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Magnetic susceptibility of disordered nondiffusive mesoscopic systems
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Disorder-induced spectral correlations of mesoscopic quantum systems in the nondiffusive regime, and their
effect on the magnetic susceptibility, are studied. We perform impurity averaging for nontranslational invariant
systems by combining a diagrammatic perturbative approach with semiclassical techniques. This allows us to
study the entire range from clean to diffusive systems. As an application we consider the magnetic response of
noninteracting electrons in microstructures in the presence of weak disorder. We show that in the ballistic case
~an elastic mean free pathl larger than the system size! there exist two distinct regimes of behavior depending
on the relative magnitudes ofl and an inelastic scattering lengthLf . We present numerical results for square
billiards, and derive approximate analytical results for generic chaotic geometries. The magnetic-field depen-
dence and theLf dependence of the disorder-induced susceptibility are qualitatively similar in both types of
geometry.@S0163-1829~99!02020-2#
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I. INTRODUCTION

Mesoscopic physics has traditionally involved the stu
of phenomena in phase-coherent, disordered conductors1 In
the diffusive regime, where the elastic mean free pathl is
much smaller than the system sizeL, the electron motion
resembles that of a random walk between impurities.

The more recent development of high-mobility semico
ductor heterostructures together with advanced lithograp
techniques has led to the confinement of electrons in t
dimensional microstructures of controllable, nonrandom
ometry. Thereby, a further regime, coined ‘‘ballistic’’ sinc
l .L has been realized. Such technological achievem
have motivated theoretical approaches where the actual
crocavities are approximated by ‘‘clean’’ quantum billiard
ignoring impurity scattering completely. In these models
electron motion is only affected by bounces at the confi
ment potential, which is the opposite case to the diffus
regime where confinement effects are not important on t
scales shorter than the Thouless time.

However, residual impurity scattering is nearly unavo
able even in high-mobility microstructures. It has be
shown that weak disorder can be strong enough to mix
ergy levels, influence spectral statistics,2,3 and affect related
thermodynamic quantities4 in the ‘‘ballistic’’ regime.

In defining spectral correlation functions in the ‘‘ballis
tic’’ regime, one has to distinguish between disorder aver
ing, which we denote bŷ •••&d , and size averaging
^•••&L , which we assume to be equivalent to energy av
aging. Pure disorder averaging corresponds to the exp
mental situation of an ensemble of weakly disordered mic
structures of the same size. Recent work has shown tha
this case spectral correlation functions contain, and are o
dominated by, strong oscillatory structures in energy~on
scaleskFL, kF being the Fermi wave number! reflecting the
presence of the confinement.3,4 They can be semiclassicall
interpreted as density-of-states oscillations related to cla
cal periodic orbits of the corresponding clean system.

In the present work we consider spectral correlations a
both energy and~independent! disorder averaging corre
PRB 590163-1829/99/59~20!/13026~10!/$15.00
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sponding to the experimental situation of an ensemble
disordered systems with variation in their sizes. Then on
able to divide the two-level correlation functionK(«1 ,«2),
into two separate terms,3,5

K~«1 ,«2 ;H ![^Kd~«1 ,«2 ;H !&L1KL~«1 ,«2 ;H !. ~1!

Here

Kd~«1 ,«2!5@^n~«1!n~«2!&d2^n~«1!&d^n~«2!&d#/ n̄2,
~2a!

KL~«1 ,«2!5Š^n~«1!&d^n~«2!&d‹L / n̄221, ~2b!

wheren denotes the single-particle density of states andn̄
5Š^n(«)&d‹L its mean part.Kd is a measure ofdisorder-
induced correlations of the density of states, whileKL is
given by size-inducedcorrelations. In a diffusive system,l
,L, the disorder-averaged density of states^n(«)&d is a con-
stant, so thatKL is vanishingly small andKd dominates.
However, forl .L the density of states contains terms whi
oscillate like cos(kFL), and both correlation functions may b
relevant. In contrast, oncel .L(kFL)d21, disorder-induced
mixing of levels is negligible andKL prevails.

The orbital magnetism of mesoscopic quantum system
sensitive to spectral correlations as, e.g., measured
K(«1 ,«2), and therefore has been the subject of much th
retical interest6 as well as experimental investigations.7–9 For
isolated systems with a fixed number of particles it is nec
sary to consider averaging under canonical conditions,10–12

resulting in a large contribution to the average magnetic
sponse which can be by orders of magnitude larger than
~bulk! Landau diamagnetism. The corresponding suscept
ity is given by12

^x~H !&52S D

2 D ]2

]H2
^dN2~m;H !& ~3!

for temperatureskBT larger than the mean level spacingD.
In Eq. ~3!, H is the magnetic field and̂dN2(m;H)& is the
variance in the number of energy levels within an ene
13 026 ©1999 The American Physical Society
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PRB 59 13 027MAGNETIC SUSCEPTIBILITY OF DISORDERED . . .
interval of width equal to the chemical potential,m. This
variance is related toK(«1 ,«2 ;H) @Eq. ~1!#, by integration
of the level energies«1 and «2 over the energy interval
Throughout this work we will label the contributions to th
susceptibility, corresponding tôKd&L and KL, as ^xd(H)&
and ^xL(H)&, respectively. Hence the total orbital magne
susceptibility is composed of

^x~H !&5^xd~H !&1^xL~H !&. ~4!

Diagrammatic techniques to treat impurity scattering
usually designed for diffusive systems,l ,L, and therefore
rely on the assumption of translational invariance. In t
paper we combine a diagrammatic perturbation appro
with semiclassical techniques to perform energy and im
rity averaging and to calculate the disorder-induced par
the energy correlation function and the related susceptib
^xd(H)& for disordered microstructures in the nondiffusi
regime. In this quantum-semiclassical hybrid approach, s
tering at the impurity potentials, which are assumed to
d-like, is treated quantum mechanically in a perturbation
ries with respect to the disorder. Boundary effects are inc
porated into a semiclassical representation of the Green f
tions, which enter into the impurity diagrams, in terms
classical paths. This method, therefore, takes into accoun
a systematic way, contributions from~closed! trajectories
which involve both scattering at impurities and specular
flection at the confinement potential. The procedure allo
us to study the complete crossover from diffusive to cle
systems. A preliminary brief account of this work has be
presented in Ref. 5.

Our approach carries features of the ‘‘method of trajec
ries’’ originally devised for thin superconducting films.13

Note that similar,14 and alternative,15 methods have been als
employed to consider weak localization in thin films in
parallel magnetic field. Related semiclassical approaches
diffusive systems were proposed by Chakravarty a
Schmid16 and Argaman, Imry, and Smilansky.17 More re-
cently, Agam and Fishman18 studied the spectral form facto
for ballistic systems with rigid disks~spheres! as impurities
from a quantum chaos point of view. We further note tha
nonperturbative approach for ballistic systems has been
veloped by Muzykantskii and Khmelnitskii: the ballistics
model.19

For real systems, besidesl, there are additional relevan
length scales at which inelastic scattering (Lf) or tempera-
ture smearing (LT) produce a damping of propagation. F
clarity, in the following we refer to such a length scale
Lf , although we assume that similar general arguments
hold for finite LT . For ballistic motion at the Fermi energ
EF , we can relateLf to the level broadeningg by

Lf

L
5

kFL

2p

D

g
. ~5!

This divides the ‘‘ballistic’’ regime into two subregimes. I
the first,L,Lf, l , the particle motion is nearly ballistic: th
damping~of the Green function! due to inelastic scattering
typically occurs before elastic impurity scattering; for t
remainder of this paper we refer to this regime asinelastic.
e
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In the second regime,L, l ,Lf , a particle may scatter man
times off impurities before scattering inelastically. We c
this regimeelastic. In our semiclassical treatment we co
sider the contribution of orbitsof all lengths~smaller than
vFtH , where tH'\/D is the Heisenberg time! in both the
elastic and inelastic regimes.

We present and compare results for noninteracting ba
tic quantum systems with integrable and chaotic class
dynamics in the clean limit. We derive analytical estima
for the average susceptibilitŷxd(H)& of generic chaotic mi-
crostructures, assuming ergodicity for the classical paths
volved. As an example of an integrable geometry, we trea
detail the representative case of the square billia
Experiments9 on the magnetic susceptibility of ensembles
squares were performed in the ‘‘ballistic’’ inelastic regim
motivating theoretical studies of the susceptibility f
L, l .4,20 Gefen, Braun, and Montambaux20 ~GBM! consid-
ered the contribution of trajectories longer thanl to ^xd(H)&
in an approximate way, finding a paramagneticl-independent
contribution at zero field, whereas Richter, Ullmo, a
Jalabert4 ~RUJ! calculated̂ xL(H)& for a square by assumin
that the disorder perturbs the phase, but not the trajectory
semiclassical paths of the corresponding clean geometry
the elastic regime we find agreement with the results
GBM with regard to thekFL behavior, while the zero-field
susceptibility is weakly dependent onl. In the inelastic re-
gime, for larger level broadening, we find entirely differe
results, namely, an exponential dependence onL/Lf and on
L/ l .

The present paper is organized as follows: In Sec. II
outline our combined semiclassical diagrammatic techniq
In Sec. III we illustrate our approach by applying it to th
case of integrable~square! billiards. We give analytical re-
sults for spectral correlation functions~at zero magnetic
field! and numerical results for the magnetic susceptibili
In Sec. IV we present the derivation of the correspond
disorder-induced spectral correlations and susceptibility
chaotic ballistic geometries.

II. SEMICLASSICAL DIAGRAMMATIC APPROACH

In this section we summarize our semiclassical evalua
of the disorder correlation functionKd @Eq. ~2a!#, and the
corresponding susceptibilitŷxd(H)&. To this end we begin
with the diagrammatic formulation of the problem, and th
perform the semiclassical approximations.

A. Diagrammatic framework

We consider noninteracting electrons in a weak, perp
dicular magnetic field and a random Gaussian potentiaV,
with ^V(r )&50 and correlator

^V~r !V~r 8!&5
\

2pn̄t
d~r2r 8!, ~6!

describing white noise disorder. In Eq.~6!, t is the mean
elastic scattering time,l 5vFt, and n̄5m/2p\2 in two di-
mensions. In terms of the retarded and advanced sin
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13 028 PRB 59EDWARD McCANN AND KLAUS RICHTER
particle Green functions obeying the boundary conditions
the corresponding clean system,G1(2)(r1 ,r2 ;«;H), the cor-
relatorKd may be written as

Kd~«1 ,«2 ;H !'S D2

2p2DRŠ^tr G1~«1 ;H !tr G2~«2 ;H !&‹d .

~7!

Here the average is taken over impurities only~for a given
system size! and the symbolŠ^ . . . &‹d implies the inclusion
of connected diagrams only.

We are particularly interested in the field sensitive pa
K̃d, of Kd. Following a diagrammatic approach introduced
Ref. 3, this can be expressed as

K̃d~e1 ,e2 ;H !5
D2

2p2

]

]e1

]

]e2
R(

n51

`
1

n
S n

(C)~v;H !, ~8!

with v5«12«2. The Cooperon type diagramsS n
(C) are de-

fined by

S n
(C)~v;H !5Tr@z (C)~v;H !#n

5S E )
j 51

n

ddr j D )
m51

n

z (C)~rm ,rm11 ;v;H !,

~9!

with rn11[r1 and

z (C)~r1 ,r2 ;v;H !

5
\

2pn̄t
G1~r1 ,r2 ;«1 ;H !G2~r1 ,r2 ;«2 ;H !.

~10!

Here G1(2)5^G1(2)&d is the disorder-averaged single
particle Green function. An example,S 4

(C) , is shown sche-
matically in Fig. 1~a!. Note that the sum of diagramsS n

(C) is
equivalent to a number of one-loop diagrams in the conv
tional notation: they include the dominant contribution toK̃d

in the diffusive regime ford.2 ~Ref. 21!, but are actually
smaller than some two-loop diagrams in a wide region
energies in the diffusive regime atd52 ~Ref. 22!. However
in the region of interest of this paper, the nondiffusive ‘‘ba
listic’’ regime, the diagramsS n

(C) dominate.

B. Semiclassical treatment

Due to the lack of translational invariance in confin
systems, it is no longer convenient to evaluate diagrams s

FIG. 1. The diagramsS n
(C) . ~a! shows a schematic form of th

diagramS 4
(C) . ~b! shows a pair of typical real space semiclassi

trajectories which contribute toS 4
(C) .
f

t,

-

f

ch

as that in Fig. 1 in momentum space. Instead we work
configuration space and compute integrals~9!, invoking a
semiclassical approximation.

Semiclassically, the single-particle Green functi
G1(r1 ,r2) can be expressed as a sum over classical tra
tories t betweenr1 and r2.23 After disorder averaging, it
reads4

G1~r1 ,r2!. (
t:r1→r2

Dt expS i

\
St~r1 ,r2!2

Lt

2l D . ~11!

The classical amplitudeDt includes the local density of tra
jectories near the patht, St stands for the classical actio
along the orbit including the Maslov index, andLt is the
orbit length. Equation~11! was derived in a semiclassica
framework under the assumption that weak disorder modi
merely the phasesSt , which leads to damping on the scale
l, leaving the trajectories unaffected; i.e., the sum is ta
over the paths of the corresponding clean system.

For the bulk case this treatment is equivalent to the us
diagrammatic treatment of disorder:4 For white noise the
self-consistent Born approximation leads to the following
tegral equation for the impurity-averaged single-parti
Green function:24

G1~r1 ,r2!5G1~r1 ,r2!1
\

2pn̄t

3E dr3G1~r1 ,r3!G1~r3 ,r3!G1~r3 ,r2!.

~12!

In the bulk caseG1(r3 ,r3) in the above equation is given i
terms of ‘‘paths of zero length’’ leading to the exponent
damping of the~free! Green function without disorder. Fo
confined systems further paths of finite length may semic

l

FIG. 2. Examples of diagonal pairs of real-space trajecto
with one impurity scattering position in a square.~a!, ~c!, and ~d!
show pairs of typical recurrent orbits with momentum exchange
the impurity which contribute tôxd(H)&, whereas~b! shows a pair
of orbits following periodic orbits of the corresponding clean sy
tem which contribute tôxL(H)&.
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PRB 59 13 029MAGNETIC SUSCEPTIBILITY OF DISORDERED . . .
sically contribute toG1(r3 ,r3). They can be viewed as path
scattered off the impurities which may lead to addition
corrections to the impurity averaged single particle Gre
function. However, these contributions are of higher orde
\ and 1/t.25

Upon using the semiclassical expression~11! in Eq. ~10!,
the two-particle operatorz (C)(r1 ,r2 ;v;H) is then given in
terms of a double sum over pairs of classical paths wh
explicitly include the effect of boundary scattering. How
ever, most pairs~of different paths! produce oscillating con-
tributions which we assume to vanish after energy or s
averaging.26 Therefore the main contribution to the field
sensitive part of̂Kd&L arises from diagonal terms~otherwise
known as the Cooperon channel! obtained by pairing paths
with their time reverse. Assuming that the magnetic fie
affects the phase of the particles but not their trajectories
the actions we can write

1

\
St~e i ;H !.

1

\
St~EF ;H50!1~e i2EF!Tt1

2p

w0
E

r1

r2
A•dr ,

~13!

whereTt is the period of the trajectory,A is the vector po-
tential, andw05hc/e. The diagonal approximation forz (C)

then gives

z (C)~r1 ,r2 ;v;H !5 (
t:r1→r2

z̃ t
(C)~r1 ,r2 ;v;H !, ~14!

where

z̃ t
(C)~r1 ,r2 ;v;H !

.
vFuDtu2

2pn̄ l
expF2

Lt

Lf
2

Lt

l
1 ivTt1 i

4p

w0
E

r1

r2
A•dr G .

~15!

The level broadening@implicit in Lf , Eq. ~5!# was intro-
duced viav→v1 ig. Equation~15! depends, besidesl, only
on the system without disorder, and holds for both integra
and chaotic geometries.

C. Disorder-induced magnetic response

Using Eqs.~3! and ~8!, the disorder-induced contributio
to the average magnetic susceptibility is given byw
5HL2/w0)

^xd~w!&
uxLu

'2
6

p2

]2

]w2 (
n51

`
1

n
S n

(C)~0;w!, ~16!

where the bulk Landau susceptibility isxL52e2/24pmc2

for spinless electrons.
Assuming thatl remains fixed askFL changes, one see

from Eqs. ~15! and ~16! that ^xd(w)& contains the dimen-
sionless variablesg/D and kFL only in the combination
(g/D)/kFL, since they are absorbed into the dimensionl
variableLf /L @Eq. ~5!#. It is now assumed thatS n

(C) in Eq.
~16! contain diagonal terms only. Therefore, the propaga
z (C) @Eq. ~14!# is made up of a summation over all diagon
pairs of paths including boundary scattering between
two given impurities situated atr1 and r2. On taking the
l
n
n

h

e

or

le

s

r
l
y

trace overn propagatorsz (C), one sees that the field sensitiv
part of Sn @Eq. ~9!# consists of a summation over flux
enclosing pairs of closed paths~in position space! involving
n impurities and an arbitrary number of boundary scatter
events. An example of a pair of paths contributing toS 4

(C) is
shown in Fig. 1~b!.

III. INTEGRABLE GEOMETRIES: SQUARE BILLIARDS

In the following we apply the above formalism to com
pute the magnetic response of an ensemble of disord
billiards with regular geometry. We illustrate the method a
present numerical results for the case of square billiards

A. Numerical technique

We consider specular reflection at the boundaries and
ploy the extended zone scheme20,27to write z (C)(r1 ,r2 ;v;H)
@Eq. ~14!# as a sum of propagators alongstraight-line paths

z̃ t
(C)(r1 ,r2

t ;v;H), of the form Eq.~15!, wherer2
t are images

of the positionr2. The diagramsS n
(C) @Eq. ~9!# are then cal-

culated by diagonalizingz (C). At zero magnetic field this
approach enables one to recover the result of Ref. 3 for
approximate diagonalization of the spectral correlation fu
tion Kd(«1 ,«2 ;H50), as outlined in the Appendix.

For a finite magnetic field the integrals over the magne
vector potential along the paths do not allow for an analyti
diagonalization ofz (C). However, we are able to use the fa
that all variations ofz (C) occur on classical length scale
rapid oscillations on the scale oflF cancel out. This enable
an efficient numerical computation. To this end we discret
the configuration space of the square billiard using a lat
with grid size greater thanlF . By summing over all trajec-
tories ~up to a length@Lf) which connect two lattice cells
we compute the corresponding matrix elements ofz (C) in
this representation. After diagonalization we obtain^xd(H)&
from Eq. ~16!.28 This method is not restricted to the squa
geometry, but can be in principle applied to any geometr

Note that the diagramsS n
(C) do not include closed pairs o

paths which follow periodic orbits of the correspondin
clean system. Such paths involve zero momentum tran
between the Green functions at the impurity positions. Th
actually represent disconnected diagrams and are include
^xL(H)&, which was computed in Ref. 4. It is the presence
these periodic orbits in the determination of^xL(H)& that
leads to strong sensitivity of the orbital magnetism with
spect to the system geometry.29,27,30 The above numerica
procedure does not distinguish between connected contr
tions toS1, with momentum exchange at the impurity as
Figs. 2~a!, 2~c!, 2~d!, and disconnected diagrams involvin
one common impurity position. The dominant disconnec
diagrams arise from the shortest flux enclosing periodic
bits of lengthLt52A2L @Fig. 2~b!#, and their repetitions. An
estimate of their magnitude is obtained following the a
proach of RUJ.4,27 On summation over all repetitions of th
fundamental orbit, we find

^x~0!&dis

uxLu
.

8A2

5p

L

l

1

sinh2@A2~L/ l 1L/Lf!#
. ~17!
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To avoid double counting we explicitly subtract this estim
tion from the numerical determination of^xd(H)&.

B. Zero-field susceptibility

We briefly summarize our results for the magnetic susc
tibility at zero field, and refer the reader to Ref. 5 for furth
details. The technique covers the whole range from the
fusive regime to the clean limit, and yields an averaged s
ceptibility which is always paramagnetic. In the diffusiv
limit, l ,L, the disorder-induced susceptibility increases l
early with l in agreement with Ref. 31. In the ballistic re
gime,^xd(0)& exhibits a maximum as a function ofl /L. The
occurrence of the maximum may be related to the comp
tion between different effects of the impurity scattering
z (C) @Eq. ~15!#; while the single-particle Green functions a
exponentially damped withl, l 21 enters into the prefactor.

In the elastic regime,L, l ,Lf , ^xd(0)& exhibits a weak
dependence onl, but is on the whole close to the predictio
by GBM,20 which is a paramagneticl-independent contribu
tion ^xd(0)&/uxLu'0.23 kFL(D/g). For largerl, in the in-
elastic regime,L,Lf, l , the susceptibility decays expone
tially with both L/ l and L/Lf . The disorder-induced
susceptibility^xd(0)& for l /L54 and a range ofLf /L in-
cluding both the elastic and inelastic regimes is shown as
solid line in Fig. 3. We also include the contributions
diagramsS n

(C) @Eq. ~9!# with a different numbern of impu-
rity scattering events in order to analyze their relat
weights. From the bottom, the dotted line corresponds
S 1

(C) only, the dash-dotted line toS 1
(C) and S 2

(C) , and the
short dashed line toS 1

(C) , S 2
(C) , andS 3

(C) . For complete-
ness, the long dashed line is the contribution of^xL(0)& ~see
below!. The solid line curve shows linear behavior in th
elastic regime, as predicted by GBM, and exponential beh
ior in the inelastic regime. In the limitLf! l , where^xd(0)&
is very small, the lowestn diagrams dominate, but forLf
. l a number of diagrams contribute significantly. We no
that, contrary to what was stated in Ref. 3, the contribut
from S 1

(C) is not particularly small through the whole rang
of L/Lf .

FIG. 3. Comparison of the relative contributions of diagra
S n

(C) to ^xd(0)& for l /L54 as a function ofLf /L. The solid line
corresponds to the inclusion of all diagrams while, from the botto
the dotted line corresponds toS 1

(C) only, the dash-dotted line to
S 1

(C) andS 2
(C) , and the short dashed line toS 1

(C) , S 2
(C) , andS 3

(C) .
The long dashed line is the contribution of^xL(0)&.
-

-

f-
s-

-

ti-

e

o
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C. Finite-field susceptibility

We compute the finite-field susceptibilitŷxd(H)& for
weak fields, assuming that the field does not perturb tra
tories away from their zero-field straight line paths; i.e., w
assumer c. l , where r c5\kFc/eH is the cyclotron radius.
Figure 4 showŝ xd(H)& for kFL560 andg/D51 (Lf /L
59.55). From the top~at H50), the mean free path isl /L
55, 10, 20, and 50. As the field increases fromH50 the
susceptibility falls in magnitude and eventually becomes d
magnetic. The field value at which the susceptibility cros
over to diamagnetic behavior decreases asl /L increases.
This implies that the typical area enclosed by a pair of rec
rent orbits increases withl. In the range of validity of the
above approach,l ,r c ,kFL2 and g*D, we do not observe
oscillations of ^xd(H)& as a function of field as seen b
GBM ~Ref. 20! ~albeit for a smaller value ofg/D).

D. Comparison of the combined semiclassical contributions
with quantum-mechanical results

In this section we compare semiclassical results
^xd(H)& and ^xL(H)& with numerical quantum calculation
taken from Ref. 4. In order to obtain an analytic express
for the contribution of size-induced correlations^xL(H)&,5

we employ the results of RUJ~Refs. 4 and 27! at zero tem-
perature, and introduce the level broadeningg in the same
way as for the disorder correlations. It has been shown29,27

that the low-field susceptibility of an ensemble ofclean
squares is dominated by the shortest flux enclosing perio
orbits of lengthLt52A2L and their repetitions over a broa
range of temperature~or correspondingly inelastic scatterin
strengths!. For the ballistic white noise case considered he
the effect of disorder averaging on the susceptibility w
described by an additional damping exp(2Lt /l) of the re-
sponse of the clean system.4 This result corresponds to
^xL(H)& including the disorder damping exp(2Lt /2l ) of the
two single-particle Green functions.

The numerical quantum calculations4 were obtained by
diagonalization of the Hamiltonian for noninteracting spi
less particles in a square billiard with perpendicular magn
field and white noise random potential. In this calculati
temperature smearing, rather than level broadening du
inelastic effects, was introduced.

,

FIG. 4. Field-dependent susceptibility^xd(H)& for a square for
kFL560 andg/D51 (Lf /L59.55). From the top~at H50), the
mean free path isl /L55, 10, 20, and 50.
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The full lines in Fig. 5 show the numerical results f
various disorder strengths as a function ofkFL. From the top,
the elastic mean free path isl /L58, 4, 2, and 1~at kFL
'70). As kFL changes, the mean free path is assumed
change also, according tol}kF .

The dashed curves in Fig. 5 are data taken from Ref. 4
the semiclassical evaluation of the contribution of siz
induced correlations to the susceptibility,^xL(H)&. We cal-
culated the contribution of the disorder-induced correlatio
^xd(H)&, using the approximation32 g/D'pkBT/D, and tak-
ing into account the variation of mean free path withkFL.
The resulting semiclassical evaluation of the total susce
bility, ^xL(H)&1^xd(H)&, is obtained by adding our result
to those given by the dashed curves; the results are show
dotted curves in Fig. 5.

For kFL*60 the agreement of the semiclassical~dotted!
curves with the quantum results is considerable; it is cl
that the difference between the semiclassical results
^xL(H)& and the quantum results is accounted for by
addition of^xd(H)&. However, even forkFL*60 the agree-
ment is not exact; we believe that this minor discrepanc
due to the different mechanisms of damping that were us

For kFL&60 there is worse agreement between the se
classical~dotted! curves and the quantum results. This m
be related to the fact that the semiclassical results show
sign of the oscillatory structure present in the quant
curves. This structure may be caused by off-diagonal pair
different families of short periodic orbits contributing t
^xL(H)&, which are not completely suppressed through
ergy average and are not included in the present semicl
cal approach.

FIG. 5. Disorder- and size-induced contributions to the susc
tibility. The mean susceptibility for small field,w50.15, and high
temperaturekBT/D52 (LT /L'1.8 at kFL570), for various dis-
order strengths, taking into account the variation of the mean
path with kF ; l}kF . From the top, the elastic mean free path
l /L58,4,2, and 1~at kFL'70). The full and dashed curves are da
from a quantum-mechanical calculation and from a semiclass
evaluation of the contribution of size-induced correlations, resp
tively, taken from Ref. 4. The dotted curve represents the sum
our semiclassical evaluation of the disorder-induced correlati
using g/D'pkBT/D, and the semiclassical data for size-induc
correlations from Ref. 4.
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E. Relation to experiment

Measurements of the orbital magnetism of ballistic s
tems, which are experimentally realized as semicondu
microstructures, are still rare.8,9 In the experiment of Ref. 9
the susceptibility of ensembles of squares was studied.
samples used had estimated values for the elastic mean
path of l /L;122, for the phase-coherence length of;(3
210)L and for a thermal cutoff length ofLT /L;2. There-
fore, the length scaleLf @Eq. ~5!# is determined by the
shorter lengthLT . Figure 5 shows that for these experime
tal parameters both the disorder and size-induced corr
tions are relevant; however, the latter contribution is dom
nant.

The above remarks hold for white noise disorder. Ho
ever, experimental ballistic structures such as those of Re
are usually characterized by smooth disorder potenti
Smooth disorder effects can be in principle incorporated i
the present calculation by introducing an angle-depend
cross section for the impurity scattering between two succ
sive trajectory segments. The effect of smooth disorder
^xL& was analyzed in Ref. 4, which showed that the red
tion of the clean contribution is not as strong as that
white noise disorder, and no longer exponential. We the
fore expect that in the parameter regime of the experim
the domination of the susceptibility by size-induced corre
tions is further enhanced when considering smoothed di
der.

The measured value of the susceptibility atlow tempera-
ture wasx(0);100uxLu, with an uncertainty of about a fac
tor of 4. The combined contributions^xd& and^xL&, together
with an interaction contribution of the same order,33 are in
broad agreement with the experimental result. We note, h
ever, that a theoretical explanation of the temperature dep
dence of the measured susceptibility is still lacking.

IV. CHAOTIC GEOMETRIES

For systems with a generic chaotic, clean counterpart
obtain an analytical estimate for^xd(0)& under certain sta-
tistical assumptions with respect to the classical trajecto
involved. To this end we make use of the relation17 (L2

denotes the system area!

\

pn̄
(

j :r1→r2

uD j u2d~ t2t j !5P~r1 ,r2 ;t ! ~18!

in order to transform the sums over classical densitiesuDtu2

in Eq. ~15! into classical probabilitiesP(r1 ,r2 ;t) to propa-
gate classically between impurities atr1 and r2 in time t.

In the following we assume that in the ‘‘ballistic’’ regim
l ,Lf@L the conditional probabilityP(r1 ,r2 ;tuA) to accu-
mulate an ‘‘area’’A during the propagation fromr1 andr2 is
independent ofr1 and r2. Following Ref. 29, which consid-
ered clean billiards, we find, from Eqs.~15! and ~18!,

p-

e

al
c-
of
s,
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z (C)~r1 ,r2 ;v;H !.
1

tE0

`

dtE
2`

`

dA P~r1 ,r2 ;tuA!cosS 4pAH

w0
DexpF2gt2

t

t
1 ivt G . ~19!
t
a

-

-
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try
We assume that after several bounces off the boundary
area distributionP(r1 ,r2 ;tuA) becomes Gaussian with
variances independent ofr1 and r2 and independent ofl.
Substituting the above expression forz (C) into Eq. ~9!, and
performing ther, t, andA integrals, we obtain the following
closed approximate form forS n

(C) :

S n
(C)~v;H !'H 8p2H2ls

w0
2

111gt2 ivtJ 2n

. ~20!

Summation of theS n
(C) @Eq. ~16!# leads to the disorder

induced contribution to the average susceptibility,

^xd~w!&
uxLu

'2
24

w0
2

]2

]w2
ln5

8p2w2ls

L4
1

l

Lf

11
8p2w2ls

L4
1

l

Lf

6 , ~21!

wherew5HL2/w0. It is possible to obtain an explicit expres
sion for ^xd(w)& analytically. For brevity we give only the
limits.

The susceptibility has a paramagnetic maximum for z
field,

^xd~0!&
uxLu

.
96sLf

2

L4~Lf1 l !
, ~22!

and it changes sign only once, for example in the ela
regime at the critical flux:

wc
2'

L3

8p2s~Lf /L !
, Lf. l . ~23!

For a large field,w@wc , the susceptibility remains diamag
netic and decays rapidly:

FIG. 6. Field-dependent susceptibility^xd(H)& ~normalized! for
a generic chaotic geometry forkFL560 and g/D51 (Lf /L
59.55). From the top~at H50), the mean free path isl /L
55, 10, 20, and 50.
he

o

ic

^xd~w!&
uxLu

;2
6L3

p4s~ l /L ! w4
. ~24!

The susceptibility as a function of field is plotted in Fig.
for kFL560 andg/D51 (Lf /L59.55). Various disorder
strengths are shown, from the top~at H50), l /L55,10,20,
and 50. These curves are qualitatively similar to those for
square geometry shown in Fig. 4. This may be related to
fact that for trajectories being~multiply! scattered at impuri-
ties the character of the clean geometry, namely, regula
chaotic, is of minor importance. Note, however, that the cl
sical variances determines the height and the correlati
field wc .

The susceptibility^xd(0)& as a function ofLf for l /L
52 is shown as the dash-dotted line in Fig. 7 and a co
sponding approximation for̂xL(0)& ~Ref. 27! for finite Lf ,

^xL~0!&
uxLu

.
96sLfl

L4~Lf1 l !
, ~25!

is shown as the short dashed line in Fig. 7. The two con
butions@Eqs.~22! and~25!# add up to anl-independentmag-
netic response

^x~0!&
uxLu

.
96sLf

L4
, ~26!

which is the same as that for clean chaotic systems, given
assumption of anl-independent variance.

For comparison, results for the square geometry as a fu
tion of Lf for l /L52 are also presented in Fig. 7. The so
line shows our numerical results for^xd(0)&, and the long
dashed line showŝxL(0)& ~see Ref. 5 for more details!. The
Lf dependence also shows a qualitative similarity betw
the disorder-induced susceptibility in the square geome

FIG. 7. Contributions to the susceptibility forkFL560 and
l /L52, with ~normalized! semiclassical estimates for̂xd(0)&
~dash-dotted line! and ^xL(0)& ~short dashed line! for a generic
chaotic geometry and for̂xd(0)& ~solid line! and ^xL(0)& ~long
dashed line! for a square geometry.x05uxLu for the square geom-
etry anduxLuL3/96s for the chaotic geometry.
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and the chaotic geometry. Naturally, the square and the
otic billiard show quite different behaviors for the siz
induced susceptibility. For the square a crossover from do
nation by disorder-induced correlations to domination
size-induced correlations occurs forLf; l 2, which contrasts
with chaotic geometries where the crossover occurs forLf
5 l .

V. CONCLUDING REMARKS

We considered disorder-induced spectral correlations
mesoscopic quantum systems in the nondiffusive regime.
combined a diagrammatic treatment of the disorder wit
semiclassical approach for the Green functions involv
This leads to a representation of the diagrams involved
terms of ~pairs of! classical paths in real space which u
dergo both~multiple! scattering at the impurities and refle
tions at the system boundaries. This hybrid-type appro
enables us to perform disorder and energy averages, an
study the complete crossover from the diffusive to the cle
limit for arbitrary values of the elastic mean free pathl and
Lf ~smaller thanvFtH). In particular, it is applicable to bal
listic microstructures of, in principle, arbitrary geometr
The approach, presented here for billiard systems, also
plies to systems with potentials whose effect is then inc
porated into the semiclassical Green functions.

We focused on the effect of disorder-induced correlatio
on the averaged magnetic susceptibility which is closely
lated to the spectral number variance, and which amoun
evaluating Cooper-type contributions to the correlator. C
responding diffuson-type diagrams can be computed equ
lently. As an example of a system with an integrable cle
counterpart, we treated in detail the~experimentally relevant!
square billiard. We showed that there are two distinct
gimes of behavior depending on the relative magnitudesl
a-

i-
y

of
e

a
.

in

h
to

n

p-
r-

s
-
to
r-
a-
n

-
f

andLf . Certain statistical assumptions on the trajectories
ballistic systems with a generic chaotic geometry enabled
to derive approximate analytical expressions for the disord
induced magnetic response. It turns out that the magne
field dependence andLf dependence of the susceptibility,
least qualitatively, resemble that of the integrable case. T
implies that the actual geometry of the clean system is
minor importance for the disorder-induced orbital magneti
even in the ballistic regime.
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APPENDIX: DIAGONALIZATION OF z OPERATORS FOR
ZERO FIELD

In this appendix we show that within the semiclassic
approach the analytical diagonalization of thez operators
@Eq. ~10!# for a square geometry at zero field is possible a
straightforward. We employ the extended zone sche
which is constructed by reflecting the original billiard wit
respect to its boundaries. Any given trajectory connect
r1[(x1 ,y1) and r2[(x2 ,y2) involving an arbitrary number
of specular reflections at the boundaries is transformed in
straight-line path connectingr1 and r2

t , where r2
t [(6x2

12nxL,6y212nyL) is an image of the positionr2
[(x2 ,y2), and nx and ny are integers. As a result a sem
classical propagatorz (C)(x1 ,y1 ;x2 ,y2) may be written as a
sum of propagators,z̃ (C)(x1 ,y1 ;x2

t ,y2
t ), along straight-line

trajectories,
a

g

z (C)~x1 ,y1 ;x2 ,y2!5 (
nx52`

`

(
ny52`

`

z̃ (C)~x1 ,y1 ;6x212nxL,6y212nyL !. ~A1!

Sincez̃ (C) is dependent only on the distancesX[(x2
t 2x1) andY[(y2

t 2y1) along a straight line it is possible to introduce
Fourier transforml(qx ,qy) and, using the Poisson summation rule, we may write

z (C)~x1 ,y1 ;x2 ,y2!5 (
mx ,my52`

` E
2`

1` dqxdqy

~2p!2 4 l~qx ,qy!cos~qxx1!cos~qyy1!dS qxL

p
2mxD dS qyL

p
2myDe$ iqxx21 iqyy2%.

~A2!

Performing the integrals gives quantized momentum valuesqx5mxp/L, qy5myp/L and

z (C)~x1 ,y1 ;x2 ,y2!5
1

L2 Fl~0,0!14 (
mx51

`

(
my51

`

lS mxp

L
,
myp

L D cosS mxpx1

L D cosS mypy1

L D cosS mxpx2

L D cosS mypy2

L D
12 (

mx51

`

lS mxp

L
,0D cosS mxpx1

L D cosS mxpx2

L D12 (
my51

`

lS 0,
myp

L D cosS mypy1

L D cosS mypy2

L D G .

~A3!

Althoughz (C)(x1 ,y1 ;x2 ,y2) is not translationally invariant, it does have a periodicity of 2L. The diagramsSn may be written
in terms of the Fourier transforml(qx ,qy) by inserting the above expression into Eq.~9!. Spatial integrals are performed usin
the following relation:
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E
0

Ldx

L
cosS mxpx

L D cosS mx8px

L D5
1

2
~dmx ,mx8

1dmx ,2mx8
!, ~A4!

and the result is

S n
(C,D)5 (

mx50

`

(
my50

` FlS mxp

L
,
myp

L D Gn

. ~A5!

In order to evaluatel(qx ,qy), we Fourier transform the expression for the semiclassical operatorz̃ t
(C) @Eq. ~15!# performing

integrals overX and Y. By changing from Cartesian coordinates (X,Y) to polar coordinates (r ,u), the radial integration is
done, giving

l~qx ,qy!5
1

2pE0

2p du

~11gt2 ivt!1 i l ~qxcosu1qysinu!
, ~A6!

and we find

l~qx ,qy!5
1

A~11gt2 ivt!21~ lq !2
, ~A7!

whereq25qx
21qy

2 . This result is in agreement with the approximate diagonalization of Ref. 3. Together with Eq.~8!, it gives
the spectral correlation function in the ‘‘ballistic’’ regime.
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