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We have studied both theoretically and experimentally the luminescence spectra and kinetics of crystalline,
disordered solid solutions after pulsed excitation. First, we present the model calculations of the steady-state
luminescence band shape caused by recombination of excitons localized in the wells of random potential
induced by disorder. Classification of optically active tail states of the main exciton band into two groups is
proposed. The majority of the states responsible for the optical absorption corresponds to the group of extended
states belonging to the percolation cluster, whereas only a relatively small group of “radiative” states forms
the steady-state luminescence band. The continuum percolation theory is applied to distinguish the “radiative”
localized states, which are isolated in space and have no ways for nonradiative transitions along the tail states.
It is found that the analysis of the exciton-phonon interaction gives the information about the character of the
localization of excitons. We have shown that the model used describes quite well the experimental cw spectra
of Cd];-_¢) Se and ZnSg _Te, solid solutions. Further, the experimental results are presented for the
temporal evolution of the luminescence band. It is shown that the changes of band shape with time come from
the interplay of population dynamics of extended states and spatially isolated “radiative” states. Finally, the
measurements of the decay of the spectrally integrated luminescence intensity at long delay times are pre-
sented. It is shown that the observed temporal behavior can be described in terms of relaxation of separated
pairs followed by subsequent exciton formation and radiative recombination. Electron tunneling processes are
supposed to be responsible for the luminescence in the long-time limit at excitation below the exciton mobility
edge. At excitation by photons with higher energies the diffusion of electrons can account for the observed
behavior of the luminescenckES0163-182009)11419-X]

I. INTRODUCTION a—Si:H (Ref. 1], so that the fundamental emission band is

situated in a spectral range where both the absorption coef-

Wide application of disordered II-VI semiconductor solid ficient and the density of fluctuation-induced states are small.
solutions in modern quantum structures renews the interest Street has supposed that the intrinsic luminescence band
to understand their optical properties. of @a—Si:H can be understood with the assumption that

In this paper, three interrelated aspects of luminescence @fmong the tail states a special group of “radiative” localized
disordered solid solution are studied, namély,the nature states exists, which forms a relatively narrow band with the
of the steady-state intrinsic luminescence band at low excimaximum at 1.6 eV. Cohen and Stufgend Permogorov
tation, (i) the effect of high-excitation density on the spectraet al? have claimed when studying I1-VI solid solutions that
of radiative recombination, andi) the long-time kinetics of the upper border of the luminescence band corresponds to
the luminescence both at high and low density of excitationthe exciton mobility edge in the disordered system.

(i) The steady state intrinsic luminescence at a low- The results of the present paper are based on a theoretical
excitation levels of many disordered systéntsincluding  approacH? *?which incorporates both these ideas using as a
11-VI solid solutions?~*2is supposed to arise from recombi- background the model of solid solutions developed in Refs.
nation of the excitons localized in the wells of a potential14 and 15. The calculations of the density of fluctuation-
profile induced by the disorder. A common spectroscopidnduced tail states are performed within the framework of a
feature of such systems is a considerable redshift of the lusingle band, two component model of solid solutions with
minescence with respect to the maximum of exciton absorpdiagonal disorder, which describes correctly the most com-
tion [or with respect to the band-gap edge, as in the case ahon features of disorder in many solid solutions and is
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simple enough for numerical calculations of many charactertion band of the exciton ground state, whereas the steady-
istics of the tail states and the luminescence. It is supposed state luminescence band at low intensity of excitation is sup-
the calculation of the composition dependence of tailing efposed to be formed only by the “radiative” states of the
fects that two constituents are distributed randomly in a disfluctuation tail. The “radiative” states are situated mainly
ordered sublattice. A significant deviation of the random dis<{but not exclusively below the mobility edge and the lumi-
tribution should lead to considerably different results. nescence band decreases sharply in the vicinity of the mobil-
The problem of tail-state localization is considered in anity edge. Even without the account for the exciton-phonon
energy regiornw>wqo Wherewg is defined by the condition interaction the zero-phonon emission band is redshifted with
Muwop) a3< 1. Here the localization energy is taken to be  respect to the zero-phonon absorption band for solid solution
positive so that its value increases with the depth of the stateyr the absorption edge far— Si:H. As it follows from the
ais a typical radius of the localized state, aNfiw,) is the  above model, the redshift of the luminescence band with
number of tail states with localization energies exceedingespect to the absorption is an intrinsic property of disor-
wg. dered systems.
In the zero-th approximation, the tail states with energy Phonon-assisted electronic transitions with simultaneous
exceedingy, are supposed to be localized. In solid solutionsemission of optical and acoustical phonons cause the addi-
with anion substitution like Cd$.., S, and tional Stokes shift between the luminescence and absorption
ZnSg; ) Te; localization is widely believed to be due to an spectra. The account for the electron-phonon interaction al-
effect of the random potential on the hole motion. Excitonslows us to describe quantitatively the shape of the lumines-
are localized by clusters of attractive atoms at compositiongence spectra of different disordered systems in the limit of
below the threshold of the site percolation problem for thelow excitation.
anion sublattice. At higher concentrations the localization is In particular, we were able to describe the experimental
due to potential wells formed by a local excess concentratiofuminescence spectra of crystalline solid solutions
of the attractive component. In both cases the fluctuationgds, ., Se. (Refs. 10 and Lland ZnSg_Te,.* The
responsible for the localization are considered as singly coranalysis of electron-phonon coupling shows that the strength
nected potential wells. of this interaction is considerably different for two models of
Further consideration of the tail-state character uses th@calized exciton, namely, for excitons localized as a whole
approach of continuum percolation theory for overlapping(model )) and for electrons bound by Coulomb interaction to
spheres®#?In order to apply this theory a sphere with the holes localized by the fluctuating potentiatodel 1. In the
radiusR;; is introduced around every potential well or clus- first model the electron can follow adiabatically the motion
ter. The value oR;,;, which is the parameter of the theory, of the hole while it cannot do it in the second model. The
should be chosen to provide proper spectral positions of lueomparison of calculated and experimental spectra shows
minescence and absorption maxima. The percolation theompat the localized excitons are formed by localized holes with
allows to improve the zero-th approximation and to subdi-electrons being coupled via the Coulomb interaction in
vide the tail states into the states formed @y spatially ~ CdS;_) Se at c<0.4 and in ZnSg_Te; in the whole
isolated clustergor potential well$, by (2) complexes of composition range studied.
clusters(or potential well$, which are referred further as (i) The next subject of our studies is the temporal evolu-
superclusters, an(B) the states belonging to a percolation tion of the luminescence band shape following excitation
cluster. with a short light pulse. At short times after the excitation
The state with localization energy is treated as spatially pulse the maximum of the time-resolved luminescence band
isolated if no states with larger localization energy exist inis considerably shifted to higher energies with respect to its
the sphere of radiuR;,; surrounding a given potential well. position observed in steady-state conditions. It can be sup-
The state is considered as belonging to supercluster ofisize posed that the early stage of luminescence corresponds to the
if there exists a path from the given state to any other ofdirect recombination of excitons created by photons. This
(n—1) states with larger localization energy, which can bestage covers the time interval of a few nanoseconds, which is
composed of steps that are smaller tiigp,. At a certain  comparable with the exciton radiative lifetime. Depending
localization energywy e the supercluster of infinite size can on the composition of solid solutions the luminescence decay
be formed. This supercluster is regarded as a percolatioduring this initial stage of recombination shows a more or
cluster andwy,z defines the mobility edge position. less pronounced deviation from a simple exponential behav-
On the basis of this classification the tail states can béor.
divided into two groups with quite different radiative prop-  The high-energy shift of the luminescence maximum at
erties. The first group is formed by the states of isolatedshort times can be attributed to the filling of the hole tail
clusters(or potential well$ and by the ground states of su- states including the extended states of the percolation cluster.
perclusters of finite size. For these states only the radiativ€ubsequent recombination and energy relaxation processes
recombination is possible. We were able to calculate numerilead to the time-dependent changes of the band shape and its
cally the concentration and the energy distribution of thesenaximum position so that at sufficiently long times the lu-
“radiative” states. minescence spectrum regains the features of steady-state lu-
The second group constitutes the majority of the tail statesninescence.
and includes the excited states of superclusters and the statesAs it is known, the high-density excitation of semicon-
of percolation cluster. For these states nonradiative transductor crystals leads to band-state filling and the screening of
tions into states with larger localization energy are possiblethe Coulomb potentia® As a consequence, the attractive
Both types of states contribute to formation of the absorp-€lectron-hole interaction decreases with increasing filling
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causing a reduction of the exciton binding energy. At thecence spectr®12In this paper we shall try to consider pos-
same time a renormalization of the single-particle energy resible reasons leading to the long-time survival of a small but
sults in a band-gap shrinkage. Both effects cancel each othelearly observable part of the excitations and generalize the
because they have the same order of magnitude and opposidel of localized exciton formation and recombination.
signs. In binary semiconductors the influence of electron- As a possible reason for the long-time nonexponential ki-
hole plasma is mainly observed as a reduction of the excitoRetics we are considering the creation of separated electron-
oscillator strength until the band energy reaches the excitoR°l€ pairs in the process of energy relaxation of excitations

ground state at the Mott density when the exciton stategenerated by photons. It is supposed that both electrons and
disappeaf® The dynamics of band filling and of stimulated holes are subjected to the random potential of the disordered

emission at high-excitation density have been investigated ifiyStem- The time behavior of the luminescence intensity dur-
ZnSq, o Te, and Cd$,_Se alloys in Refs. 24-29. The ing the long-time nonexponential stage of relaxation depends

luminescence and gain spectroscopy of Gd§Se, solid on the energy of exciting photons and on the pulse power.

solutions under high-excitation density were reported in Ref. V\/_g assumed that even in the case of excitation b(:::l_ow the
30. It can be concluded, that the nonlinear electron-holdn©Pility edge a part of absorbed photons produces “immo-

plasma effects are less pronounced in disordered syste ge” pa_lrtic!es _separa_ted in space for which the_: rad_iati\_/e
than in the binary compound&.This finding can be consid- recombination is possible only through the tunneling, like in

ered as a consequence of the carrier localization by the fludhe case of donor—acce_ptor pdifsnd the obtameg 4depen—
tuating potential. den_ce.presents a particular case of Becquerel’s ‘?a_lm
Other topics that have been already treated in these sy§-X.Cltatlon at and above thg mobility edge the Iong-tlme lu-
tems concern the coherent dynanfits! the polarization ~Mminescence kinetics acquires new features, which we de-
memory for both linear and circular pola,rizati%‘“and the Scribe using the results of the theory of diffusion controlled

absolute luminescence yield of the localized states as fun@nnihilation™~*In particular, the intermediate time kinetics
tion of temperature for various allof& shows stretched-exponential behavior with critical indices of
The studies of the Zn$e o Te, and Cd$,_,Se, solid “normal” *1=%8 or “anomalous*!*® diffusion. The long-
c —c . . . . . =3/2
solutions presented in this paper were performed in a widdme klnetlcs_ ShOW_S n th|s case a power law? for the :
interval of the excitation power at which, nevertheless, thi;crease of intensity. This kind of dependence was obtained

. 50 . . .
Coulomb potential was not screened though the considerab Noolan{jl etal”™ in an approximation developed by
filling of the electronic and hole states was reached. Mozumde?" and it was observed in amorphous silicon. The

In agreement with the earlier data of Refs. 28,35—38 wether approach developed by Kuzovkov and Kotdfhifor

have found that more than 90% of the excitons recombinéhe diffusion-controlled bimolecular reaction describes the
during the first few nanoseconds after the excitation puls¢omogeniety in the space distribution of the particles. As a

while the remaining radiation lasts a few hundreds nanosed€Sult. power law follows in the long-time limit for the in-

onds. Just after the high-power excitation pulse the initiaf€NSity decay (t)~t #%in the case of equal concentrations
luminescence band maximum is shifted toward higher ener@f W0 kind of mobile and immobile particles.

gies. A comparison of the shift values in two different solid The structure of the paper IS as fOHOW.S'

solutions ZnSg_Te, and Cd$;_Se has shown an ob- In Sec. Il we present t.he main theoretical results. _
vious correlation between the value of blueshift of the band. " Sec.. lll the description 9f samples and other detalls of
maximum and the width of the fluctuation tail in absorption, ("€ experimental setup are given as well as the experimental
The calculations, which we shall present, show that the fornflata and their comparison with the_ory. .

of the initial luminescence band can be described as a super- | '€ 1ast section of the paper is devoted to concluding
position of two overlapping bands, one of which is formed €mMarks.
by “radiative” states and the other is due to states of perco-

lation cluster. In the long-time limit only the band formed by

radiative states survives.

(iii) Previous studi¢§35-8of the time kinetics of the Optical properties of a crystal can be described if eigen-
luminescence at different spectral points have shown that thealues and eigenfunction of the corresponding Hamiltonian
fast decay dominating the first stage of the process continuare known. The complete solution of this problem remains
ously transforms into the slow nonexponential behaviorstill very difficult even for perfect crystals. Situation is even
Nevertheless, it was intuitively supposed that the spectrallynore complicated in disordered solids. Additional difficulties
integrated kinetics should follow an exponential decay witharise, on the one hand, from the absence of the long-range
the radiative lifetime of excitons created by photons. Theorder and, on the other hand, from the composition depen-
nonexponential behavior observed was considered as a codence of the parameters of the system. An approximate ap-
sequence of population dynamics of excitons across the tagroach to the problem has to take into account the peculiari-
states. The experimental results of the present paper revealéds of the disordered systems.

a nonexponential behavior for the spectrally integrated lumi- An effective perturbation of the electronic states near the
nescence kinetics even at very low-excitation densitieshand edge occurs when an attractive center substitutes a host
which definitely rules out the simple scheme of the exponenatom. For an isoelectronic substitution of a single atom in a
tial decay with the radiative lifetime of excitofig.It means  three-dimensional regular crystal an important characteristic
that the long-time kinetics cannot be described within theis the strength of perturbation of the electron states, which is
framework of the localized exciton-formation models, which characterized by the relation of the perturbation potential to
were sufficient for simulations of the steady-state luminesits critical valueE,,, at which a localized state just appears.

Il. THEORY
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The strength of perturbation of each attractive atom deAccording to Refs. 63—-66, bowing is a result of self-

creases with an increase of the concentration of attractiveonsistent changes of the electronic states due to the chemi-

centers because of the global shift of the averaged potentiatal perturbation and structural changes of the lattice due to
We will use the following classification of disordered sys- the variations of chemical bond lengths.

tems in dependence of the strength of the isoelectronic per- The detailed analysis of the nonlinear part of the band gap

turbation and composition of the solution, which is conve-variation with the composition in Zn$e.Te, and

nient in the region of the tail states. The solid solution will be CdS; _Se. solid solutions has shovim that the bowing

referred to as a strong scattering system if the perturbation IS EZ*"(c) as a function of the composition can be presented

large enough to split off the bound state from the band edgé@ the form of sum of two terms

when substituting a single atom or a small cluster of them.

The lattice percolation theory can be applied for an accurate AEZP(c)=AE$(c)+AES*(c), )
estimation of the number of tail states for strong-scattering
systems in a relatively large region of compositions. whereAET*P(c) andAES*®(c) are different functions of the

The weak-scattering limit will be related to the systemsconcentration. The larger terdET*"(c) is symmetrical in
where the number of attractive atoms necessary to split offariablesc and (1-c) and can be presented by the equation
the localized state exceeds considerably unity.

An increase of the concentration of attractive centers low- AET*P(c)=b;c(1—c). 2
ers the averaged potential and results, thus, in a decrease of
the number of localized states and a narrowing of the regiotts maximum value for ZnSe ;Te; at c=0.5 amounts to
of the tail states. As the consequence, a strong scatterirgpout 0.25 eV. This value is comparable to the difference of
system transforms into a weak scattering one. In generathe band gaps of ZnSe and ZnTe of 2.82 and 2.3%%V,
there is a region of parameters where it is rather the questiofgspectively.
of convenience how to treat a given system. The maximum value ofAET*"(c) for CdS;_.) Se is

The solid solution ZnSe .Te, can be attributed at a low equal to~0.055 eV while the difference of the band gaps of
concentration of Te to the systems with strong scatteringcdS and CdSe crystals is equal to 0.72 eV.
because already clusters consisting of two Te atoms create The second terrAE5*(c) reaches its maximum value at
bound hole states above the valence-band &dgehis pa- c¢~0.15-0.20 and it is equal te=0.1 eV for ZnSe_.Te,
per we are interested in the ZnSeTe, solid solution at  and to~0.030 eV for Cd§ ., Se..*°
concentrationg of attractive Te atoms less than the critical  Both absorption and luminescence spectra of ZnSEe,
value of the site percolation problem for the fcc sublattice.and Cd$, ) Se, solid solutions show evidences of localiza-
i.e.,, c<p.,~0.2. According to the lattice percolation tion effects due to composition fluctuations. The form of the

theory!®"52=*4randomly distributed Te atoms are able to fundamental absorption edge follows the simple Urbach law
form in the composition regios<<p. only finite-size clus- characterized by the Urbach tailing parametg(c), which
ters. defines the exponential decreasing absorption tail. The maxi-

The other systems under consideration are €d$5e  mum values ok (c) in ZnSq_.Te, and Cd$, _,Se, solid
solid solutions in a wide composition interval. The solutions are equal tey(c) ~0.030 and~0.005 eV, respec-
CdS; ) Se solid solution presents a system where the pertively. The composition dependences &f(c) coincide in
turbation by a single atom is weak and the bound states occyyoth crystals practically with those &fES*P(c), which al-
as a result of a large-scale fluctuation of composition formegows one to treat the term E,(c) as a result of the same
by a considerable excess concentration of Se in some micr@omposition fluctuations that are responsible for the tailing.

scopic regions of the crystal. N Both these functions can be approximated by the equ4tion
Both systems show considerable decrease of tailing ef-
fects at high concentration of narrow-band comporient. (1—c)%?
AEZR(C), ey(C)~ =5 )
In(1/c)
A. General characteristics of disorder effects
in ZnSe,_.Te, and CdS;_)Se, solid solutions ) ) ]
o ) . B. Density of fluctuation states in systems
There are two characteristics of solid solutions, namely, with diagonal disorder
the shift and the tailing of their band gap, which lead to a ) . ) )
composition dependence of their optical properties. The influence of disorder on the optical properties de-

A development of the theory of electron states in solidP€nds strongly on the number of states split off the band
solution€5-%%is closely related with phenomenon of the non- edge. The most direct optical characteristics concerned with

linear composition dependence or bowing of the band gaghis number of states is the broadening of the exciton
which presents the deviatiahEs(c) from the simple linear ground-state transition, though the exciton-phonon interac-

interpolation of the band gaBs(c) as a function of compo- tiqn has the tendency to hide or to increa;e theT effect. Sub-
sition stituting atoms form a great variety of configurations and the

general problem of disordered systems is how to find and to

Eo(c)=Eg(B) (1—c)+Eg(A) c—AEg(c). enumerate those responsible for the tailing. The energy in-

terval of interest is rather large enough and both size and

Results of latest investigations in this field presented in Refsnumber of clusters responsible for the localization increase
63—66 show that the perturbation of the electronic states duenormously with the growth of the localization energy and
to the isoelectronic substitution has a complicated charactequickly reach the values inaccessible for a direct calculation
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even for strongly scattering systems at concentrations belosite is occupied with atorA and toEg in the opposite case.
the sublattice percolation threshate< p . In the limiting casexc=0 or c=1 Eq. (4) presents the
Thus, this fact requires an approach that allows one tédamiltonian of the regular crystd or A with all E, being
separate the problem of estimation of the number of localeither equal t&Eg or E,. Using the plane-wave representa-
ized states from a calculation of the energy dependence afon we have in these cases
the density of states and to solve these problems by means of
quite different approximations. Hg=eqTEq., )
(1) Within a narrow energy interval the number of states
below the band edge is estimated usiiay mathematically
accurate equations of lattice percolation theory for the case gq=Wo— W, (6)

c<p. in the strong scattering limit, aib) the simple model ) . . . .
of potential wells at compositions< (1—py), which gives describes the electronic band dispersion. The off-diagonal
c/:

the correct order of the magnitude of the density of state§1alrix element, defining the band dispersion is supposed
(DOS). If it is necessary the obtained DOS can be fitted tol© P€ independent on the composition. We suppose in the
the experimental data on the exciton band broadening. ~ calculationsEg>E,.

(2) Calculation of the energy dependence of DOS in
effective-mass approximation in both cagesand (b) with
the help of a variational procedure, which presents in its The Green’s functiorG (w) of the pure crystal or B
essence an interpolation between two limits, namely, beean be written as
tween the region of the Lifshitz border where the procedure

wherea is A or B and the relation

2. The single-particle Green’s function and the density of states

gives an adequate result and the region near the band edge G ol —H® ,1_£ E g'9RnFm) 7
where the density of states is already a function only weakly am(@) ={w fom= N < —w_sq_ E, )
dependent on energy. The calculated DOS should be normal- ) . ) ) )
ized properly by the results of the previous paih}. whereR,, is a radius-vector of the lattice sitg 4 is the
self-energy of an electron in the band with wave veaor
1. Model Hamiltonian and | is the unit matrix. Equatior{7) defines the Green’s

We suppose that electron-hole pairs. which take part ifunction uniquely at energies outside the band, where this
PP pairs, P "unction is real. Inside the band, we can define retardant and

absorption and luminescence in the tail region of the excno%dvanced Green’s functions by the introduction of a small

e e SOl Soulon e Conseralon, aginary energy paramter i te.derominator of th
P Green’s functionw— w*i0.

states of the valence band while electrons are bound to holes For a random distribution of the atoms and B the

by Coulomb interaction. We have two limiting possibilities , S o
) ; -~ Green’s function is dependent on the composition and atoms
in this case. If the electron can follow the hole motion adia-

batically we have to consider the exciton localized as the’ ositions

whole (m_ode_l ). The other situation can_be realizec_;l if the Gun(@)={w] +Huc_A};n%. ®)

hole motion is too fast and the electron interacts with aver-

aged distribution of the hole densitmnodel ). The matrixesH"¢ and A are defined by the equations
Inasmuch as the electron mass is considerably smaller ve

than that of the hole we neglect the difference in masses of Hom=Wn-m=Wo Snm; A=An6pm. 9

the exciton and hole, and will describe the localized states "F-Iere,
both cases by the same single-particle Hamiltonian. We ne-
glect also the small difference in the electron-hole Coulomb Eg(c)=CEp+(1—C)Eg (10)
interaction for these two models. We will take into account, ) i i i ]
only the ground state of the electron-hole Coulomb problem'S the linear in c_oncentrgtlon_ shift, which results from aver-
which will be included into the considerations of the spectral@ded value ok, in a lattice site. Le€g defind by Eq.(10)
density of the tail stateubsection Fand in calculations of D€ @ frame of reference for energy and-0 in the region of
the exciton phonon interactiofsubsection }J A significant Iqqahzed states. Then dla_gonal matrix elements are compo-
difference of these two models becomes obvious in the corsitionally dependent functions
sideration of the exciton-phonon interacti@®ubsection )J A, =E,—Eq(c) (11)

Let a macroscopic volum¥ of the crystal containingN nT=n =G

lattice sites be randomly filled with two sorts of atoAsnd The eigenvalues and eigenfunctions of the Hamiltonian at
B. The average number of atomsis equal toNa=cN and  5ny realization of a random distribution of two kind atoms

that of atomsB is Ng=(1—C)N. Atoms A are supposed 10 ¢an pe found by means of diagonalizing tReank matrix,
be attractive centers armds their concentration. The single- \ynich is formed by columns like

band Hamiltonian of the system is written as

A ve A
AR M+ (Hif—Andim) @R (M)=0. (12
H= = 2 WoWin(Wnm=Wo) + 2 EdWR. (4) m
' The density of states of disordered systems can be found as
The wave functionsV',, can be taken in many cases to be the result of the averaging procedure, i.e., summing over the
real. The diagonal matrix elemeft, is equal toE, if the =~ DOS corresponding to all possible realizations of the disor-
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der with the weight multiplier$®, , which are equal to the where
probability that a given variant of random distribution oc- v o1
curs. Taking into account all of the possible quantum num- Gim(@)=(o | =H"")

bersA we obtain is the Green'’s function in virtual crystal approximation, and

1 (= ZIE _
s 3PS dn S fedml? A=|BsE4 a8
" is the amplitude of the fluctuation potential. Taking into ac-
Xexd —i(wl+H" —A)\ A7l (13)  count that
where [Ggﬁ(o)]_lecr (19)
[wl +HY—A], 5 is equal to the single-site critical value of the perturbation

potential we see thaAE;(c) depends on the same param-
eters of the system as the Urbach energy.
In spite of the fact that Eq(17) does not provide an
adequate description of band-edge bowing in the general
(14) case(discussion of this problem can be found in Refs. 60—
Performing the integration over, we transformp(w) into ~ 62) we may expect that in the simple model under consider-
the form ation the calculated value of the bowing has the correct order
of magnitude if the parameters of the model Hamiltordan
andA/E., are found as a result of a fitting procedure of the
p(“’):; Pa ; ; [ea(mI28(0=wR). (15 form of the absorption spectra. oP
The experimental value of the symmetrical part of the
Here we have denoted eigenvalues of the Hamiltonian at pand-gap bowingAE$*P(c) and the calculated band edge
given realization of disorder asﬁ. Eigenfunction&oﬁ for  bowing AE;(c) obey for both Cdg_ Se. and

=;ﬂ @A (N) (@ S+ HES— A Som) @3 (M).

the localized states can be normalized to unity. ZnSg; ) Te, the inequality
In order to compare the calculated functions of the local-
ization energy with experimental data we need a frame of AE,(c)<AE{™(c). (20

reference for energy variables. This fact sh that tributi f th | band
There is a problem concerning the large value of the total IS Tact shows that contributions from the valence bands

- : : define mainly these values.
band gap bowingAE(c)®*P as compared with the localiza- ) . .
tion energies of the tail states. The frame of reference ob- The obtained band-edge bowing of Ed7) gives a con-

tained by means of a simple linear interpolation of the band@nt Sh'ﬁ.Of the frame O.f reference Qf HAO) for_all energy
gaps like Eq(10) would lead to a considerable overestima- variables in the theoretical calculation excluding this value
tion of the localization energies of the tail states. Taking into]crom the calculations of the localization energies.
account that there are theoretical argunent§ and experi-
mental findings that allow us to conclude tiET*R(c) does
not influence the localization, we will use in our further con-
sideration a subtraction of the symmetrical part of the band The limit of small concentratiom<1 of strongly attrac-
gap bowing, which depends on the composition of the solidive centers is closely related with the strong local-

C. Strong-scattering limit, c<p.. Isolated cluster
approximation, sum rule

solution as it is given by Eq2). perturbation problem solved in Ref. 68 for electrons and in
After subtractiomES*P(c) the frame of reference for the Ref. 69 for phonongsee also Refs. 70 and 71, and references
experimental energies is given by the equation therein. It corresponds to the case where the depth of the
potential wells of the lattice sites occupied by atofss
E&P(c)=cEg+(1-c)Eg—AET(c). (16)  large as compared with its critical magnitude, i.e.,
The value of theAES*P(c) itself can be defined accurately (1-c¢) A>|GU(0)| L. (21)

from the experimental data if the bowing is known in the
region of large concentrations of the narrow-band componerif the interatomic distances between atoAexceed the ra-
where the second part of the bowidgES*™(c) is of no dius of the bound state appearing at each I_att|ce site occupied
importance’ by atoms_,A then Eq.(12) reduces in the region of the bound
The function corresponding in our calculations to states with accuracy up to_terms of the ordercéfto the
AES*P(c) is the band-edge bowing due to single-site fluctua-KOSter-Slater-Lifshitz equatiotsee Refs. 6871
tions AE,(c). There are different approximations given in ve Asn
Refs. 55—-66 which were used to calculate the band-edge [1+A4 Gpy(@)]ex(n)=0. (22
bowing. In the considered model the scattering from theat small but finite concentrations of the attractive centers
single-site fluctuations presents the only mechanism that prahere exists a finite probability to find pairs and larger clus-
duces the symmetrical part of the band-edge bowing. IRers of attractive center<.
second-order perturbation theory We develop here a straightforward approach to the prob-
lem in the strong scattering limit at<p. when atomsA
AEy(c)=A%Gpi(0) c(1—c), (A7 form only clusters of finite size. Let us assume in the first
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approximation that the cluster wave functions of the local- gsic®(1—c), (30)
ized states are not overlapping and treat the medium sur- ) ] ) )

rounding a cluster in the virtual crystal approximation. Later,Vhere gs; is the number per lattice site of different space
we will take into account composition fluctuations outsideconfigurations of clusters, which have a coinciding number

the cluster. of atoms A and B. Taking into account the nodeless bound
For any cluster, the equation of motion can be presentedt@tes only we can write for the density of states
in this approximation in the form Jst
— St,k|2 S et _ stk
[1+6(@) Al (M) =0, @y P@T2 2 X TR0 oo,
wheren andm take the values corresponding the lattice sites (3D
coordinates occupied by the cluster agid(w) is the frag-  The integrated DOS per lattice site can be written
ment of the Green’s-function matrix restricted by the region
of the cluster. Using an approach developed in the theory of (B _ S .
lattice dynamics?® we find the eigenfunctions and eigenval- NO)= 0 plw) d“’_s% gstc”(1=c) _25 ns(C),
ues of the matrix 32
(32
[0"%(w) A] (24)  whereE_ is the Lifshitz border for the solid solution. The

right-hand side of the equation coincides with the total num-

the rank of which is equal to the size of the cluster considber of clusters per lattice site

ered Sums like Eq(32) are to appropriate accuracy determined
by their lower limit, i.e., by their first few terms at any con-
2 [0°(w) Alpm P7(M,0)=\(w) P/(N,w), centration. As soon as a few first valuesmyfc) are known
meCst for the different lattices, sums like this one can be practically

(29 ysed to estimate the number of states splitting off the band
where summing is performed over the region occupied byedge in the case of the strong scattering limit.
the cluster, which contains attractive centers andperim- According to Refs. 52 and 53 the numbeggc) are equal
eter sites. Index enumerates different space configurationsto
of the cluster. The eigenfunctions form the complete ortho-
normal set of vectors obeying the equafibn ni(c)=c(1-c)*% ny(c)=12c*(1-c)%

na(c)=c324(1—c)?*+126(1—c)? (33

for fcc lattice. The quantity,(c) can be estimated using Eq.

With the help of these eigenfunctions and eigenvalues th&33 as
matrix [ +g°(w) A] " can be presented as

> d7(m,w) DUN,w)= Sy (26)

na(c)=10°c*(1—c)% (34)
[1+0%(w) A];n}:E nw) @ (m,w). (27) Further useful information can be obtained if the depen-
1-Ag(w) dence of the localization energy on the number of aténrs

a cluster is known at least approximately. This allows one to
estimate the energy dependence of the integrated DOS as
well as the DOS itself.

The maximum number of the localized states that can
Ao (®10c) = 1. (28)  split off the cluster containing attractive centers is equal to

] ] i s. The mean numbers of clusterg(c) of sizes are normal-
The general rule is that, the nodeless state splits off first angeq according to equation

this state has the deepest localization energy and is most

o

The localized state will be split off if at least for one of the
there exists the value= w;,;>0, for which the equality is
fulfilled

important for the optical properties of a system. The wave *
function of the localized states can be presented as Nao=N E ng(c) s, (35
s=1
d7(n)= > G (w) DI w) whereN is the number of lattice sites ard, is the mean
meCste number of atoms A per unit volume. This equation defines
1 the upper limit of the number of localized states. This esti-
x| > DIG () DY . (29 mation can be useful in the limit of very strong scattering
nmeCe ' systems.
where

1. Effect of fluctuations on localized cluster states.
9 Perturbation theory approach
rvc — ___Cve . . .
Grm(®)= aanvm(“’)' In the previous consideration we supposed that the me-
dium surrounding the clusters can be approximated by the
Let us write the probability of realizing a cluster contain- virtual crystal. In order to estimate the role of composition

ing s atomsA and having a perimeter dfatomsB as fluctuations outside the cluster we will substitute the ob-
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tained solution into Eq(13) and find the first correction to The summing in the last expression has to be performed over

the DOS due to fluctuations. As a result we have the lattice sites outside the given cluster. After calculating
the integral overr we have
1 (= Ost
p<w>=—f dr 2 X [P e (1-o)" 9t
) s k=1 n

w)=§ ;l 2 |pt |2 cs(1—c)t

X exp[ —i(w— wpd) ]

1
_ st, k|2 X—exq (w wIS(;CK 2/(2 ’ygt,K)]'
><<ex . 2 Aol 2] )> (36) 277
. . o (42)
where(- - -) means averaging over all possible realizations
of lattice site filing except a given cluster. At a random The expression obtained differs from E®1) because the
distribution each of the lattice sites is occupied by atdm |ocalization energy in the last equation is defined with accu-
with probability ¢ and with probability (+-c) by atomB.  racy y, . If the localization energy angs,, are compa-
Taking into account that the averaging exponent is splittingable then the number of states split off the band edge de-
into the product of exponents and that each of the multipliergreases due to fluctuations as compared to the case without

is averaging independently we obtain fluctuations. This means that
« E
<exp(—|n > A, gSte? )> N(O):f " p(w) do<3 ngc). (43)
= StK 0 S

N
_ H [Cexp—iA |¢SLK|ZT) The result obtained is restricted to the region where the per-
- - Al Pn

nae turbation theory is applicable, i.e., it is the better the lower
stk

_ Cxta the cluster concentration and the larger the localization en-
+(1-c)exp(—iAg|#y|°n)]. (37  ergy are.
Here 2. Effect of fluctuations on localized cluster states.

Ap=Ea—Eg=—(1-0C)A, Variational procedure
To extend the region of the cluster approach we apply the

Ag=Eg—Eg=cA. (3g)  Variational procedure to consider fluctuations of the sur-
rounding medium. For further calculations it is convenient to

The averaged expression for the DOS can then be writtefeWwrite the Fourier integral of E¢36) as a Laplace transfor-

as mation
1 0 Ost 1 S 2 QESt E str(2 .
- St,k|2 AS (1 _ A\t = — d Kl2cS(1—c
po)=5| 43S 33 jerea-o p@=e| 43 3 3 jgrea-o
Xexp[—i(w—wfcfc" )7+ 2 IN[Ra(7)1}, X exp[ [E S “(Himt @ Snm) o™ [(7=1051.4)
nsC Stk
(39 .
+ 2 In[Ry(7—ifs )]} (44)
where n > Csi
_ . _ stk|2 Here, ¢S‘ “is the trial wave function of the localized state for
(M) =cexia(l=c) |¢y|" 7] the given cluster, ané,, . is the corresponding parameter of
+(1l—c)exp(—iA C|¢ﬁt~'<|2 7). (40) the Laplace transformation. An important detail of the prob-

lem is concerned with the great variety of the cluster con-
Restricting to the first nonzero cumulant we have for thefigurations. As a result the trial functions for the variational

DOS procedure should be chosen for each of the clusters individu-
ally. Neglecting the possible overlapping of the wave func-
1 (= Ist Stal2 s . tions of clusters we consider in this case isolated clusters.
pw)= —J_w dTES 21 ; |¢n "7 c*(1-c) The problem consists in the solution of the equations, which
“ have the form
XexH —i(w— i) 7= ¥3 . 712, (41)

where 2 [Hint @ dun] b+ Uy (M 5°=0. (45)

?’gt,K: 2 c(1—c) A2[| 3t |22 The potential energy inside the cluster is defined uniquely

N3 Cstx by the configuration of the cluster. Outside the cluster, the
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most probable potential energy has to be found. As a resultystem transforms into weak scattering at compositions for
of this optimization we have for the potential energy which the inequality (3c) A<E,, holds. A weak fluctua-

U () for clusterst,

An Nne CSt,K
Usi(N)= ’
Sta"( ) — —st’(zln Rn(_i est,K) ns CSt'K
aast,K|¢ﬂ’ |
(46)
where

dINRL(—i6s,)
TP
exp(— A by | H71?)
cH(1-c)exp(—A O, [ 3D) |
(47)

=—(1-c)A|1-

The self-consistent solutions of the equations of “mo-
and define parameters of the

tion” give functions ¢3"~

Laplace transformatios; ,. .
Presenting in Eq44) In[R,(7—1i 64 ,)] in form of a Tay-

lor series inT and keeping terms up t& we transform the

integral of Eq.(44) to a Gaussian. Integration leads to a
density of states, which can be rewritten using the equatio

of motion (45) as

Ost

p<w>=§ Kzl ; |p3t*2 S (1—c)t

c c+p(n)
|%0+pmJ

1
X—————exp X
V2 Wygt]K(w) W'n > Cst i

1—-c¢ 1-c—p(n)
X(l—c—p(n)) H 49
wherep(n)=—Uyg; (n)/A, and
m
Vol w)= ———, (49)
> | 2}

mz=A2§ (15122 [c+p(n)][1-c—p(n)]. (50

Local values of the attractive and repulsive atom concentr

tions are described by the expressidmstp(n)] and[1
—c—p(n)], respectively.
The DOS expression for each of theresents a set @fs;

a-

tion potential means that the number of localized states is
considerably less than the total number of states in the elec-
tron band and the tail region is much less than the band-
width. These facts define the difficulties for the experimental

investigation of weak-scattering systems in the region of the
tail states.

The Cd%, ) Se solid solution, which we consider as a
weak-scattering system is characterized by a value of the
relation A/E;,~0.3 for the valence band. When the tailing
has its maximum at= 0.2 this value means that the critical
number of Se atoms necessary to split off a localized state is
of the order 10. The probability of the fluctuation presenting
a compact cluster of ten Se atoms is proportionalctd
~10"’. This value corresponds to the number of states in
the tail equal to~10'¢, which is insufficient to describe the
observable tailing effect at this composition. A considerable
decrease of tailing occurs in this solid solution in regions
both ¢>0.50 andc<0.10 but it still remains observable.
Therefore, the first problem is to explain the tailing in such
kind of solid solution.

At present, there are no direct measurementg(af) in
the tail region for solid solutions and we perform an estima-
tion of the DOS value in the region @ where data on the
gxciton absorption can be used to verify the accuracy of the
calculations. Further, we will find the relation that connects
the half-width of the exciton ground-state absorption band
and the DOS.

Our calculation of the number of states splitting off the
band edge is based on the assumption that the exciton states
are localized in fluctuations that are essentially simply con-
nected potential wells. It is supposed that these potential
wells are formed by regions where there is an excess of
atoms of the narrow-gap component compared to their aver-
age concentration. The problem is to find the most probable
fluctuations of such kind. The requirements that each well is
simply connected, and that the excess concentration in its
volume is minimized, leads to an answer that follows from
the theory of percolation along the sites of disordered sub-
lattices: the lower bound on the excess concentration is the
critical concentration in the percolation problem along the
sites of the sublattice. This approach assumes that the fluc-
tuation wells are large in size, and clusters of excess atoms in
the wells can be considered as fractals of finite size. The
DOS in the tail obtained from these arguments have consid-
erably larger values as compared to estimations of the com-
pact clusters and are in agreement with experimental data
over a wide range of concentrations.

1. Estimation of the quantity ofp(w) for fractal clusters

bands, the contours of which are approximately Gaussians We consider the most general case, which involves poten-
near their maxima. The DOS decreases with further increaséd! wells in which the excess concentratiprof attractive
of energy and transforms for each band into an Urbach excenters averaged over the potential well is smaller than its
ponent. The sum rule in this case can be formulated as amaximum value (1c), which leads to a compact occupa-

inequality like Eq.(43).

D. Weak-scattering limit p.<c<1—p,

tion of the volume.

The probability of realizing a fluctuation within the vol-
ume containingn,, lattice sites where the excess number of
attraction centers ia,(w)=n,=n,p equals

The weak-scattering regime takes place at all composi-

tions of the solid solution iA<E.,. The strong-scattering

c"A(1—c)"s,
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where np=n,(c+p)=(n.+ny) and ng=n,(1-c—p)  whereni’™Pis the size of the potential well, (1c)A is its
=(n,—n¢—n,) are the numbers of atom& andB in the  depth, ancE,, is the critical value in the effective-mass ap-
considered volume. It is known that the strength of the poproximation for a potential well with volume,

tential well is only weakly dependent on the form of the

well.”> We assume that states with nearly the same localiza- 2 22

tion depth can be obtained if the numirgyof excess attrac- Eo=— , (53
tive atoms is comparable to the sin€’™P of the compact 4 oM iv )

cluster. Then the probability of realization written above will 470

be considerably smaller than the probability of realization of _ ) ) o
a compact cluster whereM is the effective mass of the particle. Taking into

account the relation between radiB§w) of the spherical
potential well, its depth (% c)A, the critical value of the

single site perturbation of E¢53), and the localization en-
for approximately the same value of the localization energyergy », which has the form

However, taking into account that,>1, we obtain for the

number of realizations the large quantity \/ 72 1-0)A—w
o R(w)= 2M[(1—c)A—w]_7T_arCth—w

w*

mp

com _ ~n°°
expns®™PInc)=c"o

nplng!”’ (54
which can compensate the small probability for an individualVe S€€ that E¢52) can be withdrawn from the last equation
realization. in the limit ®— 0. For the potential well that consists 0f,

The contribution to the DOS from clusters of sipe lattice sites containingn(, c) of attractive atoms and(,p.)

containingn, centers of attraction in excess can be written in0f excess atoms of the same kind, the maximum volume in
the formt® which the wave function does not decrease exponentially is

equal ton,(c+p.). The averaged level of the attractive

1 potential within this volume is equal th p./(c+p;). Then
plow)= W—UOUmG(w)) the relation, which connects,, », andE,, can be written
as
1 \/ n,
UOA 27T(C+p)(1_c_p) [nw(c_,r_pc)]Z/B[C%A_w}
c Pc

nw(c+p)( 1-c )nw(l—c—p)

x| —— —_— , (6D
+ 1-c— 4E /
c+p c—p :—Zw[w—arctg{ Pe Alo—1
Ctpc

] 2
wherevy=V/N. ™
The DOS obtained is strongly decreasing witincreas- (55)
ing and we have to find the wells that give the localized state
of a given depth at a minimum value pf The number of This leads to the number of lattice sites in the potential well
excess attractive aton#sin the well is equal tan,. These at a given localization energy
atoms can form a singly connected configuration within a
volume containingn,,>1 lattice sites ap, which is close to 1 = 3/2
the critical value of site percolation problep for a given n“’:(c+ 0o | pe

sublattice. We can define a singly connected potential well of A—w

such kind as a finite-size fractal. Then the substituion C+Pc

=p. into Eq. (51) wherep, is the critical value for an infi- > 0. A 3

nite sample gives an estimation of the DOS if the actual size X | 2— —arctg{ L ] . (56)
of fluctuation is large, i.en,,> 1. m Ctpc @

A further problem consists in the estimation of the local- . . . . o
ization depth for potential wells. At present there is no recipe! N€ €quation obtained gives in the lingit- (1—pc) the ex-
for this estimation for potential wells of fractal structure. We &Ct result for the compact spherical cluster.
perform an estimation based on universal properties of node- Finally, the DOS can be presented in the form
less ground states of the Schrodinger equation in the region
of an attractive potenti&l’®and assume that the form of the 1 \/ n,
potential Well75plays no role as it takes place for the wells of P(®)= voA Y 2m(c+po)(l—c—po)
simple forms!.

Let us write the criterion of appearance of the localized P 1—¢c |(7cmRo)
state for a compact cluster of spherical form in effective- 1-c—p,
mass approximation using the approach of Ref. 75, which
gives in this case an exact result with n,, defined by Eq(56). We shall use this equation for

compr2/3 the estimation of the DOS in the region of the absorption
('™ 71— c)A=E, (52)  maximum of the exciton ground state.

Ny

(57

C
C+pe
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X|1n

2. Weak-scattering regime in regions<gp,. and c>1—p, 1 d3r
The tailing estimated by E¢57) decreases sharply at low plo)~ ——— #exp{ f N

concentration of attractive atones<p, in the weak scatter- vo N2my (@) vo

ing limit. The Cd$;_., Se solid solution shows, neverthe- c \ctp™ 1-¢c \1-ce=p()

less, an observable broadening of the exciton ground state m) (Tp(r)) H

even in this region of concentration. Equati@?Y) gives the

correct order of the DOS in this solid solution at an energy (60)

corresponding to the exciton band maximum upcte0.1.

At lower concentrations the valyg.=0.2 leads to a number

of states, which is insufficient to explain the observed tailing

where

2 my
effects. Y(0)= g 12 (61)
To decrease the value pf and thus to increase the num- f r o2 (r)}
ber of localized states in this region of concentration we vg U

consider potential wells formation by finite-size clusters tak-

ing into account the percolation over the next neighbors.
Another concentration range where the percolation over d3r

the next neighbors should be taken into account:isl m2=A2f —[eq(NTle+p(n][l-c—p(r)]. (62

—p.- In this composition region the localized states can be Yo

isolated from each other only if the repulsive atoms form arpe |ocal values of attractive and repulsive atom concentra-

percolation cluster, which in turn demands a decreasing pekjons are described by the equatidics+p(r)] and[1—c

colation threshold. —p(r)], respectively. The potential well configuration

U (r) is given by the functiorp(r)

and

E. Approximation of the energy dependence __
of the density of states Up(r)=—A4p(r), (63)

The following calculations are aimed to obtain an inter-Where

polation formula, which describes the dependence of DOS in
the wide region of energies for both strong- and weak—p(r)
scattering limits. It is assumed thay, is the lower border of

the energy interval where the DOS behavior is considered. (1=¢) r<R(wo)

We assume that in zeroth approximation all the states with — exp(—teZA)

localization energyw;>w, can be treated as localized and (1-c)|1- > r>R(wp)
isolated from the others. This approach is valid if the total ct(l-c)exp—teyA)

number of states witly> w, (64)

andR(wg) is expressed by E@54). The trial functiong,,(r)
is the solution of the equation

EL
Mwo)= f p(w)do, (58) 42
° — o Vot o= Uu(n)|eu(r)=0. (65)
satisfies the inequality The DOS obtained in this way decreases slowly at values of

o, which are not too large as compared &g and it has

singular behavior atv—E, , i.e., near the Lifshitz border.
Muwg) a3<1. (590  This character of the DOS behavior corresponds well to the
energy dependence of the experimental data, however, the
absolute number of the states appears to be insufficient to
describe the tailing. This occurs because of the fact that the
procedure takes into account only the localized states, which
are formed in spherical potential wells while in reality there
) ; exists a great variety of their space configurations. We intro-
these energies have the same order of magnitude and fice a multiplication factor that corrects the magnitude of

considerably larger then the Urbach parametgr, which (w) of Eq. (60) using the sum rule of Eq43) in the case of

defines the exponential gecrease of the DOS in the region df,¢ strong scattering limit and estimations of the number of
energies exceedin@ye .

. . . . localized states in the region of absorption band maximum
We describe the behavior @f{ w) in effective-mass ap- g P

proximation using modifications of the variational procedureglven by Eq.(57).
of Refs. 78 and 79 and assuming that localized states are
formed by the spherical potential wells, which are larger than
the compact cluster leading to the localized state at energy For an ideal crystal the optical absorption is described in
wq. Using the approach developed in Refs. 14 and 15 we cathe wavelength region of the ground-state exciton by the
write for the DOS spectral density, which can be written in the form

Herea~\%?%/2M wy is the typical length of the exponential
decay of the wave function with a localization energy of the
order wg. The further consideration will show thabg
<wpye Where wyg is position of the mobility edge. Both

F. Zero-phonon exciton absorption band
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vo ) _ space. In general, the consideration of randomly distributed
ars(w)~ ?| ¥15(0)|*IMGoy(w—Eys—i 8), (66)  potential wells, the wave functions of which are overlapping,
is a sophisticated variant of the problem of quantum perco-

where lation theor{®~8¢ with off-diagonal disorder. We simplify
the problem and apply for the consideration a continuum
1 version of classical percolation theory.
G~ Er)=—7 .6 g d
w— mkz— Eis—id 1. Classification of the tail states

The problem that we intend to solve is whether or not a
given state has the possibility for a transition to any other
lower laying states followed by emission of phonons. We
suppose that the temperature is low enough to make transi-
tions into upper states unimportant. For this purpose we in-
roduce a sphere of radilg,,;, which restricts the length of

the step that can be made in processes of such electron-
- phonon relaxation. These processes are completely absent
- — Tik( @) for the deeply localized states for any reasonable value of
<ImGkk(w)> ﬁZ 2 ’ (68) . . .
o —IZZ—A"(w) +T%~(a)) Rint - Be_cause of the exponential increase of the DOS with
2M kk kk decreasingv the role of these processes grows and becomes
. . : , , critical within a relatively narrow region of energies. This
)[’.VhereTk.k("’) andA(w) are linked by the dispersion rela- ¢, 4j10ws one to consideR,,, as an energy independent
ion, which ensures correct normalization of the expressio arameter. As a result the problem of the description of the
for the spectral density. In the region of localized states thes il states can be considered in terms of continuum percola-
func’gio%s are the imaginary and real parts of the scattering, theory for overlapping spheré&:22 The percolation
matrix.” Therefore, we have theory allows introduction of subdivision of the tail states
60 £ |32 into states formed by spatially isolated clustérs potential
Loy~ 20,0 | =er ) [2 wells), by complexes of clustergor potential welly, and
() e . (w/A)( A ) 10 Fe(w), (69 states beylonginrg)] to percolation clustzrs.
We consider a state with localization energyas spa-

Here E 5 and 4(r)~ exp(—r/ag) are the eigenvalue and
eigenfunction of the exciton ground state, dnid the wave
vector of a photon.

For the solid solution the general form of the imaginary
part of the Green'’s function averaged over possible realiz
tions of the fluctuation potential i5

where tially isolated if there exist no states with larger localization
M| ¥? 1 energy in the sphere of radilg;,; surrounding the given
N w N N N . .
I (k)= > 3f d3r exp(ikr) g, (r). (70)  Potential well. The number of isolated stat(ag) can be
h (2m) written with the help of the continuum percolation theory for

overlapping spheré&2!as
The calculation ofA () is a more complicated problem
because for this purpose we have to kngy(w) in a wide- (ny(@))=~ exp{ —[Rin /1 (@)]%)= exp{— 2P(w)}.
energy interval. (72
For an approximate description of the spectral density
within a narrow energy region in the vicinity of its maximum Here notations are introduced

we can replacelgi(w) by a constant valueﬁ%;. As the

result we obtain ak~0 1 —5 — (3 1 s
Plw)=5[Rin/r(@)]%, r(w)z(ﬂ m) :
1 Too @) (73
(IMGog( )~ — RTINS (71 _ - .
[w—Apel“+ To( @) The integrated DOV(w) is given by equation
whereAd, is considered as a parameter, which allows us to EL
reach coincidence between the positions of experimental and Mw)= f p(w) do. (74

theoretical maximaw,,,4 Of the 1s exciton state in the ab-

sorption spectrum. The functionP(w) represents the integrated density of local-

ized states with localization energy exceedingn units of
the first virial coefficient.

Until now we considered the states with energies o, We consider the state as belonging to a supercluster of
as isolated from each other. These states are formed by clusizesif it is connected with any others o6¢ 1) states with
ters of atoms of the narrow-gap component of the solid sokarger localization energy, i.e., if there exist paths from the
lution or by singly connected potential wells, which are in- given state to the othes(- 1) states, which can be made by
duced by composition fluctuations. At random distribution ofsteps that are less thd®),;. Then the magnitude of{ )
the constituents of the solid solution the clusters and poterreaches the critical value at certain localization enangy-
tial wells are also randomly distributed over the crystal. Nowand a supercluster of infinite size appeares. This supercluster
we introduce a more accurate classification of the states taks regarded as percolation cluster anglg is considered as
ing into account that not all of them are really isolated inthe mobility edge.

G. Zero-phonon luminescence band
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We shall use the fact that the critical value of the densityHere ny(w) is the concentration of superclusters consisting
for the percolation problem for overlapping spheres isof s potential wells with localization energy exceeding
known. Survey of data on critical values obtained by a num-The averaging procedure over all possible realizations of su-
ber of authors are given by Haan and ZwarfZighese val-  perclusters is denoted &s. . ).
ues lay within the interval 1.1 P <1.40. It follows from Within the considered model all the states of superclusters
Egs. (72) and (73) that the critical value in our problem except the ground state should be characterized by lifetimes
P(wpme) depends on the magnitude Bf,,; and on the inte- resulting from exciton-phonon transitions. Let us enumerate
grated DOS at the percolation threshdlfwy,g). the states of superclusters in order of decreasing localization

The important characteristics of the percolation theory ofenergy. Then the second state of superclustersswth and
overlapping spheré%2? are the averaged numbers of clus- the second states of all larger superclusters will have as their
ters (ng) consisting ofs overlapping spheres. We identify only decay channel transitions into a corresponding ground
these values with numbers of superclusters formed by thetate. With increasing supercluster state number the number
potential wells. The numbexss) were obtained for the first of channels for exciton-phonon decay processes increases as
five sin the low-density limit by Haan and ZwanZfin the ~ well. We assume that the lifetime depends only on the num-
form of a Taylor series. In order to estimate the behavior ofoer of decay channels. Then the state with nurmderl
(ng) in the region of the mobility edge we have performed anshould be characterized by lifetime
extrapolation of the dependences &+ 2,3,4 by means of o1
equations s 7S 7ad

(s—1) !
Tdec T Trad

(77
(ny(w))="P(w) exp{—3.073P(w)}, . )

where the index §—1) is equal to the number of decay
channels and$. ") is the lifetime or intraband relaxation
time via exciton-phonon transitions into lower-lying states.

s The number of states that haselecay channels can be writ-
(Ny(w))=2.1842P%(w) exy{ —5.084P(w)}. (79  ten in analogy with Eq(76) as

The Taylor series expansion of these functions gives results *
practically coinciding with those of Haan and Zwan#g. ,us(w)=< > nk(w)>. (78
The accuracy of the extrapolation of tife,(w)) can be k=stl
examined by using the results of numerical calculations offhe value ofu, a4 Can be presented in a first approximation
Holcomb and Rehf for the functionP3(phorm), Which is  as
related with{n,(w)) by the equationP3(pnorm)=1—(Ny)
—2(n,) whereppom andP(w) are connected by the equa- Mrag~(N1(@) +Ny(w) - - -)
tion pporm=P(w)/8. The functionP3(pnorm) gives the prob- _
ability for any sphere to belong to cluster of sige 3. The = exi = 2P(w) ]+ P(w)exd —3.073P(w)] - -,
comparison has shown that E(5) leads forn, to close (79
coincidence with results of Holcomb and R&hin the re-
gion most important for further calculatiops,,,>0.1, i.e.,
in the mobility edge region.

All of the states contribute to the exciton ground-state w1~{Ny(w)+n3(w)+ - )=P(w) exd —3.073P(w)]
absorption while the steady-state luminescence band at low
intensity of excitation is supposed to be formed only by the +1.375P%(w)exd —4.09P(w) ]+ - - -. (80)
“radiative” states of the fluctuation tail. The maximum of
the “radiative” state density is below the mobility edge and,
therefore, the luminescence band decreases sharply in t
region of the mobility edge.

(n3())=1.375P%(w) exp{ — 4.09P(w)},

while for the fraction of the states that have the single-decay
channelu,; we have

Sums like the ones given by Eq§.6) and(78) can be esti-

ated by their lower limf with high accuracy, i.e., by their
ew first terms, which are presented in E¢89) and (80).
These sums are well defined both below and within the criti-
cal region |SMw)|=|1-—Mw)/Mwoyeg)|<1, and above
that. However, they are exponentially small in the last two

Now it is possible to find the number of states that haveregions. Using the approach of Ref. 22 it is possible to esti-
no ways for transitions into lower-lying states and have tomate the singular part of these sums in the critical region as
disappear by means of radiative annihilation. This quality SA{w)|®”P*1), whereD is the dimensionality of the system
should be attributed first of all to the isolated potential wellsand v is the critical index of the order parameter depending
with s=1. Their number is given by E¢72). Besides these on the dimensionality of the system. Fdr=3 the value ofv
states the ground states of superclusters aitfi have also is approximately 0.875, which leads to negligibly small val-
only the radiative way to disappear. As a result we can writeues of the singular parts of these sums in the critical region.
for the number of “radiative” states, i.e., for the states that
are characterized by the radiative lifetim&®=r, .4

2. Lifetimes of the tail states

H. Shape of the zero-phonon luminescence band
at low intensity of excitation

— _ The calculation of the shape of the zero-phonon lumines-
= = n . 76
Hol @)= traal @) < 2 S(w)> (76) cence band will be performed at the condition that the optical



12 960 A. KLOCHIKHIN et al. PRB 59

500 0.1 0.2 0.3 0.4 Energy © (eV)
10 T T [ T T T T[T T T T[T T T3
T 1021 E T 0'92 T T T 0.?4 T T 5 1021
2 3 F 1 3
g . o - -
Z“ 1020 i g 1020 E 1 ? 1020
s ] s :

- = Z 10'° = = 1018
B N - E 3
e ] > - ]

Q — ()]
=10 3 7 0L < 10%®
S 1 E =
= 3 ° - -

ME = 5 o n
l 7 S 07 o 107
1016 L1 1 L b L1 EEAYEN| F 3
0 0.1 0.2 03 04 B | 7
1016 1 1 ] 1 LN 1018

|
Energy o (eV) 0.02 0.04 0.06 0.08

. . . E V
FIG. 1. Density of statep(w) (1), integrated density of states nergy @ (eV)

Muw) (2), density of “radiative” statep"(w) (3), and integrated FIG. 2. Density of stateg(w) (1,1') and integrated density
density of “radiative” states\""*(w) (4) of the fluctuation tail of  Af) (2,2') of the fluctuation tails of the exciton ground state in

the exciton ground state in the solid solution ZpSde: at ¢ the solid solution CdS .Se, atc=0.2 (1, 2) (lower energy scale
=0.13. Curves (1) and (3) are represented in the units angc=0.51 (1 2') (upper energy scale

[em3eV1], curves(2) and (4—in [cm 3]. Open circlers—
estimation of integral density of states using the sum rule(&8).
Estimated position of the mobility edgeye is indicated by the
arrow.

Here we denoted as;.. the lifetime resulting from the decay
process for the first “excited” state of the pair supercluster.
The last equation shows that the role of the correction de-
spends on the relation betweeg.. and 7, 4.

The isolated potential wells and superclusters of small
aﬁize give the major contribution to the luminescence at all
energies of interest while the superclusters of higher order

recombination is restricted by the nonradiative transition
into the lower-lying localized tail states.

The steady-state density of the populated states at we
interband excitation is proportional to the product of the™. :
DOS at a given energy and the lifetime of the state. Thd'Ve small corrections only.
radiation probability of the populated states is described by F|gures 1,2, and 3 demonstrate the rc_asults of mo.del cal-
the same optical DOS as the absorption coefficie®tw). culations for the strong and weak scattering, respectively.

. Figure 1 presents the DOS of the fluctuation tail states
Therefore, th -ph I band be de- . )
scr(iatr)gc?fs € zero-phonon Uminescence band can be ,?(w) and the integrated DOS/{ w) together with the DOS

of “radiative” states calculated by means of equation
194(@)~ aly( @) P(@) Traq, (81)

S(w)= P(w), 85
where P(w) is the total relative fraction of the radiative p(@)=p(w) Plw) (5

states at energy, which belongs to superclusters of differ-

ent size. where P(w) is given by Eq.(83). The corresponding inte-

grated DOSN"S(w) of “radiative” states is also shown in
(s-1) = Fig. 1 for the ZnSg_,Te; solid solution atc=0.13. For
4 => P D(w). (82 completeness, the position of the mobility edgge is pre-
Trad s=1 sented in Fig. 1 as a vertical arrow. It is obtained as the result
of the fitting of the shape of the luminescence band.

The value ofwy was taken to be equal to 0.0975 eV in the
numerical calculations. This value lays between the esti-
mated localization energies of Te clusters with numbers

P(w) ~{exd = 2P(w)]+P(w) exp[—3.073P(w)]}.83 =3 and 4. The evaluations of the integrated DOS with the

(83 help of the sum rule Eq43) are presented in Fig. 1 fa&
We have accepted in our calculations a critical value for the=2, 3, and 4 as well. The calculation of the DOS was per-
P(wwe) =1.40 taken from Ref. 20. The first correction to formed in the ranga»=w, using Eq.(60). The obtained

P(w)= 521 H(s—1)(@)

The contribution toP(w) of isolated wells and of ground
states of two-well superclusters is given by the equation

Eq. (83) can be written as curve was corrected with the help of the multiplication factor
as it is described above in order to reach coincidence be-
ags(w)p(l)(w) Trad tween the integrated DOS and its estimation given by Eq.
o (43) at w=~ wq. The extrapolation of the DOS into the region
~ajy(w)(ny(w)) 7V of w<wq given in Fig. 1 was performed also with the help
- of Eq. (43). The data of Fig. 1 show that the tailing has in
= a(l)s(w)'p(w)exq_3_07373(w)]M_ (84)  this solid solution a considerable extent and the width of the

Tdec™ Trad region of radiative states reaches tens of meV.
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Energy o (eV) I. Luminescence of “silent” states
0 0.02 0.04 The main assumption of our previous consideration is that
F 1 T T 1 T T T3 the main part of states optically active in absorption remains
—_ i 1 7 “silent” in luminescence under low-power steady-state ex-
;% 10F 2 M 310 citation. The situation can be changed at high excitation
= - > . when a considerable fraction of the radiative states is popu-
§ E - lated, and therefore a significant fraction of the states attrib-
-4 L ] uted as “nonradiative” can be populated too. The resulting
5 01 E 4 = 0.1 additional zero-phonon luminescence can then be described
£ C 4 ] as follows
€l
z g 3
N ] 8134(0) ~ aly(®) fl,7(@)/ 7rag] [1= P(®)] Traa,
%5 0.001 E_ of| [3 lME —§ 0.001 (86)
1 ] L L | L | . . .
0 002 004 006 008 where the functlon‘_[cu_, 7(w)/ 7,,4] describes t_he population
level of the nonradiative states at enekgywhich are char-
Energy o (eV) acterized by their lifetime 7(w). The function

. . flw, 7(w)/ 1,2q] @s well ast(w) depends on the intensity of
, FIG. 3. Zero-phonon absorption of the exciton ground stategxcitation. The fraction of nonradiative states is given by the
a15(w) in the solid solution CdS Se, (1), relative integral density  f,nction [1—P(w)], which ato< wyg satisfies the inequal-
of statesM(w)/Moye) (2), fraction of “radiative” statesP(w) ity [1— P(w)]>P(w) because of the exponential decrease
(3) and zero-phonon luminescence baidw) (4), ¢=0.2 (lower of P(w) in this region. The spectral range where the addi-

energy scale Curves 1—4' are the same foc=0.51 (upper en- . . 0 - i
ergy scalé The arrows indicate the estimated position of the mo-tIonal luminescence I 1i(w) could appear is above the re

bility edge wye for these two concentrations. gion of the maximum ofl gs(w). This fact means that the
emission of usually “silent” states will change the position

) ) of the maximum and the short wave wing of the steady-state
In Fig. 2 we present the DOS and the integrated DO minescence band.

calculated for Cd§_) Se atc=0.20 and 0.51. The curves |t s worth noting that the role of the additional emisson
presenting both these functions look very similar for tWOdescribed by Eq(86) depends at any given intensity of ex-
different concentrations after a scale transformation of theitation on the total number of tail states. All other condi-
energy axis. We have used in both cases the estimation of thns being equal, the population of the “silent” states are
DOS near the absorption band maximum in accordance wittore important for the concentrations of the solid solution
Eq. (57). for which the number of tail states is relatively small. The
Figure 3 shows the zero-phonon optical densities for theecombination spectrum can be affected in the cases) of
absorption and for the luminescence for two compositions ofveak scattering at low concentrations of the attractive com-
CdS;-¢) Se. The curves were obtained with the help of ponent andii) in both weak- and strong-scattering limits at
Egs.(71) and(81). The position ofwy e Was chosen to reach high concentrations of the attractive component. In both
agreement with the experimental shift of the luminescenc&éases the number of tail states is not large enough and the
bands with respect to the absorption spettra. radla_ltlve states can be saturated even at a relatively low in-
The shapes of the calculated zero-phonon luminescendgnSity of excitation.
bands are defined in the region of energie€s wy g by the
universal Urbach dependence ®f,(w), by the dependence
of M), which has also Urbach-like character, and by the ' . . .
equations of the percolation theory, which define the behav-hThe flntal stgge gf calc:lulatlorgs mcIudebs the excﬂgn-
ior of P(w). This region of energies includes about 80-909P 10NN 1N eraction. General equations can be presented as
of the integrated intensity of the luminescence.
A more complicated character is inherent to the behavior ° o
of the zero-phonon luminescence band in the intewgl als(“’):fo dzai(w+2) F(2), (87)
<w=<wyeg. The behavior looks like exponential with a pa-
rameter of the slope, which can be expressed as
(IN[1%w)T)"L. This value is well observable in and
experiment$. The latter region of energies is characterized
by P(w) values, which are considerably less than unity, and
which decrease rapidly with decreasing The optical den- |1s(w)=J
sity of “radiative” states consists of only a small fraction of
the total optical density of the exciton band in this region.
Therefore, we can expect that this region of the luminescenc&hen using well-known resuft6®we can write the density
spectrum can be changed even by a low population of thef the phonon wing for localized exciton at the temperature
nonradiative(“'silent” ) states at a relatively weak excitation. T=0 as

J. Exciton-phonon interaction

’ dz 8 (w—2) F(2). (89
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1 (= ;{ |H®(a)|z For the model Il each of the exponents depends only on
F(w)= —f dtexpg iot+ >, ———— one argument, and therefore
2m) - q 2
Hd=F&q[expi(are)]isist i oL expi(arn)lg, g, -
x[exp(—qut)—u]. (89) (93)
Here the first matrix element can be evaluated analyti-
Our purpose is to obtain the absorption coefficient and theally. The functions~¢ , andFy , are given by Cohen and
luminescence intensity as functions of the localization enSturgé for the Frdnlich interaction = F), for the deforma-
ergy taking into account the diagonal exciton-phonon intertion (a«=D), and for piezoelectric ¢=P) coupling of
action with both LO and LA phonons when no change of theacoustical phonons.
excitonic state occurs. Equatiofial) and (81) describe the In order to obtain masses of particles, exciton binding
inhomogeneous zero-phonon band. In order to calculate thenergies, and the exciton-phonon coupling parameters for al-
matrix elements of the Hamiltonian of the exciton-phononloys at arbitrary compositions we have used the procedure of
interactionH 44 (q) the wave function of the localized exci- linear interpolation of those for pure crystals from Ref. 90 as

tons can be Written as |t iS described in Ref 3
D = by (R) th1o(1). (90) IIl. EXPERIMENTAL RESULTS AND DISCUSSION
Here ¢, is the solution of Eq(65) and ¢;s~exp(—r/ag) is A. Experimental details
the wave function of the exciton ground state with Bohr
. 1. Samples
radiusag .

The considerable difference appears in the exciton- For the investigation of luminescence properties of the
phonon interaction for two models of localized excitofi3: mixed crystals CdS .Se and ZnSe__.Te, we studied sev-
excitons trapped as a whole afit)) the fluctuation trapped eral samples of each system. For simplicity we present in the
hole with Coulomb bound electron. following data from two representative, high-quality samples

The argumenR of ¢, is the center-of-mass vector in the Of €ach solid solution. The samples of the ¢dsSe sys-
model | and it coincides with the hole coordinde=ry, in €M Which crystallizes in wurtzite structure over the whole

- - - . composition range, were an epitaxial layer and a thin single
model II. The argument of Y151 =rn_TelN model land it ¢rystal platelet with slightly different Selenium contents of
is equal to the e'|eth(f3l? coordinate=r for model II. 5% and 7%, respectively. The platelet sample was grown

The HamiltonianH" is given by the sum from the gas phase, the crystallicevector being parallel to

Hf 4l the surface. The epitaxial layer was grown by hot wall epi-
Lo" LA, taxy (HWE) on the[111] surface of a GaAs substrate. Its

wheref labels the phonon states. Each of the terms of thig_axis is oriented perpendicular to the surface, along the
equation in turn presents the sum of the electron and holgpijtaxial growth direction. For details of the growth proce-

Hamiltonians dure and the characterization of the sample see Ref. 25. The
e h studied samples of the zinc-blende solid solution
Hioa=HioaTHioa- ZnSq_.Te, were bulk crystals with Tellurium contents of
The matrix elements of the exciton-phonon Hamiltonian cant3% and 10%. They were grown from the melt but at
be presented in the fortA° slightly different growing temperature and excess Te vapor
pressure.

HE o =[F & qexpi(are)+Fiqexpi(drnles. (91
Taking into account that for the model |

2. Steady-state and low-intensity pulse excitations

To study the properties of luminescence and its dynamics,
we carried out experiments under steady-state conditions and

r;)h=F§+ - r: F=r_>—r_)h; pm=memy/(Mg+mp), under pulsed excitation combined with time-resolved detec-
h.e tion. For the cw characterization of the samples we used the
we see that for the model | the matrix element of the Hamil-UV lines of a mercury lamp or an attenuated line of ari” Ar
tonian can be written as ion laser as excitation source. In order to investigate the lu-
minescence dynamics under low and high excitation, we per-
af Lo « e formed measurements with two different experimental set-
H¢'¢=[exp|(qR)]¢"¢“[ Fe.q| XPI qr_h)les ups, which provideps pulses with high-repetition rates at

low-pulse energies and pulses with high-pulse power but low
repetition, respectively. In both cases we were able to tune
]- (92) the wavelength of the exciting light from above the band
1sls edge to resonant excitation into the localized states. The first
The first matrix element can be calculated numerically whilesetup consisted of an Arion pumped passive mode-locked
the calculation of those in square brackets can be don&i:Sa laser followed by a regenerative amplifier and an op-
analytically*®® with the help of the exciton ground-state tical parametric amplifier for second harmonic generation.
wave function. The spectral sharp pulses had a durationrgf,uu=<1ps

expi| gr
pqm

e

+Fhq
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with 200 kHz repetition rate and up to 0.1 mW average ex- Photon energy (eV)
citation power which gives about2/cn? for density of 26 04
excitation at the spot diameter 0.2 mm. 10 T 7 '
The detection of the luminescence signal was done with
time-resolved photon counting after the monochrometer. Its 1
temporal resolution was around 200 ps. The system allowed G
to follow the decay of the signal up to Outs over a dynami- 5 o z
cal range of more than four orders of magnitude. g
= \
> v : [ \
3. High-intensity pulse excitations g 0.01 I ! " |y RV
For the creation of high carrier densities we used anam- & ’l AN A Y
plified, quenched cavity dye laser pumped by a XeCl exci- % i ' ’:\\i SRR _ ‘:
mer laser. It gives pulses with-y =280 ... 120 psdura- Ll :,I TR
tion. The maximum excitation intensities used in 0.0001 0 0.1 0.2 0.3
experiments discussed below was up to 0.1 m3/ger
pulse, leading to estimated generation densities up to Energy o (eV)

1.019 cm = under band-to-band excitation. The pulse repeti- - g 4 Open circles—luminescence spectrum of ZnSee, at

tion rate was 10 Hz. The time-resolving detectlon Cons!stecj::o_13 andT=2K (upper axi3; full lines (1—6) and broken lines

of a single shot streal_< camera followed by a tWO'd'me”S'O”aﬂa—j)-calculated dependenced)—zero-phonon absorption band

charge coupled deviceCCD) array camera. It allowed a .2 (,)) (2)—normalized integral density of statd§ w)/AV{wye),

maximum resolution down to 5 ps, used to determine ths)_fraction of “radiative” statesP(w), (4)—zero-phonon lumi-

temporal shape of t'he excitation pulse. Temporal nonlmearlmescence band®(w), (5)—absorption bande;(») and (6)—

ties as well as spatial and spectral dependences of the sengiminescence bant () via 1s-exciton state after taking into ac-

tivity of the detection systems were corrected by calibratiorcount exciton-phonon interaction; broken lines—(j)—zero LO-

algorithms. The pump-spot diameters varied arounchhonon luminescence ban@) and its LO-phonon replicas of

100...200um. different orders §-1LO, c-2LO etc). Vertical arrow atw=0.18 eV
The luminescence collection was arranged in a backindicates the estimated position of the mobility edgge . Dotted

scattering geometry in all experimental setups to avoid reabvertical line corresponds to the excitation wavelength value used in

sorption. For the measurements of the §§Se) o platelet  luminescence decay experimefisge text

sample the polarization directions of the excitation and the .

luminescence light were carefully adjusted to be perpendicug'eS (£0.1 eV) are considerably larger than the Coulomb

N binding energy of the exciton~0.025 eV} for this system
lar to the crystallographic—axis. All measurements were

)  and electron is supposed not to be able to follow the hole
carried out at low temperatures between 5 and 8 K, using,stion adiabatically.

liquid-helium cryostats.
2. Luminescence oCdS(;_, Se

B. Steady-state luminescence (1) Experimental data on the luminescence band shapes
for Cd]; ) Se for c=0.20 andc=0.50 and the compari-
son with calculated spectra are presented in Fig. 5.

In Fig. 4 are shown the calculated luminescence band of All the parameters of the exciton-phonon interaction were
ZnSg_.Te, at c=0.13 and an experimental spectrum ob-obtained by means of linear interpolation of the values cor-
tained under steady-state conditions at a low-density excitaesponding to the perfect crystals CdS and CdSe presented,
tion. The mobility edge position equal to 0.18 eV leads tofor example, in Ref. 3. It was established that model | has to
satisfactory coincidence with the observed shift of the lumi-be used in the range of concentrati@s0.4 to describe the
nescence band with respect to the absorption maxifhine  exciton-phonon interaction. This region can be characterized
value of P(wyg) was taken to be 1.4, which corresponds toby a relatively weak tailing where the binding energy of the
the result of Ref. 20 for the critical concentration of overlap-exciton exceeds the localization energies and electron can
ping spheres. The comparison of the zero-phonon absorptidiellow adiabatically the motion of the hole over the potential
(curve 1 in Fig. 4 and luminescencéurve 4 bands shows well. Another situation takes place in the region GG5
that only a small fraction of the tail states situated in the<<0.4, where the inequalitif..(C) < wy, is realized between
region of small values of the absorption coefficient and ofthe exciton Coulomb enerdy.,(c) and the typical localiza-
the low density of the tail states is responsible for the steadytion energy of the tail states~ w)y,, . Here the electron is
state luminescence band. The maximum of the zero-phonomot able to follow the hole motion adiabatically and the
luminescence band is considerably shifted with respect to thmodel Il becomes more adequate. The transition from model
absorption band maximum. An additional Stokes shift of thel to model Il is continuous and there exists a narrow interval
luminescence band is produced in this case mainly by thef concentrations where the linear combination of the wave
interaction with LO phonons. The LO-phonon replicas arefunctions of the models | and Il should be used. The effec-
overlapping and form the broad luminescence band. In théve strength of the exciton-phonon interaction changes sig-
calculations of the phonon-assisted processes the excitarificantly at the transition region from model | to model I
wave function was taken in the form of E(PO) for the  because of the transformation of the wave function of the
model Il of localized excitons. Indeed, the localization ener-localized exciton. At the same time, the change of param-

1. Luminescence oZnSe, _.Te,
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FIG. 5. Absorption and luminescence spectra of CdSe

solid solution forc=0.20 (a) and 0.51(b) (upper energy axgs FIG. 6. Open circles show the luminescence spectrum of
Open circles indicate the luminescence spectrum at band-to-bar@dS _.Se. for c=0.05 atT=2 K (upper energy axjs The lines
excitation. Lines give the result of computing for zero-phonon ab-are computed spectra of phonon-assisted recombination of “radia-
sorption band of the exciton ground stafés(a)) (1), absorption  tive” states (1), “silent” states (2) for Er=28 meV and T
band taking into account interaction with phonens(w) (2), zero-  =2.75 meV(see text and sum of these two terng8).

phonon luminescence ban@s(w) (3) and phonon-assisted lumi-

nescence bants(w) (4). the short wavelength wing. To make the difference between

experiment and theory more obvious we show the band cal-

eters of the Hamiltonian of the exciton-phonon interactionculated using the same approach as in the previous cases in
with composition of the solid solution gives only an insig- Fig. 6 as curve 1. It is seen that the calculated band has a
nificant effect and the common multiplication fact@f the  steeper slope of the short wavelength wing than the experi-
order of unity, which was used in the fitting procedure, re- mental luminescence band and the structure of the calculated
mains independent of composition for each type of interact O-phonon replica also differs from the observed one.
tion within the studied composition interval 08%<0.6. To improve the agreement we assumed that in this case
The change of the exciton-phonon interaction strength leadhe condition of the low-excitation density is not fulfilled and
to considerably different shapes of the luminescence bands &gilent” states of the excitonic band have to be included into
different compositions of the solid solution. Fig. 5 demon-the consideration of the luminescence spectra. The following
strates that the difference in the structure of the luminescendgig. 7 exhibits the DOS and the integrated DOS data of
bands is most obvious in the region of the long wavelength'radiative” and “silent” states for this concentration, which
wing of the spectra. In the composition interval where modeillustrates the idea of the explanation. The integrated DOS of
| is applicable the exciton-phonon coupling is weak and thehe ‘“radiative” states has in this case with about
long wavelength wing of the main luminescence band repro~5.10'¢ cm™2 the lowest value among the considered solid
duces the optical density of the tail states with high accuracysolutions. If the intensity of excitation is not low enough then
In the region of model Il the strength of the exciton-phononsaturation of the “radiative” states will occur, which can be
interaction increases considerably causing modification ofollowed by the population of the “silent” states. If the num-
the long wavelength wing as compared to the zero-phonober of populated “silent” states is comparable to the value of
band. the integrated DOS of the “radiative” states then a consid-

The slope of the short wavelength wing of the lumines-erable change of the luminescence band shape can take
cence band is practically independent of the exciton-phonoplace. The other possible reason, which leads to the same
interaction strength being a function of the composition.effect, is slow rate of the exciton-phonon transitions from
Both the Urbach parameteg,(c)® and the logarithmic slope excited states of superclusters to their ground states because
of the short wavelength wing of the bdh@In[1%(w)]}.)"*  of too small an energy difference between these states in this
reproduce the corresponding characteristics of the zerazomposition region. At these conditions the “silent” states
phonon luminescence band. The ratio of these characteristiggll be partially populated even when the saturation of the
remains constant with appropriate accuracy in a wide regiomadiative states is not yet achieved.
of concentrationS. The assumed additional emission of the “silent” states

(2) The luminescence spectrum of GdS;) Se exhibits  was described by E486) where the trial functiorf () was
at relatively low concentration of Se<0.1 new features as used to fit the observed band shape. As a result, the fitting
compared to previous data. The results of the comparison gfrocedure shows that a relatively simple trial functig)
the calculated and experimental luminescence bands afan be found if we exclude from the consideration the case
CdS;_) Se are given in Fig. 6 forr~0.05. The observed of highest level of excitation and the shortest time delays in
band shows a well-pronounced structure, which results fronthe other case¢see also Sec. IIIC and llID With these
LO-phonon replicas. There exists in this case a considerablkexceptions the trial functiori(w) has the form of a quasi-
deviation of the luminescence band shape calculated for thequilibrium Fermi distribution with two trial parameters,
“radiative” states from the experimental one in the region of which is sufficient to describe the main features of the lumi-
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Energy (eV) lent” states is to be taken approximately three times less
244 than that for “radiative” states in order to fit the experimen-
_ 10%0 L L tal spectrum.
13 :
8 107 El C. High-density excitation: modifications
0" 7 of the luminescence band shape
z 10® | High-density pulsed excitation gives a wide range of pos-
& 3 sibilities to study effects resulting from the saturation of the
FE 107 \\ —;. “radiative” states and the population of “silent” states. We
> \\ 3 discuss below the experimental data of two solid solutions,
g N namely, Cdg_. Se at c=0.05 and ZnSg .Te, at ¢
1018 N, T =0.13 which, are characterized by very different extents of
@ N \\E their tail states. The first solid solution has about’1@n™2
< ol ’ . .‘. L .‘.\T il ] states below the mobility edge, while the second has almost
10 002 003 004 005 006 10 cm™3. Despite this difference, the behavior of the lumi-
nescence bands at high excitations are fairly similar. At ex-
Energy o (eV) citation levels 0.3—1 mJ/cfrspectra detected during and just

after the excitation pulséduring less than 0.5 ns for our
conditions show the features of the stimulated emission.
(5,6, and populated “silent” states7,8 at Er=28 meV and These data and their discussiqn can be found in_ Refs. 24 and
Te11=2.75 meV, respectively, for CdS.Se. at c=0.05. The ver- _26' .Excep.t.for these shortest time C?'e'ays .a_nd hlghe§t pump-
tical arrow indicates the estimated position of the mobility edgeiNd intensities, the spectra and their modification with time
wye. The dotted vertical line corresponds to the excitation wave-delay are practically independent of the excitation power
length value used in luminescence decay experiments for belowvithin the studied range 0.001-0.1 mJ&niThis finding
band gap excitatiofsee text The upper energy axes gives absolute means that the concentration of excitons created in samples
energies for CdS .Se, at c=0.05. is restricted by bleaching of absorption at high level of exci-
tation.
nescence band shape. In this case and below when we are The result of model simulations and the experimental data
considering modifications of the luminescence band shape &r the evolution of the luminescence bands with time are
high excitation we take the functioi{w) in the form shown in Fig. 8 for Cd§ ) Se for c=0.05. Analogous
data are given in Fig. 9 for Zn$e Te, for c=0.13. In both
cases Eq986), (94), and(95) were used in the calculations.
The variable parameters of the fitting procedireand T
of the trial functionf (w) are given in the captions of Figs. 8
and 9.
The constants of the exciton-phonon interaction were in
0 0 both cases again decreased by a factor of 3 for the “silent”
Ils(w):j dz Ig’s(w—z) F(z)+J dzsél gs(cu—z) F(2). states as compared to the “radiative” states. The last fact
*°° m can again be interpreted as the consequence of increase of an
(99 averaged size of wave functions of the “silent” states, which
Here 6l ‘l’s(w) is defined by Eq(85) with the trial function are formed by the large superclusters and by the percolation
f(w) given by Eq.(94). The DOS and the integrated DOS of cluster.
populated “silent” states obtained with the help of E§4)
are presented in Fig. (€urves 7 and B The additional emis-
sion band of “silent” states is presented in Fig. 6 as a curve
2 and the resulting band calculated as the sum of two bands
1 and 2 is given in Fig. 6 as curve 3. At Ti:Sa-laserps-pulse excitation the luminescence spec-
The fitting of the luminescence band shape shows that thisa are in the first moment considerably less shifted into the
effective exciton-phonon coupling strength for “silent” blue region than at subs excitation discussed in the previ-
states is weaker than that for the “radiative” states. Thisous section. This finding confirms low-density conditions of
result can be understood in view of different sizes of thethe excitation.
states forming these two ensembles. The main part of the In Figs. 10 and 11 the emission spectra at resonant exci-
“radiative” states consist of isolated states and of the statetation belowwye are shown for Cdg ) Se. for c=0.05
belonging to pair superclusters while the “silent” statesand for ZnSe__.Te. for c=0.13. The spectra were integrated
originate from the larger superslusters and from the percolasver different intervals of time. Figure 12 presents the lumi-
tion cluster. The size of the wave function directly influencesnescence spectra of C4S;) Se for ¢=0.05 at band-to-
the effective strength of exciton-phonon interaction throughband excitation detected at similar conditions.
the restriction of the region of the Brillouin zone from which ~ The spectra of Cd$_.) Se& show clearly the features of
phonons participate in the emission process. We have founihe exciton-phonon luminescence at all time delays. The shift
that the effective exciton-phonon coupling strength for “si- toward the low energy increases with time delay and the

FIG. 7. Computed DOS’¢odd numbersand integrated DOS'’s
(even numbenscurves of total(1, 2), “radiative” (3,4), “silent”

flw)= (99

exf(w—Eg)/Tep] +1°

where the trial parametes: and T.; were used to fit the
shapes by means of the following equation

D. Low-density excitation: modifications
of the luminescence band shape
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FIG. 8. Solid lines: luminescence spectra of ¢d&e., c
=0.05 atT=5 K for pulse @—f curves band-to-band excitation

and different time delay after excitation pulse-0.2,b=0.7,¢ 54 jifferent time delay after excitation pulse=0.75, b— 1.05,
—1.5,d-2.5, e-45, andf-10 ns, respectively. The lumines- _ 1 4 4_5 05 e—5.0, andf—50 ns, respectively. The lumines-
cence spectrum at steady-state band-to-band excitation is shown R ce spectrum at steady-state band-to-band excitation is shown by
the solid curveg (absolute energy values are shown at upper)axis solid curveg (absolute energy values are shown at upper)axis

Curyesd with sgrnbgls reereglen.t c”om%u‘t‘e(.jl s;,)’ectra of ) Eho,n?nCurves with symbols—d represent computed spectra of phonon-
assisted recombination of “radiative” and “silent” states with trial ,ccisted recombination of “radiative” and “silent” states with the

function d_eflned by Eq(94) and the following fitting parametets: trial function defined by Eq(94) and the following fitting param-

and Teys (in meV): a—0 and 12;b—15 and 7.5,c=25 and 7.5; o0 Er and T4 (in eV): a—0.05 and 0.5b—0.1 and 0.1;c

d-25 Qnd 6.25p—25 and 4.25f —28 and 3; ang)—28 and 2.75, —0.14 and 0.035; and—0.15 and 0.025, respectively. Computed

respectively. luminescence spectrum via the “radiative” states only is shown by
broken curveg.

FIG. 9. Solid lines: luminescence spectra of ZnSde., ¢
=0.13 atT=5 K for pulse @—f curves band-to-band excitation

change of the relation between zero-LO-phonon band and
1LO-phonon replica have the same character as it was dis-

B 1. CdS-Se long-time luminescence kinetics
cussed in Sec. llIC. g

Figure 13 demonstrates the spectrally integrated kinetics

_ . N . of the Iluminescence in the long-time limit for the
E. Pulse excitation: long-time kinetics of the luminescence

The experimental data on spectrally integrated kinetics
show that the luminescence process, which is characterized
in a few first nanoseconds by a fast decay of the intensity
exhibits afterwards a slow nonexponential behavior.

We consider as a reason for the long-time nonexponential
kinetics the formation of excitons from separated electron-
hole pairs, which themselves are generated in the process of
energy relaxation of electronic excitations produced by pho-
tons. In solid solutions with anion substitution the holes are
more strongly affected by the fluctuation potential than the
electrons and some part of photogenerated holes can be lo-
calized before the exciton formation occurs resulting in sepa-
rated pairs even at excitation below the mobility edge.

Normalized luminescence intensity

°e I‘s.

The random potential influences the motion of electrons 0 b T

O--e1-ePedn.qa

as well and leads to conduction band tail#fg:he formation 246 242 2.38
of excitons is possible through the diffusion of mobile elec-
trons or via tunneling of electrons, which were localized by

the fluctuation potential of conduction band. . FIG. 10. Luminescence spectra of GdSSe,, c=0.05 at reso-

In this section we present the quantitative data on the tim@ant low-density pulse excitation at 2.467 é¥btted vertical ling
evolution of the luminescence during the long-time noneX-ntegrated over the first nanosecofairve a), and within the fol-
ponential stage of relaxation. The time behavior of the lumiqowing time intervals after the excitation pulse=5 ns, 5-50 ns,
nescence intensity during this stage depends on the energy &id 50- 450 ns(curvesb, ¢, andd, respectively. All the spectra are
exciting photon and on the pulse power. shifted arbitrary on the ordinate for clarity.

Photon energy (eV)
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FIG. 13. Decay of integrated luminescence spectra of
eCdS,CSec, c=0.05 at low-density excitations below and above
the mobility edge(solid lines 1 and 2, respectivglyExcitation
wavelengths correspond ®©=0 and »=0.022 eV in Fig. 6 and
Fig. 7. Open circles 3 and 4 represent the fit of the long-time kinet-
ics by power the law of Eq96) with & equal to 2 and 3/2, respec-
tively, with parameterr equal to 1.81 and 7.85 ns. Open squares 5
indicate a stretched exponential dependence &4 with 7
=0.043 ns and=0.33.

FIG. 11. Luminescence spectra of ZpSge,, c=0.13 at reso-
nant low-density pulse excitation at 2.479 eV integrated over th
first nanosecondcurvea), and within the following time intervals
after the excitation pulse: 15 ns, 5-50 ns, and 56450 ns
(curvesb, ¢, andd, respectively. All the spectra are shifted arbi-
trary on the ordinate. The excitation wavelength position is indi-
cated by a vertical dotted line.

CdS;-)Se sample withc=0.05 at a low density of exci-
tation in the spectral region below the exciton mobility edge

(curve 1. wheren, ~ n,, are the averaged electron and hole concentra-
The experimentally observed intensity decrease in thigions andk is the time independent averaged probability of
case can be fitted by the power law recombination(or the reaction rate constanfThe depen-
dence given by this equation presents a particular case of the
[(t)~[(1+t/7)] ¢, (96)  well-known Becquerel’s law’°

with 8= 2. This tvpe of behavior is usuallv atributed to The obtained results can be explained in the framework pf

bimolecula.r annihi)(gtion reactions, which a)r/e described inthe above proposed concept, which supposes that a fraction
, L ' . of the absorbed photons produces particles separated in the

the mean-field approximation by the equation space. Under excitation by 2.467 eV used in this experiment

dn, dn, the immobile “radiative” states are up one half of the total

=——=—kngn,, (97 number of states excited by photofsee Fig. 7. The re-

dt dt maining half of the states is supposed to be able to generate

separated pairs during energy relaxation.

According to Refs. 41-43 we have to expect different
F - asymptotic behavior for the temporal decrease of the lumi-
I nescence in dependence on the character of the motion of the
annihilating particles. The observed results agree well with
the dependence for the localized particles for which the ra-
diative recombination is possible only through tunneling,
like in the case of donor-acceptor pairs.

The mean-field approximation assumes a spatially random
and homogeneous in space distribution of annihilating par-
ticles and neglects possible correlations of their distribution

3IIII|IIII|IIII|IIII|III

Y .
1
H
H

Normalized luminescence intensity

i H "‘b‘ ] or fluctuations. The good correspondence of observed time

:: H ‘»,%_ oo @ ] dependence of the integrated luminescence intensity to the
I A I Wi 1 1900 r-leseson | solution of Eq.(97) indicates the validity of the above as-
2500 2475 2450 2425 2400 sumption. The spectral position of maximum and the shape

of the luminescence band coincide at long times practically
with those of the steady-state luminescence. So, we can con-
FIG. 12. Luminescence spectra of GdSSe,, c=0.05 at the ~clude that localized exciton formation is responsible for the

low-density pulse excitation at 2.49 eV integrated over the firstOng-time luminescence decay followed by its radiative re-
nanosecondcurvea), and within the following time intervals after combination.

excitation pulse: +5 ns, 5-50 ns, and 56 450 ns(curvesb, c, Figures 13(curve 2 and 14 present the time kinetics of
and d, respectively. The luminescence spectrum at steady-statethe same sample of C@S ) Se. under the excitation above
band-to-band excitation is also indicated by the solid tne the mobility edge at low and high excitation, correspond-

Photon energy (eV)
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1000OE| T T 1T L — |(t)~dneh/dt~t_(4+d)/4. (101)

Here D is the diffusion coefficient for the most mobile par-
ticles andd is the dimensionality of the space.

This kind of dependence was established in the theory by
different methodsgsee, e.g., Refs. 42 and ¥™However, the
experimental data for CdS )Se, cannot be fitted by this
law in the case under consideration. This fact confirms the
OOM" assuming that at least the particles of one type are localized
Cod = in this system.

° For the case of mobile electrons and localized holes the
recombination should be considered as a result of a random
walk of electrons in search of localized holes and the recom-
bination kinetics should keep the peculiarities and conse-
quences of this process. To describe the long-time behavior
(/7,080 of the luminescence intensity we have to investigate the elec-

tron motion at times essentially exceeding the time of elec-

FIG. 14. Decay of integrated luminescence spectra oftron hops within the volume of size which is restricted by
CdS,_.Se, ¢=0.05 at high-density excitation above the mobility the localized holes. The time dependence for an electron con-
edge with density 0.210 3J/cn? (solid ling) in a semilogarithmic  centration in this volume can be written as
plot as a function oft®% The dashed line represents a stretched
exponential fit by Eq(104) with 7;,=1.0 ns and5=0.60. Symbols dng Ne

1 and 2 represent the fit with=0.55 and 0.65, respectively. FTI (102
D

1000

/

100

10

Luminescence intensity (arb. units)
T T TTI IIIII|T|'| IIIIIITI] IIIIIITI] TTTT
f

0.1
0

_ ) ) o ) where 1 is defined again by Eq98) with D equal to the
ingly. The behavior of the intensity differs considerably from gt sion coefficient for electrons. If only a fraction of elec-
that in the previous case. Namely, the decay of thg g is mobile and the number of mobile electrons is con-
Cd§; - )S& luminescence obeys in an intermediate time in-gigerably less than the number of holes the simple exponen-
terval at low excitation the stretche-exponential lawyig| gecay of the electron concentration follows also from Eaq.
exp(—t% with the index §~0.33, while this dependence (97)

: 312 vy i . ; o . .
transforms into a power ** law in the limit of long times, Taking into account the Poisson fluctuations in the space

which means considerable decrease of the recombinatiofisyripution of holes we obtain for the probability of the re-
rate. At high intensity of excitation the time kinetics of the 4jization of a volumd.¢ empty of holes

same Cd§ )Se sample follows the stretched-exponential
behavior with the critical index~0.6.

We will try to describe the results for these cases using P(LY) = exp(—n,LY). (103
the approach of the so-called diffusion controlled
annihilatiof*~*3 where the time dependence of the particleAveraging over the space distribution of holes gives the
concentration and of the reaction rate is strongly inflicted bystretched-exponential dependeticé®
the fluctuations of the particle concentration.

Let us suppose that the particles of both kind are mobile
and the averaged concentration of them are equal. Then the
random walk of both particles leads to their collision fol- for both ng(t) and1(t)~d n./d t with the critical index of

lowed by the exciton formation and its annihilation during |, I diffusion S—d/(d+2) wh ' is the ch ¢
radiative lifetime. If the time of exciton formation and jts "o'maldifiusion o= ( ) whererp, is the character-
istic time of the diffusion process.

radiative time are less than the time of diffusion over the : . : .
The main contribution to the long-time dynamics of the

microscopic volume.¢ _ _ .
luminescence comes from the regions free of holes of “op-
timal” size R, (Ref. 91

exp(—[t/ 7519, (104

5~ L2/D, (98)

. L (1/(d+2))
then the number of particles in this volur(eze Refs. 41 and Dt
43) decreases because of annihilation duriggrom its ini- Ropt(t)w(n_h) (109
tial value

A more pronounced slowing down of the annihilation pro-
Nen(0)LY=[n(0)L4]* (99 cess occurs if the geometry of the percolation cluster restricts

to the value the trajectories of the moving particle. An important charac-

teristic of the percolating system is the so-called correlation
n T (0 LI e —d2 ~d4 (100 length &, which gives the averaged size of finite clusters or
en(70) ~[Nen(0)L7] 7 (100 voids (holeg in the infinite clustef? When the optimal size
This leads to the time dependence of the recombination inR,,; has the order of the correlation length of the percolation
tensity of the form cluster R, <§ the diffusion process attains the
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FIG. 15. Decay of integrated luminescence spectra of FIG. 16. Decay of integrated luminescence spectra of
ZnSgq_.Te., ¢c=0.13 at low-density excitations below the mobility ZnSg_.Te,, c=0.13 at high-density excitation above the mobility
edge(solid line). Excitation wavelength corresponds to the dottededge with density 10°J/cn (solid line) in semilogarithmic plot as
vertical line in Fig. 2. Dashed line with symbols represents the fit ofa function oft®33 Dashed line represents a stretched exponential fit
the long-time kinetics by the power law of E@6) with the param- by Eq. (104 with 7,=0.74 ns and$=0.33. Symbols 1 and 2 rep-
eterst=14.1 ns and5=3/2. resent the fit with6=0.30 and 0.36, respectively.

“anomalous™*? character with a substantial decrease of.

the diffusion rate. In the case of diffusion over the percola—mto a powert law in the limit of long lt|me.s. Th|s kind of
tion cluster we hav@9! dependence also can be connected with diffusion.

Noolandi et al®® have proposed a model of geminate
In[1(t)]~ —tlds/(ds2)] (106)  electron-hole pair recombination far— Si:H, involving tun-
. . , ., ) neling and diffusion. Within the so-called prescribed diffu-
where ds=2d,/d,, is the “hyper-universal® fraction gjon approximatioft they have take into account the attrac-
dimensionality?>®®i.e., the spectral dimensionality of perco- tive Coulomb interaction between electron and hole.

lation cluster. Hzezredf is the fractal dimensionality d;  According to their results, the intensity should decrease in
~2.51 ford=3)%, andd, is the43|ndex of random walk  the |ong-time limit ast~ 32 which describes well the lumi-
over the fractal d,,~3.8 ford=3)." nescence decay in amorphous silicon.

A further decrease of the diffusion rate occurs when the k\,zovkov and Kotomif have considered a complicated
diffusion takes place partly on clusters of finite size. Thisgystem of equations for the diffusion-controlled bimolecular
leads to a change af; in Eq. (106 reaction. The solution describes the development of an inho-
mogeneity in the space distribution of the particles leading to
the time dependence of the bimolecular reaction rdate
—K(t). As a result, it has been found in the long-time limit
that the reaction rate varies according to power law
whered,,=d,/(1— B/2v)*[ B andv are the critical indexes V2 for the case of equal concentrations of both mobile
of the order parameter and correlation length, der3, 8 and immobile particles. The particle concentration decreases
~0.42,v~0.875, andd;,~5.0 (Ref. 22]. in this case am,~t~ Y2 This leads to the decay of the lu-

The observed difference of the stretched-exponential inminescence intensity also according to power l&gt)
dexes of the data presented in Figs. 13 and 14 might be-t 32 This result follows also from Eq97) if the bimo-
assigned to the different filling of the extended electronlecular reaction raté& has the mentioned power dependence
states at different pumping levels. The higher intensity ofon time?°
excitation leads to a higher concentration of electrons and Thus, the long time dependence of the tylge) ~t~%?
holes. The ratio of the correlation length of the electron perfollows from two different models of kinetics considered in
colation cluster¢ to the optimal diffusion lengthR,,; de-  Refs. 49 and 50. The simplest explanation of this fact can be
pends on the carrier concentration~n, and defines the as follows. According to Refs. 49 and 42 the decrease of
character of the diffusion process, whether it is normal OI’Con(;entratiorﬁe~t_1/2 indicates an inhomogeneous distri-
anomaloug™* Though both functions are decreasing with bution of particles, which is developing in the process of
concentrations, the rate of the decrease&-of{n.— ng”t v diffusion. We assume that the inhomogeneous distribution of
exceeds that oR,,; given by Eq.(105 and, therefore, their the remaining particles produced by the diffusion during the
ratio §/R,; tends toward values less than unity with increas-intermediate time interval leads to the decrease of annihila-
ing concentration, which characterizes the normal diffusiontion rate as compared with the case of a random distribution

The data of Fig. 13(curve 2 show that a stretched- also when the remaining electrons are localized and tunnel-
exponential law exptt®) with the indexd~0.33 transforms  ing is responsible for their annihilation.

ds—d=2d;/d,,,
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2. ZnSe-Te long-time luminescence kinetics ized electrons followed by exciton formation and their radia-

Figures 15 and 16 exhibit data for Znge, Te, solid tive recombination could explain the long-time survival of
solution withc=0.13 investigated at low excitation slightly the excitation. . L .
below and at high excitation slightly above the mobility Another Serious quest.lon is the problem (.)f uniqueness of
edge. The time dependence of the luminescence intensi§7€ presented interpretation. The problem arises, for instance,
shows the powet—32 asymptotic behavior at low excitation ince it is difficult to distinguish Becquerel's law with
and the stretched-exponential dependence with the index 6f 2 from stretched-exponential decrease wiith0.33 within
anomalous diffusions~0.33 at high excitation over a wide a relatively narrow interval of observation in our measure-

time interval. The explanation of the previous case can bgents of Cdg )Se (see Fig. 18 We have preferred to fit

used here as well. Despite the fact that at low excitation th@Y Strétched-exponential functions in all appropriate cases

photon energy was below the mobility threshold the numbeP€cause they describe the decrease of intensity over the wid-
est interval of time we were dealing with and give the pos-

of “nonradiative” states of superclusters of large size ex-=>" X . 2
ceeds considerably the number of “radiative” states in theSibility to include without contradiction both normal and

spectral region of excitatiofsee Fig. 4 As a consequence, anomalous diffusion. .

the processes of the fast relaxation of holes, which electrons The other exa”.‘p'e of some gncertamty presents the
cannot follow adiabatically, creates favorable conditions forStréiched-exponential dependence itself. Presently such a de-
the generation of the separated pairs. The scale of the raR€ndence can be strictly justified only if considerable con-
dom potential for electrons in Znge o, Te; is supposed to centration d|ffe_r_ences of mobne particles and traps exist.
exceed considerably that in CgSySe and we can admit Therefqre, additional study is necessary to establish vyhether
that the electron concentration achieved in the former case & .not I can be p'roved for electrons the.concentrat|0n of
not sufficiently high to break the relation between the corre—""_h'c_h coincides with that of holes, .bUt with ele_zctrons are
lation length and the optimal diffusion length, which should distributed over extended and localized states in the disor-

lead to anomalous diffusion. The results at weak excitatioﬁjeer system. .
show in this case the 32 decreaséwhich, probably, should In any case, the experimental data show that the stretched-

be considered as the most common law in the Iong_,[in,“_gxponentlal decrease can serve only as an intermediate time

limit) while this limit was not achieved in our experiments asymptotics, while the long-time behavior is consistent with
even at highest excitations at—3?law. According to Refs. 49 and 50, this latter depen-

dence can be the consequence either of the electron-hole
Coulomb attraction or of the spatially inhomogeneous distri-
F. Some further remarks bution of particles, which is developing in the preceding pro-

The nonexponential stage of relaxation lasts tens and eveftSS of dlffu5|on._ln the_ former case |_t is difficult to explain
hundreds of nanoseconds and the observed time dependendd§ decay behavior at intermediate times. In the latter case
can be understood under the assumption that the relaxatio€ nave to suppose that approximately the sanié depen-
rate is controlled by diffusion of separated particles or bydence takes place also for the tunneling processes of inho-
their tunnelling. This stage of the process looks like sepaMogeneously distributed electrons.
rated nongeminate pair recombination. In the whole, only a
small fraction of excitations participates in these processes.

One of the most important questions is whether this long-
time kinetics is an intrinsic or extrinsic property of radiative ~ Semiconductor alloys of the type B, _.C. form a set of
recombination of the solid solutions. We have found verydisordered solids properties of which vary in wide limits.
similar luminescence kinetics in the CdS-Se samples growithe experience accumulated already in the investigation of
by hotwall epitaxy and in high-quality samples obtained bythese objects and the growing interest to their technological
high-temperature growth from gaseous phase. Similar situaapplications make it useful to attempt to highlight some com-
tion has been found for time kinetics of the luminescence ofmon features of the solid solutions, which are different in
two different ZnSg ) Te, samples withc=0.11 andc  many details.
=0.13 obtained at different conditions. Since the ensembles In this paper we have presented the model based on the
of point defects, the dislocation density, as well as the impuelassical percolation theory for the description of the lumi-
rity contents are different in this set of the samples, the natunescence process. This approach exploiting the fractal geom-
ral conclusion would be that the observed features of thetry of percolation cluster turns out to be fruitful for the
long decay kinetics are of an intrinsic nature. description of the steady-state luminescence under weak sta-

It is worth mentioning that even the short review of sometionary conditions of very different systems.
of the possible consequences of the tunneling and diffusion The population dynamics after pulsed excitation gives
in disordered systems shows that these processes could aww features to the luminescence. We have presented the
count for quite different types of luminescence intensity de-description of this process in terms of the approach devel-
pendences at the condition that some fraction of excite@ped for stationary conditions. The deviations of experimen-
states occurs in the form of separated electron-hole pairsal data from the theory have in this case a predictable char-
The explanation of the results presented here is based on tlaeter. They are caused, first of all, by the fact that the theory
idea that the motion of separated particles, both electrons amtkaling with the geometrical figures does not take into ac-
holes, is affected by the random potential of solid solutionscount transformations of wave functions of the tail states in
leading to tailing of both valence and conduction bandsthe mobility edge region.

Then the diffusion of mobile carriers or tunneling of local- A nontrivial long-time kinetics of the luminescence,

IV. CONCLUSIONS AND OUTLOOK
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which has been observed, touches upon the problem of the
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