
G,m and spectral density of shot noiSg,,. First, we show

that ¢»,=0 in the conductor. According to the boundary con-
dition (3.2), being negativep,, would take on its minimum
value at some point=r, in the conductor. If this happened
inside the conductor, thenVg¢,(rg)=0, and V
Sin=*+8(e/7)?T1Q,. (6.7 -o(ro)Ve,(ro)>0, becauser is a positive definite matrix.

. This, however, would then contradict E&.1). If ¢,, took on
Expressiond6.4) and (6.7) are analogous to EG#4.6) and i minimum value on the open surface of the conductor

(5.6) and reflect the universality of the noise in the presenc?roes) then Vy(ro)=0, and according to Eq(3.2)
1 n L] .

of thermal transport. . - . L

P V., dn(rg)=0. Again,V-a(rg)Veén(re)>0 in contradiction
with Eq. (3.1). Thus, we see that the characteristic potentials
cannot be negative,=0.

In conclusion, we have systematically studied the trans- The sum rule(3.3) for ¢, follows from the observation
port and noise in multiterminal diffusive conductors. Apply- that the functiong(r)=1 is a unique solution of the diffu-
ing a diffusion approximation to the Boltzmann-Langevin sion equationV-oV¢=0 with the boundary conditions
kineti_c e.qua.tion we have derived the d.iffusion equations forys. 5V $|s=0, and¢||_m=17 vm. It follows from Egs.(3.1)
e dsrbuton fnclon and s Tuclatons, e e S0NeXan(a that e funclors (1) obeys the same cquatr
istic otgntials” andgwe derived exact formulas for the con-and boundary conditions, and therefoge=2dy(r)=1.
ductzgnce matrix. enerav-transport coefficients. and the muI]’his sum rule can also be deduced from the fact that physical
. . ' 9y por S observables are invariant under a global shift of the energy
titerminal spectral density of noise. In this way we have le b 168
obtained the following results. In both regimes of cold and>c2€ by & constant valde.

s . . Now we prove thaG,,,>0 for n#¥m. We note that the
hot electrons the shot noise turns out to be universal in the

sense that it depends neither on the geometry of a muItitermUIt'p“C"’mo.n of the integrand in Ed3.5 by ¢}, and exten-
minal conductor and the spectrum of carriers, nor on theion of the integral to the whole surface does not change the

disorder distribution. We have studied the noise in the presintegral, so thatG,,=—g¢ds- oV é,¢p,. Then, using Eq.
ence of thermal transport and find that being expressed if3-1) we replace the surface integral by the integral over the
terms of thermal currents it is also universal. We believe thavolume of the conductoG,,,,=—2fdrV ¢,,- oV ¢ . Fi-

S 4G T2+ T5+T,T,
3TN T+,

In the cases wherg,=T>T,, andT,=T>T,, we obtain
with the help of Eq.3.13 that the spectral densit$;, can
be expressed in terms of thermal currents:

VIl. CONCLUSION



13 064 EUGENE V. SUKHORUKOV AND DANIEL LOSS PRB 59

nally, we calculate this integral by parts and take into ac-

count the boundary condition®8.2) for ¢, to get for the  which shows the negativity of cross correlations.
conductance matrix, The inequality(4.7) can be derived as follows. First, we
note that according to Eq4.3) correlations grow with tem-
perature. Therefore, without loss of generality we can put

G”mzzf drVém oVémbn, n#m, (A1) T=0 in the following. Then, one can easily see that

from which it follows thatG,,,>0. Interestingly, a similar
procedure fom=m gives,

H=e§ <¢>k<zs.|vk—V.|>:2e¢nEI |V, — V|
Gnnz_zf drqun-(}Vd)nd)n, (AZ)

andG,,<0. =2e¢| > (V= Vy)|=2e¢,|V-V,|.
Now we prove that in the case of elastic scattering cross !
correlationsS,,,, n#m, are always negative. We calculate We substitute this into Eq.3.16) and write another set of
Snim in Eq. (3.16 with II from Eg. (2.14) integrating by inequalities,
parts,

1 R SnnBZGJ drVe,- &V¢n¢nlv_vn|
Sy § 05 (T gt V)1

=2e

1 fdrv¢n'&v¢n¢n(v_vn)'
—Ef drVH&(V¢n¢m+V¢m¢n)

Integrating by parts,

From Eq.(2.18 it follows that only contact surfaces contrib-

ute to the first integral, and with E@3.5) we get for the first

term: —G,(T,+ T . In the second term we again calculate zf drVe,- oV dndn(V—V,)
the integral by parts and use EqQ2.14 to get:

—14ds- oVIIp,dm— 2/ fdrde p,d,Vfo- oV, Accord-

ing to Egs.(2.18 and (3.2) the surface integral disappears _ § - 20\ / _f s 2
and we arrive at the following result: ds- oV ndn(V=Vn) drvV-oVéndn

1 “ 1
. =——3€ds-avv¢§=—|n,
Sim=—Gum(Tp+Th)—2 drde ¢, Vg - oVig, 3 3
(A3) we obtain expressio.7). The inequality Eq(4.9 imme-

for n#m, from which it follows that the cross correlations diately follows from

are negative.

We apply similar arguments to prove that the cross corre-
lations are always negative also in the case of hot electrons.
We calculate the integral i8,,=2/drV ¢,- oV ¢mTe and  and evidently holds also for inelastic scattering.
use the boundary conditions fgr, and T, to get

2|V oV | <Vn aVy+ Ve oVey, (A5)

APPENDIX B
R The derivation of Eq(4.15 proceeds as follows. We use
Sim= _Gnm(Tn+Tm)+f drén¢mV-oVTe. Eq. (4.13 to replace the integral in E¢3.16) over the vol-
ume of the conductor by the sum of integrals over subsec-
tionsT'y,
Then we use[T(r)]?=(6/7%vg)Y(r) and Eq. (3.9 (q
~0) to  wite TV oVT=—VTeoVT~3(el S =S (e 8. (am— 5mk)f drv o, oV oI,
m)?VV.-aVV. Substituting this into the above equation we k Tk
obtain (B1)
Using the contraction
_ - e(V,—V,)
snm:_enm(TnJrTm)—f Ar pnpmTs [V Te 0V Te Z.q=e(V|—Vq)cotf{—'2T : } (B2)

+3(elm)?VV- &VV], (A4) we expresdl in terms of 6,
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H|Fk: % [Cﬂ 0k+ (1_ Hk) 5|k][aq0k+ (1— ak) 5qk]zlq i
(B3)

Then we substitute this expression into EB1), calculate
the integrals ovel", with the help of Eqs(4.11),

f drvé,- oV akaﬁzzf drV - oV 6,6,(1— 6,)
Ik Ik

= :§ka

f drv 6, oV 6, (1— 6,)2
Iy

(B4)
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and use the symmeti®;,=Z, to get
1
Snm:§ 2 (an= 6ni) (am— Smi)
kiq
X(oz,ozq—l— a|5qk+ 5Ik5qk)GkZIq- (BS)

Finally, introducing the notatioan=e‘12,G,Zq|, and us-
ing Z,=2T and a,=G, /G, we carry out the summation
overk in Eq. (B5) to arrive at Eq.(4.19 for S,,.
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