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We propose a low-energy effective theory of lightly doped two-ded ladders with the help of slave
fermion technique. The continuum limit of this model consists of two kinds of Dirac fermions, which are
coupled to the @) nonlinear sigma model in terms of the gauge coupling with opposite sign of “charges.” In
addition to the gauge interaction, there is another kind of attractive force between these Dirac fermions, which
arises from the short-ranged antiferromagnetic order. We show that the latter is essential to determine the low
energy properties of lightly doped two-legJ ladders. The effective Hamiltonian we obtain is a bosonic
Gaussian model and the boson field basically describes the particle-density fluctuation. We also find two types
of gapped spin excitations. Finally, we discuss the possible instabilities: charge density wave and singlet
superconductivity(SC). We find that the SC instability dominates in our approximation. Our results indicate
that lightly doped ladders fall into the universality class of Luther-Emery m¢&8€l163-1829)08801-3

I. INTRODUCTION use the large spin approach to study the lightly doped case.
The effect of doping on the antiferromagnetism is an im-
The properties of ladder systems describedthy and portant and unsettled issue in strongly correlated electron
Hubbard models have been the subject of intensive studiesystems. The main difficulty lies in hole motions, which
recently’™*® The reason is that there are systems such asause frustration of the antiferromagnetif) order. Theo-
(VO),P,0; (Ref. 19 and SrCyO; (Ref. 15 which can be retically, we have no adequate analytical methods to deal
the possible realization of these models. Experiments owith the competition between charge and magnetic fluctua-
magnetic susceptibility and neutron inelastic scattering showions because there is no obvious small parameter that facili-
the existence of a finite spin gap. Moreover, a recent meaates an expansion about a tractable model. In the present
surement shows the sign of superconductivity in the dopegaper, we employ the large spin expansion which permits us
spin ladders® Therefore, the study of these systems can ofto map the original model to a continuum-field theory. And
fer new insights into the nature of magnetic, charge densitythis allows us to tackle the problem with analytical methods
and pairing correlations in strongly correlated electron sysdue to the 1d nature of this system. Mean-field studigb
tems. and numerical calculatiohs’ show that the spin gap in un-
The undoped ladder systems show unusual magnetic beloped two-leg ladders still persists at low-doping concentra-
haviors. When the number of chains is even, there is a spition. This implies that the underlying short-ranged AF order
gap. When it is odd, the spin excitation is gapless. This caiis not destroyed too much by hole motions as the doping
be easily understood by considering the limit of strong rungconcentration is low. Thus, after we resolve the constraint in
interactions. For two-leg ladders, since the spins on everthe slave fermion representation, we assume that spin vari-
rung forms a singlet first in this limit, it can be considered asables have a strong short-ranged AF order. This leads to the
a set of weakly coupled rung singlets. The spin excitation ig’-J model proposed by Wiegman, Wen, Lee, and
formed by turning over one spin on a rung and this costsShankar®?!Because of this background AF order, it is natu-
finite energy. Along the same reasoning, a three-leg ladder il to say that there are two kinds of holésn A and B
effectively equivalent to a spin-1/2 chain and the latter hasublattice with opposite sign offictitious) charges and they
gapless spin excitations. Numerical studfeshow that the are coupled to the staggered magnetization through the Berry
spin gap for two-leg ladders persists even at the experimerphase. In contrast to previous studi®sye keep the nearest-
tally interested isotropic pointBy this we mean that the neighbor attractive four-fermion interactions betwe®and
rung interaction is equal to the intrachain interactiofhis B holes. This attractive force can be understood as the fol-
indicates that even at the isotropic point, the rough picture ofowing: the energy of two holes on the same spin singlet is
a ground state dominated by rung singlets is robust. Peoplewer than that of two holes on different singlets because
have investigated spin ladders by the semiclassiieabe there are less broken bonds in the former. And this is equiva-
spin approacht® Remarkably, this approach qualitatively lent to an attractive force between holes on different sublat-
captures the basic feature of this system as in the case of spiices. We discuss this model in the absence of the quartic
chains. Besides, the spectrum predicted by the nonlinegermion interaction first. To study the low-energy physics we
sigma model is in good agreement with othercan linearize the dispersion relation of fermions about the
approximation¥’ both in the strong and weak rung interac- Fermi points. It turns out that we have four branches of
tion limit. These facts imply that the nonlinear sigma modelmassless Dirac fermions coupled to the nonlinear sigma
correctly describes the low-energy sector of the spin-liquidnodel. From the study of Schwinger model, we know that
state of ladder systems though it ignores fluctuations alongnassless Dirac fermions will screen the long-range Coulomb
the rung. This is one of the motivations that we would like toforce or give a mass term to the gauge field on account of the
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chiral anomaly. Therefore, the gauge fields are in the Higgsvhere (+) should be used only if both operators are fer-
phase?® Because of the Gauss law, all excitations must bemonic. In the limit of zero dopingeg4— — o and the model is
gauge singletgor mesons in the jargon of particle physics reduced to the spin-1/2 Heisenberg model.

In the present case, we have three gapless spin-singlet col- Among various methods to deal with Eqd) and (2),
lective modes. There are also gapped spin-1/2 excitationgere are two popular representations of the above graded Lie
that carry the electronic charge but no magnons. The supeaigebra—slave fermion and slave boson. We adopt the
conductivity (SO instability is enhanced. Then we switch on former and introduce a vacuum state annihilated by operators
the nearest-neighbor attractive four-fermion interactionsf; and b(i). Then theX operators can be represented as
Two of the gapless modes become massive and the londellows:

range Coulomb force is not screened, i.e. the gauge fields are

in the confining phase. Consequently, we have only one gap- Xoo()=F"b (i),
less charge mode, which is spin singlet. We also have

gapped spin-triplet excitations and electronlike collective Xyo(i)=Fib} (i),
modes, which are spin-1/2 and carry electronic charges. We

compute the exponents of pairing correlation function and Xy () =b5 ()b (i),

4kg charge density wavéCDW) susceptibility. In our ap-
proximation, turning on the quartic fermion interactions en-
hances the tendency toward SC relative to the tendency to-
ward CDW. Therefore, a weak interladder interaction will\ .. 4 constrainb; (i)b,(i)+ f f,=1 ando=1,—1 for

lead 1o SC, which has been predicted by others in up and down, respectively. Hefrg f." satisfy canonical
approache&-*’-°Our analysis indicates that these two types>P'" YP - resp y. Rete 1

of attractive forces play different roles in two-legJ lad- anticommutation relations ar(i), b, (i) satisfy canonical

ders. While the formation of spin gap and spin-hole boundFommutation relations. To use thg Iargg spin Expansi.on, we
states are due to the gauge interaction, four-fermion intera(f?plf‘ce the above constraint with this one; (i)b,(i)
tions betweerA andB holes are responsible for the pairing * fi fi=2S, which is called the spirs representation of
between holes. In addition, inclusion of the latter drasticallySPI(1,2). Now the X operators represent transitions between
changes the low energy properties of doped ladders such theates|s) and [s—1/2). With the help of Eq.(3), we can
they fall into the universality class of Luther-Emery mo@el. write down the path integral representation of thé model
Our results confirm the conclusions from numerical studies.
The rest of the paper is organized as follows. In Sec. Il we
derive the low-energy effective action. In Sec. Il we discuss
the implications of this action. We study the effect of gauge
interaction in Sec. Il A. In Sec. IlIB we take into account
the four-fermion interaction betweekandB holes. Section
IV is the conclusion. We give a summary of the bosonization
rules we used in the Appendix.

Xoo D) =1 f; ()

Z=J D[f]D[f"1D[b,1D[b;16[b, ()b,(i)

+f;"f;—2S]exp(—1),
|=fﬁd72 [ff’(&T—M)prb;’(i)aTbU(i)]+fﬁdrH,
0 i 0

Il. DERIVATION OF THE EFFECTIVE ACTION H=tz frfib:(i)bg(l-)‘i” %2 b;(i)bﬁ(i)bg(j)ba(j)
(B) ()

Since the first part of our derivation is valid for general
t-J models, we will not write down the ladder index explic-

1
_ - + . . + . -
itly until it is necessary. We start from the following model: 2 be (1)ba(i)bg (1)bg()) . )

In the above equationey has been absorbed inte, the
chemical potential of holes in terms of the constraint in the
path integral measure. Based on the property of Grassmann
variables: *f)?=0, we can resolve the constraint in the

J : B VI : measuré' as the following:
F 328 | Koo DXoral]) = 3 Xeul DX (D) ], () J
1]

H= —t(Z> Xp0()Xoo(1)+ 2 €aXgoli)
i, 1

1 0 i
b =\/2—S(1——f+f)co exps (x— ¢),
where (i,j) means the nearest-neighbor sit¥g,=|a)(b| ' 4S SR d
and |a)=]0),|1),|l) corresponding to the empty site and
spin-up (spin-down sites. Since transitions between empty _ 1 0 i
and occupied states include a change in the fermonic num- b,=128| 1~ 4_Sf+f siny exp; (x+ ¢) )
ber, the operatorX,(i), Xq,(i) are fermonic and the op-
eratorsX,,:(i), Xoo(i) are bosonic. It is easy to check that whereS=(S—3f*f)Q and

they satisfy the following graded Lie algebra called
Spl(1,2) % Q=(sin@ cos¢,sind sin¢,coss).

With the new variabl&?, we can rewrite the partition func-
[Xap(i),Xca(J) 1+ = 8ij[ FpcXad(i) = SagXep(i)],  (2)  tion as follows:
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=J D[Q]D[f]D[f" Jexp(—1),
=Jﬁd72
0 j
B
+Jo drH,

H=§> Ff () 11
1)

+ ; 1 +

J
+§m>( zsflf)( zsf,f)ﬂi-ﬂj (6)

where t=2St and J=4J%. (Note that whenS=1/2,t=t
andJ=1J.) (Q,|Q,)s represents the overlap of two sgi-
coherent state$Q,) and|Q,). A(Q) is the monopole vec-
tor potential, which satisfieg X A=Q. (Here we have cho-
sen the gauge such that .= —cosfd.¢ and y is inde-
pendent ofr.)

Now we focus ourselves on two-légJl ladders. Using the
notation of Eq.(6), the action can be written as follows:

“fez s

B0 )

B
+f d7H,
0

H:@ <2 f+ fl m<Ql m|QJ m>1/2
ij)

2 l.m.m

1
S— = fi )

XA(Q m) 92 m

+E§J: [f5f (1@ 1ot H.C]

D PR

X

1
1- Z_Sfr+1,mfj+1,m> Qj,m'ﬂj+1,m

J, 1 1
+Z; (1—2—Sfjflfj,l 1= oo fiafiz Q1 Q.

(@)

wherem=1,2 is the chain index. To proceed, we have to
make some assumptions. First of all, we assume that there
a short-ranged AF order such that we can paramefiizg

as the following*®

Q; = (—1)1*"™J1-a’Lin(x)+aL y(x), (8)

wheren?=1, n-L,=0 anda is the lattice spacinga is the
order parameter anid,, are the fast modes that will be inte-
grated out. Comparing thieterm andJ term in Eq.(7), it is
clear that in the large spin limil term dominates and thus
Eq. (8) is valid. For small spins, we expect it is still a good

in two-leg ladders. However, some conditions are required
for a nonvanlshlng spin gap. First, according to numerical
studies’® the hole concentration must be low. Secod#,
should be of order one. As has been noticed in Ref. 9, the
Nogaoka theorem is applicable in ladder systems. This theo-
rem says that the one-hole ground state is ferromagnetic at
J=0. This phase may be stable whéft is very small*!
Besides, numerical studies show that the phase separation
occurs whenl/t>2. Therefore, the qualitative feature of the
following results may be valid for the spin one-half case
when the ratio ofl/t is order of one and the hole concentra-
tion is low.

Because of the background AF order, the original lattice
is divided into two sublattices and it is natural to have two
kinds of holes. We will call therf\ holes andB holes when
j+m is even and odd, respectively. An immediate conse-
guence of Eq.8) is that the hole cannot hop coherently
between different sublattices, i.e., the intersublattice hopping
is forbidden. This can be understood as the following: The
amplitude for a hole hopping from sitéo j is the product of
the overlap of spin and orbital wave functions, i.e.,

—1;(Q;|€2;). In this case, it is-t(Qa|Qg). In view of Eg.

(8), this is zero if we have perfect Neorder (recall that
(Q|-Q)=0) and exponentially small in a system with
strong short-range AF order. Thusandt, terms are effec-
tively removed from the low-energy effective Hamiltonian in
the largeSanalysis. One of their effects is to renormalize the
parameters in low-energy physics. It seems that the hole can
hop coherently within the same sublattices under the hypoth-
esis Eq.(8). However, the question of whether the hole can
have coherent hopping is related to whether we have well-
defined quasiparticles in low energy. As pointed out in Ref.
25, the latter depends on the density of states of spin waves
in low energy. It turns out that there can be no well-defined
quasiparticles in one dimension if the spin excitation is gap-
less. Fortunately, there is a spin gap in our system. Following
the calculations in Ref. 25, there will be a sharp peak at the
energy scale—t in the spectral function of one-particle
Green function and this implies a well-defined quasiparticle
band at the bottom of the hole spectrum. Consequently, via
the interactions with spins, the holes are able to acquire a
kinetic energy, whether there is a “bare hopping term” or
not. In the following, we shall introduceta term, i.e., hop-
ping within the same sublattice, to represent the kinetic en-
ergy of holes. According to numerical calculatiohs, is of

the same order a&

Substituting Eq(8) into Eq.(7), adding a gauge-invariant
t’ term to Eq.(7) and expanding the action to the quadratic
terms ofL ,, then integrating out ,,, we get to the following
&ffective action:

I=1,+1y,

1 (8 1 ) )
In=—2f dTJ' dx| —|d,n*+|a.n|* |,
29°Jo Ug

B
n= [1973 S 110 120= ) Tan(])

ion i - i . . . B
assumption if there are strong short-range AF correlations +f§,m(1)(0 +iag— ) fem(j)]+ fo drH, (9)

and the latter is reflected by the existence of a finite spin ga|

p
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and dex andA and B holes. Besides, remember thatis the
lattice spacing of the original latticeAfter doing that,H,
Hy,=Ho+H;+H,y, becomes

Ho=t'2 X [fAm(i+2)fam(j)expiadx)+H.c] _
m o Ho=Eo+vo fdx[iiﬁ;\r,ma(_'&x_ax)lﬁA,m:
+(A—B,a,——a,), "
+(A—B,a,— —a,)], (12

J . . :
Hi== 22 2 [fam(Dfam(D)fom(i+1) __ __ o
m ] wherev =4t'a sin X-a=4t'asinw§ is the Fermi velocity,
« 1)+ ¥ is the two-component D|ra_c fermlqn, and:_crg. Now we
fem(i+1):+(A=B)], can analyze the effects of different interactions.

L T e f T 0 -
Ho= = 72 [fadDfas:t8 ) faall): 4 (A=B)), A. The effect of gauge coupling
(10 We setH;=H,=0 first. Then we rescale the imaginary

where g2=2/Ja(1- 8/2S)?, ve=(Ja/2s)(1  time:vo7— 7 and do analytical continuation to the real-time

— 5129) Nt /2 (I/ZJ_),t_’EZSt’, Ax=2a, andé is the hole formalism. The effective action is
concentration. In the derivation of above equations, we have

used a property of spin-coherent statgé€),|Q,)s~exp I=lg+1,,
—iSA-(Q;—-Q,) when Q;~Q,. The gauge fieldsa,
=IA. d,n. Itis clear thatA andB holes carry opposite sign

of charges because they are on different sublattices in which B P :

the staggered magnetizations have opposite directions. We IO_% j A X[ my“(19,—8,—€A) Yam
propose that the low-energy sector of lightly doped two-leg

ladders can be described by E¢®). and (10). +(A—B,a,——a,)] (13

We conclude this section with a brief summary of the

will be used later. The order parametercan be param- pirac y matrices. HereA,, are the external electromagnetic
etrized with a normalized spinor as fields. In terms of the standard bosonization rulsse the
— — Appendi¥, |4 can be bosonized as the following:

n=zoz, zz=1.

The CP? version of the nonlinear sigma model in the Eu- 1
clidean space is |0:§% fdzx[(&M¢A’m)2+(&M¢B,m)z]

z= | D[a,]D[z]D[z]D[\]exp( — 1),
f ’ _\/%% fdeAﬂeﬁvav(¢A,m+ ¢B,m)

1
= —f d[|9,z—ia,z|?+iN(]z]?—1)], (1) 1
e? e - J__§ J d’x a,e"d,(pam— dpm). (14
a
wherexy,=v,7, €2=2g%,, and\ is the Lagrangian multi-
plier. An appropriate choice of the gauge makesin Eq. _
(11) equivalent to the ones in Eq) and(10) and thus we We define ¢.. = (1N2) (pam=* dm). Thenl, can be
can use the same notation to denote them. InGN~1  written as
model at largeN, the z quanta become massive, i.&.ac-
quires a nonvanishing mean value. At distances larger than
this scale, the effective action of gauge fields will have the
usual Maxwell term. Accordingly, the low-energy excitation
is a massive triplet, which can be considered as the bound

= 2
state ofz andz. - \ﬁeE f d’x A, e"d, ¢
T m ’

I1l. EXCITATION SPECTRUM 2
+ ;E fdzx a,ed, b . (15)
m

To discuss the low-energy physics, we linearize the dis-
persion relation of fermions about their Fermi points, which
satisfy kpa= (7/2) (1- ). (We have assumed that the The above action can be further simplified if we define the
Hamiltonian is invariant when we interchange the chain in-following fields:

1
=53 | X6 )+ (3, )
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charges, i.e., they carry the same quantum numbers as elec-

¢1EE(¢+,1+ b+ 2), trons. We should emphasize that there are zzobound
states, i.e., massive triplets, in this model. As we shall see
later, the absence or presence of this type of excitations is
By= (b, 1~ s ») one of the distinctions between the Higgs phase and confin-
Nt ing phase in our model.
After identifying the spectrum, we would like to examine
the pairing correlation function. Because of the spin gap, the

1
P,= E(qﬁ_’l-f- é_ o), pair field of singlet SC can be defined as the following:
A()=fa1(D) (). (18)
1 . . . .
- _ Since the correlation functions @b, decay exponentially,
P4 ﬁ(¢_'1 ¢-2) 18 e long-distance behavior of the pairing correlation function

) ) , can be calculated by the following operators:
With the help of the above canonical transformation, we ob-

tain the following low-energy effective action A(j)~exp(— im0 )exp —iJad,)exp —iVr0,)
1 i , , 2 , +exp —i V70 ) expli Jrd,)exp —i70,),
= — - y7a
lo 22 d“x(d,®,) \/;ef d“x A, €9, P, 19

5 where ® , is the dual field of®,. The pairing correlation
| g2 uv |jl e
* \/;J dx b3ed,a, . 19 function behaves agA(j)A*(0)) — 1/j|¥% Compared
with the one of free fermions, which behaves likgj[Z, we
What can we learn from Eq$11) and (17)? First, there see that the pairing susceptibility is enhanced.
are three gapless spin-singlet excitatiows:, ®,, and®,. To sum up, if we consider the gauge coupling only, then
Second, to understand the coupled systenbgfandz, we  the low-energy effective Hamiltonian consists of three gap-
have to investigate the gauge-field dynamics. This can b&ss spin-singlet modes and one massive spin-1/2 modes,
done by integrating out thé; field since its action is qua- which carry the electronic chargedt is possible that there
dratic and we obtain are massive spin-singlet modes. However, the gapless modes
and the massive doublet predominant the long-distance be-
1 2 0. ~ havior of correlation functions.Compared with the numeri-
?J d*xd%y f)In|x—y[f(y), cal results, there are too many gapless modes but no mag-
nons. It is not enough to consider the gauge interactions
Where7Ee’”aﬂaV is the dual-field strength. If we choose the _onIy_. We will see in the next section the importance of tak-
Lorentz gauge as,a*=0, then the above equation becomesing into accountH, andH, to get the correct low-energy
the mass term o, . That is to say, the fluctuations of the properties.
@ field will screen the long-range Coulomb force. It follows
that there are massive spin-1/2 excitations and they are neu- B. The role of H; and H,
tral with respect to tha,, fields in view of the gauge-field  pgre we taked, andH, into account. The continum limit
mass.(This is easy to be seen by integrating Gauss’s lawyf them are as follows:
from — to +.) Since thez quantum has charge 1, where
is the compensating charge from? It must come from the N N
hole sector. We can understand this as the folloviing. Hi= _91% f dX: hp mibam’: ¥ mPBm:
Let us integrate out all fields excefit;. The action we

obtain must be of the form cos/§n®3 wheren is an inte- . +

ger. (Of course, the renormalization of the kinetic term is +91003”5§ f X[ L m¥aRmPB RmYB,LmM
possible). This is because the coefficient &f; in Eq. (17) is

proportional to the instanton density: (¥fe“"d,a,. The +(R<L)],

action is invariant under the transformatio®;— ®,
+/7/4 and the cosine just has the form that satisfies the
requirement. If the cosine is relevant, this translation sym-
metry is spontaneously broken and the valu&gfis pinned

sz_ng AX[:ha1than g othe i+ (A—B)]

at some minimum of the potential. In addition, its solitons _ng dX[l/fXleA . 11!/§L2¢B o
carry exactly the charge needed to match the charge of the S
uantum. The Gauss law demands that at least one of the
N +Yh AR aRale Lot (ASB)], (20

cosines in question must be relevant and thus the excitations

corresponding to thé; sector are massive. These solitonswhere g, =2Jalvg, 9,=J, alvg, and ¢ r are left-handed
are nothing but thé (or B) holes. They carry the electronic and right-handed fermions, respectively. With the same con-
charges as well as the(l) charges. As a consequence, wevention used in the previous section, the bosonized forms of
expect these massive doublets also carry the electronihe above equations are as follows:
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g1 Here, we neglect the gauge coupling temporarily and will
_ 2 2 . . . . .
Hi=— EE f AX[(dxP+ ,m) "= (Ixd— m)] discuss it later. The relevancy of these interactions is deter-
m mined by their scaling dimensions. They afg=1/K4
+ 1/K, andA,=1/K, + 1/K3, which correspond tg; and
+gi§m: J dxcosy8me_,m, g5 terms, respectively. From E@3), K,<1 andK,>1 at
the isotropic point. This implieA;<2. Thereforeg; term is
95 a relevant operator in the sense of renormalization group.
H,=— —j AX(Iyb 4 105D+ 2— Iy 105D ) The ®; and @, field are pinned at some values and both
™ ’ ' ' ' acquire gaps. They are decoupled from the low-energy
theory. Taking into account these facts, the effective Hamil-

—Zg,’zf dxcosy2m(¢4 1— ¢ p)cosy2m tonian becomes
1
X(b_ s+, @y =y 3 K] (00,074 (5,07
a=1,2
We can do the following canonical transformation to diago-
nalize the quadratic part of the Hamiltonian: A
—gf dxcos K—q)z, (25)
2
K
®,= \/71(¢>+,1+ b2, whereg=2g5(cosy4m/K;®3). In the large spin limitK,
>1/2. Thus the scaling dimension gfterm is less than two.
It is a relevant operator. Th#, field is also massive. In the
Dy= 1 /&(Q’) — b o) low-energy limit, we obtain our effective Hamiltonian as the
AR following:
(22)
Ks H =ﬁf dX[ (3,0 1)%+ (9, P1)?] (26)
Bg=\ 5 (b1t -2, o2 KOO
Now we would like to discuss the implications of our
K4 results. First of all, the low-energy effective Hamiltonian
b,= ?(d’al_ ¢-2) consists of a gapless spin-singlet mode and from (28,

this mode describes the total charge-density fluctuation. Fur-
The parameters in the above equations are as follows: thermore, there is only one free paramegr, the compac-
tification radius of theb, field, which has to be determined
011702 from experiments. This supports the suggestion proposed in

Ki=y1 T Ref. 9. Second, since thk; field is pinned at some value, it
cannot affect the nonlinear sigma model too much. Espe-
91— 95 cially, it is unable to screen the long-range Coulomb force.
Ko=1\/1—- , As a result, the gauge field is in the confining phase. This
m leads to two types of spin excitations. One is the massive
(23 triplet (in the CP? language, it is thez bound statg which
Ka=\/1+ 91+92’ is the same as the magnon in the undoped case. The other is
™ the bound state of holes aadjuanta, which carries the same
quantum numbers as the electron. In fact, this excitation can
01— 9> be considered as the breaking of a hole pair and we have two
Ka=1\ 1+ p quasiparticles. Each carries electric charge one and spin one-

half. The latter is also observed in Ref. 9. In that paper,
These relations are valid only in the weak-coupling limit. In Troyer et al. find that the spin gap is determined by the
our case, this corresponds to the large-spin liplemember  bound state of spinons and holons. We cannot compare the
thatt’(=2St') appears in the denominator of the definition 9aps of these excitations in our approach. However, we give
of g;.] We can see thak,;<1 andK;>1 becausey,>0. @ picture about the formation of the unexpected spin excita-

(This corresponds to the attractive force between holese  tion. The Berry phase term gives rise to the necessary attrac-
effective Hamiltonian of the hole sector is tive force between spinons and holons. Since this force is a

gauge interaction and the latter il is a linear confining

12 potential, this results in bound states of spinons and holons.
Hh:i Z Kaf dX[ (40 )2+ (9D ,)?] After we understand the spectrum, we can calculate the
a=1 asymptotic behavior of various correlation functions. The
ppe ppe most important ones are pair!ng_ anq CDW correlation func-

+291j dx cos /K_q>3cos\ /K_cp4 tions. The definition of the pair field is the same as B8®).
3 4 The long-distance behavior of the pairing correlation func-

yp g tion can be calculated by the operator
-2 ’decos —®d,cos\/ ——P3. 24 . .
% Vi P20V e (29 AG) ~exp—i7K;0,) @7
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because other fields are massive. The result is Lee!® They use the slave-boson scheme and arrive at the
_ same conclusion that the low-energy sector of the two-leg

- lil=e= 1 t-J ladder is a Luther-Emery liquid. For quantitative descrip-

(A(HAT(0) — |j|K1’2' (28) tion of this system, they introduce a new order parameter

_ - Npai= (N1 — 6) (N, — &) wheren; is the hole density in thih
Next we shall examine thekz CDW susceptibility. The chain in addition to the ones we considered. They suggested
corresponding order paramet®cpy, can be expressed as that the long-distance behavior of thekg2 part of
the product of hole operators and spin operators. As emphan,,(x)n,,{0)) (notice that their R is equivalent to our
sized in the previous paragraph, matter fields do nothingik..) is as the following
much on the spin sector of the effective action. We can find
the contributions of spin operators from results of the un- A B
doped case. The work of Sheltat al?’ showed that the o a2
low-energy theory of two-leg ladders is described by four X X
decoupled noncritical Ising models with three of them in thewhereA andB depend on the average pair overldp>B at
ordered phase and one in the disordered phasevice  &,;;0<1 andA<B at & 56> 1. Here&,, is the size of the
versa. Moreover, the spin part i@cpy can be expressed in hole pair and is of the order of the lattice spacing.is the
terms of the ordefo) and disorder(w) parameter fields of ~exponent of 2 /(X)O25u(0)). We calculate this correla-
the Ising model aguiuoustg OF 010,030¢. Itis clear that  tion function and we obtain a power-law behavior with the
the correlation functions of the above operators decay expaexponent equal to B/, which is the same as the one of
nentially to zero. This implies thaOcpw(X)Ocpw(0)) <OéDW(X)O%DW(O)>- We do not find an exponent equal to
shows the same behavior. Then we have to considerkhe 4 2/K,+2 even including higher harmonics. Since our ap-
CDW susceptibility o{ OZp(X) O%pw(0)). Using the OPE  proach is valid whens<1, we cannot tell whether the sec-
w(Z) p(w)~1(z—w)Y+. .., it is straightforward to see ond term exists or not at larger doping concentration.
that the spin part of this correlation function contributes a
nonvanishing constant to it. Thus, the long-distance behavior IV. CONCLUSION

°f<OéD\N(X)OéDw(Q)> can be determined solely through its  Angerson has proposed that the spin-liquid state may
hole part. If we define the operator evolve into a superconductor upon doping. However, it has
yp be_en proved noto_riously difficu_lt to ha\{e any concrete ana-
On(X)= s a1¥m B 2L A1t Bz’“exl{ —i /_(I)l), Iytic result to confirm this idea in two dimensions. A doped
T K1 spin ladder may provide a good place to study this mecha-
(29) nism though there is no true long range order here. This is so
then because the undoped two-leg ladder is a kind of spin-liquid
state and it is simpler to deal with this problem both analyti-
cally and numerically. Soon after the discovery of high
superconductivity a model was proposed to describe the
doped spin-liquid state by coupling holes to the nonlinear
sigma model and the gauge interaction betwéeand B
holes provides the necessary attraction for pairing. Our ap-
proach is basically to apply the same idea to ladder systems.
In contrast to previous studies, the gauge interaction plays a

1
(OowtX) O2ow(0))~(On(X)On(0))~ 5.+ (30

In the second line of Eq29), we keep the gapless mode
only. From Egs{(28) and(30), it is clear that SC dominates
whenK ;<2 and CDW dominates whelk;>2. In the large
spin limit, K;~ 1. Therefore, we conclude that SC suscepti-
bility dominates in two-leg-J ladders and a weak interlad- . . 2°
der interaction will lead to superconductivity at low tempera—m'nor role on the_fo_rmatl_on of hole pairing in _two-leth .
ture. Also the exponents of pairing and CDW susceptibilityladders' Instead, it is mamly due to the effective aftraction
satisfy the relationKsdKcpw=1. We arrive at the same between the nea.res_t-nelghbor holes. Therefore, upon _dopujg,
conclusions as previous numerical investigations. Althougihese holes are inclined to stay on the same preexisting sin-
we heavily rely on the large spin approximation, our resultglets. Although this may be a unique characteristic of two-

should capture the basic feature of the system with spin ond€g ladders exclusively, this point deserves further examina-
half. tion in higher dimensions. We also point out that the gauge

In summary, after we takél, andH, into account, the interaction is responsible for the electronlike collective mode
low-energy effective Hamiltonian only consists of one gap-found in Ref. 9. The existence of this type of excitations is
less charge mode, which describes the charge-density fluldependent of the quartic fermion interactions. The absence
tuation. The spin excitations are electronlike quasiparticle®r presence of the latter determines whether the long-range
and magnons and both have energy gaps. Tke @DW  Coulomb force is screened or not and thus affects the mag-
susceptibility shows exponentially decaying behavior whilenitude of the gap of excitations with the nontrivial spin-
those of 4z CDW and singlet SC both show power-law quantum number. More importantly, it does affect the exis-
behavior. With the above results, we conclude that lightlytence of the magnon: there are no magnons without the
doped two-leg ladders fall into the universality class ofquartic fermion interactions. We have to emphasize that both
Luther-Emery model. In addition, this phase is dominated bythe effective attraction between nearest-neighbor holes and
singlet SC susceptibility according to our analysis. gauge interactions are due to the strong short-range AF back-

There are two related works that should be mentionedground, which has its origin in the strong repulsive interac-
The first is the paper by Ichinose and MatSuiThey also  tions between electrons.
adopted the slave-fermion a@P! boson technique to treat The main assumption we made is to replace Egwith
the two-legt-J ladder. The other is the work of lvanov and Egs.(9) and(10). This is justified for undoped case and for
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lightly doped two-leg ladders. The spin excitations in the APPENDIX: BOSONIZATION RULES
undoped three-leg ladder are gapless and thus the distortion
of the short-range AF background arising from hole motions
will be so serious such that E¢8) may be far from the real
situation. Moreover, there may be no coherent peak in the P (2)=
spectral function of one-particle Green function and we are

unable to simply add & term to the effective Hamiltonian.

In other words, thé term should play a more important role . 1 .
in this case. As has been shown in Ref. 10, upon doping, the Yr(2)= expli \/E(f)R(Z)},
three-legt-J ladder has two components—a conducting Lut- V2ma

tinger liquid coexisting with an insulating spin-liquid phase.

In order to discuss its low-energy physics in the same spirit . 1 2

as the present paper, we need more understanding about the 1y o= E(aﬂd’) '
ground state of the undoped case and the behavior of holes in
this ground state. Work along this line is under progress.

We list all bosonization rules we used in the following:

1

\/ﬁexp{ —i \/E(ﬁL(Z)}a

— 1

Y= = €u0" b,
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