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Magnetic susceptibility of disordered nondiffusive mesoscopic systems
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Disorder-induced spectral correlations of mesoscopic quantum systems in the nondiffusive regime, and their
effect on the magnetic susceptibility, are studied. We perform impurity averaging for nontranslational invariant
systems by combining a diagrammatic perturbative approach with semiclassical techniques. This allows us to
study the entire range from clean to diffusive systems. As an application we consider the magnetic response of
noninteracting electrons in microstructures in the presence of weak disorder. We show that in the ballistic case
(an elastic mean free pathiarger than the system sizthere exist two distinct regimes of behavior depending
on the relative magnitudes bfand an inelastic scattering lendth,. We present numerical results for square
billiards, and derive approximate analytical results for generic chaotic geometries. The magnetic-field depen-
dence and thé , dependence of the disorder-induced susceptibility are qualitatively similar in both types of
geometry[S0163-182609)02020-2

I. INTRODUCTION sponding to the experimental situation of an ensemble of
disordered systems with variation in their sizes. Then one is
Mesoscopic physics has traditionally involved the studyable to divide the two-level correlation functidfi(e,,e;),
of phenomena in phase-coherent, disordered conduttars. into two separate ternts,
the diffusive regime, where the elastic mean free gaih e sud _ L _
much smaller than the system sike the electron motion K(e1,e2;H)=(K(e1,82;H))+ K (e1,823H). (1)
resembles that of a random walk between impurities. Here
The more recent development of high-mobility semicon- o
ductor heterostructures together with advanced lithographic K9(ey,e,)=[(v(e1)v(2))g—(¥(e1))a(¥(&2))ql/V?,
techniques has led to the confinement of electrons in two-
dimensional microstructures of controllable, nonrandom ge-
ometry. Thereby, a further regime, coined “ballistic” since K (e1,80)=(v(e0))a(v(e2))ad [P -1, (2b)
I>L has been realized. Such technological achievements _
have motivated theoretical approaches where the actual mivhere v denotes the single-particle density of states and
crocavities are approximated by “clean” quantum billiards, ={(»(e))a) its mean partK® is a measure offisorder-
ignoring impurity scattering completely. In these models theinduced correlations of the density of states, whi- is
electron motion is only affected by bounces at the confinegiven by size-induceccorrelations. In a diffusive systerh,
ment potential, which is the opposite case to the diffusive<L, the disorder-averaged density of stategs))4 is a con-
regime where confinement effects are not important on timstant, so thak" is vanishingly small anck® dominates.
scales shorter than the Thouless time. However, forl >L the density of states contains terms which
However, residual impurity scattering is nearly unavoid-oscillate like cog{L), and both correlation functions may be
able even in high-mobility microstructures. It has beenrelevant. In contrast, once>L (keL)? ", disorder-induced
shown that weak disorder can be strong enough to mix emixing of levels is negligible ané&" prevails.
ergy levels, influence spectral statisticsand affect related The orbital magnetism of mesoscopic quantum systems is
thermodynamic quantitiésn the “ballistic” regime. sensitive to spectral correlations as, e.g., measured by
In defining spectral correlation functions in the “ballis- K(eq,e,), and therefore has been the subject of much theo-
tic” regime, one has to distinguish between disorder averagretical interestas well as experimental investigatiohs.For
ing, which we denote by(---)4, and size averaging, isolated systems with a fixed number of particles it is neces-
(---)L, which we assume to be equivalent to energy aversary to consider averaging under canonical conditf8ns,
aging. Pure disorder averaging corresponds to the expernesulting in a large contribution to the average magnetic re-
mental situation of an ensemble of weakly disordered microsponse which can be by orders of magnitude larger than the
structures of the same size. Recent work has shown that f@bulk) Landau diamagnetism. The corresponding susceptibil-
this case spectral correlation functions contain, and are ofteity is given by'?
dominated by, strong oscillatory structures in enefgn

scaleskrL, kg being the Fermi wave numbereflecting the 2 )

presence of the confinemettt.They can be semiclassically (x(H))= _(E WQN (miH)) ©)
interpreted as density-of-states oscillations related to classi-

cal periodic orbits of the corresponding clean system. for temperature&gT larger than the mean level spacing

In the present work we consider spectral correlations aftem Eq. (3), H is the magnetic field andoN?(u;H)) is the
both energy andiindependent disorder averaging corre- variance in the number of energy levels within an energy
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interval of width equal to the chemical potential, This  In the second regimé,<I<L,, a particle may scatter many
variance is related t&(eq,e5;H) [Eq. (1)], by integration times off impurities before scattering inelastically. We call
of the level energies:; and s, over the energy interval. this regimeelastic In our semiclassical treatment we con-
Throughout this work we will label the contributions to the sider the contribution of orbitef all lengths(smaller than
susceptibility, corresponding K%, andK', as(x%(H))  vety, wherety~#%/A is the Heisenberg timein both the
and(x“(H)), respectively. Hence the total orbital magnetic elastic and inelastic regimes.
susceptibility is composed of We present and compare results for noninteracting ballis-
tic quantum systems with integrable and chaotic classical
dynamics in the clean limit. We derive analytical estimates
OX(HD))Y=(xAH)) + (x-(H)). (4)  for the average susceptibility®(H)) of generic chaotic mi-
crostructures, assuming ergodicity for the classical paths in-
Jolved. As an example of an integrable geometry, we treat in
usually designed for diffusive systemssL, and therefore detaill the representative _case of. Fhe square billiard.
rely on the assumption of translational invariance. In thisExperiment$ on the magnetic su:<;‘cep_t|b'|l|'t,y_of ensembles of
paper we combine a diagrammatic perturbation approachduares were performed in the “ballistic” inelastic regime,
with semiclassical techniques to perform energy and impuMetivating theoretical studies of the ~susceptibility for
ity averaging and to calculate the disorder-induced part of <!~ Gefen, Braun, and Mor_1tamba2t9x(GBM) cdon3|d—
the energy correlation function and the related susceptibiliggred the contribution of trajectories longer tHeto (x“(H))
(x%(H)) for disordered microstructures in the nondiffusive " @1 approximate way, finding a paramagnéiiedependent
regime. In this quantum-semiclassical hybrid approach, scagontribution at zero f'eld'L whereas Richter, Ullmo, and
tering at the impurity potentials, which are assumed to pelalabert (RUJ calculated x“(H)) for a square by assuming
s-like, is treated quantum mechanically in a perturbation sethat the disorder perturbs the phase, but not the trajectory, of
ries with respect to the disorder. Boundary effects are incorSemiclassical paths of the corresponding clean geometry. In
porated into a semiclassical representation of the Green fun{l€ €lastic regime we find agreement with the results of
tions, which enter into the impurity diagrams, in terms of GBM with regard to thekeL behavior, while the zero-field
classical paths. This method, therefore, takes into account, #HSCeptibility is weakly dependent dnin the inelastic re-
a systematic way, contributions froftlosed trajectories  9IMe, for larger level broademng, we find entirely different
which involve both scattering at impurities and specular reJ€sults, namely, an exponential dependencé dry, and on
flection at the confinement potential. The procedure allowd-/!- ) .
us to study the complete crossover from diffusive to clean 1he present paper is organized as follows: In Sec. Il we

systems. A preliminary brief account of this work has beerPutline our combined semiclassical diagrammatic technique.
presented in Ref. 5. In Sec. Il we illustrate our approach by applying it to the

Our approach carries features of the “method of trajecto°@Se of integrablésquarg billiards. We give analytical re-
ries” originally devised for thin superconducting filfk. Sults for spectral correlation function@t zero magnetic
Note that similart and alternativé® methods have been also field) and numerical results for. the_ magnetic suscept|b|I|.ty.
employed to consider weak localization in thin films in a!n S€c. IV we present the derivation of the corresponding
parallel magnetic field. Related semiclassical approaches féfisorder-induced spectral correlations and susceptibility for
diffusive systems were proposed by Chakravarty andhaotic ballistic geometries.

Schmid® and Argaman, Imry, and Smilansk{.More re-
cently, Agam and Fishmahstudied the spectral form factor
for ballistic systems with rigid diskéspheresas impurities
from a quantum chaos point of view. We further note that a In this section we summarize our semiclassical evaluation
nonperturbative approach for ballistic systems has been def the disorder correlation functiok® [Eq. (2a)], and the
veloped by Muzykantskii and Khmelnitskii: the ballistie  corresponding susceptibilityy®(H)). To this end we begin
model*® with the diagrammatic formulation of the problem, and then

For real systems, besidésthere are additional relevant perform the semiclassical approximations.
length scales at which inelastic scatteririg,) or tempera-
ture smearing I(7) produce a damping of propagation. For
clarity, in the following we refer to such a length scale as
L4, although we assume that similar general arguments will We consider noninteracting electrons in a weak, perpen-
hold for finite L. For ballistic motion at the Fermi energy dicular magnetic field and a random Gaussian potenjal

Diagrammatic techniques to treat impurity scattering ar

II. SEMICLASSICAL DIAGRAMMATIC APPROACH

A. Diagrammatic framework

Er, we can relatd , to the level broadening by with (V(r))=0 and correlator
L kel A
2=5-=. (5) ]
Ty (V(NV(r')y=—=25(r—r’), (6)
2TVvT

This divides the “ballistic” regime into two subregimes. In

the first,L,L 4<I, the particle motion is nearly ballistic: the . ) ) ) .

damping(of the Green functiondue to inelastic scattering describing white noise disorder. In E(f), 7 is the mean
typically occurs before elastic impurity scattering; for the elastic scattering timd,=vg7, and v=m/27#2 in two di-
remainder of this paper we refer to this regimeirsdastic = mensions. In terms of the retarded and advanced single-
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(a) (b)

FIG. 1. The diagrams$© . (a) shows a schematic form of the ()
diagramsS ). (b) shows a pair of typical real space semiclassical
trajectories which contribute t§§°) .
particle Green functions obeying the boundary conditions of
the corresponding clean systegh' (7)(r,,r,:e;H), the cor-
relatorK9 may be written as

(d
2
Kd(sl,sz;H)~ _) RUr G (e HIr G (e5;H)))g- FIG. 2. Examples of diagonal pairs of real-space trajectories
22 with one impurity scattering position in a squata), (c), and(d)

(7) show pairs of typical recurrent orbits with momentum exchange at
the impurity which contribute tgx?(H)), whereagb) shows a pair

of orbits following periodic orbits of the corresponding clean sys-
tem which contribute tgx“(H)).

Here the average is taken over impurities offlyr a given
system sizeand the symbo({ . . .))q implies the inclusion
of connected diagrams only.

We are particularly interested in the field sensitive part,

K¢, of K. Following a diagrammatic approach introduced inas that in Fig. 1 in momentum space. Instead we work in
Ref. 3, this can be expressed as configuration space and compute integréd$, invoking a
semiclassical approximation.

Semiclassically, the single-particle Green function
G™*(r,,r,) can be expressed as a sum over classical trajec-

_ ) c tories t betweenr, and r,.2® After disorder averaging, it
with =g, —&,. The Cooperon type diagran®") are de- readé

fined by

- A2 g 9 Q1
d ‘Hy = — (S
K(ereaiH)=—— 5 aEZRnZl ~Si(wiH), (8

S (w;H) =TI O (w;H)"

i L
(J N . Gr(ry,r)= >, Dtex;{;i—st(rl,rz)—z—lt). (11
= H ddri) ]._.[ g(c)(rmarerl;w;H)r
=1 m=1

tiry—rjp

The classical amplitud®, includes the local density of tra-
(9)  jectories near the path S, stands for the classical action

with r,, ;=r; and along the orbit including the Maslov index, and is the
orbit length. Equation11) was derived in a semiclassical
Oy, rpw:H) framework under the assumption that weak disorder modifies

merely the phaseS;, which leads to damping on the scale of
I, leaving the trajectories unaffected; i.e., the sum is taken
over the paths of the corresponding clean system.
For the bulk case this treatment is equivalent to the usual
(100 diagrammatic treatment of disordérEor white noise the
Here G*(7)=(g*(7)), is the disorder-averaged single- Self-consistent Born approximation leads to the following in-

particle Green function. An examplé‘,ﬁlc), is shown sche- tegral equation for the impurity-averaged single-particle

matically in Fig. 1a). Note that the sum of diagran®© is ~ CGreen functiort
equivalent to a number of one-loop diagrams in the conven-

h
=——G"(ry,ry;e1;H)G (rq,r5;85;H).
2TvT

tional notation: they include the dominant contributiorktd GH(ry,r)=G"(ry,ry)+ ﬁ_

in the diffusive regime fod>2 (Ref. 21), but are actually 27vT

smaller than some two-loop diagrams in a wide region of

energies in the diffusive regime dt=2 (Ref. 22. However XJ drsG (ry,r3)G*(ra,r3)G (ra,ry).

in the region of interest of this paper, the nondiffusive “bal-

listic” regime, the diagramss(®) dominate. (12)

In the bulk case&G " (r3,r3) in the above equation is given in

terms of “paths of zero length” leading to the exponential
Due to the lack of translational invariance in confineddamping of the(free) Green function without disorder. For

systems, it is no longer convenient to evaluate diagrams suatonfined systems further paths of finite length may semiclas-

B. Semiclassical treatment
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sically contribute taG* (r3,r3). They can be viewed as paths trace ovem propagatorg(©), one sees that the field sensitive

scattered off the impurities which may lead to additionalpart of S, [Eq. (9)] consists of a summation over flux-

corrections to the impurity averaged single particle Greerenclosing pairs of closed patkis position spacginvolving

function. However, these contributions are of higher order imn impurities and an arbitrary number of boundary scattering

# and 1£.2° events. An example of a pair of paths contributingSt’ is
Upon using the semiclassical expressiad) in Eq. (10), shown in Fig. 1b).

the two-particle operatot(®)(r,r,;w;H) is then given in

terms of a double sum over pairs of classical paths which

explicitly include the effect of boundary scattering. How- lll. INTEGRABLE GEOMETRIES: SQUARE BILLIARDS

ever, most pairsof different paths produce oscillating con- | the following we apply the above formalism to com-

tributions \éVh'Ch we assume to vanish after energy or sizgyyte the magnetic response of an ensemble of disordered

averaging”® Therefore the main contribution to the field- pjlliards with regular geometry. We illustrate the method and

sensitive part ofK®), arises from diagonal termstherwise  present numerical results for the case of square billiards.
known as the Cooperon chanhebtained by pairing paths

with their time reverse. Assuming that the magnetic field

affects the phase of the particles but not their trajectories, for A. Numerical technique

the actions we can write We consider specular reflection at the boundaries and em-

1 1 2 (s ploy the extended zone scheth&’to write g(c_)(rl PHCHL)

gst(fi ;H)Z%S[(EF;H =0)+(&—Ep) T+ _f A-dr, LEq. (14)] as a sum of propagators alosgaight-line paths
¢oJry ZO(rq,rh;w;H), of the form Eq.(15), wherer), are images

(13 of the positionr,. The diagramss(©) [Eq. (9)] are then cal-
whereT, is the period of the trajectoryA is the vector po- culated by diagonalizing(®). At zero magnetic field this
tential, andg,=hc/e. The diagonal approximation faf®  approach enables one to recover the result of Ref. 3 for the

then gives approximate diagonalization of the spectral correlation func-
tion KY(e,,e,;H=0), as outlined in the Appendix.

©(r 1w H)= FO(r 1w H 14 For a finite magnetic field the integrals over the magnetic

FErrziwH) t:r%rz forrieiH), (14 vector potential along the paths do not allow for an analytical

diagonalization of(®). However, we are able to use the fact
that all variations of¢(®) occur on classical length scales;
(F1.fy @ H) rapid oscillations on the scale af cancel out. This enables
o2 an efficient numerical computation. To this end we discretize
ve| D2 ;{ L L, . 4 (12 th'e configgration space of the square pilliard using a lattice
= exg — —— —+ioT+i —j A-dr}. with grid size greater thah . By summing over all trajec-
Ly | ®0Jr; tories (up to a length>L ,) which connect two lattice cells,
(15 we compute the corresponding matrix elements{ & in
o ) this representation. After diagonalization we obtgyi(H))
The level broadenindimplicit in L, Eq. (5] was intro-  fqm Eq.(16).28 This method is not restricted to the square
duced viaw— w+iy. Equation(15) depends, besidésonly  yeometry, but can be in principle applied to any geometry.
on the system WIthOL!t disorder, and holds for both integrable Note that the diagramggc) do not include closed pairs of
and chaotic geometries. paths which follow periodic orbits of the corresponding
_ _ ) clean system. Such paths involve zero momentum transfer
C. Disorder-induced magnetic response between the Green functions at the impurity positions. They
Using Egs.(3) and(8), the disorder-induced contribution actually represent disconnected diagrams and are included in
to the average magnetic susceptibility is given by ( (x“(H)), which was computed in Ref. 4. Itis the presence of

where

7(©)

2l

=HL% ¢y) these periodic orbits in the determination @f-(H)) that
leads to strong sensitivity of the orbital magnetism with re-
(x%e)) 6 2 21 © spect to the system geomet’?’*° The above numerical
A =T F nEl ﬁsn (0;0), (16) procedure does not distinguish between connected contribu-
T JdpT n=

tions to S;, with momentum exchange at the impurity as in
where the bulk Landau susceptibility jg = —e%24rmc?  Figs. 2a), 2(c), 2(d), and disconnected diagrams involving
for spinless electrons. one common impurity position. The dominant disconnected
Assuming that remains fixed a&:L changes, one sees diagrams arise from the shortest flux enclosing periodic or-
from Egs.(15) and (16) that (x%(¢)) contains the dimen- bits of lengthL=22L [Fig. 2(b)], and their repetitions. An
sionless variablesy/A and kgL only in the combination e€stimate of their magnitude is obtained following the ap-
(¥/A)/keL, since they are absorbed into the dimensionlesgroach of RUf-'z? On summation over all repetitions of the
variableL 4 /L [Eq. (5)]. It is now assumed tha{~ in Eq. fundamental orbit, we find
(%CG; [cont?in)?iagonzl terms]c only. Therefore, thelr(rjopagatcljr
'™ [EQ. (14)] is made up of a summation over all diagona ,
pairs of paths including boundary scattering between any <X(0)>d'sz 8\/§E ! )
two given impurities situated at; andr,. On taking the ba S 1 sint?[V2(L/1+L/Ly)]

17
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FIG. 3. Comparison of the relative contributions of diagrams

S to (x4(0)) for I/L=4 as a function oL 4/L. The solid line

corresponds to the inclusion of all diagrams while, from the bottom,

the dotted line corresponds ®{) only, the dash-dotted line to
S® ands, and the short dashed line &%, S, ands{®) .
The long dashed line is the contribution @f-(0)).

tion from the numerical determination 6f%(H)).

B. Zero-field susceptibility

FIG. 4. Field-dependent susceptibility®(H)) for a square for
keL=60 andy/A=1 (L,/L=9.55). From the togat H=0), the

mean free path i§/L=5, 10, 20, and 50.

C. Finite-field susceptibility

We compute the finite-field susceptibilitgy?(H)) for
weak fields, assuming that the field does not perturb trajec-
To avoid double counting we explicitly subtract this estima-tories away from their zero-field straight line paths; i.e., we
assumer .>>1, wherer . =7kgc/eH is the cyclotron radius.
Figure 4 showsx“(H)) for keL=60 andy/A=1 (L,/L
=9.55). From the togat H=0), the mean free path isL

We briefly summarize our results for the magnetic suscep=>5: 10, 20, and 50. As the field increases fréf=0 the
tibility at zero field, and refer the reader to Ref. 5 for further Susceptibility falls in magnitude and eventually becomes dia-
details. The technique covers the whole range from the dif"agnetic. The field value at which the susceptibility crosses
fusive regime to the clean limit, and yields an averaged susQver to diamagnetic behavior decreaseslAs increases.
ceptibility which is always paramagnetic. In the diffusive This implies that the typical area enclosed by a pair of recur-
limit, 1<L, the disorder-induced susceptibility increases lin-rént orbits increases W'thz In the range of validity of the
early with | in agreement with Ref. 31. In the ballistic re- above approachl,<re keL™ and y=A, we do not observe
gime, (x4(0)) exhibits a maximum as a function bfl.. The ~ oscillations of (x“(H)) as a function of field as seen by
occurrence of the maximum may be related to the competiGBM (Ref. 20 (albeit for a smaller value of/A).
tion between different effects of the impurity scattering on
{© [Eq. (15)]; while the single-particle Green functions are D. Comparison of the combined semiclassical contributions
exponentially damped with |~ enters into the prefactor. with quantum-mechanical results

In the elastic regimel, <I <L, (x%(0)) exhibits a weak In this section we compare semiclassical results for
dependegoce oh but is on the whole close to the prediction {x%(H)) and(x-(H)) with numerical quantum calculations
by GB'X" which is a paramagnetieindependent contribu-  {aken from Ref. 4. In order to obtain an analytic expression
tion (x°(0))/|x|~0.23 keL(Al). For largerl, in the in- {5 the contribution of size-induced correlationg"(H)),”
elastic regimel,L 4<I, the susceptibility decays exponen- e employ the results of RURefs. 4 and 2Vat zero tem-
tially with both L/I and L/L,. The disorder-induced perature, and introduce the level broadeningn the same
susceptibility(x“(0)) for I/L=4 and a range of,/L in-  \ay as for the disorder correlations. It has been sR3#n
cIung bo.th th_e elastic and me]astm regimes is .c_,hoyvn as thgat the low-field susceptibility of an ensemble cfean
solid line I(nC)FIg. 3. We also include the contributions of sqyares is dominated by the shortest flux enclosing periodic
diagramsS,~’ [Eq. (9)] with a different numben of impu- — qrpjts of lengthlL,=22L and their repetitions over a broad
rity scattering events in order to analyze their relativerange of temperaturer correspondingly inelastic scattering
wec|ghts. From the bottom, the do(t:ted line gorresponds Qtrengths For the ballistic white noise case considered here,
S{9) only, the dash-dotted line t6{”) and S, and the  the effect of disorder averaging on the susceptibility was
short dashed line t&§”, S, and S{”. For complete-  described by an additional damping ex(/l) of the re-
ness, the long dashed line is the contributiof@f(0)) (see  sponse of the clean systéhiThis result corresponds to
below). The solid line curve shows linear behavior in the (y“(H)) including the disorder damping exp(, /2l) of the
elastic regime, as predicted by GBM, and exponential behauwo single-particle Green functions.
ior in the inelastic regime. In the limlt ,<I, Where<)(d(0)> The numerical quantum calculatiénwere obtained by
is very small, the lowesh diagrams dominate, but fdr,  diagonalization of the Hamiltonian for noninteracting spin-
>| a number of diagrams contribute significantly. We noteless particles in a square billiard with perpendicular magnetic
that, contrary to what was stated in Ref. 3, the contributiorfield and white noise random potential. In this calculation
from S(lc) is not particularly small through the whole range temperature smearing, rather than level broadening due to
of L/L,. inelastic effects, was introduced.
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10 : ; ; : : . E. Relation to experiment

Measurements of the orbital magnetism of ballistic sys-
tems, which are experimentally realized as semiconductor
microstructures, are still rafe In the experiment of Ref. 9
the susceptibility of ensembles of squares was studied. The
samples used had estimated values for the elastic mean free
path ofl/L~1-2, for the phase-coherence length-ef{3
—10)L and for a thermal cutoff length df;/L~2. There-
fore, the length scald , [Eq. (5)] is determined by the
shorter length_ ;. Figure 5 shows that for these experimen-

o == . . : . . ) o i
50 55 60 65 70 75 80 85 t_al parameters both the disorder and size _mdL_Jceo_I corre!a
kL tions are relevant; however, the latter contribution is domi-
nant.

FIG. 5. Disorder- and size-induced contributions to the suscep- The above remarks hold for white noise disorder. How-
tibility. The mean susceptibility for small field,=0.15, and high  ever, experimental ballistic structures such as those of Ref. 9
temperaturekgT/A=2 (L1/L~1.8 atkeL=70), for various dis- are usually characterized by smooth disorder potentials.
order s.trengths, taking into account the varigtion of the mean fregmooth disorder effects can be in principle incorporated into
path with ke ; |=<ke. From the top, the elastic mean free path is yhe nresent calculation by introducing an angle-dependent
/L=8,4,2, and J(athL~_70). The fu”.and dashed curves are da.ta (ross section for the impurity scattering between two succes-
from a quantum-mechanical calculation and from a semiclassical.

evaluation of the contribution of size-induced correlations, respec-swe trajectory segments. The effect of smooth disorder on

L . .
tively, taken from Ref. 4. The dotted curve represents the sum ofX ) was analyzed in Ref. 4, which showed that the reduc-

our semiclassical evaluation of the disorder-induced correlationdion of the clean contribution is not as strong as that for
using y/A~ kg T/A, and the semiclassical data for size-inducedWhite noise disorder, and no longer exponential. We there-

correlations from Ref. 4. fore expect that in the parameter regime of the experiment
the domination of the susceptibility by size-induced correla-
tions is further enhanced when considering smoothed disor-
der.

The measured value of the susceptibilitylawv tempera-
ture wasy(0)~ 100 x, |, with an uncertainty of about a fac-
tor of 4. The combined contributiofg®) and{x"), together

ith an interaction contribution of the same ord&are in

road agreement with the experimental result. We note, how-
ever, that a theoretical explanation of the temperature depen-
dence of the measured susceptibility is still lacking.

The full lines in Fig. 5 show the numerical results for
various disorder strengths as a functiorkpk . From the top,
the elastic mean free path I$L=8, 4,2, and 1(at kgL
~70). As kgL changes, the mean free path is assumed t
change also, according tockg .

The dashed curves in Fig. 5 are data taken from Ref. 4 fo
the semiclassical evaluation of the contribution of size-
induced correlations to the susceptibility“(H)). We cal-
culated the contribution of the disorder-induced correlations,
{xY(H)), using the approximatid y/A~ kg T/A, and tak-
ing into account the variation of mean free path Wil .
The resulting semiclassical evaluation of the total suscepti- For systems with a generic chaotic, clean counterpart we
bility, (x“(H))+(x%(H)), is obtained by adding our results obtain an analytical estimate fgx(0)) under certain sta-
to those given by the dashed curves; the results are shown tistical assumptions with respect to the classical trajectories
dotted curves in Fig. 5. involved. To this end we make use of the relatioGlL?

For keL=60 the agreement of the semiclassitddtteg ~ denotes the system ajea
curves with the quantum results is considerable; it is clear
that the difference between the semiclassical results for
(x*(H)) and the quantum results is accounted for by the
addition of (x%(H)). However, even fok:L =60 the agree- f s
ment is not exact; we believe that this minor discrepancy is i
due to the different mechanisms of damping that were used.

For keL=60 there is worse agreement between the semi-
classical(dotted curves and the quantum results. This mayin order to transform the sums over classical dens|ig
be related to the fact that the semiclassical results show nigy Eq. (15) into classical probabilitie®(r,r,;t) to propa-
sign of the oscillatory structure present in the quantumgate classically between impuritiesrgtandr, in time t.
curves. This structure may be caused by off-diagonal pairs of |n the following we assume that in the “ballistic” regime
different families of short periodic orbits contributing to I,Ls>L the conditional probabilityP(r,r,;t|.A) to accu-
(x“(H)), which are not completely suppressed through enmulate an “area’.4 during the propagation from, andr, is
ergy average and are not included in the present semiclassirdependent of ; andr,. Following Ref. 29, which consid-
cal approach. ered clean billiards, we find, from Eq&l5) and(18),

IV. CHAOTIC GEOMETRIES

IDj|28(t—t))=P(ry,ry;t) (18)

TV jir—=r)
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c 1 (= o 47 AH t
g )(rl,rz;w;H)z; dt| dAP(ry,rp;t|A)co exp —yt— - +iwt|. (19
0 —®
|
We assume that after several bounces off the boundary the (x%(¢)) 6L3
area distributionP(ry,r,;t|.4) becomes Gaussian with a ~— = 7 (24
varianceo independent of; andr, and independent df x| mo(l/L) ¢

Substituting the above expression ) into Eq. (9), and
performing ther, t, and.A integrals, we obtain the following
closed approximate form fa$(®:

The susceptibility as a function of field is plotted in Fig. 6
for keL=60 andy/A=1 (L,/L=9.55). Various disorder
strengths are shown, from the téat H=0), |/L=5,10,20,

2012 -n and 50. These curves are qualitatively similar to those for the
SEC)(w;H)N 87 "i lo +ltyr—iery . (20 square geomet.ry shpwn in. Fig. 4_. This may be relqted tc_) the
®5 fact that for trajectories beingnultiply) scattered at impuri-

ties the character of the clean geometry, namely, regular or
Summation of theSff” [Eq. (16)] leads to the disorder- chaotic, is of minor importance. Note, however, that the clas-

induced contribution to the average susceptibility, sical variances determines the height and the correlation
field ¢, .
8m2p%lo | The susceptibility( x4(0)) as a function ofL, for I/L
d o4 72 T+ i =2 is shown as the dash-dotted line in Fig. 7 and a corre-
X(e)) -7 ¢ . (21 sponding approximation faix-(0)) (Ref. 27 for finite L,
x| (pg dp? 1+ 811'2gz32|a'+ I )
L, (x*(0)) _ 960L,l 25

Il LAL,+n
wherep=HL?/ ¢,. It is possible to obtain an explicit expres-

sion for (x%()) analytically. For brevity we give only the is shown as the short dashed line in Fig. 7. The two contri-

limits. butions[Eqgs.(22) and(25)] add up to arn-independenmag-
The susceptibility has a paramagnetic maximum for zerd'€tic response
field,
0 960L
i (x(0)) -2 3 (26)
(x%0)) 960l 22 |xdl L
xd L4(L¢+I) ' which is the same as that for clean chaotic systems, given the

] ) ) _assumption of atrindependent variance.
and it changes sign only once, for example in the elastic For comparison, results for the square geometry as a func-

regime at the critical flux: tion of L, for I/L=2 are also presented in Fig. 7. The solid
line shows our numerical results fdx%(0)), and the long
) L3 dashed line showsy-(0)) (see Ref. 5 for more detajlsThe
% Lyl (23)

P ' L, dependence also shows a qualitative similarity between
8w a(L,/L) b == . O
the disorder-induced susceptibility in the square geometry
For a large fieldgp> ¢, the susceptibility remains diamag-

netic and decays rapidly: 10

WMo

2x (L /960)

) . . . .
0.00 002 004 006 008 0.10 o o
(HL /) (o) FIG. 7. Contributions to the susceptibility fd¢:L=60 and

I/L=2, with (normalized semiclassical estimates fofy%(0))
FIG. 6. Field-dependent susceptibility?(H)) (normalized for (dash-dotted lingand (x“(0)) (short dashed linefor a generic
a generic chaotic geometry fokeL=60 and y/A=1 (L,/L chaotic geometry and fofx%(0)) (solid ling) and (x-(0)) (long
=9.55). From the top(at H=0), the mean free path i$/L dashed lingfor a square geometry,=|x,| for the square geom-
=5, 10, 20, and 50. etry and| x| L%/96¢ for the chaotic geometry.
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and the chaotic geometry. Naturally, the square and the chandL ,. Certain statistical assumptions on the trajectories in
otic billiard show quite different behaviors for the size- ballistic systems with a generic chaotic geometry enabled us
induced susceptibility. For the square a crossover from domito derive approximate analytical expressions for the disorder-
nation by disorder-induced correlations to domination byinduced magnetic response. It turns out that the magnetic-
size-induced correlations occurs fog)~lz, which contrasts  field dependence arid, dependence of the susceptibility, at
with chaotic geometries where the crossover occurd fpr least qualitatively, resemble that of the integrable case. This
=|. implies that the actual geometry of the clean system is of
minor importance for the disorder-induced orbital magnetism

V. CONCLUDING REMARKS even in the ballistic regime.

We con_sidered disorder—indyced speqral porrela.tions of ACKNOWLEDGMENTS
mesoscopic quantum systems in the nondiffusive regime. We
combined a diagrammatic treatment of the disorder with a We are grateful to Y. Gefen, S. Kettemann, D. E.
semiclassical approach for the Green functions involvedKhmelnitskii, M. Leadbeater, I. V. Lerner, and P. Walker for
This leads to a representation of the diagrams involved imuseful discussions. We thank the Isaac Newton Institute for
terms of (pairs of classical paths in real space which un- Mathematical Sciences, Cambridge, where part of this re-
dergo both(multiple) scattering at the impurities and reflec- search was performed.
tions at the system boundaries. This hybrid-type approach
enables us to perform disorder and energy averages, and APPENDIX: DIAGONALIZATION OF ¢ OPERATORS FOR
study the complete crossover from the diffusive to the clean ZERO FIELD
limit for arbitrary values of the elastic mean free pathnd
L, (smaller tharvety). In particular, it is applicable to bal-
listic microstructures of, in principle, arbitrary geometry.

In this appendix we show that within the semiclassical
approach the analytical diagonalization of theoperators
lg_Eq. (10)] for a square geometry at zero field is possible and
straightforward. We employ the extended zone scheme

plies to systems with potentials whose effect is then incor=* ¢'¥"" . . . )
porated into the semiclassical Green functions. which is constructed by reflecting the original billiard with

We focused on the effect of disorder-induced correlationd®SPeCt 10 its boundaries. Any given trajectory connecting
on the averaged magnetic susceptibility which is closely ref1=(X1,¥1) @ndr,=(xz,y,) involving an arbitrary number
lated to the spectral number variance, and which amounts wf specu[ar reflections at the boundartles is transtformed into a
evaluating Cooper-type contributions to the correlator. CorStraight-line path connecting, and r;, wherer;=(+x,
responding diffuson-type diagrams can be computed equivat 2NxL, £y, +2n,L) is an image of the positionr,
lently. As an example of a system with an integrable clear™ (Xz_aY2)v andn, andny are integers. As a resylt a semi-
counterpart, we treated in detail ttexperimentally relevapt ~ classical propagataf{®(x;,y1;X,,y,) may be written as a
square billiard. We showed that there are two distinct resum of propagatorsi(®)(x;,y;;x5,y5), along straight-line
gimes of behavior depending on the relative magnitudds of trajectories,

(O yixey)= 2 2 Oy Xt 2nd, 2y, +2n,l). (A1)
X_fw y:700

SinceZ(© is dependent only on the distancés (x,—x,) andY=(y5—y,) along a straight line it is possible to introduce a
Fourier transform\ (qy,q,) and, using the Poisson summation rule, we may write

= +=da,dq gyl q,L _ _
(O, y1:%.y2)= 2 - 2y4)\(qx,qy)cos(qxxl)cos(qyyl)a ——m,| s L—my eligoriayys}
mx’my:—:x: — o0 (2’77) s s
(A2)
Performing the integrals gives quantized momentum vatyjesm, /L, q,=mya/L and
1 - - mym M, m, X my Yy m, X my Yy
(C) . N X y x1TA1 yTTy1 X TR2 yTTY?2
£ (X1,Y13%2,Y2) 2 )\(0,0)+4m§=:1 m%l 7\( L L )COS< 1 COS{ 3 )COS< 3 )COS{ T )
- My M, 7Xq My 7TX5 - my mymy; my 7y,
R e R e
(A3)

Although 7(©)(x1,y1;X,,Y>) is not translationally invariant, it does have a periodicity of The diagramsS, may be written
in terms of the Fourier transforim(qy ,q,) by inserting the above expression into E9). Spatial integrals are performed using
the following relation:
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Ldx m, X m, x| 1
o T )8 T )T 2 Omem O, oy ) (A9
and the result is
* w my7 my\ |"
(C.D)_ XT YT
S mZOm;oH T ” (A5)

In order to evaluate (g, ,qy), we Fourier transform the expression for the semiclassical opleﬁftb[Eq. (15)] performing

integrals overX andY. By changing from Cartesian coordinates,{) to polar coordinatesr(6), the radial integration is
done, giving

1 (2= de
qu’qy)zﬁjo (1+yr—iw7)+il(gecos6+qysing)’ (A6)

and we find

1
(1+yr—iwn?+(1g)?’

(A7)

)\(qx’Qy): \/

Whereq2=q§+ qf,. This result is in agreement with the approximate diagonalization of Ref. 3. Together wi(B)Ei¢ gives
the spectral correlation function in the “ballistic” regime.
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