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Low-energy effective action of lightly doped two-legt-J ladders

Yu-Wen Lee* and Yu-Li Lee†

NCTS and Physics Department, National Tsing Hua University, Hsinchu, Taiwan
~Received 30 March 1998; revised manuscript received 12 August 1998!

We propose a low-energy effective theory of lightly doped two-legt-J ladders with the help of slave
fermion technique. The continuum limit of this model consists of two kinds of Dirac fermions, which are
coupled to the O~3! nonlinear sigma model in terms of the gauge coupling with opposite sign of ‘‘charges.’’ In
addition to the gauge interaction, there is another kind of attractive force between these Dirac fermions, which
arises from the short-ranged antiferromagnetic order. We show that the latter is essential to determine the low
energy properties of lightly doped two-legt-J ladders. The effective Hamiltonian we obtain is a bosonic
Gaussian model and the boson field basically describes the particle-density fluctuation. We also find two types
of gapped spin excitations. Finally, we discuss the possible instabilities: charge density wave and singlet
superconductivity~SC!. We find that the SC instability dominates in our approximation. Our results indicate
that lightly doped ladders fall into the universality class of Luther-Emery model.@S0163-1829~99!08801-3#
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I. INTRODUCTION

The properties of ladder systems described byt-J and
Hubbard models have been the subject of intensive stu
recently.1–13 The reason is that there are systems such
~VO!2P2O7 ~Ref. 14! and SrCu2O3 ~Ref. 15! which can be
the possible realization of these models. Experiments
magnetic susceptibility and neutron inelastic scattering sh
the existence of a finite spin gap. Moreover, a recent m
surement shows the sign of superconductivity in the do
spin ladders.16 Therefore, the study of these systems can
fer new insights into the nature of magnetic, charge dens
and pairing correlations in strongly correlated electron s
tems.

The undoped ladder systems show unusual magnetic
haviors. When the number of chains is even, there is a
gap. When it is odd, the spin excitation is gapless. This
be easily understood by considering the limit of strong ru
interactions. For two-leg ladders, since the spins on ev
rung forms a singlet first in this limit, it can be considered
a set of weakly coupled rung singlets. The spin excitation
formed by turning over one spin on a rung and this co
finite energy. Along the same reasoning, a three-leg ladd
effectively equivalent to a spin-1/2 chain and the latter h
gapless spin excitations. Numerical studies17 show that the
spin gap for two-leg ladders persists even at the experim
tally interested isotropic point.~By this we mean that the
rung interaction is equal to the intrachain interaction.! This
indicates that even at the isotropic point, the rough picture
a ground state dominated by rung singlets is robust. Pe
have investigated spin ladders by the semiclassical~large
spin! approach.18 Remarkably, this approach qualitative
captures the basic feature of this system as in the case of
chains. Besides, the spectrum predicted by the nonlin
sigma model is in good agreement with oth
approximations19 both in the strong and weak rung intera
tion limit. These facts imply that the nonlinear sigma mod
correctly describes the low-energy sector of the spin-liq
state of ladder systems though it ignores fluctuations al
the rung. This is one of the motivations that we would like
PRB 590163-1829/99/59~2!/1290~8!/$15.00
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use the large spin approach to study the lightly doped ca
The effect of doping on the antiferromagnetism is an i

portant and unsettled issue in strongly correlated elec
systems. The main difficulty lies in hole motions, whic
cause frustration of the antiferromagnetic~AF! order. Theo-
retically, we have no adequate analytical methods to d
with the competition between charge and magnetic fluct
tions because there is no obvious small parameter that fa
tates an expansion about a tractable model. In the pre
paper, we employ the large spin expansion which permits
to map the original model to a continuum-field theory. An
this allows us to tackle the problem with analytical metho
due to the 1-d nature of this system. Mean-field studies2–4

and numerical calculations7–9 show that the spin gap in un
doped two-leg ladders still persists at low-doping concen
tion. This implies that the underlying short-ranged AF ord
is not destroyed too much by hole motions as the dop
concentration is low. Thus, after we resolve the constrain
the slave fermion representation, we assume that spin v
ables have a strong short-ranged AF order. This leads to
t8-J model proposed by Wiegman, Wen, Lee, a
Shankar.20,21Because of this background AF order, it is nat
ral to say that there are two kinds of holes~on A and B
sublattice! with opposite sign of~fictitious! charges and they
are coupled to the staggered magnetization through the B
phase. In contrast to previous studies,20 we keep the nearest
neighbor attractive four-fermion interactions betweenA and
B holes. This attractive force can be understood as the
lowing: the energy of two holes on the same spin single
lower than that of two holes on different singlets becau
there are less broken bonds in the former. And this is equ
lent to an attractive force between holes on different sub
tices. We discuss this model in the absence of the qua
fermion interaction first. To study the low-energy physics w
can linearize the dispersion relation of fermions about
Fermi points. It turns out that we have four branches
massless Dirac fermions coupled to the nonlinear sig
model. From the study of Schwinger model, we know th
massless Dirac fermions will screen the long-range Coulo
force or give a mass term to the gauge field on account of
1290 ©1999 The American Physical Society
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PRB 59 1291LOW-ENERGY EFFECTIVE ACTION OF LIGHTLY . . .
chiral anomaly. Therefore, the gauge fields are in the Hi
phase.22 Because of the Gauss law, all excitations must
gauge singlets~or mesons in the jargon of particle physics!.
In the present case, we have three gapless spin-singlet
lective modes. There are also gapped spin-1/2 excitat
that carry the electronic charge but no magnons. The su
conductivity~SC! instability is enhanced. Then we switch o
the nearest-neighbor attractive four-fermion interactio
Two of the gapless modes become massive and the l
range Coulomb force is not screened, i.e. the gauge fields
in the confining phase. Consequently, we have only one g
less charge mode, which is spin singlet. We also h
gapped spin-triplet excitations and electronlike collect
modes, which are spin-1/2 and carry electronic charges.
compute the exponents of pairing correlation function a
4kF charge density wave~CDW! susceptibility. In our ap-
proximation, turning on the quartic fermion interactions e
hances the tendency toward SC relative to the tendency
ward CDW. Therefore, a weak interladder interaction w
lead to SC, which has been predicted by oth
approaches.2–4,7–9Our analysis indicates that these two typ
of attractive forces play different roles in two-legt-J lad-
ders. While the formation of spin gap and spin-hole bou
states are due to the gauge interaction, four-fermion inte
tions betweenA andB holes are responsible for the pairin
between holes. In addition, inclusion of the latter drastica
changes the low energy properties of doped ladders such
they fall into the universality class of Luther-Emery model23

Our results confirm the conclusions from numerical studie9

The rest of the paper is organized as follows. In Sec. II
derive the low-energy effective action. In Sec. III we discu
the implications of this action. We study the effect of gau
interaction in Sec. III A. In Sec. III B we take into accou
the four-fermion interaction betweenA andB holes. Section
IV is the conclusion. We give a summary of the bosonizat
rules we used in the Appendix.

II. DERIVATION OF THE EFFECTIVE ACTION

Since the first part of our derivation is valid for gener
t-J models, we will not write down the ladder index expli
itly until it is necessary. We start from the following mode

H52t(
^ i , j &

Xs0~ i !X0s~ j !1(
i

edXss~ i !

1
J

4 (
^ i , j &

FXss8~ i !Xs8s~ j !2
1

2
Xss~ i !Xs8s8~ j !G , ~1!

where ^ i , j & means the nearest-neighbor sites,Xab[ua&^bu
and ua&5u0&, u↑&, u↓& corresponding to the empty site an
spin-up ~spin-down! sites. Since transitions between emp
and occupied states include a change in the fermonic n
ber, the operatorsXs0( i ), X0s( i ) are fermonic and the op
eratorsXss8( i ), X00( i ) are bosonic. It is easy to check th
they satisfy the following graded Lie algebra calle
Spl(1,2):24

@Xab~ i !,Xcd~ j !#65d i j @dbcXad~ i !6dadXcb~ i !#, ~2!
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where (1) should be used only if both operators are fe
monic. In the limit of zero doping,ed→2` and the model is
reduced to the spin-1/2 Heisenberg model.

Among various methods to deal with Eqs.~1! and ~2!,
there are two popular representations of the above graded
algebra—slave fermion and slave boson. We adopt
former and introduce a vacuum state annihilated by opera
f i and bs( i ). Then theX operators can be represented
follows:

X0s~ i !5 f i
1bs~ i !,

Xs0~ i !5 f ibs
1~ i !,

Xss8~ i !5bs
1~ i !bs8~ i !,

X00~ i !5 f i
1 f i ~3!

with the constraintbs
1( i )bs( i )1 f i

1 f i51 ands51,21 for
spin up and down, respectively. Heref i , f i

1 satisfy canonical
anticommutation relations andbs( i ), bs

1( i ) satisfy canonical
commutation relations. To use the large spin expansion,
replace the above constraint with this one:bs

1( i )bs( i )
1 f i

1 f i52S, which is called the spins representation of
Spl~1,2!. Now theX operators represent transitions betwe
statesus& and us21/2&. With the help of Eq.~3!, we can
write down the path integral representation of thet-J model

Z5E D@ f #D@ f 1#D@bs#D@bs
1#d@bs

1~ i !bs~ i !

1 f i
1 f i22S#exp~2I !,

I 5E
0

b

dt(
i

@ f i
1~]t2m! f i1bs

1~ i !]t bs~ i !#1E
0

b

dt H,

H5t(
^ i , j &

f j
1 f ibs

1~ i !bs~ j !1
J

4 (
^ i , j &

Fba
1~ i !bb~ i !bb

1~ j !ba~ j !

2
1

2
ba

1~ i !ba~ i !bb
1~ j !bb~ j !G . ~4!

In the above equation,ed has been absorbed intom, the
chemical potential of holes in terms of the constraint in t
path integral measure. Based on the property of Grassm
variables: (f 1 f )250, we can resolve the constraint in th
measure24 as the following:

b15A2SS 12
1

4S
f 1 f D cos

u

2
exp

i

2
~x2f!,

b25A2SS 12
1

4S
f 1 f D sin

u

2
exp

i

2
~x1f! ~5!

whereS5(S2 1
2 f 1 f )V and

V5~sinu cosf,sinu sinf,cosu!.

With the new variableV, we can rewrite the partition func
tion as follows:
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Z5E D@V#D@ f #D@ f 1#exp~2I !,

I 5E
0

b

dt(
j

F f j
1~]t2m! f j1 i S S2

1

2
f j

1 f j DA~Vj !•]tVj G
1E

0

b

dt H,

H5 t̄ (
^ i , j &

f j
1 f i^Vi uVj&1/2

1
J̄

8 (
^ i , j &

S 12
1

2S
f i

1 f i D S 12
1

2S
f j

1 f j DVi•Vj ~6!

where t̄[2St and J̄[4JS2. ~Note that whenS51/2, t̄ 5t

and J̄5J.) ^V1uV2&S represents the overlap of two spin-S
coherent states,uV1& and uV2&. A(V) is the monopole vec-
tor potential, which satisfies¹3A5V. ~Here we have cho-
sen the gauge such thatA•]tV52cosu]tf andx is inde-
pendent oft.)

Now we focus ourselves on two-legt-J ladders. Using the
notation of Eq.~6!, the action can be written as follows:

I 5E
0

b

dt(
m

(
j

F f j ,m
1 ~]t2m! f j ,m1 i S S2

1

2
f j ,m

1 f j ,mD
3A~Vj ,m!•]tVj ,mG1E

0

b

dt H,

H5 t̄(
m

(
^ i , j &

f j ,m
1 f i ,m^Vi ,muVj ,m&1/2

1 t̄'(
j

@ f j ,2
1 f j ,1̂ Vj ,1uVj ,2&1/21H.c.#

1
J̄

4 (
m

(
j

S 12
1

2S
f j ,m

1 f j ,mD
3S 12

1

2S
f j 11,m

1 f j 11,mDVj ,m•Vj 11,m

1
J̄'

4 (
j

S 12
1

2S
f j ,1

1 f j ,1D S 12
1

2S
f j ,2

1 f j ,2DVj ,1•Vj ,2 ,

~7!

where m51,2 is the chain index. To proceed, we have
make some assumptions. First of all, we assume that the
a short-ranged AF order such that we can parametrizeVj ,m
as the following:18

Vj ,m5~21! j 1mA12a2Lm
2 n~x!1aLm~x!, ~8!

wheren251, n•Lm50 anda is the lattice spacing.n is the
order parameter andLm are the fast modes that will be inte
grated out. Comparing thet term andJ term in Eq.~7!, it is
clear that in the large spin limitJ term dominates and thu
Eq. ~8! is valid. For small spins, we expect it is still a goo
assumption if there are strong short-range AF correlati
and the latter is reflected by the existence of a finite spin
is

s
p

in two-leg ladders. However, some conditions are requi
for a nonvanishing spin gap. First, according to numeri
studies,7–9 the hole concentration must be low. Second,J/t
should be of order one. As has been noticed in Ref. 9,
Nogaoka theorem is applicable in ladder systems. This th
rem says that the one-hole ground state is ferromagnet
J50. This phase may be stable whenJ/t is very small.11

Besides, numerical studies7–9 show that the phase separatio
occurs whenJ/t.2. Therefore, the qualitative feature of th
following results may be valid for the spin one-half ca
when the ratio ofJ/t is order of one and the hole concentr
tion is low.

Because of the background AF order, the original latt
is divided into two sublattices and it is natural to have tw
kinds of holes. We will call themA holes andB holes when
j 1m is even and odd, respectively. An immediate con
quence of Eq.~8! is that the hole cannot hop coherent
between different sublattices, i.e., the intersublattice hopp
is forbidden. This can be understood as the following: T
amplitude for a hole hopping from sitei to j is the product of
the overlap of spin and orbital wave functions, i.e.,
2t i j ^Vj uVi&. In this case, it is2t^VAuVB&. In view of Eq.
~8!, this is zero if we have perfect Ne´el order ~recall that
^Vu2V&50) and exponentially small in a system wit
strong short-range AF order. Thus,t and t' terms are effec-
tively removed from the low-energy effective Hamiltonian
the largeSanalysis. One of their effects is to renormalize t
parameters in low-energy physics. It seems that the hole
hop coherently within the same sublattices under the hyp
esis Eq.~8!. However, the question of whether the hole c
have coherent hopping is related to whether we have w
defined quasiparticles in low energy. As pointed out in R
25, the latter depends on the density of states of spin wa
in low energy. It turns out that there can be no well-defin
quasiparticles in one dimension if the spin excitation is g
less. Fortunately, there is a spin gap in our system. Follow
the calculations in Ref. 25, there will be a sharp peak at
energy scale2t in the spectral function of one-particl
Green function and this implies a well-defined quasiparti
band at the bottom of the hole spectrum. Consequently,
the interactions with spins, the holes are able to acquir
kinetic energy, whether there is a ‘‘bare hopping term’’
not. In the following, we shall introduce at8 term, i.e., hop-
ping within the same sublattice, to represent the kinetic
ergy of holes. According to numerical calculations,9 t8 is of
the same order asJ.

Substituting Eq.~8! into Eq.~7!, adding a gauge-invarian
t8 term to Eq.~7! and expanding the action to the quadra
terms ofLm then integrating outLm , we get to the following
effective action:

I 5I n1I h ,

I n5
1

2g2E0

b

dtE dxS 1

vs
2

u]tnu21u]xnu2D ,

I h5E
0

b

dt(
m

(
j

@ f A,m
1 ~ j !~]t2 ia02m! f A,m~ j !

1 f B,m
1 ~ j !~]t1 ia02m! f B,m~ j !#1E

0

b

dt Hh ~9!
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and

Hh5H01H11H2 ,

H05t 8̄(
m

(
j

@ f A,m
1 ~ j 12! f A,m~ j !exp~ iaxDx!1H.c.#

1~A→B,ax→2ax!,

H152
J

4 (
m

(
j

@ : f A,m
1 ~ j ! f A,m~ j !:: f B,m

1 ~ j 11!

3 f B,m~ j 11!:1~A↔B!#,

H252
J'

4 (
j

@ : f A,1
1 ~ j ! f A,1~ j !:: f B,2

1 ~ j ! f B,2~ j !:1~A↔B!#,

~10!

where g252/J̄a(12d/2S)2, vs5( J̄a/2S) (1

2d/2S)A11 ( J̄'/2J̄), t 8̄[2St8, Dx52a, andd is the hole
concentration. In the derivation of above equations, we h
used a property of spin-coherent states:^V1uV2&S'exp
2iSA•(V12V2) when V1'V2 . The gauge fieldsam
[ 1

2 A•]mn. It is clear thatA andB holes carry opposite sign
of charges because they are on different sublattices in w
the staggered magnetizations have opposite directions.
propose that the low-energy sector of lightly doped two-
ladders can be described by Eqs.~9! and ~10!.

We conclude this section with a brief summary of t
CP1 representation of the nonlinear sigma model,26 which
will be used later. The order parametern can be param-
etrized with a normalized spinor as

n5 z̄sz, z̄z51.

The CP1 version of the nonlinear sigma model in the E
clidean space is

Z5E D@am#D@z#D@ z̄#D@l#exp~2I !,

I 5
1

e2E d2x@ u]mz2 iamzu21 il~ uzu221!#, ~11!

wherex05vst, e252g2vs, andl is the Lagrangian multi-
plier. An appropriate choice of the gauge makesam in Eq.
~11! equivalent to the ones in Eqs.~9! and~10! and thus we
can use the same notation to denote them. In theCPN21

model at largeN, the z quanta become massive, i.e.,l ac-
quires a nonvanishing mean value. At distances larger t
this scale, the effective action of gauge fields will have
usual Maxwell term. Accordingly, the low-energy excitatio
is a massive triplet, which can be considered as the bo
state ofz̄ andz.

III. EXCITATION SPECTRUM

To discuss the low-energy physics, we linearize the d
persion relation of fermions about their Fermi points, whi
satisfy kFa5 (p/2) (12d). ~We have assumed that th
Hamiltonian is invariant when we interchange the chain
e

ch
e

g

an
e

nd

-

-

dex andA and B holes. Besides, remember thata is the
lattice spacing of the original lattice.! After doing that,H0
becomes

H05E01v0(
m

E dx@ :cA,m
1 a~2 i ]x2ax!cA,m :

1~A→B,ax→2ax!#, ~12!

wherev054t 8̄a sin 2kFa54t8̄asinpd is the Fermi velocity,
c is the two-component Dirac fermion, anda5s3 . Now we
can analyze the effects of different interactions.

A. The effect of gauge coupling

We setH15H250 first. Then we rescale the imaginar
time: v0t→t and do analytical continuation to the real-tim
formalism. The effective action is

I 5I 01I n ,

I 05(
m

E d2x@c̄A,mgm~ i ]m2am2eAm!cA,m

1~A→B,am→2am!# ~13!

andI n has the same form as the one in Eq.~9! andgm is the
Dirac g matrices. HereAm are the external electromagnet
fields. In terms of the standard bosonization rules~see the
Appendix!, I 0 can be bosonized as the following:

I 05
1

2 (
m

E d2x@~]mfA,m!21~]mfB,m!2#

2
e

Ap
(
m

E d2x Amemn]n~fA,m1fB,m!

1
1

Ap
(
m

E d2x amemn]n~fA,m2fB,m!. ~14!

We define f6,m[ (1/A2) (fA,m6fB,m). Then I 0 can be
written as

I 05
1

2 (
m

E d2x@~]mf1,m!21~]mf2,m!2#

2A2

p
e(

m
E d2x Amemn]nf1,m

1A2

p (
m

E d2x amemn]nf2,m . ~15!

The above action can be further simplified if we define t
following fields:
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F1[
1

A2
~f1,11f1,2!,

F2[
1

A2
~f1,12f1,2!,

F3[
1

A2
~f2,11f2,2!,

F4[
1

A2
~f2,12f2,2!. ~16!

With the help of the above canonical transformation, we
tain the following low-energy effective action

I 05
1

2 (
a51

4 E d2x~]mFa!22
2

Ap
eE d2x Amemn]nF1

1
2

Ap
E d2x F3emn]man . ~17!

What can we learn from Eqs.~11! and ~17!? First, there
are three gapless spin-singlet excitations:F1 , F2, andF4 .
Second, to understand the coupled system ofF3 andz, we
have to investigate the gauge-field dynamics. This can
done by integrating out theF3 field since its action is qua
dratic and we obtain

1

p2E d2xd2y f̃~x!lnux2yu f̃ ~y!,

wheref̃ [emn]man is the dual-field strength. If we choose th
Lorentz gauge as]mam50, then the above equation becom
the mass term ofam . That is to say, the fluctuations of th
F3 field will screen the long-range Coulomb force. It follow
that there are massive spin-1/2 excitations and they are
tral with respect to theam fields in view of the gauge-field
mass.~This is easy to be seen by integrating Gauss’s
from 2` to 1`.) Since thez quantum has charge 1, whe
is the compensating charge from? It must come from
hole sector. We can understand this as the following.21

Let us integrate out all fields exceptF3 . The action we
obtain must be of the form cos 8ApnF3 wheren is an inte-
ger. ~Of course, the renormalization of the kinetic term
possible.! This is because the coefficient ofF3 in Eq. ~17! is
proportional to the instanton density: (1/4p) emn]man . The
action is invariant under the transformation:F3→F3

1Ap/4 and the cosine just has the form that satisfies
requirement. If the cosine is relevant, this translation sy
metry is spontaneously broken and the value ofF3 is pinned
at some minimum of the potential. In addition, its solito
carry exactly the charge needed to match the charge of tz
quantum. The Gauss law demands that at least one o
cosines in question must be relevant and thus the excitat
corresponding to theF3 sector are massive. These solito
are nothing but theA ~or B! holes. They carry the electroni
charges as well as the U~1! charges. As a consequence, w
expect these massive doublets also carry the electr
-

e

u-

e

e
-

he
ns

ic

charges, i.e., they carry the same quantum numbers as
trons. We should emphasize that there are nozz̄ bound
states, i.e., massive triplets, in this model. As we shall
later, the absence or presence of this type of excitation
one of the distinctions between the Higgs phase and con
ing phase in our model.

After identifying the spectrum, we would like to examin
the pairing correlation function. Because of the spin gap,
pair field of singlet SC can be defined as the following:

D~ j ![ f A,1~ j ! f B,2~ j !. ~18!

Since the correlation functions ofF3 decay exponentially,
the long-distance behavior of the pairing correlation funct
can be calculated by the following operators:

D~ j !;exp~2 iApQ1!exp~2 iApF2!exp~2 iApQ4!

1exp~2 iApQ1!exp~ iApF2!exp~2 iApQ4!,

~19!

whereQa is the dual field ofFa . The pairing correlation

function behaves aŝD( j )D1(0)& →
u j u→`

1/u j u3/2. Compared
with the one of free fermions, which behaves like 1/u j u2, we
see that the pairing susceptibility is enhanced.

To sum up, if we consider the gauge coupling only, th
the low-energy effective Hamiltonian consists of three ga
less spin-singlet modes and one massive spin-1/2 mo
which carry the electronic charges.~It is possible that there
are massive spin-singlet modes. However, the gapless m
and the massive doublet predominant the long-distance
havior of correlation functions.! Compared with the numeri
cal results,9 there are too many gapless modes but no m
nons. It is not enough to consider the gauge interacti
only. We will see in the next section the importance of ta
ing into accountH1 and H2 to get the correct low-energy
properties.

B. The role of H 1 and H 2

Here we takeH1 andH2 into account. The continum limit
of them are as follows:

H152g1(
m

E dx:cA,m
1 cA,m ::cB,m

1 cB,m :

1g1cospd(
m

E dx@cA,L,m
1 cA,R,mcB,R,m

1 cB,L,m

1~R↔L !#,

H252g2E dx@ :cA,1
1 cA,1 ::cB,2

1 cB,2 :1~A↔B!#

2g2E dx@cA,R,1
1 cA,L,1cB,L,2

1 cB,R,2

1cA,L,1
1 cA,R,1cB,R,2

1 cB,L,21~A↔B!#, ~20!

where g152Ja/v0 , g25J'a/v0 , and cL,R are left-handed
and right-handed fermions, respectively. With the same c
vention used in the previous section, the bosonized form
the above equations are as follows:
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H152
g1

2p (
m

E dx@~]xf1,m!22~]xf2,m!2#

1g18 (
m

E dx cosA8pf2 ,m,

H252
g2

p E dx~]xf1,1]xf1,22]xf2,1]xf2,2!

22g28E dx cosA2p~f1,12f1,2!cosA2p

3~f2,11f2,2!. ~21!

We can do the following canonical transformation to diag
nalize the quadratic part of the Hamiltonian:

F15AK1

2
~f1,11f1,2!,

F25AK2

2
~f1,12f1,2!,

~22!

F35AK3

2
~f2,11f2,2!,

F45AK4

2
~f2,12f2,2!.

The parameters in the above equations are as follows:

K15A12
g11g2

p
,

K25A12
g12g2

p
,

~23!

K35A11
g11g2

p
,

K45A11
g12g2

p
.

These relations are valid only in the weak-coupling limit.
our case, this corresponds to the large-spin limit.@Remember
that t 8̄(52St8) appears in the denominator of the definitio
of gi .] We can see thatK1,1 andK3.1 becausegi.0.
~This corresponds to the attractive force between holes.! The
effective Hamiltonian of the hole sector is

Hh5
1

2 (
a51

4

KaE dx@~]xQa!21~]xFa!2#

12g18E dx cosA4p

K3
F3cosA4p

K4
F4

22g28E dx cosA4p

K2
F2cosA4p

K3
F3 . ~24!
-

Here, we neglect the gauge coupling temporarily and w
discuss it later. The relevancy of these interactions is de
mined by their scaling dimensions. They areD151/K3

1 1/K4 andD251/K2 1 1/K3 , which correspond tog18 and
g28 terms, respectively. From Eq.~23!, K2,1 andK4.1 at
the isotropic point. This impliesD1,2. Therefore,g18 term is
a relevant operator in the sense of renormalization gro
The F3 and F4 field are pinned at some values and bo
acquire gaps. They are decoupled from the low-ene
theory. Taking into account these facts, the effective Ham
tonian becomes

Hh5
1

2 (
a51,2

KaE dx@~]xQa!21~]xFa!2#

2gE dx cosA4p

K2
F2 , ~25!

whereg52g28^cosA4p/K3F3&. In the large spin limit,K2

.1/2. Thus the scaling dimension ofg term is less than two.
It is a relevant operator. TheF2 field is also massive. In the
low-energy limit, we obtain our effective Hamiltonian as th
following:

Heff5
K1

2 E dx@~]xQ1!21~]xF1!2#. ~26!

Now we would like to discuss the implications of ou
results. First of all, the low-energy effective Hamiltonia
consists of a gapless spin-singlet mode and from Eq.~22!,
this mode describes the total charge-density fluctuation. F
thermore, there is only one free parameterK1 , the compac-
tification radius of theF1 field, which has to be determine
from experiments. This supports the suggestion propose
Ref. 9. Second, since theF3 field is pinned at some value, i
cannot affect the nonlinear sigma model too much. Es
cially, it is unable to screen the long-range Coulomb for
As a result, the gauge field is in the confining phase. T
leads to two types of spin excitations. One is the mass
triplet ~in the CP1 language, it is thezz̄ bound state!, which
is the same as the magnon in the undoped case. The oth
the bound state of holes andz quanta, which carries the sam
quantum numbers as the electron. In fact, this excitation
be considered as the breaking of a hole pair and we have
quasiparticles. Each carries electric charge one and spin
half. The latter is also observed in Ref. 9. In that pap
Troyer et al. find that the spin gap is determined by th
bound state of spinons and holons. We cannot compare
gaps of these excitations in our approach. However, we g
a picture about the formation of the unexpected spin exc
tion. The Berry phase term gives rise to the necessary att
tive force between spinons and holons. Since this force
gauge interaction and the latter in 1d is a linear confining
potential, this results in bound states of spinons and holo

After we understand the spectrum, we can calculate
asymptotic behavior of various correlation functions. T
most important ones are pairing and CDW correlation fu
tions. The definition of the pair field is the same as Eq.~18!.
The long-distance behavior of the pairing correlation fun
tion can be calculated by the operator

D~ j !;exp~2 iApK1Q1! ~27!
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because other fields are massive. The result is

^D~ j !D1~0!& →
u j u→` 1

u j uK1/2
. ~28!

Next we shall examine the 2kF CDW susceptibility. The
corresponding order parameterOCDW can be expressed a
the product of hole operators and spin operators. As emp
sized in the previous paragraph, matter fields do noth
much on the spin sector of the effective action. We can fi
the contributions of spin operators from results of the u
doped case. The work of Sheltonet al.27 showed that the
low-energy theory of two-leg ladders is described by fo
decoupled noncritical Ising models with three of them in t
ordered phase and one in the disordered phase~or vice
versa!. Moreover, the spin part inOCDW can be expressed i
terms of the order~s! and disorder~m! parameter fields of
the Ising model asm1m2m3m0 or s1s2s3s0 . It is clear that
the correlation functions of the above operators decay ex
nentially to zero. This implies that̂OCDW(x)OCDW(0)&
shows the same behavior. Then we have to consider thekF
CDW susceptibility or̂ OCDW

2 (x)OCDW
2 (0)&. Using the OPE

m(z)m(v);1/(z2v)1/41•••, it is straightforward to see
that the spin part of this correlation function contributes
nonvanishing constant to it. Thus, the long-distance beha
of ^OCDW

2 (x)OCDW
2 (0)& can be determined solely through i

hole part. If we define the operator

Oh~x![cR,A,1
1 cR,B,2

1 cL,A,1cL,B,2;expS 2 iA4p

K1
F1D ,

~29!

then

^OCDW
2 ~x!OCDW

2 ~0!&;^Oh~x!Oh~0!&;
1

uxu2/K1
. ~30!

In the second line of Eq.~29!, we keep the gapless mod
only. From Eqs.~28! and ~30!, it is clear that SC dominate
whenK1,2 and CDW dominates whenK1.2. In the large
spin limit, K1'1. Therefore, we conclude that SC suscep
bility dominates in two-legt-J ladders and a weak interlad
der interaction will lead to superconductivity at low tempe
ture. Also the exponents of pairing and CDW susceptibi
satisfy the relation:KSCKCDW51. We arrive at the same
conclusions as previous numerical investigations. Althou
we heavily rely on the large spin approximation, our resu
should capture the basic feature of the system with spin o
half.

In summary, after we takeH1 and H2 into account, the
low-energy effective Hamiltonian only consists of one ga
less charge mode, which describes the charge-density
tuation. The spin excitations are electronlike quasipartic
and magnons and both have energy gaps. The 2kF CDW
susceptibility shows exponentially decaying behavior wh
those of 4kF CDW and singlet SC both show power-la
behavior. With the above results, we conclude that ligh
doped two-leg ladders fall into the universality class
Luther-Emery model. In addition, this phase is dominated
singlet SC susceptibility according to our analysis.

There are two related works that should be mention
The first is the paper by Ichinose and Matsui.12 They also
adopted the slave-fermion andCP1 boson technique to trea
the two-legt-J ladder. The other is the work of Ivanov an
a-
g
d
-

r

o-

or

-

-

h
s
e-

-
c-
s

y
f
y

d.

Lee.13 They use the slave-boson scheme and arrive at
same conclusion that the low-energy sector of the two-
t-J ladder is a Luther-Emery liquid. For quantitative descr
tion of this system, they introduce a new order parame
npair[(n12d)(n22d) whereni is the hole density in theith
chain in addition to the ones we considered. They sugge
that the long-distance behavior of the 2kF part of
^npair(x)npair(0)& ~notice that their 2kF is equivalent to our
4kF .) is as the following

A

xa1
1

B

xa112
,

whereA andB depend on the average pair overlap:A@B at
jpaird!1 andA!B at jpaird@1. Herejpair is the size of the
hole pair and is of the order of the lattice spacing.a1 is the
exponent of̂ OCDW

2 (x)OCDW
2 (0)&. We calculate this correla

tion function and we obtain a power-law behavior with t
exponent equal to 2/K1 , which is the same as the one o
^OCDW

2 (x)OCDW
2 (0)&. We do not find an exponent equal t

2/K112 even including higher harmonics. Since our a
proach is valid whend!1, we cannot tell whether the sec
ond term exists or not at larger doping concentration.

IV. CONCLUSION

Anderson has proposed that the spin-liquid state m
evolve into a superconductor upon doping. However, it h
been proved notoriously difficult to have any concrete a
lytic result to confirm this idea in two dimensions. A dope
spin ladder may provide a good place to study this mec
nism though there is no true long range order here. This is
because the undoped two-leg ladder is a kind of spin-liq
state and it is simpler to deal with this problem both analy
cally and numerically. Soon after the discovery of highTc
superconductivity a model was proposed to describe
doped spin-liquid state by coupling holes to the nonline
sigma model and the gauge interaction betweenA and B
holes provides the necessary attraction for pairing. Our
proach is basically to apply the same idea to ladder syste
In contrast to previous studies, the gauge interaction pla
minor role on the formation of hole pairing in two-legt-J
ladders. Instead, it is mainly due to the effective attract
between the nearest-neighbor holes. Therefore, upon dop
these holes are inclined to stay on the same preexisting
glets. Although this may be a unique characteristic of tw
leg ladders exclusively, this point deserves further exami
tion in higher dimensions. We also point out that the gau
interaction is responsible for the electronlike collective mo
found in Ref. 9. The existence of this type of excitations
independent of the quartic fermion interactions. The abse
or presence of the latter determines whether the long-ra
Coulomb force is screened or not and thus affects the m
nitude of the gap of excitations with the nontrivial spi
quantum number. More importantly, it does affect the ex
tence of the magnon: there are no magnons without
quartic fermion interactions. We have to emphasize that b
the effective attraction between nearest-neighbor holes
gauge interactions are due to the strong short-range AF b
ground, which has its origin in the strong repulsive intera
tions between electrons.

The main assumption we made is to replace Eq.~7! with
Eqs.~9! and ~10!. This is justified for undoped case and fo



he
rt
n

l
th
ar
.
le
th

ut
e
ir
t

es
.

X
fo
.C
a

M e

PRB 59 1297LOW-ENERGY EFFECTIVE ACTION OF LIGHTLY . . .
lightly doped two-leg ladders. The spin excitations in t
undoped three-leg ladder are gapless and thus the disto
of the short-range AF background arising from hole motio
will be so serious such that Eq.~8! may be far from the rea
situation. Moreover, there may be no coherent peak in
spectral function of one-particle Green function and we
unable to simply add at8 term to the effective Hamiltonian
In other words, thet term should play a more important ro
in this case. As has been shown in Ref. 10, upon doping,
three-legt-J ladder has two components—a conducting L
tinger liquid coexisting with an insulating spin-liquid phas
In order to discuss its low-energy physics in the same sp
as the present paper, we need more understanding abou
ground state of the undoped case and the behavior of hol
this ground state. Work along this line is under progress
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APPENDIX: BOSONIZATION RULES

We list all bosonization rules we used in the following:

cL~z!5
1

A2pa
exp$2 iA4pfL~z!%,

cR~ z̄!5
1

A2pa
exp$ iA4pfR~ z̄!%,

i c̄gm]mc5
1

2
~]mf!2,

:c̄gmc:5
1

Ap
emn]nf,

where z5t1 ix, z̄ is its complex conjugate anda is the
short-distance cutoff.cL(z) andcR( z̄) are left and right fer-
mions, respectively.fL(z) and fR( z̄) are bosonic left and
right movers, respectively. In terms of them, we defin
f(t,x)5fL1fR andQ(t,x)5fL2fR .
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