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Many-electron artificial atoms
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Artificial atoms, i.e., systems of excess electrons confined in semiconductor quantum dots, are studied by the
unrestricted Hartree-Fock method. We consider a spherical quantum dot embedded in an insulating matrix and
assume a confinement potential in a form of spherical potential well of radiusR and depthV0. The calculations
have been performed for few- and many-electron artificial atoms with the number of electrons from 1 to 20.
We have shown that bound many-electron states of atomlike properties are created in quantum dots if the
values ofR andV0 are sufficiently large. The critical values ofR andV0 for the binding ofN electrons in the
quantum dots have been determined. We have found that the subsequent shells of the artificial atoms are filled
by electrons according to the Hund rule. The characteristic behavior resulting from the full and half-filling of
the shells is clearly visible in the dependence on the number of electrons of the calculated chemical potential,
addition energy, and electric capacitance of the quantum dots. The present results have been compared with
those of the classical Thomson model of atoms and applied to the quantum dots made of Si and GaAs.
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I. INTRODUCTION

Excess electrons introduced into semiconductor quan
dots ~QD’s! are subjected to an external potential, whi
confines electrons in all three dimensions.1 A strength and
range of the confinement potential are determined by a
ometry of the nanostructure and/or an external voltage
plied to the microelectrodes, i.e., can be changed intent
ally, which gives us a unique opportunity of getting th
electron energy spectra with the designed properties. For
reason, the system of excess electrons confined in the
was called an artificial atom.2 In the present paper, we con
sider a formation of artificial atoms in spherical QD’s, whic
are grown by chemical methods as semiconductor nanoc
tals of nearly spherical shape in an insulating matrix. T
spherical QD’s have been made of group-IV sem
conductors3 and III-V,4 II-VI, 5 I-VII, 6 and IV-VI ~Ref. 7!
semiconducting compounds. The electron energy spectr
the QD’s were studied by the far-infrared magne
absorption,8 capacitance spectroscopy,9 and transport spec
troscopy.10 These experimental techniques allow us to stu
the atom-like properties of the excess electron systems
fined in the QD’s. Recently, the shell filling has be
observed11 for the artificial atoms in cylindrical QD’s. A
quantitative theoretical description of this effect has be
given by the present authors.12 In the present paper, we use
similar method to consider the shell filling in the artifici
atoms of spherical symmetry.

A theoretical study of electrons in QD’s was the subje
of many papers.13–30 The authors of these papers assum
the model confinement potential, which was either the in
nitely deep rectangular potential well13–15,26or the harmonic-
oscillator ~parabolic! potential.16–22,24,25,27–30Both these po-
tentials possess an infinite depth, which is in princip
unphysical. Nevertheless, their application allowed
authors17,19,27,28,30to describe the main features of the co
fined electron systems, since the energy levels of experim
tal interest are located rather deeply in the correspond
PRB 590163-1829/99/59~20!/13036~7!/$15.00
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potential well. Moreover, for quasi-two-dimensional cylin
drical QD’s, the harmonic confinement potential properly a
counts for the nearly equal separations between the low
energy levels, although anharmonic corrections should a
be included.31 However, for both the harmonic and infinitel
deep rectangular potential, a continuum-energy thresh
does not exist; therefore, the corresponding Schro¨dinger
equations possess exclusively bound-state solutions.
leads to the fundamental physical deficiency of these mo
potentials, namely, the binding and dissociation proces
cannot be described with their use. Therefore, the theore
models with these potentials put no limits on the number
electrons, which can be added to the QD. For the real QD
due to its finite nanoscale extensions in the three directi
of space — the confinement potential has the finite depth
range. Therefore, the QD can be charged by the finite n
ber of electrons. This number determines a quantum ‘‘cap
ity’’ of the QD. On the contrary to the classical electric c
pacitance of the QD, the quantum ‘‘capacity’’ of the QD ca
only be described with the use of the confinement poten
of finite depth and range.

In order to solve the above-mentioned problems and
tain the finite binding energy and finite quantum ‘‘capacity
of the QD, we apply in the present paper the confinem
potential in the form of the spherical potential well with th
finite depth and range. The application of this confinem
potential allows us to describe the characteristic propertie
electrons confined in nearly spherical semiconductor nan
rystals. In particular, it leads to a clear physical interpretat
of the binding of electrons in the QD and allows us to det
mine the quantum ‘‘capacity’’ of the QD. Therefore, th
present theoretical model should properly, at least qua
tively, describe the basic properties of spherical QD’s. Mo
over, in the frame of this model we can construct a ‘‘period
table’’ of artificial atoms. The present calculations for th
many-electron artificial atoms have been performed with
help of the unrestricted Hartree-Fock method. We have s
ied the artificial atoms with the shells 1s, 1p, 1d, and 2s,
which are defined by the one-electron states of the sphe
13 036 ©1999 The American Physical Society
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PRB 59 13 037MANY-ELECTRON ARTIFICIAL ATOMS
potential well. A complete occupancy of these shells
achieved forN520 electrons. As a result, we obtain th
complete first ‘‘period’’ (N51, . . . ,18) and thefirst two
‘‘elements’’ of the second ‘‘period’’ (N519, 20!.

In the frame of the classical mechanics, a ‘‘period
table’’ of ‘‘classical artificial atoms’’ was obtained by Be
danov and Peeters,32 who considered a system of classic
charged particles confined in a two-dimensional parab
potential. In this paper, we present the quantum-mechan
description of the ‘‘periodic table’’ formed by the artificia
atoms. We provide solutions to the three-dimensional ma
electron eigenvalue problems for the electrons confined in
the three dimensions.

The paper is organized as follows: the theoretical met
is presented in Sec. II, the results and discussion are inclu
in Sec. III, and the conclusions are in Sec. IV.

II. THEORY

We consider a system of excess electrons, which are
fined in a single spherical QD embedded in an insulat
matrix. The potential profile for this nanostructure is the f
lowing: the potential-well region inside the QD and th
potential-barrier region in the surrounding matrix. We a
sume that the confinement potential for electrons has
form

V~r !5H 2V0 for r ,R,

0 otherwise,
~1!

where the potential-well depthV0.0. The energy of the
conduction-band minimum of the barrier material is set eq
to zero and taken as the reference energy. Such a choic
the reference energy allows us to separate the discrete
tron energy levels, which result from the size quantizati
from the quasicontinuous conduction-band energy of
electrons in the barrier material. The Hamiltonian of the s
tem of N excess electrons in the effective-mass approxim
tion has the form

H5(
i 51

N

h~r i !1(
i 51

N

(
j . i

N
2

r i j
, ~2!

wherer i is the position vector of thei th electron,r i j is the
electron-electron distance, and

h~r !52¹21V~r !, ~3!

is the one-electron Hamiltonian. Throughout the present
per, the following units are used: donor rydbergRD

5(me /me0)Ry/«s
2 is the unit of energy and donor Bohr ra

dius aD5(me0 /me)«saB is the unit of length, where the hy
drogen rydberg Ry513 605.8 meV, the hydrogen Bohr ra
diusaB50.0529 nm,«s is the static dielectric constant,me is
the electron conduction-band mass, andme0 is the free-
electron rest mass. We neglect the changes of the elec
band mass and dielectric constant at the QD boundary.

The eigenvalue problem for Hamiltonian~2! has been
solved by the unrestricted Hartree-Fock method. Accord
to this approach, theN-electron wave function is taken on a
the Slater determinant, which is constructed from the o
electron spin orbitals
s
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w i~j j !5cms~r j !xs~s j !. ~4!

Here, i , j 51, . . . ,N, j5(r ,s), s is the spin variable,s5
61/2 is the spin quantum number, andm5(klm), where l
and m are the azimuthal and magnetic quantum numbe
respectively, andk5n11, wheren is the radial quantum
number. In the Slater determinant, we take into account
following one-electron orbitals: 1s, 1p, 1d, and 2s, which
are the solutions to the eigenvalue problem for Hamilton
~3!. The exact bound-state solutions to this eigenproblem
given by the spherical Bessel functions.33 The present calcu-
lations have been performed with the help of the Rootha34

modification of the Hartree-Fock approach. Accordingly, t
one-electron orbitals have been proposed in forms of exp
sions in the Gaussian basis, i.e.,

cms~r !5 (
p1p2p3q

cp1p2p3q
ms gp1p2p3q~r !, ~5!

where

gp1p2p3q~r !5xp1yp2zp3exp~2gqr 2!. ~6!

The parametersp1 , p2, and p3 take on valuespi50,1,2,
cp1p2p3q

ms andgq (q51, . . . ,4) are the variational parameter

Using the appropriate combinations of parameterspi , we
construct thes-, p-, and d-like solutions. The Hartree-Fock
equations have been solved for each one-electron state
the quantum numbers (klms) by the self-consistent iterative
procedure with the minimization performed over the var
tional parameterscp1p2p3q

ms andgq . Using these solutions, we

have calculated the ground-state energy of the consid
N-electron system.

Before performing the many-electron calculations, w
have checked that the Gaussian basis@Eqs.~5! and ~6!# cor-
rectly reproduces the analytical solutions to the eigenva
problem for one-electron Hamiltonian~3!. The application of
the equivalent Slater basis leads to a very good agreeme
the results35 with the exact eigenfunctions and eigenvalu
for the one-electron problem. It is well known that the pro
erly chosen Gaussian basis yields the same results as
obtained with the Slater basis. In the present work, we ad
tionally performed the direct calculations with the Gauss
basis @Eqs. ~5! and ~6!# for the one-electron states in th
spherical potential well and found that the present res
reproduce the analytical results with a high accuracy.

In the Hartree-Fock approach, the electron-electron co
lation is neglected. We have performed a detailed study36 of
the problem of correlation for two-electron artificial atoms
a spherical QD with a finite confinement potential.36 It was
shown36 that the Hartree-Fock and exact results are alm
the same for QD’s of small and intermediate radius. Only
large QD’s (R.10aD), i.e., in the weak-confinement re
gime, we have obtained small deviations between both
results. In the frame of the present work, we have carried
an additional test of the reliability of the unrestricte
Hartree-Fock method. We have considered the pair of e
trons confined in a three-dimensional harmonic-oscillator
tential of the formV(r )5r 2/ l 4, where l is a characteristic
length of the problem. After separating out the center-
mass motion, the problem is reduced to the one-particle o
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13 038 PRB 59S. BEDNAREK, B. SZAFRAN, AND J. ADAMOWSKI
dimensional eigenvalue problem. For the ground state,
have solved this problem by a numerical shooting meth
which yields exact results. A comparison of the exact res
with the Hartree-Fock results obtained with the use of
procedure described in the context of Eqs.~4!–~6! is reported
in Fig. 1. Figure 1 shows that only for large QD’s, sma
differences between both the results are visible, which ag
with the results of our previous paper.36 Based on the presen

FIG. 1. Ground-state energy of two electrons confined in thr
dimensional potentialV(r )5r 2/ l 4 calculated by the exact numer
cal method ~solid curve! and unrestricted Hartree-Fock metho
~dashed curve!. The donor rydbergRD is the unit of energy and the
donor Bohr radiusaD is the unit of length.

FIG. 2. EnergyE of the ground state and number of electro
corresponding to the artificial atom of the lowest energy forV0

550RD as functions of quantum-dot radiusR. Vertical thin lines
correspond to the filled shells. The donor rydbergRD is the unit of
energy, and the donor Bohr radiusaD is the unit of length.
e
d,
ts
e

es

and previous36 study, we can state that the Hartree-Fo
method provides the reliable results for the artificial atom

III. RESULTS AND DISCUSSION

The results of the Hartree-Fock calculations are repor
in Fig. 2. The right upper part of Fig. 2 displays the groun
state energy ofN-electron artificial atoms forN51, . . . ,20
and the left lower part — the numbers of electrons cor

- FIG. 3. ‘‘Phase diagram’’ showing the formation ofN-electron
artificial atoms. The system ofN electrons confined in the quantum
dot possesses the minimum ground-state energy if the quantum
is characterized by the parametersR andV0 from the region, which
is labeled byN and limited by the corresponding curves.

FIG. 4. Classical potential energyEN
clas and number of electrons

corresponding to the most stable configuration of interacting e
trons subjected to the confinement potential withV0550RD as a
function of radiusR.
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FIG. 5. Chemical potential ofN-electron artificial atoms forV0540RD as a function of the quantum-dot radiusR. Inset: Addition energy
~solid curves! and electric capacitance~dashed curves! of quantum dots withV0540RD consisting of 9 and 13 electrons as functions ofR.
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sponding to the stable configuration. TheN-electron system
confined in the QD forms a bound state if the followin
condition of binding is fulfilled:

EN,EN21 , ~7!

where EN and EN21 are the ground-state energies of t
artificial atoms consisting ofN andN21 electrons, respec
tively. For the assumed reference energy, the correspon
condition of binding of the one-electron state has the fo
E1,0. Applying these conditions of binding to the results
Fig. 2 we see that the artificial atoms with the increas
number of electrons become stable if the radius of the QD
sufficiently large, which is in agreement with the classic
constant-interaction model. The effect of binding
N-electron artificial atoms is clearly visible in the left lowe
part of Fig. 2, that shows the number of electrons cor
sponding to the stable atomlike states. The calculations
formed for several values of the potential-well depthV0 lead
to the conclusion that the critical value of the QD radius
the binding of theN-electron artificial atom decreases wi
increasingV0. The present results allow us to determine t
quantum ‘‘capacity’’ of the QD. This means that for th
ng
:
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given values of the parameters of the QD (R andV0) we can
estimate the number of electrons, which can be added to
QD forming the bound state. The Hartree-Fock method p
vides the upper bounds to the ground-state energy; there
the estimated critical values ofR andV0 for the binding of
N-electron artificial atoms are also the upper bounds on
quantum ‘‘capacity’’ of the QD. We have constructed
‘‘phase diagram’’~Fig. 3!, which shows the regions of sta
bility of N-electron artificial atoms on the (R, V0) plane. The
curves drawn in Fig. 3 correspond to the upper limits on
parameters of the QD, above which the system ofN electrons
confined in the QD forms a bound state. For example,
first region in Fig. 3 (N50) corresponds to no electron
bound in the QD, the second (N51) — one electron bound
etc.

The N(R) dependence displayed in the left lower part
Fig. 2 exhibits a staircaselike structure with ‘‘stairs’’ of sma
and large ‘‘width’’ ~measured as a corresponding change
the QD radius!. The ‘‘stairs’’ of small ‘‘width’’ correspond
to the filling by electrons of the states belonging to the sa
shell. For the spherical QD’s, these are the shells 1s, 1p, 1d,
and 2s filled by 2, 6, 10, and 2 electrons, respectively. T
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13 040 PRB 59S. BEDNAREK, B. SZAFRAN, AND J. ADAMOWSKI
‘‘stairs’’ of large ‘‘width’’ correspond to the change of th
shell, i.e., the formation of the next shell requires a lar
increase of the QD radius. Moreover, the results of
present calculations for the half-filled 1p and 1d shells show
that the Hund rule is fulfilled. The electrons with the sam
spin fill the spin orbitals of the 1p and 1d shells up to the
half, which corresponds to the artificial atom with the ma
mum value of the total spin. In order to increase the num
of electrons above 5 and 13 in the 1p and 1d shells, respec-
tively, we have to put an additional electron with the opp
site spin, which requires a slightly larger increase of the Q
radius than for the states with the same spin. A close insp
tion of the staircaselike picture in Fig. 2 allows us to reco
nize this slight increase of the ‘‘width’’ of stairs. In sum
mary, the results of Figs. 2 and 3 show how the ‘‘period
table’’ is built from the artificial atoms in the case of th
three-dimensional finite confinement potential.

We mention that the ‘‘periodic table’’ was proposed f
classical charged particles32 in the frame of the classical me
chanics and Hund’s rule was obtained by Koskinenet al.28

and Steffenset al.30 with the use of the density-functiona
theory. The authors28,30,32 considered the two-dimensiona
QD’s with the parabolic confinement.

The filling of the shells of artificial atoms by adding th
electrons to the QD can be treated in the frame of class
electrostatics as charging the capacitor of the capacitancC.
According to the classical electrostatics, the energyDEclas

5e2/C is required to add one electron to the QD. In order
obtain a deeper physical insight into the process of forma
of artificial atoms, we have studied the corresponding cla
cal problem of charging the sphere. Recently, seve
authors37–39considered the similar problem, which is equiv
lent to the classical Thomson model of atom. In the Thom
problem, the charge carriers are strictly constrained to
surface of the sphere of radiusR. In the present work, we
have considered the system ofN charge carriers with equa
charges that are subjected to an external field with the po
tial given by Eq.~1!. This classical model provides an exa
analog to the quantum-mechanical model presented in
II. We were looking for the lowest potential energy of th
system ofN charge carriers using the Monte Carlo minim
zation technique. Figure 4 demonstrates that — accordin
the classical model — the energies required to add one e
tron to the QD are nearly the same; however, the small
ferences between these energies for differentN are also vis-
ible. For the classicalN-electron system confined in th
three-dimensional finite potential — on the contrary to t
two-dimensional case32 — no shell-filling effect takes place

The overall properties of theN-electron energies are sim
lar in both the quantum-mechanical~Fig. 2! and classical
~Fig. 4! description. The lowestN-electron potential energy
calculated in the present work by the classical electrosta
approach can be written down in the form

EN
clas52NV01UN /R, ~8!

whereUN is the parameter dependent on the number of e
trons. The second term in Eq.~8! is the classical charging
energy. We have checked that theN dependence of this term
very well agrees with the fitted form.39

The quantum-mechanical problem ofN electrons con-
strained to move on the surface of the sphere of cons
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radius was solved in the one-electron basis.40 We note that
the present model is more realistic: the electrons are allo
to be spread over the volume of the potential-well sphere
can penetrate the barrier region outside the sphere. For
electrons strictly confined to the surface of the sphere
clear shell-filling effect was obtained.40

The characteristic behavior connected with the sh
filling is also visible if we calculate the chemical potentia
for the artificial atoms~Fig. 5!. The chemical potential of
N-electron system is defined asmN5EN2EN21 and
interpreted as the energy needed to increase the numb
electrons fromN21 to N. The N-electron artificial atom
is stable if the corresponding chemical potentialmN is
negative, which means that the amount of energyumNu is
released when this artificial atom is created. The nea
equidistant curves in Fig. 5 show the filling of the emp
one-electron states in the unfilled shell. Two types of d

FIG. 6. Addition energy~solid circles! and electric capacitance
~open circles! of the quantum dots with~a! R5aD and V0

550RD , and ~b! R52.5aD and V05100RD , as functions of the
number of electrons. Thin lines are drawn as guides for the eye
case~a!, only 11 electrons are bound.
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TABLE I. Quantum ‘‘capacity’’ of the quantum dots made of the material listed in the first column.
depthV0 of the potential well~in eV! is listed in the second column and the next columns yield the va
of QD radii ~in nm!, for which the dot is filled by the maximum number of electrons given in the first r
The highest occupied orbital is given in the parentheses.

Material V0 1(1s1) 2(1s2) 5(1p3) 8(1p6) 13(1d5) 18(1d10) 20(2s2)

Si/SiO2 3.1 0.33 0.39 0.75 0.87 1.26 1.44 1.66
Porous-Si 1.7 0.47 0.56 1.14 1.36 2.2 2.43 2.86
GaAs/Al0.2Ga0.8As 0.21 2.75 3.30 6.80 8.20 12.7 14.6 17.3
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viations from this behavior are visible in Fig. 5. The larg
increase of the chemical potential corresponds to the c
plete filling of shells 1s, 1p, and 1d by 2, 6, and 10 elec-
trons, respectively. The smaller increase ofmN for N55 and
13, i.e., for the half-filled 1p and 1d shells, is a signature o
the Hund rule.

The addition energyDE and electric capacitanceC of the
QD are the quantities of experimental interest. We have
culated both these quantities as follows:DE5mN112mN
and C5e2/DE. The inset of Fig. 5 reports the present r
sults forDE andC as functions of the QD radius forN59
and 13 electrons. Figures 6~a! and 6~b! show the dependenc
of DE andC on the number of electrons for the paramet
corresponding to the QD’s made of a porous Si@Fig. 6~a!#
and Si/SiO2 @Fig. 6~b!# nanostructure. Similarly as in Fig. 5
the high jumps of the addition energy are associated w
the filling of the next shell if the previous shell is full
occupied and the lower jumps — the filling of the on
electron orbital with the opposite spin if the shell is ha
filled by electrons of the same spin. For the parameters
Fig. 6~a!, the maximum number of electrons that can
added to the QD is eleven. The inset of Fig. 5 demonstr
that the electric capacitance of the QD is a linear function
R and the addition energy varies like 1/R. However, we note
that although both these functions resemble those for
corresponding classical quantities, the coefficients of the p
portionality depend on the number of electrons, which
presses the quantum nature of the addition energy and
tric capacitance.

IV. CONCLUSIONS

The results of the present paper allow us to determine
important characteristics of the spherical QD’s. If the para
eters of the QD, i.e., potential-well depthV0 and radius
R, are given, we can determine the maximum number
electrons that can be added to the QD filling all the availa
quantum states. In such a way, we find the quantum ‘‘cap
ity’’ of the QD. On the other hand, if the numberN
of electrons is given, we can determine the parameter
that QD, in which the boundN-electron state can be create
Both these characteristics should be helpful in plann
the experiments with the artificial atoms formed in QD
The present results can be applied to the spherical QD’s
pared by chemical methods3–7 and to the nanocrystal
formed in a porous Si.41 We note that the confinement po
tential of the finite depth should apply to InAs/GaAs se
assembled QD’s~Ref. 42! as well as to gate-controlle
QD’s.43 However, in the last case the shape of the poten
has to be modified.12
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As an example of an application of the present theoret
treatment, we list in Table I the results, which can be help
in experiments with spherical QD’s made of Si nanocryst
in SiO2 matrix and GaAs in Al0.2Ga0.8As matrix. The atom-
like states were found in resonant-tunneling measuremen
spherical Si nanocrystals.3 The GaAs/AlxGa12xAs quantum
dots usually possess the cylindrical shape.9 The spherical
QD’s made of GaAs were prepared in an organic solvent4 It
was argued41 that the theoretical model using the effectiv
mass approximation and the finite confinement poten
fairly well describes the electronic properties of a porous
Therefore, we quote in Table I the results for the QD
formed from the nanocrystals in the porous Si.

Let us briefly discuss the reliability of the present resu
when applied to the real QD’s. In the present paper we h
neglected the change of the electron band mass and diele
constant at the QD boundary. The influence of spatially
pendent electron band mass can be taken into account in
frame of the BenDaniel-Duke model.44 Using this model, we
have performed35 the calculations for the one-electron stat
in spherical QD made of the GaAs/Al0.2Ga0.8As nanostruc-
ture. The results35 show that the effect of the spatially var
able electron band mass can be neglected forR.;aD , i.e.,
in the intermediate and weak-confinement regime, which
caused by the small penetration of electrons into the bar
region. In the present study, we have found that this pene
tion is also very small for many-electron systems in the QD
of intermediate and large size. Therefore, we expect that
effect will be negligibly small for theN-electron artificial
atoms.

The change of the dielectric constant at the QD bound
gives rise to an induced electric polarization.13,15 In the
case of the Si/SiO2 nanostructure, the nanocrystal with th
larger dielectric constant~Si! is embedded in the dielectri
medium (SiO2) with the smaller dielectric constant. The
the induced electric polarization repulses the electrons fr
the QD boundary and pushes them towards the
center.13,15 This leads to a larger localization of electron
inside the QD. If the dielectric constants of both the mate
als only slightly differ between themselves, which is the ca
of the GaAs/AlxGa12xAs nanostructure with small conten
of Al, the effect of the induced electric polarization
negligible.

In summary, we have shown that the many-electron a
ficial atoms are stable if the range and strength of the c
finement potential are sufficiently large. The results of t
present paper allow us to determine the critical values of
parameters of the QD’s, in which the artificial atoms cons
ing of up to 20 electrons are formed. The fundamental qu
tative properties of the artificial atoms are the same as th
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of the natural atoms. For the spherical confinement poten
the atomic shells 1s, 1p, 1d, and 2s are filled in order. The
shell-filling effect and Hund rule are clearly expressed
the calculated chemical potential, addition energy, and e
tric capacitance of the QD’s. In the classical limit, the art
cial atoms exhibit the properties similar to those being ch
acteristic for the Thomson model of atom.
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