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The coupling of infrared radiation to intersubband excitations in multiple-quantum-well structures is dis-
cussed theoretically, employing the effective-medium approach. In contrast with previous papers, nonlocal
effects in the intersubband optical response of quasi-two-dimensional electrons are taken into account. The
transmission and total internal reflection geometries are considered. Special attention is paid to effects induced
by (i) multiple reflections in the multiple-quantum-well structure itself, did the standing-wave effect
connected with background phase-matched interferences. The results obtained indicate that the standing-wave
effect plays an important role only in the case of thin structures. It can be taken into account by an appropriate
modification of Beer’s law. Multiple reflections substantially modify the intersubband absorption line shape of
structures with a large number of quantum wells and near grazing incidence. A correct description of this
modification must take into account even small differences between the dielectric constants of the well and
barrier materials[S0163-182609)04020-5

[. INTRODUCTION ploying the transfer-matrix method. Each single quantum
well (SQW) was treated as a homogeneous dlafith an
Optical properties of multiple-quantum-welMQW)  effective thicknesd. o) described by an anisotropic and lo-
structures in the range of intersubband transitions have bearal dielectric function[Since the period of the structure is
studied experimentally and theoretically by many groffps ~ much smaller than the wavelength of the IR radiation, such
a review see, e.g., Refs. 1 angl th practically all experi- an approach is practically equivalent to the commonly used
mental papers, the analysis of infraréR) transmittance local effective-medium approa¢chEMA)].1° Unfortunately,
spectra is performed by application of Beer's ldthe a quasi-two-dimensional electron g&@2DEQ is strongly
traveling-wave approximation This approximation is inhomogeneous, and its optical response is nonlocal. Conse-
equivalent to neglecting effects induced by multiple reflec-quently, L. is not a well-defined quantity and, in principle,
tions in a MQW structure itself and in a substrate. In the casshould be considered as an adjustable parameter. Scalar
of typical Brewster angle geometry, such an approach has mndom-phase-approximatidRPA) calculations show that,
good justification. Because an external angle of incidence ionly in the case of a system with two parabolic subbands,
this geometry is close to the Brewster angle, background .« can be treated as a frequency-independent qudfitity.
phase-matched interference effects in the substrate are nelgewever, even when a QW has a rectangular shape, the mi-
ligible. Moreover, a small value of the refraction angle croscopically calculated parameteg; differs substantially
(=17° for GaAs) makes the coupling of IR radiation to in- from the QW thicknessl(q). Due to this, the depolariza-
tersubband transitions weak and consequently effects cottion shift is not described correctlyt is underestimatedby
nected with multiple reflectiongelectromagnetic coupling the LEMA if we assume, as in Refs. 7 and 9, that
between different quantum wells are also negligible. Many= Low- This is a weak point of the LEMA.
authors (e.g., Refs. 3 and )4also tried to employ the A much more sophisticated, fully nonlocal, and retarded
traveling-wave approximation in the case of total internalapproach, (based on the vector RPA and the Green’s-
reflection (TIR) geometry. Such an approach is very ques-function formalism was recently developed by Lid:*> Nu-
tionable. The role of electromagnetic coupling betweenmerical results reported in the above papers show that, for a
guantum wells is then enhanced, since the internal angle dérge angle of incidence, electromagnetic coupling between
light propagation g1g) is substantially larger than in the QWSs can play an important role in the analysis of IR trans-
case of Brewster geometryusually o1 g=45°, or is even mission and TIR spectra of systems with a sufficiently large
largep.2>® Moreover, interference between the incident andnumber of QWs. Unfortunately, the formalism used by Liu is
reflected light at the semiconductor-air or semiconductorvery complex, and requires large numerical calculations.
metal interface (the standing-wave effectsubstantially Consequently, it is not amenable to some analytical treat-
modifies the spatial distribution of a normal component ofment. Moreover, numerical results reported in the above pa-
the electric field of IR radiation(Only this component pers are only qualitatively correct since they were obtained
couples to intersubband transition€Experimental results neglecting the diamagnetic current term in #'component
and theoretical estimates reported in Refs. 7 and 8 indicatef the nonlocal conductivity tensofThis term should be
that the standing-wave effect has a very strong influence omcorporated into the paramagnetic term to obtain a correct
TIR spectra of relatively thin MQW structures. In the abovedescription of the depolarization effelé!) Omitting this
papers absorption spectra were calculated numerically, enterm leads to a substantial underestimation of the depolariza-
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tion shift in highly doped structures. As mentioned, the The normal 2D conductivityr2”)(w), defined by
LEMA also underestimates the depolarization shift. These

explain(i) why absorption spectra resulting from the LEMA ~ o ¢
(with Leg=Low) are practically only slightly redshifted with 0P (w)= -~ f jAz,w)dz= ———,
respect to that obtained by Li{gee Figs. 7 and 8 in Ref. 1,5 EY (@) ) - E7 ()
and (i) why the depolarization shift calculated in the quasidescribes thénonretardefiresponse of the electron gas to

static limit'” (the scalar RPAis substantially larger than that the 7 component of the external electric fieP!, not the
reported by Liu(see Fig. 10 in Ref. 15 total field E.

The above-mentioned facts have stimulated a modifica- . ~ (2D) . .
. . . . ) The expression fofo;5’(w) resulting from the time-
tion of the LEMA by taking into accoun(in the quasi static i 7z L
limit)1%13 the inhomogeneous charact@mwnlocal dielectric dependent local-density approximation, takes the f6rm
responsgof a Q2DEG. A great advantage of such a “non- B —i
local” effective medium approactNEMA) is its simplicity agzzD)(w):A 4

and flexibility compared to the approach used by Liu. For [ES— (hw)?)/2hol i’
example, in contrast with Liu’s formalism, we can go beyond here A = Nee?f ,/2mT, Ep=fay is the intersubband

the RPA describing an optical response of a Q2DEG. We cal o o o ;
also easily take into account the difference between the di—ranSItIon energy modified by the depolarization and exciton

electric constants of the well and barrier materi@ige will like effects, f;,=2mA ~“E,2;, is the oscillator strength con-

show that this type of dielectric mismatch may play a verynected with -2 transitions {,,~1),7=#/I"is the dephas-
important role at grazing incidenge. ing time connected with 42 transitionsNg is the surface

In Sec. Il we discuss the formalism which underlies our€/€Ctron concentration, and finallg,and m are the charge

computation. The application of the NEMA for systematic 2nd effective mass of the electron, respectivglly.this pa-
studies of IR spectra of MQWs is presented in Sec. IIl. InP€" We restrict ourselves to the two-parabolic-subband model
this paper, we consider configurations corresponding to th&Vith the intersubband spacing, = w5;), assuming that
transmission geometry, TIR geometry, and the attenuated t@nly the ground_subband is occupied. Bound-free transitions
tal reflectiot® (ATR) geometry. (The waveguide edge- &' considered in Ref. 12 o _ _
coupling geometry will be discussed in a separate pajer. The parallel conductivity appearing in E€) is defined

our knowledge, no such studigperformed even in the Y
framework of the LEMA have been published so far. Sec-

R (2D)( w)

()

. (2D)

tion IV contains conclusions. U(ZD)(w): J ji\(z,0)dz= (o) (5)

XX ! "
Exiw)) = Exi(w)
Il. THEORETICAL FRAMEWORK In further discussion, we assume that it has a Drude-like
A. Single quantum well form
We start this sction with a very brief presentation of the N2
(2D)(  y— S 6
commonly used nonretarded approach to the problem of cou- oxx () O —ia)’ (6)
’T” —lw

pling of a IR radiation to intersubband transitions in a SQW.
The quantum-well thickness is much smaller than the wavewhere 7, (>7) is the intrasubband relaxation timén nu-
length of the IR radiation X). The Fermi wave vector iS merical calculations we take =7.)

several orders of magnitude larger than a parallel component From Eq.(2) we find that the absorptandequal to the
of the photon wave vector. Thus an external perturbatiofraction of the incident energy absorbeaf the SQW sur-
(incident radiation fieldl inducing intersubband transitions rounded by semi-infinite barriers is given by

can be taken in the following forrtf:* ) ”
AsoW@,¢) =Agoul( @, @) + Asow( @, @)

ex — [E€eX H
EHO =B e ot W = Agu(w)tar @)sin @) + Akgu( w)cos ),
[For simplicity, here we neglect a small difference between 7)
the dielectric constants of the welk() and barrier €)
materials. where AéS'Mw) =ReA | ()(w), A (0)=(4m/

When the radiation is polarized in thez plane(thez  c\e,) 022 (w), Aj(w)=(4m/c\ey)oeX(w) and ¢ is the
axis is along the growth directignthe optical absorption per angle between the direction and the direction of incidence
unit area of the SQW can be approximated®y of the radiation.

In the two-subband limit we have

PSQ\/\KCU):%REJoo j(z,w)E*(z,w)dz _ —i
= A (0)=A ,
) A e ahel

®)
=3 Re[050(@)[EF(0)|*+ 087 () [EF(w)]?], _ _ 3
. whereA=4xA/c\e,,. Since usualy<E,;, the frequency
2) dependence oﬂng\(w) takes practically the Lorentzian
wherej(z,w)z[jx(z,w),q,j Z(_z,w)] is. the Fourier compo- shape AéQV\/(w)EA/{[(Eﬂ—hw)/F]ZJr 1}) with the width
nent of the current density induced in the SQW. =2rI.
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Taking typical for Gaﬁs values ofn=0.066n, and ¢,
=10.9, we find that Agaas=0.016x f1 N 10" cm 2]/

I'[meV]. TakingE,,/2I'~ 10, for estimations, one finds that

szﬂ/A V\[w21)~TTHw21 122~ 200. 9
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i4
D(z.k;w) = e (2E(ZKiw)+ — iz kiw), (19
wheree(z) is the background dielectric constant at paint
i.e., e(2)=¢p(e,) in the region occupied by the barrier
(well) material, andk, is a parallel component of the photon

Thus, except for the case of nearly normal incidence, thavave vector.(The incident radiation is polarized in thez

relative contribution of intrasubband transitions

Asow(@,¢) is vanishingly small.

In the approach presented above, the reflection of the ligHurther  discussion,

to plane)

[Since we work in the long-wavelength limitWL) in
we assume thgfzk,;w)=j(z,ky

by the Q2DEG is completely neglected. It can be easily in—=0;w). Moreover, in most cases we leave out the reference
cluded employing a more sophisticated approach based da k, in our notation; i.e., we writeD(z,k,;w)=D(z,»),
the 2D sheet-modéP*’ In this model the Q2DEG is treated etc]

as a conducting sheédbcated at the center of the QWar-

rying a sheet current®®=(j?? 0j{2P)). Let us assume continuous at the

that the light is incident at an angle (from the left sidé on

the sheet locatedat z=0) between semi-infinite identical
media with dielectric constant, . Using the jump boundary

conditiong®
E,(0%)—E,(0 )— (ZD)< )
:47Tkx’5_§22D)(w)DZ(Z:0_’w), (10)
WE Ew
_ 47 ap)
Hy(0") =Hy(07) = —— (@)
47
:TU(ZW((,))EX(z:o*,w),
(11

we find thatfin the limit [A(»,¢) A, (»,¢)|<1] the reflec-
tion (r®D) and transmissiont (>

are given by®
A _(w,9)
AW 12
1
= e 13
where A (0,@)=3[A(0,@)A (0,0)],  Aj(w,¢)

=Aj(w)cosp) and A | (w,¢)=A (w)tan(e)sin(e). If we
neglect the Drude-like absorption ((w) =0) then Eqs(12)

and (13) coincide with that derived in our previous papér.
Since usuallyA - (w,¢)| <1 the expression for SQW ab-

sorptance resulting from the sheet modet 1(— |r(?P)|?

—|t(2P)}2) reduces practically to that given by E(). The
reflectance of the sheet=(r(?®)|?) is then negligibly small
(=IA _(w,9)]%).

B. Effective-medium approach

) coefficients of the sheet

Standard boundary conditions require tBgtandD, are
interfaces.  Sincé yow<\ and
Asow(@,¢)<1, these field components are practically un-
changed over the superlattice period. On the other hpd,
and D, are not continuous. Thus these quantities may be
spatially averaged over the period of the structure

Lmow/2
j D
QwJ —Lyiow/2
LMQW/Z
et B
QwJ —Lyiow/2
(Writing these equations, we have assumed that the QW oc-
cupies the regionz’ |<Low/2.)

The quant|t|ez{DX(w)> and(E,(w)) can be used for defi-
nition of the effective dielectric functio”$

«(Z',w)dZ', (15

<Dx(w)>

(Ex(w))= (Z',w)dZ'. (16

Sxx(w):<Dx(w)>/Ex(w)a (17
7 (0)=(Ex(0))/Dy(w). (18
Employing Egs(14)—(16), we find that
14 Lmow2 ,
<Dx((’))>:€xxEx(w)+ ol f jx(z',w)dZ',
MQWJ —Lyow/2
(19
D,(w) 4
E — _
< Z(w)> €72 wLMQWSW
Lvow/2
xf Mew jAZ ) Fw dz, (20
—Lvow/2 (z")
where e,,=(1—f)e,tfey, €, =(1—f)/lep+fle, and f

Since, in the structures considered herg, < ¢,)<ey,
and the ground state wave function is localized mainly in the
quantum-well material, the-dependent dielectric function,
appearing in Eq(20), can be replaced by,,. In this ap-
proximation electronic contributions ta/D,(w)), and
(E (w)) are determined only by the surface current density

j®P)(w) and j?P(w), respectively. In further calculations

Let us consider a nontunneling MQW structure with awe neglect the influence of retardation effects j§tP(w)

period Lmow) much smaller thamk. (Weakly tunneling

andj{®”() i.e., we assume that the above components of

structures were discussed in Ref. )2Mhside the structure surface current density can be approximated by E)sand

Fourier components of the total electric field)( the gener-

(5), respectively[lt should be emphasized that the nonre-

alized displacement) and the electron current density in- tarded limit is employed only to calculate the surface current

duced in the structurg) are connected by relatiéh

density; the formulas for reflectance and transmittance of
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multilayer structuregwith MQWSs) derived in this paper re-
tain the retardation.The approximation used here leads to
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C. Multilayer optics
The form of dielectric tensor(w) indicates that the

the following expressions for the principal components OfMQW structure behaves, in the LWL, as a homogenous

the effective medium dielectric tensefw):

Sjj(w): exTAen(w) =Xy, (2D
1 1 A
L _ 1 Aede) 22
E,0) € ey
where Ag(0)=id4moe2(w) olyow and Ae,{w)
=i4ma 2P () wlywow -
Using Eqgs.(4) and(6), we find that
Aey(w)=L)(w _—, 23
xx( ) ||( )i(w7‘|)71+1 ( )
where £y(w) = 4me?Ns/ w’MLyqw and
Agfw)=L, (w) (24)

[E2,— (fhw)?]/2hel —i

W|th ﬁl(w)=27Te2NSf12ﬁ/meLMQW.
In the case of typical GaAs/Ga,Al,As MQW struc-
tures,

Ng 10'? cm™ 2]

Luow[100 AJ{iw[100 meV]}?
(25

EH(w)‘GaAéz.C)?X

and

f1,Ng 10 cm 2]
Lyl 100 AIT[10 meV[Aw[100 meV’
(26)

The numerical calculations reported in this paper have
been performed taking the parameters appropriate for MQW

structures studied experimental(yheoretically in Ref. 5

(Ref. 23, i.e., E;;=111 meV, T=11.2 meV, f,,=0.85,
Ns=1.2x10"* cm™ 2, &,,=10.9, Lyyow=405 A, €,,=10.08

ande,,=10.06. Only in Fig. 1 do we consider an additional

structure with Lyow=200 A,e,,=10.37, ande,,=10.34.

This figure shows the spectral shape of real and imaginary

parts of e, (w) and e,,(w) resulting from Egs.(21) and

(22). The presented results indicate that, in the case of typical

GaAs/Ga_,Al,As structures, the peak value of ey ()]

is usually smaller tham,,. It is interesting also to note that

the peak value is achieved at the ener@yf) which is

smaller than the SQW resonant eneky . For the structure

with Lyow=405 A(200 A), the differenceBpea— E,y) is
rather substantial—2.2 meV (—4.5) meV. Taking ¢y

=g, one finds that Epeq=[Es—(AE2)?]Y% where
(AE,)?=47Nge?hf ;p/meyLyow. This result is consis-

tent with that reported in Ref. 24.

uniaxial medium. Employing the standard optics equation
k?E—k(KE)—K?¢E=0, (27)

one finds that in such a medium the radiation wave vector is
of the formk=[k,,0kMM7], where

(MQW),2 _ e @),
(k3 )2_8xx(w)K2 £,40) K (28

andK = w/c is the wave vector of the radiation in vacuum.

The in-plane component of the wave vect&g)(must be
continuous at an interface. Thus it is the same in an ambient
and uniaxial medium and is fixed by the angle of incideace
(in the ambient mediuim k,= K \eosin(e) (&, is the dielec-
tric constant of the ambient medigm

Let us assume for the moment that the MQW structure is
infinite, and takes,=¢,, andAe,,(w)=I"=0. Then one can
easily check that the LWL dispersion relation for intersub-
band plasmon polariton, resulting from Eq&8) and (22),
coincides with that derived by King-Shmith and Inkédn
treating the full electrodynamics of the system. This result
provides strong evidence to support the NEMA. At this point
we would like to emphasize that, contrary to suggestions of
some authoré’ optical properties of finite MQW structures
cannot be interpreted in terms of bulk modes of infinite su-
perlattices. The theory developed by Fuchs and Kliéver
indicates that not bulk polariton modes but virtgadiative
modes are responsible for absorption spectra of thin slabs. A
more detailed discussion of this problem is beyond the scope
of this paper, and will be a subject of a forthcoming paper
article.

| (b) i=x
S I W | Eu_
& i
: %
[+
| (d) i=x
S
&,
E
2 x20
) 4

80 100 120 80 100 120 140
ho [meV]

FIG. 1. The spectral characteristics of the real and imaginary
parts of e,(w) and &,,(w) for MQW structures withLyow
=405 A (curves labeled by)landLyqw=200 A (curves labeled
by 2).
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Modeling reflectancéor transmittanceof typical MQW
structures, one discussies a multilayer system. Even if th
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Due to the linearity of Maxwell's equations the following
eelation between amplitudes in the substrate and ambient me-

MQW itself is treated as the effective medium, one must atlia may be writterf>2°
least account for a substrate and possible buffer or capping

layer. Thus we should take into account reflection of the light
at different interfaces. The standard transfer-matrix formula-

tion gives an efficient algorithm for an analytical and nu-
merical calculations of the reflectidior transmissioncoef-
ficient of multilayer structures. Below, we briefly discuss this
method.

Let us consider a multilayer structure that consists of a

stack of 1,2... ,m plane-parallel layers. Ambient (0) and
substrate ifn+1) media are semi-infinite. We denote by
the thickness of thg¢th medium {#0, m+1). (We assume
that only mediumj=j', representing the MQW structure, is
uniaxial. The thickness of this medium is denoted djy
=dyow=NLyow WhereN is the number of quantum wells
in the structure.

Since incident light is polarized in thez plane, the mag-
netic field is given byH(x,z,t)=[0H(z w),0]exdi(kx

HIP()
H{%(w)

HET Y (w)

HM D ()

(34)

where the 4 2 matrix T is the so-called transfer matrix. It
has the following form:

(39

The matrixL; describes the effect of propagation through the
homogeneous laygrand is given by
where;=k{d; .

exp( —i Bl)
0

lij is a 2x2 matrix accounting for the interface between

the mediai andj. Using standard boundary conditions, we

T=lolalizl 2 - Linlmm+1y-

0
expigB;)

; (36

—wt)] i.e., there is a single component of the magnetic fieldfind that it can be written in the following form:

in they direction. In thejth medium §<m+ 1) this compo-
nent can be written in the following form:

HY(z:w) = H{L (0)exdlik (2=, .1)]
+H(w)exd —ikP(z—2z;,1)], (29

wherezj,jH:EﬂZjldn is the position ofj—j+1 interface
(j=1) in thez direction, andzg ;=0.

(37)

i
with
sk

2605,

*

i (38)

’

For further discussion it is convenient to write the expres-

sion for H{(z; ) (j>0) in a slightly modified form:
HP(z;0)=HY) (0)exdikP(z—7 )]

+H{ (w)exd —ikP(z—z;_1)]. (30
In Egs.(29) and(30), HY) (») andHY) (w)(a=1,u) are

complex amplitudes corresponding to waves traveling in

positive and negativedirections, respectively. The subscript
[(u) indicates that we take the complex amplitude with re-
spect to the plang, ; , 1(z;-1;). From Eq.(28) one finds that
the z component of the wave vector appearing in EG9)
and(30) is given by

Ve N1-Ki/KZe),  j#]’
Ve 1-K2IK?s,, j=i’,

wheree; denotes the dielectric function of théh medium.
When an angle of incidence is small, the expression fo

kU =KMOW) simplifies to the following forn?>

k=K x (32

KMOW) — K e, COS @ip) X (1+ &), (32
with
_ Agb ASXX(O)) +Agzz(0))tanz(§0int)
2&,,COL(@int) 2ew 2ew |

(33

where Aey,=e,,— €4y, SiN(@in) =SiN(@)Veow, €ow=e0/ew

wheregj=¢g; for j#]’ andej =&,,(w).

Since in the mediumr+1) there is no backward wave
[H{™Y(4)=0] the overall transmissioft) and reflection
(r) coefficients of the structure are connected with the
transfer-matrix components by the relations
t=1/Tq,

I’=T21/T11. (39)

Having T [see Eqs(35)—(38)] we can also derive the com-
ponents of the electric field in an arbitrary layer employing
Maxwell's equationV XH= —i(w/c)D.

The closed-form expressions forandt can be obtained
only for m=3. They will be presented in Sec. Il

It is worth discussing an alternativeand more sophisti-
cated method that can also be applied for description of
MQWs. As mentioned, a Q2DEG can be treated as a con-
ducting sheet carrying a sheet currgiP)=(j 2 0,29,
The transfer matrix I(?®)) accounting for the sheet can be
Written in the terms of ?®) andt(2®) defined by Eqs(12)
and(13) (Ref. 25:

1] 1 —r(2D)
(2D)=_—__
t(zD) r(2D) (t(ZD))Z_(r(ZD))Z .

(40)

The transfer matrix of a MQW periodrP®") can be cal-
culated with help of Eq935)—(38). The transfer matrix of a
MQW with N wells (Tyow) is connected wittT(*®" by re-
lation Tyow= (TP)N.

Optical spectra presented in Sec. Il are obtained employ-

and ¢ is the angle of incidence in the ambient medium. Theing the NEMA. Nevertheless, we have verified numerically

above formula is valid as long ag|<1.

that they coincide with spectra resulting from the sheet
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model. This is not a strange result. The polariton dispersion The reflectance, transmittance and absorptance of the
in an infinite superlattices can be derived from the Blochstructure are connected wittandr by relations

theorem® (see also Ref. )1 This theorem yields

costMML yow) = (TEH+TE) /2. One can show, per-
forming appropriate Taylor expansions, that the above rela-

tion reduces(in the LWL) to the dispersion equatio(28)
resulting from the NEMAZ®

Ill. RESULTS AND DISCUSSION

A. Transmission geometry

RMQW(wr‘P):|r|2,

2, (48)

TMQW(wa(P):lt

AMQW(wi(P):1_RMQW((U1(P)_TMQW(‘U,(P)-

Simple analytical expressions  for Ryqw(®,¢),
Tuow(w,¢) and Ayow(w,¢) can be obtained in two par-
ticular cases: when the structure is thiB{/<1), or when

At first we discuss a single pass transmission geometnthe angley is small. In the case of typical transmission ge-
Let us assume that a MQW structure, approximated by @metry the second condition is practically always fulfilled.

uniform uniaxial effective layer with a thicknesgyow

Thus the reflection at the 0-1 and 1-2 interfaces can be ne-

=NLyqw (medium 1, is sandwiched between two transpar- glected in the first approximatiopRyow( @, ¢) =0]. Then
ent semi-infinite overlayer barriers, media 0 and 2, with di-Egs. (48) reduce to the commonly used traveling-wave ex-

electric constants, ande,, respectively. The radiatiofpo-

larized in thex-z plang incidents from medium 0 at an angle

¢

pressions for the reflectiofr) and transmissiorit) coeffi-
cients of the system:

- lo1€XP(—1B1) +rexpiBy)
exp(—iB1) +rol12€xpiBy)

(41)

= tort1o
exp(—iB1) +ror2expify)’

(42

whereg;=kMdy,ow, andt;; andr;; are the transmission Asow(@,®) —Aon(@)

and reflection coefficients for thej interface, respectively.

At each interface we have the following relations between

t; andr;; :%°

t”t“ =1—I’2

ij 1 (43)

rij:—r]‘i. (44)

The reflection coefficient appearing in Eq&ll)—(44) is
given by

Ko@) — K" Mer 1K 5
[i1=— = ,
L KD e (@) + kMM, 14K

with

o V1—sir?(¢)egle,{w)
I M Vexx(®) 7
where ;= \e;— sif(¢)eg/s;, i =0,2.
In further discussion we employ the fact that usually

=g,=¢g,. Then the parametgf, (controlling the strength
of reflections at 0-1 and 1-2 interfagegduces to

(46)

TSP (@)ewlenda)
- cos @) Vex(@)/ey .

One can show that when the angleis small(more exactly
when |k|<1) the parametek’, is very close to unity. This
means that, in the limifjx|<1, the reflection amplitude
roi(=—rq9 is vanishingly small.

(47)

The transfer-matrix formalism leads to the following ex-

pressions
Tuow(@, @)=exp(—2 Im B1)=exf — NAgow(w,¢)],
(49
Avow(@,@)=1-Tyow(w,p)=1-exd —NAgow(®,¢)].
(50)

At this point we would like to note that in the case of
conventional Brewster angle transmission geometrye
should make the following substitution in Eq49) and(50):

1 e
Y w
Jeu(1tey) T Asal @) Vo

(52)

Numerical calculations show that the above approxima-
tion works very well even when structure is very thidd (
~200) % (We have also checked that, near the resonant re-
gion, corrections to optical spectra connected with Drude-
like contribution are negligibl¢.The situation is more com-
plex at a grazing incidence. Then the inequdlit}<1 is not
fulfilled, and the multiple reflections should be taken into
account(even when structure is relatively thif? Inspection
of Egs. (41)—(48) suggests that a particularly substantial in-
fluence of the electromagnetic coupling on the optical spec-
tra can be expected in the case of thick structures, i.e., when
5=k dyow=1[k{"=K e, cosg)]. The above sugges-
tion is supported by numerical results presented in Fig. 2.
Using Eqgs(41)—(48), we have calculated the spectral shapes
Of RMQ\N((D,QD), 1_TMQW(w1‘P) and AMQw(w,QD) fOI‘ the
MQW structure studied experimentally in Ref. 5@t 60°
and 75°. For comparison, the spectral shap@@ghw(w,¢)
was also calculated employing the traveling-wave equation
(50). We find that at a large angle of incidence even a small
difference between, ande,, noticeably modifies MQW op-
tical spectra. This modification is particularly important for
¢= %, where ¢% =arcsin/e,, /¢, is the critical angle of
incidence corresponding to the total internal reflection at the
0-1 interface wheNg=0. (In the structure considered here,
¢%=74°). Unfortunately, experimental verification of our
theoretical predictions may be very difficult because work in
the range of a large angle of incidence necessitates the use of
a special two-prism coupling geometry. Moreover, two quan-
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The transfer-matrix formalism leads to the following ex-
pression for the reflection amplitude of the above multilayer

structure:
- ro1 €XP(—181) + RizzeXpi B1) 52
exp(—iB1) +roRizexplify)
with
T exp(—iBj)+rexpifB)) 53

K exp(—iB)) +riir jexpliB))

The absorptance of the structure is connected with reflec-
tanceRyow(®, ¢) =|r|? by the relation

Amaw (@,9), 1-Tmaw (®,P), Rmaw (®,0)

Amow(@,¢)=1—=Ryow(®,¢). (54
70 9% 110 130 150 170 As mentioned in Sec. | the TIR spectra are strongly modi-
fho[meV] fied by the standing-wave effect. A simplified description of

this modification is based on Poynting’s theorem. According
FIG. 2. The spectral dependenceAfow(w, ¢) (curves labeled  tg this theorem the power absorbed in the effective medium

by 1), 1-Tuqw(w,¢) (curves labeled by )2 and Ryow(@,¢) s the power absorbed by unit volume of the layer
(curves labeled by )3for MQW structures withN=200 and

L mow=405 A, resulting from Eqs(41), (42), and(48). For com- o ID (Z'w)|2

parison we also present the spectral shapégfw(w,e), calcu- PMQW(Z;w): —1Im Z*—'+ gxx(w)|Ex(Z;w)|2 ,
lated takinge,,= ¢}, (curves labeled by)and employing the trav- 8 €4 ®)

eling wave approximatioricurves labeled by )5 (a) ¢=60°. (b) (55
=75,

integrated over the volume of the layer. Let us assume that

tities Ryow(®) and Tyow(w) have to be measured simulta- the absorption and dispersion of the radiation in the effective

neously. Such “drawbacks” are not inherent in the TIR ge-Medium does not affect a spatial variation®f,(z; w) and

ometry. E«(z; w) in the structure. Thus they can be calculated taking
Before we start to discuss the above geometry, we would@ii(®) =&y and ep=¢,=¢,,. The above approximation is

like to note that, even if we take,=e,,, thew dependence well justified when condition|k{" —kMM|dyow=|«|5

of Ayow predicted by the NEMA only qualitatively coin- <1 is fulfilled. Employing Eqs(55) and(21) we obtain

cides with that reported by Litf: As mentioned in Sec. I, this

disagreement results from the fact that Liu completely ne- Ayow( @, 0)=N[g* ~ AL

. . . . @) =NIITR(®)|w=0,Asou @, ®)
glected the diamagnetic term in the expression for zke MW IriR(#)lo=tfsqul
component of the nonlocal conductivity tensor. One can +aﬂrlR(QD)\w:;21ALQV\KwrQD)]1 (56)

show (see Ref. 1ythat the above approximation is equiva-

lent to the following substitutioNs— (w/w,1)*Ns in the | ih

expression for{2”) . We have verified numerically that this

substitution practically removes the difference between the — _, [d2+dvow )

results reported by Liu and that resulting from the NEMA. OTIR (¢)=dMwad grr (¢,2)dz",  (57)
More detailed discussion of the problem will be given in a 2

separate paper. where grr(e,2')=|E,/E{D|2=2{1+ cog 2Kz

+93(¢) 1}, gUI'IR((P!Z’)E|EX/E§<+)|2=4_9#IR((P!Z’)1 and

EM=(E(",0E{") is the electric-field amplitude of the in-
Let us now consider a four-phase system corresponding tgident light in the medium 0.

the TIR geometry. It is formed by a Semi-inﬁnite, medium 0, Deriving the above expressions we have emp|oyed the

MQW (medium 1 with a thicknessd; =dyqw, a dielectric  fact that the reflection coefficient at the 2-3 interface can be

medium 2(cap layey with thicknessd,, and a semi-infinite  written in the formr ,=|r 3 exdida(¢)]. When medium 3

medium 3 which can be nearly perfect metal or air. In thejs a nearly perfect metal |45]>1), then |r,d=1 and

latter case we assume that the angle of incidepd rr;%— 9,5(¢)=0. (We assume that is not too close to 90°.)

B. Total internal reflection geometry

dium 0 is larger than the critical angle¢. When medium 3 is air ang=¢!'R, then|r,J=1 and
=arcsin(14/e,).

In the absence of a Q2DEG all the incident light will be 9 =—2 arctadiys [ ey, SIP (@) —1]/cO _
reflected by the structure. Due to intersubbgald intrasub- 24 ) #eulawsimle) - Llicod o)) (58)

band excitations the energy is removed from the incident
beam and the reflection coefficient is reduced to less thaiihe result equivalent to Eq56) was reported by Vodopy-
unity. anovet al®! (see also Refs. 32 and.8
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In the limit d,, dyow<1k" in Eq.(56) we can make the  Poynting’s theorem. Sinc&,,<T", near the resonant fre-
SUbStltUthﬂg#r@(@)—’QL(H)(QD 0). When medium 3 is air quency @~ w»;) Eq. (62) reduces to the following form:
and ¢=45° (whrch usually takes plagegTz(¢,0) is much
smaller thangT|R(<p 0). For structures with metal cladding _ 4T TR
(and ¢ not too close to 90°)gkr(¢.0)=0, gfia(¢,0)=4, Avawl @, ¢)= (Ey—fw)2+(T+TR)%’ (64)
and Ayow(w, )= 4NASQV\(w (p) The above formula o
works well only in the limit 4\lAS wlw,¢)<<1. When this whereFR/F=NAtan(go)sin(@):NAgQV\,(Z)Zl,<p).
condition is violated, it overestrmates the “exact” result sub-  The absorption spectrum predicted by E@2) and (64)
stantially. has, like Poynting’s expression, a Lorentzian shape with a

To obtain the thin layer formulag<1 and d,=0) with  peak value ato=w,;. However, due to the electromagnetic
a wider range of applications, we employ the approach simieoupling and attenuation of the IR radiatiGwhich are ne-
lar to that used in Ref. 33. Expanding expf3,) to terms of  glected in Poynting’s expressign(i) the linewidth is equal
first order inB; we find, using Eqs(45) and (46), that Eq. to 2I'X(1+1I'g/T") (not 2I') and(ii) the peak value is equal

(41) reduces to to (4Ig/T)X(1+TR/T) 2 (not 4'gx/T). Note that
_ AMQW(Z)Zl,cp) takes the maximum value of 1 when the ratio
_ (K= Ka) +i (1~ Kols) (599 Ir/I' approaches unity, and then decreases with increasing
—(Ko+Kg)+iB1(1+KoKs) I'r/T". Inspection of Eq(64) also shows that the area under

. ) ) ) o _ the absorption peak depends explicitly Bn
It is convenient to rewrite this equation in the following Expressiong61)—(64) are also valid when medium 3 is
form: air (e3=1) provided that thTeI-RangIe of iniz/id_enrz;eis very
o close to the critical anglep, [ =arcsin(14'e,)]. (In this
:NO_N3_'5[5m2(¢)8°/822(w)_1+N3N°8XX(‘”)] case the factoVz=N3"= \1-sir’(¢)s,, appearing in Eq.
N+ Na+i8[sirt(@)egle (@) —1—NoNoeyo(©)] (60) may also be treated as vanishingly smaNhen condi-
(600 tion N§'<1 is not fulfilled a simple expression for
where 5=Kdyquw - Amvow(w,¢) can be ebtained by substituting E@O) into
When medium 3 is a nearly perfect meth {>¢,) and Eq. (54) and performing an appropriate Taylor expansion. If
¢ is not too close to 90° the terms with;= Nmetal we retain terms of the first order i6, the resulting expres-

= J1—sir4g)ey/e4/e3 can be omitted. Employing this fact Sion for the absorptance coincides with that given by Poynt-
and takinge,=¢,,, after some manipulations we obtain  Ing's theorem. _
o When the MQW structure is very thické&1) then
_1-NA (0,p)tid[1-tarf(¢)Asy/sp] 61 gt r(@)~gl=(¢)~2. This suggests that in such structures
T 14NA, (0,0)—io[1—tark(@)Asy/ep] the standing-wave effect does not affect the reflectdabe
o sorptancg substantially, and the traveling-wave approxima-
Since we work in the thin layer approximatiod<€1) the tion may be used. On the other hand, one can check that for

terms containing can be neglected. Then the absorptance ok<1 the function 4/(1+x)? is very well approximated by

the structure is given by [1—exp(—4x)]. Thus it is reasonable to assume that, except
in the case when the structure is simultaneously very thick

ANReA  (w,¢) and the angle of incidence large, the “exact” solution can be

Anvow( @, @)= simulated by the double pass traveling wave equation with

2 27
[1+NReA, (w,@)]*+[NIMA, (0,9)] W(w ) replaced by the effectiveaveragegiabsorptance
(62 < “”W(w ©))=3010(¢) -2, A0 w.¢). In this ap-
It is worth noting that, due to the presence of a metal cladproximation the absorptance of the structure takes the form
ding, a parallel component éfsqw(w,¢) does not appear in

Egs.(62). AMQw(waQ)zl_eXp[_N[Q#lR(‘P)|w=Z)21AsQV\Kw-<P)
Near resonancéwhere ImA | (w,¢)<ReA | (w,¢)] we
can neglect the term with IM, (w,¢). In this limit, +g-|-|R(qD)|w oy QMw o)1} (65
AMQW(w ¢) can be expressed only by the SQW absorptance
Asqw(w ¢)=ReA, (w,¢): Numerical calculations performed in Ref. 25 show that at a
typical (for the TIR geometry angle of incidencep=45°,
4NA§QV\/(<U ) the above formula works very well at arbitrary thicknesses of
Apow( @, @)= 2. (63 the structure. This indicates that the influence of the electro-
[1+NAsqu(@,¢)] magnetic coupling on absorption spectra is negligibly small

Our numerical calculations show that the above mentloned"hen ¢=45°. Equation(69) also correctly simulates the
simplification works very well even far from the resonance if ©*@ct” result in the range of a large angle of incidence,
only NASQMw211QD)<1 provided that the MQW structure is very thrrb‘{: 1) and
Now we discus§employing the two parabolic subband NASQW(U)Zla(P)<1 The situation changes drastically when
expression8) for A, (w)] a difference between absorption condition §<1 is violated and the angle of incidence is
spectral shape predicted by H§2) and that resulting from large. In this regime Eq65) does not work correctly. This
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=dyow, and a semi-infinite dielectric medium 3 with di-
electric constant ; smaller than the dielectric constant of the
prism (eg>¢e3). We assume that the angle of incidenrgén

medium 0 is greater than the critical angle’™™
=arcsinf/es/eg). We also assume for simplicity that;

=g3=¢, and takes,=16 (then ¢~ "=56°).

3: As in the case of the TIR geometry, we start from appli-
=) cation of Poynting’s theorerfsee Eq.(55)]. This theorem
3 gives
=
<
Aniow(@,0) =N[IaTr( ) |0=3,Asow @, ¢)
+Ghrr(@)u=5,A5oW(@,0)],  (66)
0.0 . . . . ;
80 100 120 80 100 120 140 with
ho [meV] 6

(@) |, capLayer
FIG. 3. The spectral dependence of the TIR absorptance of the Air Substrate

MQW structures with different numbers of quantum wells: “exact”
results (curves labeled by )l “exact” results but withe,=¢,,
(curves labeled by )2 results obtained with the help of E¢65)
(curves labeled by)3and the traveling wave approximati¢curves
labeled by 4. (a) and(b) The structure without metal cladding)

and (d) The structure with metal cladding. The cap layer thickness
d,=100 A ¢=75°, andLyow=405 A.

2

| EL/EX)

s
o+
g
o
5
e

fact is illustrated in Fig. 3, which presents the TIR absorption
characteristics of systems with different numbers of QWs at
¢=75°. Note that, like in the case of the transmission ge- sl
ometry, even a small difference betwegpande,, substan- ~ .2
tially affects the grazing-incidence absorption line shape. i R

Figure 4 presents the normalized spatial distribution of ot ;————/'/ == -
|E,|? in the structures considered in Fig. &nowledge of 0.0 1.0 2,0 3.0
this distribution is, for example, very helpful in a correct Distance [pm]
interpretation of the resonant second-harmonic generation
spectra,?® photon drag effect or nonlinear intersubband pE
absorption spectfa) Inspection of the presented results Toees N 3
shows that, in the range of large angle of incidenge ( rys
=¢y) the standing-wave pattern is destroyed completely,
even in the case of relatively thin MQW structurell ( 2|
=50). It is also interesting to note that the spatial distribu-
tion of |E,|? very strongly depends on a difference between
ey ande,, the frequency of incident light and the presence
of metal cladding.

Perfect Metal
(7]
£
g
g
3

Air

2

|EL/E)

C. Attenuated total reflection geometry

The attenuated total reflection spectroscopy is a well- 2l
known method of, for example, chemical analysis to inves-
tigate absorption spectra of materials, which are in direct
contact with a prism(for a review, see Refs. 34,B5Re- oF . , - - ,
cently, the above geometfyith a Ge prism was also used 0.0 2.0 4.0 6.0 80 100
to enhance the coupling of IR radiation with intersubband Distance [um]
transitions in GaAs/Ga ,Al,As multiple-quantum-well
structures® FIG. 4. The spatial variation ofE,/E{")|? in the structures

Let us consider a multilayer system corresponding to th&onsidered in Fig. 3 abw=E,; (curves labeled by )land % w
ATR geometry used in Ref. 18. The system consists of a90 meV(curves labeled by)2 Curves labeled by 8) show the
semi-infinite nonabsorbing medium (@rism), a medium 1 spatial variation of|E,/E{")|2 at hw=E,,; calculated takinge;;
(with thicknessd;) which can represent a cap lay@r air =g, (& =¢;). The scale of the figure is insufficient to show details
gap, a MQW structure(medium 2 with thicknessd,  of the electric-field variation within the cap layer.
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9aR(@) [+ duow 1.0} (@ —

R(e)= exp— 2k 2)dz, (67)
dvow Jd;
where  gara(¢) =201+ coddar(@) ]l garale)
=250, {1-cog 9ou() T}, [kEY =K e sir(e) — e
and  9g(¢)=—2 arctadyeg\eq SiN(@)>— e[ €4, COSE) ]}
[Whend, ,dyow<1/k{Y)], in Eq. (66) we can make the sub-
stitution  gatR(¢)—gall(¢). Note that garr(¢f™)

ATR 312
= giTR(‘Pc )=4eon-]

Now we derive, starting from Eq60) a simplified ex-
pression for the absorptance of a thin structure wlifk-0.
When ¢= 2™ (or when the differencep— 2™ is very
small=<0.1°) the terms containind/; can be neglected. Ma-
nipulations similar to those used in the case of the TIR ge-
ometry show that, the ATR absorptan@t¢=¢-'") can be
obtained making in Eq962), (63) and (64) the following . . .
substitutions: 80 100 120 140

Ho [meV]

Amaw(®,9)

e— @b, N—Ne3?. (68)
FIG. 5. The spectral dependence of the ATR absorptance of the
When ConditiOWPEQDéTR is not fulfilled, a simple expres- MQW structures with different numbers of quantum wells ¢at
sion for the reflection amplitude can be obtained performing= 2™ : “exact” results (curves labeled by)1 “exact” results but
[in Eq. (60)] an appropriate expansion and neglecting termswith e,=¢,, (curves labeled by )2 and results obtained with the
higher than the first order iA. The resulting expression for help of Eq.(69) (curves labeled by)3 The cap layer thickness;
the absorptance is then identical with that obtained with help=100 A &|pisn=16,05"=55.6°, andLyoqw=405 A.
of Poynting’s theorem.
Analysis of the obtained results suggests that the thin IV. CONCLUSIONS
layer ATR absorptance should be well simulated by the fol-

lowing modified traveling-wave equation: In this paper we have modified the commonly used

effective-medium approach by including the nonlocal char-
acter of intersubband dielectric response of the Q2DEG. The

A ,0)=1—exp{—N[gx o Asou(®, . ,
vow(®,¢) A= NIGarr(®)jo=0,Asow( @) “nonlocal” effective-medium approach was then employed

= ~ al for systematic studies of optical properties of MQW struc-
TOATR(®) =G, Asqul @, @) ]}- (69) tures in the range of intersubband transitions. The obtained

Numerical calculationgsee Fig. 5 and Ref. 25upport use-
fulness of the above equation also whdp#0 and ¢ 10 e
><pATR. 3

c sFb—L i e

We have calculatedsee Fig. 6 the spatial variation of B N=10 | Prism
|E,|? in the structures considered in Fig. 5. We find that even 6r 2 Gt |
in the case of thin structuredNE& 10), modification of the al ? ! ;
above variatior(induced by intersubband transitiorean be ol
substantial. 8

Equation(69) breaks down when the thin layer approxi- W o . . .
mation is violated or/and the cap layer is replaced by an air |.TT 10 20 0.2 04 06
gap. However, in the last case a substantial simplification of — L 3
the expression for the absorptance is possible in the limit 81 _ - 2 RNem o Pdem
exp(—2/kY|d,)<1 by developing Eq(39) in a linear ap- 6| £ e
proximation of this factorfor details, see Ref. 35 al 2 cu .

The situation is much more complex in the case of thick "’ .......... Lt i NG
structures. However, when the difference betweerand 2t
@A™ is large enough, the condition k""" dyow>1 is i / ,
fulfilled. Then, medium 2 may be treated as semi-infinite. 0.0 1.0 2.0 3.0
Assuming, additionally, that the cap layer is very thin Distance [pm]

(1kM]d;<1), the reflection amplitude of the structure can be

approximated by the reflection amplitude corresponding to FIG. 6. The spatial variation ofE,/E!")|? in the structures
the prism-effective medium interface ) [see Eqs(37)—  considered in Fig. 5 atw=E,, (curves labeled by )land %o
(39)] i.e., we can assume tha@tMQWzl—|r02|2. For ex- =90 meV (curves labeled by )2 Curves labeled by 34) show
ample, we have checked numerically that for the structurgpatial variation of|[E,/E{D|? at hw=E,, calculated takinge;;
with N=200 (50) the above approximation works very well =g, (s;;= ;). The scale of the figure is insufficient to show details
when ¢ — ¢2"=1°(10°). of the electric-field variation within the cap layer.
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results show that, in the case of typical Brewster angle transstrongly from a Lorentzian shape. A correct description of
mission geometry, the absorption spectra can be interpreteatis deviation must take into account a difference between
employing the traveling-wave approximation. After somethe dielectric constants of the well and barrier materials.
modifications the above approximation can also be used for

description of TIR spectrawith ¢<45°) and thin layer TIR

and ATR spectra. However, when the angle of incidence is ACKNOWLEDGMENT

large and the MQW structure is thick, the modified traveling-

wave approximation breaks down completely. The absorp- The paper was supported by KBN under Grant No. 2
tion line shape[more exactly Iméw(w)] deviates then PO3B 072 10.
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