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Many-electron artificial atoms
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Artificial atoms, i.e., systems of excess electrons confined in semiconductor quantum dots, are studied by the
unrestricted Hartree-Fock method. We consider a spherical quantum dot embedded in an insulating matrix and
assume a confinement potential in a form of spherical potential well of rédusl depthv,. The calculations
have been performed for few- and many-electron artificial atoms with the number of electrons from 1 to 20.
We have shown that bound many-electron states of atomlike properties are created in quantum dots if the
values ofR andV, are sufficiently large. The critical values BfandV, for the binding ofN electrons in the
quantum dots have been determined. We have found that the subsequent shells of the artificial atoms are filled
by electrons according to the Hund rule. The characteristic behavior resulting from the full and half-filling of
the shells is clearly visible in the dependence on the number of electrons of the calculated chemical potential,
addition energy, and electric capacitance of the quantum dots. The present results have been compared with
those of the classical Thomson model of atoms and applied to the quantum dots made of Si and GaAs.
[S0163-182699)00320-3

I. INTRODUCTION potential well. Moreover, for quasi-two-dimensional cylin-

drical QD’s, the harmonic confinement potential properly ac-
Excess electrons introduced into semiconductor quanturiounts for the nearly equal separations between the lowest-
dots (QD’s) are subjected to an external potential, which€nergy levels, although anharmonic corrections should also

. 1 . . . -
confines electrons in all three dimensidna. strength and P& included:* However, for both the harmonic and infinitely

range of the confinement potential are determined by a geqeelo rectangular potential, a continuum-energy threshold

ometry of the nanostructure and/or an external voltage a does not exist; therefore, the corresponding Stimger

lied to the microelectrodes. i.e. can be chanaed intentiopéquations possess exclusively bound-state solutions. This
P P 9 Neads to the fundamental physical deficiency of these model

ally, which gives us a unique opportunity of getting the ,ontiais namely, the binding and dissociation processes
electron energy spectra with the designed properties. For this,n ot pe described with their use. Therefore, the theoretical
reason, the system of excess electrons confined in the Qldodels with these potentials put no limits on the number of
was called an artificial atorhln the present paper, we con- electrons, which can be added to the QD. For the real QD —
sider a formation of artificial atoms in spherical QD's, which gye to its finite nanoscale extensions in the three directions
are grown by chemical methods as semiconductor nanocrygf space — the confinement potential has the finite depth and
tals of nearly spherical shape in an insulating matrix. Therange. Therefore, the QD can be charged by the finite num-
spherical QD’s have been made of group-IV semi-ber of electrons. This number determines a quantum “capac-
conductord and 111-V,* 11-VI,° 1-VII, ¢ and IV-VI (Ref. 7) ity” of the QD. On the contrary to the classical electric ca-
semiconducting compounds. The electron energy spectra giacitance of the QD, the quantum “capacity” of the QD can
the QD’s were studied by the far-infrared magneto-only be described with the use of the confinement potential
absorptiorf, capacitance spectroscopynd transport spec- of finite depth and range.
troscopy'® These experimental techniques allow us to study In order to solve the above-mentioned problems and ob-
the atom-like properties of the excess electron systems comain the finite binding energy and finite quantum “capacity”
fined in the QD’s. Recently, the shell filling has beenof the QD, we apply in the present paper the confinement
observed! for the artificial atoms in cylindrical QD’s. A potential in the form of the spherical potential well with the
guantitative theoretical description of this effect has beerfinite depth and range. The application of this confinement
given by the present authot&In the present paper, we use a potential allows us to describe the characteristic properties of
similar method to consider the shell filling in the artificial electrons confined in nearly spherical semiconductor nanoc-
atoms of spherical symmetry. rystals. In particular, it leads to a clear physical interpretation
A theoretical study of electrons in QD’s was the subjectof the binding of electrons in the QD and allows us to deter-
of many paper$®=3° The authors of these papers assumednine the quantum “capacity” of the QD. Therefore, the
the model confinement potential, which was either the infi-present theoretical model should properly, at least qualita-
nitely deep rectangular potential welt'>2%or the harmonic- tively, describe the basic properties of spherical QD’s. More-
oscillator (paraboli¢ potential*6-22:242527-3@gth these po- over, in the frame of this model we can construct a “periodic
tentials possess an infinite depth, which is in principletable” of artificial atoms. The present calculations for the
unphysical. Nevertheless, their application allowed themany-electron artificial atoms have been performed with the
authord”1927.283%44 describe the main features of the con- help of the unrestricted Hartree-Fock method. We have stud-
fined electron systems, since the energy levels of experimeried the artificial atoms with the shellss11p, 1d, and 2,
tal interest are located rather deeply in the correspondingvhich are defined by the one-electron states of the spherical
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potential well. A complete occupancy of these shells is @i(&)= (T xs(0)). 4
achieved forN=20 electrons. As a result, we obtain the
complete first “period” (N=1,...,18) and thefirst two  Here,i,j=1,... N, £=(r,0), o is the spin variables=
“elements” of the second “period” N= 19, 20. +1/2 is the spin quantum number, apd=(klm), wherel

In the frame of the classical mechanics, a “periodicand m are the azimuthal and magnetic quantum numbers,
table” of “classical artificial atoms” was obtained by Be- respectively, ank=n+1, wheren is the radial quantum
danov and Peetefé,who considered a system of classical number. In the Slater determinant, we take into account the
charged particles confined in a two-dimensional parabolidollowing one-electron orbitals: &, 1p, 1d, and &, which
potential. In this paper, we present the quantum-mechanicélre the solutions to the eigenvalue problem for Hamiltonian
description of the “periodic table” formed by the artificial (3). The exact bound-state solutions to this eigenproblem are
atoms. We provide solutions to the three-dimensional manygiven by the spherical Bessel functiofisThe present calcu-
electron eigenvalue problems for the electrons confined in algtions have been performed with the help of the Rocthan
the three dimensions. modification of the Hartree-Fock approach. Accordingly, the

The paper is organized as follows: the theoretical metho@ne-electron orbitals have been proposed in forms of expan-
is presented in Sec. Il, the results and discussion are includegons in the Gaussian basis, i.e.,
in Sec. lll, and the conclusions are in Sec. IV.

S
IIl. THEORY wMS(r)_plgpsq Copzpaadipopsal ) ®

We consider a system of excess electrons, which are convhere
fined in a single spherical QD embedded in an insulating
matrix. The potential profile for this nanostructure is the fol- U, p,pyal1) =XPLyP2zP3exp — yqr?). (6)
lowing: the potential-well region inside the QD and the
potential-barrier region in the surrounding matrix. We as-The parameterp,, p,, and p; take on valueg;=0,1,2,

sume that the confinement potential for electrons has thegfpzpsq andyq (q=1,...,4) are the variational parameters.
form Using the appropriate combinations of parameters we

construct thes-, p-, and d-like solutions. The Hartree-Fock
1) equations have been solved for each one-electron state with
0 otherwise, the quantum numberk{ms) by the self-consistent iterative

where the potential-well depti,>0. The energy of the procedure with the minimization performed over the varia-
. 0~ - ) ional parameters®® ndy,. Using th lutions, w
conduction-band minimum of the barrier material is set equa}O al parametersy ; p.q & dyq. Using these solutions, we

to zero and taken as the reference energy. Such a choice Bgve calculated the ground-state energy of the considered
the reference energy allows us to separate the discrete eldd-€lectron system. _

tron energy levels, which result from the size quantization, Before performing the many-electron calculations, we
from the quasicontinuous conduction-band energy of thdave checked that the Gaussian bgkigs. (5) and (6)] cor-

electrons in the barrier material. The Hamiltonian of the sysJectly reproduces the analytical solutions to the eigenvalue
tem of N excess electrons in the effective-mass approximaprOblem for one-electron HamiltonidB). The application of

-V, forr<R,
V(r)=

tion has the form the equivalent_ Slater basis Ie.ads toa very good a_greement of
the result®® with the exact eigenfunctions and eigenvalues
N NN for the one-electron problem. It is well known that the prop-
H=E h(ri)+2 . (2 erly chosen Gaussian basis yields the same results as those
i=1 i=1j>i Fij

obtained with the Slater basis. In the present work, we addi-
wherer; is the position vector of théth electron,r; is the tionally performed the direct calculations with the Gaussian

electron-electron distance. and basis[Egs. (5) and (6)] for the one-electron states in the
’ spherical potential well and found that the present results
h(r)=—V2+V(r), (3)  reproduce the analytical results with a high accuracy.

In the Hartree-Fock approach, the electron-electron corre-
is the one-electron Hamiltonian. Throughout the present paation is neglected. We have performed a detailed sfudfy
per, the following units are used: donor rydbeRp  the problem of correlation for two-electron artificial atoms in
= (me/Mgo) RY/e2 is the unit of energy and donor Bohr ra- a spherical QD with a finite confinement potenélt was
diusap=(Mgy /M) eag is the unit of length, where the hy- showrt® that the Hartree-Fock and exact results are almost
drogen rydberg Ry 13605.8 meV, the hydrogen Bohr ra- the same for QD’s of small and intermediate radius. Only for
diusag=0.0529 nmgg is the static dielectric constamt, is  large QD’s R>10ap), i.e., in the weak-confinement re-
the electron conduction-band mass, amg, is the free- gime, we have obtained small deviations between both the
electron rest mass. We neglect the changes of the electrabsults. In the frame of the present work, we have carried out
band mass and dielectric constant at the QD boundary. an additional test of the reliability of the unrestricted

The eigenvalue problem for Hamiltonia@2) has been Hartree-Fock method. We have considered the pair of elec-
solved by the unrestricted Hartree-Fock method. Accordingrons confined in a three-dimensional harmonic-oscillator po-
to this approach, thil-electron wave function is taken on as tential of the formV(r)=r?/1%, wherel is a characteristic
the Slater determinant, which is constructed from the onelength of the problem. After separating out the center-of-
electron spin orbitals mass motion, the problem is reduced to the one-particle one-
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FIG. 1. Ground-state energy of two electrons confined in three-
dimensional potentiaV/(r)=r?/1* calculated by the exact numeri-
cal method(solid curve and unrestricted Hartree-Fock method
(dashed curve The donor rydberdRy, is the unit of energy and the
donor Bohr radiug, is the unit of length.

FIG. 3. “Phase diagram” showing the formation WNfelectron
artificial atoms. The system ®f electrons confined in the quantum
dot possesses the minimum ground-state energy if the quantum dot
is characterized by the paramet&andV, from the region, which

is labeled byN and limited by the corresponding curves.

dimensional eigenvalue problem. For_the grour]d state, wgpq previou® study, we can state that the Hartree-Fock
have solved this problem by a numerical shooting methody,eihoq provides the reliable results for the artificial atoms.
which yields exact results. A comparison of the exact results

with the Hartree-Fock results obtained with the use of the

procedure described in the context of E@s—(6) is reported [ll. RESULTS AND DISCUSSION
in Fig. 1. Figure 1 shows that only for large QD’s, small .
differences between both the results are visible, which agrees The resuits of the Hartree-Fock calculations are reported

. . in Fig. 2. The right upper part of Fig. 2 displays the ground-
with the results of our previous pap&mBased on the present state energy oN-electron artificial atoms foN=1,. . . ,20

and the left lower part — the numbers of electrons corre-
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FIG. 2. EnergyE of the ground state and number of electrons

corresponding to the artificial atom of the lowest energy Vgr FIG. 4. Classical potential enerdsf,®> and number of electrons

=50Rp as functions of quantum-dot radils Vertical thin lines  corresponding to the most stable configuration of interacting elec-

correspond to the filled shells. The donor rydbBxgis the unit of  trons subjected to the confinement potential wity=50R, as a

energy, and the donor Bohr radiag is the unit of length. function of radiusR.
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FIG. 5. Chemical potential dfl-electron artificial atoms fov,=40R as a function of the quantum-dot radiRsInset: Addition energy
(solid curves and electric capacitanddashed curvesof quantum dots with/,=40Ry consisting of 9 and 13 electrons as functionsRof

sponding to the stable configuration. TNeelectron system given values of the parameters of the QR &ndV,) we can
confined in the QD forms a bound state if the following estimate the number of electrons, which can be added to the
condition of binding is fulfilled: QD forming the bound state. The Hartree-Fock method pro-
vides the upper bounds to the ground-state energy; therefore,
En<En-1, the estimated critical values & andV, for the binding of

where Ey, and Ey_, are the ground-state energies of the N-electron artificial atoms are also the upper bounds on the
artificial atoms consisting ol andN—1 electrons, respec- duantum “capacity” of the QD. We have constructed a
tively. For the assumed reference energy, the correspondinghase diagram”(Fig. 3), which shows the regions of sta-
condition of binding of the one-electron state has the formbility of N-electron artificial atoms on théR( V,) plane. The
E,<0. Applying these conditions of binding to the results of curves drawn in Fig. 3 correspond to the upper limits on the
Fig. 2 we see that the artificial atoms with the increasingparameters of the QD, above which the systerN efectrons
number of electrons become stable if the radius of the QD isonfined in the QD forms a bound state. For example, the
sufficiently large, which is in agreement with the classicalfirst region in Fig. 3 N=0) corresponds to no electrons
constant-interaction model. The effect of binding of bound in the QD, the secontN& 1) — one electron bound,
N-electron artificial atoms is clearly visible in the left lower etc.

part of Fig. 2, that shows the number of electrons corre- The N(R) dependence displayed in the left lower part of
sponding to the stable atomlike states. The calculations pefig. 2 exhibits a staircaselike structure with “stairs” of small
formed for several values of the potential-well depthlead  and large “width” (measured as a corresponding change of
to the conclusion that the critical value of the QD radius forthe QD radiug The “stairs” of small “width” correspond

the binding of theN-electron artificial atom decreases with to the filling by electrons of the states belonging to the same
increasingV,. The present results allow us to determine theshell. For the spherical QD’s, these are the shed|slp, 1d,
guantum “capacity” of the QD. This means that for the and X filled by 2, 6, 10, and 2 electrons, respectively. The
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“stairs” of large “width” correspond to the change of the 12
shell, i.e., the formation of the next shell requires a larger
increase of the QD radius. Moreover, the results of the
present calculations for the half-fillegpland 1d shells show 10
that the Hund rule is fulfilled. The electrons with the same
spin fill the spin orbitals of the @ and 1d shells up to the  —
half, which corresponds to the artificial atom with the maxi- « 8
mum value of the total spin. In order to increase the numberz
of electrons above 5 and 13 in th@ &nd 1d shells, respec-
tively, we have to put an additional electron with the oppo-
site spin, which requires a slightly larger increase of the QD§
radius than for the states with the same spin. A close inspec-©
tion of the staircaselike picture in Fig. 2 allows us to recog- 4
nize this slight increase of the “width” of stairs. In sum-
mary, the results of Figs. 2 and 3 show how the “periodic
table” is built from the artificial atoms in the case of the
three-dimensional finite confinement potential.

We mention that the “periodic table” was proposed for
classical charged particf&sn the frame of the classical me-
chanics and Hund’s rule was obtained by Koskireral2®
and Steffenset al® with the use of the density-functional
theory. The authof83%32 considered the two-dimensional
QD’s with the parabolic confinement.

The filling of the shells of artificial atoms by adding the
electrons to the QD can be treated in the frame of classical
electrostatics as charging the capacitor of the capacit@nce
According to the classical electrostatics, the eneidy*'®s
=e?/C is required to add one electron to the QD. In order to
obtain a deeper physical insight into the process of formation
of artificial atoms, we have studied the corresponding classi-
cal problem of charging the sphere. Recently, several
authord’~3%considered the similar problem, which is equiva-
lent to the classical Thomson model of atom. In the Thomson
problem, the charge carriers are strictly constrained to the
surface of the sphere of radil& In the present work, we
have considered the system Mfcharge carriers with equal T
charges that are subjected to an external field with the poten-  * —— = = o 10 12 12 1 18
tial given by Eq.(1). This classical model provides an exact number of electrons
analog to the quantum-mechanical model presented in Sec
Il. We were looking for the lowest potential energy of the
system ofN charge carriers using the Monte Carlo minimi- —50R,, and (b) R=2.5a, andVy=100R,, as functions of the
zation te(,;hn'que' Figure 4 demo,nStrates,that — according tF?umber of electrons. Thin lines are drawn as guides for the eye. In
the classical model — the energies required to add one elt'egése(a)’ only 11 electrons are bound.
tron to the QD are nearly the same; however, the small dif-

ferences between these energies for diffefeatre also vis-  (adjus was solved in the one-electron b4&ive note that
ible. For the classicaN-electron system confined in the the present model is more realistic: the electrons are allowed
three-dimensional finite potential — on the contrary to theyg he spread over the volume of the potential-well sphere and
two-dimensional Cagé,_ no shell-filling effect takes place. can penetrate the barrier region outside the sphere. For the
The overall properties of thi-electron energies are simi- g|actrons strictly confined to the surface of the sphere no
lar in both the quantum-mechanicéfig. 2) and classical ¢jear shell-filling effect was obtainé.
(Fig. 4) description. The lowesltl-electron potential energy  The characteristic behavior connected with the shell
calculated in the present work by the classical electrostaticfjing is also visible if we calculate the chemical potentials
approach can be written down in the form for the artificial atoms(Fig. 5. The chemical potential of
clas._ N-electron system is defined agn=En—En-; and
Ey™=—NVo+Un/R, ® interpreted asythe energy needed t%l\lincrgase ’\'éhé number of
whereU is the parameter dependent on the number of elecelectrons fromN—1 to N. The N-electron artificial atom
trons. The second term in EEQ) is the classical charging is stable if the corresponding chemical potentga) is
energy. We have checked that tNelependence of this term negative, which means that the amount of enegy| is
very well agrees with the fitted forrf. released when this artificial atom is created. The nearly
The quantum-mechanical problem ®f electrons con- equidistant curves in Fig. 5 show the filling of the empty
strained to move on the surface of the sphere of constarine-electron states in the unfilled shell. Two types of de-
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(open circley of the quantum dots with(@ R=ap and V,
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TABLE I. Quantum “capacity” of the quantum dots made of the material listed in the first column. The
depthV, of the potential wellin eV) is listed in the second column and the next columns yield the values
of QD radii (in nm), for which the dot is filled by the maximum number of electrons given in the first row.
The highest occupied orbital is given in the parentheses.

Material Vo 1(1sh) 218 5(1p%)  8(1p% 13(1d%) 18(1d'%)  20(25?)
Si/Sio, 3.1 0.33 0.39 0.75 0.87 1.26 1.44 1.66
Porous-Si 1.7 0.47 0.56 1.14 1.36 2.2 2.43 2.86
GaAs/Ay GaAs 021 275 3.30 6.80 8.20 12.7 14.6 17.3

viations from this behavior are visible in Fig. 5. The larger As an example of an application of the present theoretical
increase of the chemical potential corresponds to the contreatment, we list in Table | the results, which can be helpful
plete filling of shells &, 1p, and 1d by 2, 6, and 10 elec- in experiments with spherical QD’s made of Si nanocrystals
trons, respectively. The smaller increaseugffor N=5 and in SiO, matrix and GaAs in A} ,Ga gAs matrix. The atom-
13, i.e., for the half-filled p and 1d shells, is a signature of like states were found in resonant-tunneling measurements in
the Hund rule. spherical Si nanocrystalsThe GaAs/AlGa, _,As quantum

The addition energ\E and electric capacitand@of the  dots usually possess the cylindrical shdpehe spherical
QD are the quantities of experimental interest. We have calQD’s made of GaAs were prepared in an organic sol{ént.
culated both these quantities as followSE=uy.;—uy ~ Was arguett that the theoretical model using the effective-
and C=e?/AE. The inset of Fig. 5 reports the present re-mass approximation and the finite confinement potential
sults for AE and C as functions of the QD radius foi=9  fairly well describes the electronic properties of a porous Si.
and 13 electrons. Figurega and Gb) show the dependence Therefore, we quote in Table | the results for the QD’s
of AE andC on the number of electrons for the parametersformed from the nanocrystals in the porous Si.
corresponding to the QD’s made of a porous[Mg. 6a)] Let us briefly discuss the reliability of the present results
and Si/SiQ [Fig. 6(b)] nanostructure. Similarly as in Fig. 5, when applied to the real QD’s. In the present paper we have
the high jumps of the addition energy are associated wittheglected the change of the electron band mass and dielectric
the filling of the next shell if the previous shell is fully constant at the QD boundary. The influence of spatially de-
occupied and the lower jumps — the filling of the one- pendent electron band mass can be taken into account in the
electron orbital with the opposite spin if the shell is half- frame of the BenDaniel-Duke mod& Using this model, we
filled by electrons of the same spin. For the parameters ofave performedf the calculations for the one-electron states
Fig. 6(@), the maximum number of electrons that can bein spherical QD made of the GaAsGa,; gAs nanostruc-
added to the QD is eleven. The inset of Fig. 5 demonstrateisire. The resul§ show that the effect of the spatially vari-
that the electric capacitance of the QD is a linear function ofible electron band mass can be neglecteRfer~a,, i.e.,
R and the addition energy varies likeRl/However, we note in the intermediate and weak-confinement regime, which is
that although both these functions resemble those for theaused by the small penetration of electrons into the barrier
corresponding classical quantities, the coefficients of the proegion. In the present study, we have found that this penetra-
portionality depend on the number of electrons, which extion is also very small for many-electron systems in the QD’s
presses the quantum nature of the addition energy and eleef intermediate and large size. Therefore, we expect that this
tric capacitance. effect will be negligibly small for theN-electron artificial
atoms.

The change of the dielectric constant at the QD boundary
gives rise to an induced electric polarizatiori® In the

The results of the present paper allow us to determine thease of the Si/Si@nanostructure, the nanocrystal with the
important characteristics of the spherical QD’s. If the paramiarger dielectric constan(Si) is embedded in the dielectric
eters of the QD, i.e., potential-well dept¥, and radius medium (SiQ) with the smaller dielectric constant. Then,
R, are given, we can determine the maximum number othe induced electric polarization repulses the electrons from
electrons that can be added to the QD filling all the availabldhe QD boundary and pushes them towards the dot
guantum states. In such a way, we find the quantum “capacsenter->!° This leads to a larger localization of electrons
ity” of the QD. On the other hand, if the numbeXd inside the QD. If the dielectric constants of both the materi-
of electrons is given, we can determine the parameters ddls only slightly differ between themselves, which is the case
that QD, in which the boundl-electron state can be created. of the GaAs/AlGa _,As nanostructure with small content
Both these characteristics should be helpful in planningf Al, the effect of the induced electric polarization is
the experiments with the artificial atoms formed in QD’s. negligible.
The present results can be applied to the spherical QD’s pre- In summary, we have shown that the many-electron arti-
pared by chemical methoti§ and to the nanocrystals ficial atoms are stable if the range and strength of the con-
formed in a porous St We note that the confinement po- finement potential are sufficiently large. The results of the
tential of the finite depth should apply to InAs/GaAs self- present paper allow us to determine the critical values of the
assembled QD's(Ref. 42 as well as to gate-controlled parameters of the QD’s, in which the artificial atoms consist-
QD’s*® However, in the last case the shape of the potentiaing of up to 20 electrons are formed. The fundamental quali-
has to be modified? tative properties of the artificial atoms are the same as those

IV. CONCLUSIONS
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