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Weak-coupling phase diagram of the extended Hubbard model
with correlated-hopping interaction
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86135 Augsburg, Germany
~Received 27 August 1998!

A one-dimensional model of interacting electrons with on-siteU, nearest-neighborV, and correlated-
hopping interactionT* is studied at half filling using the continuum-limit field theory approach. The ground-
state phase diagram is obtained for a wide range of coupling constants. In addition to the insulating spin- and
charge-density wave phases for largeU and V, respectively, we identify bond-located ordered phases corre-
sponding to an enhanced Peierls instability in the system forT* .0, uU22Vu,8T* /p and to a staggered
magnetization located on bonds between sites forT* ,0, uU22Vu,8uT* u/p. The general ground-state phase
diagram including insulating, metallic, and superconducting phases is discussed.@S0163-1829~99!07119-2#
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I. INTRODUCTION

Since the discovery of high-Tc superconductivity there is
continuous interest in models of interacting electrons w
unconventional correlation mechanisms. Among othe
models with correlated-hopping~CH! interaction1–37 are the
subject of current studies. In addition to the usual interact
between electrons on the same site~U! and/or on nearest
neighbor~nn! sites (V), these models contain terms descr
ing the modification of the electronic hopping motion by t
presence of other particles. Such a term emerges rather
rally in the construction of a tight-binding Hamiltonian2 and
describes the interaction between charges located on b
and on lattice sites~the bond-charge interaction!. Generally,
a model with CH interaction can naturally be viewed eith
as an effective model obtained after integrating out ad
tional degrees of freedom1,3,4 or as a phenomenologica
model.

The CH model was first proposed by Foglio and Falik
in 1979 to describe the low-energy properties of mixed
lence systems.1 In the eighties the bond-charge coupling w
discussed mainly in the context of organic conductors, e
doped polyacetelene, to describe the interplay between C
lomb repulsion and Peierls dimerization effects.5–10

The interest in models with CH interaction increased a
the discovery of high-Tc superconductivity. Hirsch was th
first who pointed out that the CH interaction provides
mechanism for a superconducting instability.11 Soon after,
Eßler, Korepin, and Schoutens proposed the integrable
persymmetric extension of the Hubbard model with a p
ticular, strongly correlated ‘‘kinematics’’ and a truely supe
conducting ground state of theh-pairing type.12 These
results were intensively explored later in the context of
perconductivity in high-Tc oxides: electrons with CH inter
action were studied using the BCS-type mean-fi
approach,13,14 the field theory renormalization-grou
treatment,15 the exact solution for particular values of co
pling constants, and by numerical techniques.16–21 Several
exactly solvable one-dimensional~1D! models of interacting
electrons with CH coupling were proposed and intensiv
studied.22–27 These models with CH interaction provide u
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with a unique possibility to study unconventional mech
nisms for Cooper pairing, metal-insulator, and insulat
superconductor transitions.

An interesting CH model with a rich ground-state pha
diagram has been proposed by Simon and Aligia.3 The 1D
version of the Simon-Aligia Hamiltonian reads

H5teh(
n,s

Q̂n,n11,s~12 r̂n,2s!~12 r̂n11,2s!

1ted(
n,s

Q̂n,n11,sr̂n,2sr̂n11,2s1tdd

3(
n,s

Q̂n,n11,s~ r̂n,2s1 r̂n11,2s22r̂n,2sr̂n11,2s!

1
1

2
U(

n,s
r̂n,sr̂n,2s1V(

n
r̂nr̂n11 , ~1!

where r̂n,s5cn,s
† cn,s , r̂n5(sr̂n,s , and Q̂n,n11,s

5cn,s
† cn11,s1cn11,s

† cn,s . The first term interchanges a
electron and a hole, while the second term interchanges
electron and a doublon~doubly occupied site! between nn
sites. The effect oftdd is to destroy a doublon in the presen
of a nn hole into two electrons on nn sites, and vice vers

It is useful to rewrite the Hamiltonian~1! in the standard
way, combining the two-body and the three-body terms. A
result the Hamiltonian is rewritten as

H52t(
n,s

~cn,s
† cn11,s1cn11,s

† cn,s!2m(
n,s

cn,s
† cn,s

1
1

2
U(

n,s
r̂n,sr̂n,2s1V(

n
r̂nr̂n11

1t* (
n,s

Q̂n,n11,s~ r̂n,2s1 r̂n11,2s!

1T* (
n,s

Q̂n,n11,sr̂n,2sr̂n11,2s . ~2!

Here t52ted , t* 5teh2tdd , and T* 52tdd2teh2ted .
There areNe particles, N0 sites, and the band fillingn
12 822 ©1999 The American Physical Society
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5Ne/2N0 is controlled by the chemical potentialm.
The 2D version of the Hamiltonian~1! has been derived

by Simon and Aligia as an effective one-band model res
ing from tracing out the oxygen degrees of freedom
cuprates.3 The model was studied by analytical and nume
cal methods, especially in the limit of stron
interactions.28–37 The main attention was focused on th
search for a superconducting ground state. Away from h
filling and for t* .t the properties of the system are dete
mined by the two-body CH term (t* ) and are in qualitative
agreement with results for the standard CH mo
(T* 50).13–15 There is a transition into a superconducti
phase for particular band fillings and sufficiently small o
site repulsion.28,37 The effective interaction originating from
the t* term that appears in the continuum-limit theory,
given by t* cos(pn).15 Therefore, in the half-filled band cas
the three-body term becomes crucial. Fort* 5t and T* ,0
an insulator-metal transition for sufficiently smallU and V
has been demonstrated.29,30,21,32The nature of superconduc
ing instabilities in the metallic phase was investigated
merically and within a mean-field approach.33–36 Recently,
also the possibility for realizing triplet superconductivi
~TS! in the ground state of the model~2! at half filling was
studied.35,36

An important feature of the CH interaction is itssite-off-
diagonal nature. At half filling this provides the principal
possibility for realizingbond located ordering.38,39 In this
paper, we study the model Hamiltonian~2! using the weak-
coupling field-theory approach. We focus on thesearch for
bond-located-ordered phases. Such an ordering has not bee
considered in previous studies. We show that forT* .0 the
three-body interaction enhances the Peierls instability in
system. Near the frustration lineU52V of the extended
(U2V) Hubbard model,40 for uU22Vu,8T* /p and V.
24T* /p the long-range-ordered~LRO! dimerized ground
state with order parameter

Ddimer5~21!n(
s

Q̂n,n11,s ~3!

is realized. ForT* ,0 the bond-located spin-density-wav
~bd-SDW! phase with order parameter

Dbd-SDW5~21!n(
s

sQ̂n,n11,s ~4!

and the charge-density-wave~CDW! phase show an identica
power-law decay of the correlation functions at large d
tances for uU22Vu,8uT* u/p and V.0. The bd-SDW
phase corresponds to a staggered magnetization locate
bonds between sites.

The paper is organized as follows: In Sec. II the symm
try of the model is reviewed. In Sec. III the continuum-lim
bosonized version of the model is constructed. In Sec. IV,
discuss the weak-coupling phase diagram. Finally, Sec.
devoted to a discussion and to concluding remarks on
ground-state phase diagram.

II. SYMMETRIES OF THE MODEL

In the absence of the CH interaction (t* 5T* 50) Eq.~2!
is the Hamiltonian of the extended Hubbard model. T
t-

-
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ground-state phase diagram of the1
2 -filled extended Hubbard

model is well studied:40–43 the low-energy properties of th
model are essentially determined by the parameterU22uVu.
The insulating ground state forU.2uVu is dominated by
spin-density-wave~SDW! correlations. The lineU52uVu
corresponds to a Luttinger liquid~LL ! phase. In the case o
repulsive nn interaction (V.0), theU52V line corresponds
to a transition from the SDW phase~for U.2V) into an
insulating LRO CDW phase forU,2V.40–43 In the case of
attractive nn interaction (V,0), the U52uVu line corre-
sponds to a transition from the insulating SDW phase int
metallic phase with dominating superconducti
instabilities.41

When the CH interaction is added to the model two n
aspects appear. The first is thesite-off-diagonal characterof
the CH coupling, which provides a possibility for bond
located ordering. The second is the symmetry aspect. In
general case the CH interaction violates the electron-h
symmetry.11 This leads to an essential band-filling depe
dence of the phase diagram.11,15

Let us first consider the symmetry aspect. The three g
erators of the spin-SU~2! algebra

S15(
n

cn,↑
† cn,↓ , S25(

n
cn,↓

† cn,↑ ,

Sz5(
n

1

2
~cn,↑

† cn,↑2cn,↓
† cn,↓!, ~5!

commute with the Hamiltonian~2! which shows its SU~2!-
spin invariance.

The electron-hole transformation

cn,s→~21!ncn,s
† , ~6!

convertsH$t,U,V,t* ,T* %→H$ t̃ ,U,V, t̃ * ,T* % with

t̃ 5t22t* 2T* , t̃ * 52t* 2T* ~7!

and therefore the Hamiltonian~2! does possess electron-ho
symmetry for 2t* 1T* 50.

At half filling and for V52t* 1T* 50 the model~2! is
characterized by an additional important symmetry. T
transformation

cn,↑→cn,↑
†

cn,↓→~21!ncn,↓
† , ~8!

interchanges the charge and spin degrees of freedom
converts

H~ t,U,T* !→H~ t,2U,T* !. ~9!

Therefore, in this case, the charge sector is governed by
same SU~2! symmetry as the spin sector and the model h
the SU~2!^SU~2! symmetry18 with generators

h15(
n

~21!ncn,↑
† cn,↓

† , h25(
n

~21!ncn,↓cn,↑ ,

hz5(
n

1

2
~12cn,↑

† cn,↑2cn,↓
† cn,↓!. ~10!
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For the half-filled Hubbard model the SU~2!^SU~2! sym-
metry implies that the gapful charge and the gapless s
sectors forU.0 are mapped by the transformation Eq.~8!
into a gapful spin and a gapless charge sector forU,0.
Moreover, atU,0 the model is characterized by the coe
istence of CDW and singlet superconducting~SS! instabili-
ties in the ground state.44

Contrary to the on-site Hubbard interactionU theT* term
remains invariant with respect to the transformation Eq.~8!.
This immediately implies that for a givenT* and forU50
the properties of the charge and the spin sectors are iden
for UÞ0 there exists a critical value of the Hubbard co
pling Uc corresponding to a crossover from theT* domi-
nated regime into aU dominated regime. The LL paramete
of the model characterizing the gapless charge (Kc) and spin
(Ks) degrees of freedom areKc5Ks51.

For nonzero nn interaction (VÞ0) the spin SU~2! sym-
metry remains unchanged, while the symmetry of the cha
sector is reduced to a U~1! symmetry ~conservation of
charge!. In this case, the gapless charge sector is par
etrized by a fixed-point value of the parameterKc5Kc* ,
which essentially depends on the bare values of the coup
constants. This results in a different power-law decay at la
distances for density-density and superconducting corr
tions, supporting CDW forV.0 and superconductivity fo
V,0. However, due to the SU~2!-spin symmetry the dy-
namical generation of a gap in the spin excitation spectr
supports SS superconductivity. In the case of a gapless
sector both SS and TS correlations show an identical pow
law decay at large distances.

III. CONTINUUM-LIMIT THEORY AND BOSONIZATION

In this section, we construct the continuum-limit versi
of the model Eq.~2! at half filling. While this procedure ha
a long history and is reviewed in many places,45 for clarity
we briefly sketch the most important points and focus
attention on the three-body term.

The field-theory treatment of 1D systems of correla
electrons is based on the weak-coupling appro
uUu,uVu,ut* u,uT* u!t. Assuming that the low-energy physic
is controlled by states near the Fermi points6kF (kF
5p/2a0, wherea0 is the lattice spacing! we linearize the
spectrum around these points and obtain two species~for
each spin projections) of fermionsRs(n) andLs(n) which
describe excitations with dispersion relationsE56vFp.
Here,vF52ta0 is the Fermi velocity and the momentump is
measured from the two Fermi points. More explicitly, o
decomposes the momentum expansion for the initial lat
operators into two parts centered around6kF to obtain the
mapping:

cn,s→ i nRs~n!1~2 i !nLs~n!, ~11!

where the fieldsRs(n) andLs(n) describe right-moving and
left-moving particles, respectively, and are assumed to
smooth on the scale of the lattice spacing. This allows u
introduce the continuum fieldsRs(x) andLs(x) by

Rs~n!→Aa0Rs~x5na0!,

Ls~n!→Aa0Ls~x5na0!. ~12!
in

al;
-

e

-

g
e
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e
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In terms of the continuum fields the free Hamiltonia
reads

H05E02 ivF(
s

E dx@ :Rs
†]xRs :2:Ls

†]xLs :#, ~13!

which is recognized as the Hamiltonian of a free massl
Dirac field and the symbols : : denote normal ordering with
respect to the ground state of the free system.

The advantage of the linearization of the spectrum is tw
fold: the initial lattice problem is reformulated in terms o
smooth continuum fields and — using the bosonization p
cedure — is mapped to the theory of two independent~in the
weak-coupling limit! quantum sine-Gordon~SG! models de-
scribing charge and spin degrees of freedom, respective

In terms of the continuum fields the initial lattice oper
tors have the form

r̂n,s2
1

2
[: r̂n,s:

5a0$@ :Rs
†~x!Rs~x!:1:Ls

†~x!Ls~x!:#

1~21!n@Rs
†~x!Ls~x!1Ls

†~x!Rs~x!#%,

~14!

:Q̂n,n11;s :[Q̂n,n11;s2
2

p

52a0i ~21!n11@Rs
†~x!Ls~x!2Ls

†~x!Rs~x!#

1O~a0
2!. ~15!

The second step is to use the standard bosonization
pressions for fermionic bilinears46

2 i @ :Rs
†]xRs :2:Ls

†]xLs :#→
1

2
$Ps

2~x!1~]xws!2%,

~16!

:Rs
†~x!Rs~x!:1:Ls

†~x!Ls~x!:→
1

Ap
]xfs~x!, ~17!

:Rs
†~x!Rs~x!:2:Ls

†~x!Ls~x!:→2
1

Ap
Ps~x!, ~18!

Rs
†~x!Ls~x!→2

i

2pa0
exp@2 iA4pfs~x!#. ~19!

We thereby obtain

: r̂n,s :→a0H 1

Ap
]xws2~21!n

1

pa0
sin~A4pws!J ,

~20!

:Q̂n,n11;s :→~21!n11
2

p
cos~A4pws!1 •••, ~21!
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: r̂n,s :: r̂n11,s :→1a0
2H 2

p
~]xws!21

1

2p2a0
2
cos~A16pws!

1~21!n
2

p2a0
2
cos~A4pws!J 1 ••• .

~22!

Here, ws5↑,↓(x) and Ps5↑,↓(x) are a scalar field and it
conjugate momentum, respectively, related to the spin
and spin-down subsystems. In deriving Eq.~22! the follow-
ing operator product expansion relations have been used

:]xw~x!::sin@A4pw~x1a0!#:

5
1

Apa0

:cos@A4pw~x!#:1 •••, ~23!

:sin@A4pw~x!#::sin@A4pw~x1a0!#:

5const2
1

2
:cos@A16pw~x!#:2a0

2p:@]xw~x!#2:1 ••• .

~24!

In Eqs. ~21!–~24! dots denote the higher order terms in e
pansion with respect toa0.

Finally, introducing the bosonic charge (wc) and spin
(ws) fields

wc5
1

A2Kc

~w↑1w↓!, Pc5AKc

2
~P↑1P↓!, ~25!

ws5
1

A2Ks

~w↑2w↓!, Ps5AKs

2
~P↑2P↓!, ~26!

converting (na0→*dx and taking the limit a0→0,
t→`,2ta05vF we rewrite the model Hamiltonian in th
following way:

H5Hc1Hs1Hcs ,

where

Hc5vcE dxH 1

2
@Pc

2~x!1~]xwc!
2#1

mc

a0
2
cos~A8pKcwc!J ,

~27!

Hs5vsE dxH 1

2
@Ps

2~x!1~]xws!
2#1

ms

a0
2
cos~A8pKsws!J ,

~28!

Hcs5vF

Mcs

a0
2 E dx cos~A8pKcwc!cos~A8pKsws!.

~29!

Here, we have defined

Kc5~12gc!
21/2.11

1

2
gc , mc5

gu

2p
, ~30!
p

Ks5~12gs!
21/2.11

1

2
gs , ms5

g'

2p
, ~31!

vc5
vF

Kc
.S 12

1

2
gcD , vs5

vF

Ks
.vFS 12

1

2
gsD , ~32!

Mcs5
gcs

p
. ~33!

The small dimensionless coupling constants are given by

gc52
1

2pt
~U16V18T* /p!, ~34!

gu52
1

2pt
~U22V18T* /p!, ~35!

gs5g'5
1

2pt
~U22V28T* /p!, ~36!

gcs5
1

2pt
~V12T* /p!. ~37!

The relation betweenKc (Ks), mc (ms), and gc (gs),
gu (g') and Mcs gcs is universal in the weak-coupling
limit.

As it follows from Eqs.~27!–~37! the three-body interac
tion contributes to marginally relevant scattering proces
with scaling dimensionalitiesdc52Kc.2 andds52Ks.2
given byHc andHs as well as to the spin-charge couplin
given by theHcs term. The scaling dimensionality of th
latter is d5dc1ds.4, and therefore, the spin-charge co
pling is strongly irrelevant in the weak-coupling limit. From
numerical studies of the extendedU2V Hubbard model42,43

it is known that this interaction does not lead to qualitati
change in the phase diagram at least forV<2.5t, far apart
the range of applicability of our approach. In what follow
the Hcs term will be ommited. In this case, performed ma
ping of the initial lattice Hamiltonian Eq.~2! into the con-
tinuum theory of two decoupled quantum SG models E
~27!–~28! allows to study the ground-state phase diagram
the system based on the infrared properties of the SG Ha
tonians. The corresponding behavior of the SG model is
scribed by the pair of renormalization group equations
the effective coupling constantsG i ~Ref. 47!

dGu /dL52GcGu ,

dGc /dL52Gu
2 , ~38!

dG' /dL52GsG' ,

dGs /dL52G'
2 , ~39!

whereL5 ln(a0) andG i(0)5gi . Each pair of Eqs.~38! and
~39! describes the Kosterlitz–Thouless transition48 in the
charge and spin channels. The flow lines lie on the hyper
las

Gc(s)
2 2Gu(')

2 5mc(s)
2 5gc(s)

2 2gu(')
2 , ~40!
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and—depending on the relation between the bare coup
constantsgc(s) andgu(')—exhibit two different regimes.

For gc>uguu (gs>ug'u), we are in the weak coupling
regime; the effective massMc(s)→0. The low-energy~large
distance! behavior of the gapless charge~spin! degrees of
freedom is described by a free-scalar field

Hc(s)5
1

2
vc(s)E dx$~]xuc(s)!

21~]xwc(s)!
2%, ~41!

where]xuc(s)5Pc(s) .
The corresponding correlations show a power law dec

^eiA2pKw(x)e2 iA2pKw(x8)&;ux2x8u2K, ~42!

^eiA2p/Ku(x)e2 iA2p/Ku(x8)&;ux2x8u21/K, ~43!

and the only parameter controlling the infrared behavior
the gapless regime is the fixed-point value of the effect
coupling constantsKc(s) .

For gc,uguu (gs,ug'u) the system scales to the stron
coupling regime; depending on the sign of the bare m
mc(s) the effective massMc(s)→6`, which signals the
crossover to the strong-coupling regime and indicates
dynamical generation of a commensurability gap in
charge~spin! excitation spectrum. The fieldswc (ws) get
ordered with the vacuum expectation values49

^wc(s)&5HA p

8Kc(s)
~mc(s).0!

0 ~mc(s),0!.

~44!

IV. PHASE DIAGRAM

Let us now consider the weak-coupling ground-st
phase diagram of the model Eq.~2!. To clarify the symmetry
properties of the various ground states of the system we
the usual order parameters describing the short wavele
fluctuations of thesite-located charge-density,

DCDW5~21!n(
s

rn,s;sin~A2pKcwc!cos~A2pKsws!,

~45!

the site-located spin-density

DSDW5(
s

srn,s;cos~A2pKcwc!sin~A2pKsws!,

~46!

and two superconducting order parameters correspondin
singlet (DSS) and triplet (DTS) superconductivity

DSS~x!5R↑
†~x!L↓

†~x!2R↓
†~x!L↑

†~x!

;expS iA2p

Kc
ucD cos~A2pKsws!, ~47!

DTS~x!5R↑
†~x!L↓

†~x!1R↓
†~x!L↑

†~x!

;expS iA2p

Kc
ucD sin~A2pKsws!. ~48!
g

y

n
e

s

e
e

e

se
th

to

In addition we use a set of order parameters50 describing the
short wavelength fluctuations of thebond-located charge and
spin density

Ddimer5~21!n(
s

Q̂n,n11,s

;cos~A2pKcwc!cos~A2pKsws!, ~49!

Dbd-SDW5~21!n(
s

sQ̂n,n11,s

;sin~A2pKcwc!sin~A2pKsws!. ~50!

With the results of the previous section for the excitati
spectrum and the behavior of the corresponding fields E
~42!–~44! we now analyze the ground-state phase diagra

A. The SU„2…^SU„2… symmetric case

We first consider the SU~2!^SU~2! symmetric case for
2t* 1T* 5V50. In this case, the coupling constants para
etrizing the charge and spin degrees of freedom are give

gc5gu52
1

pvF
~U18T* /p!,

gs5g'5
1

pvF
~U28T* /p!. ~51!

Although the given parameters are determined within
weak-coupling approach (ugi u!1) the relations Eqs.~51! are
universal and determinedby the symmetries of the mod
only. This strongly restricts the scaling trajectories along
separatrixm50 ~see Fig. 1!. The SU~2!^SU~2! is easily
seen from Eqs.~51!: each channel is characterized by o
parametergc and gs , respectively, and the electron-ho
transformation Eq.~8! only interchanges the bare values
these parameters.

FIG. 1. The renormalization-group flow diagram; the arro
denote the direction of flow with increasing length scale.
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It follows from Eq. ~51! that for U.28T* /p there is a
gap in the charge excitation spectrum, and thewc field is
ordered with vacuum expectation value^wc&50. In the
weak-coupling regime forU<28T* /p whereMc→0, gap-
less charge excitations are described by the free bose
with the fixed-point valueKc* 51.

The spin sector is massive forU,8T* /p. The dynamical
generation of a gap in the spin sector is accompanied by
ordering of thews field with vacuum expectation valu
^ws&50. ForU.8T* /p, the spin sector is gapless,Ms→0
and the fixed-point valueKs* 51.

There are three different sectors in the phase diagram.
start with a discussion of theT* .0 case@see Fig. 2~a!#.

Sector A:U>8T* /p. There is a gap in the charge exc
tation spectrum. The charge field is ordered^wc&50. The
spin excitation spectrum is gapless. The fixed-point value
the parameterKs* 51. Using Eqs.~45!–~50! and ~42! and
~43! one obtains that the superconducting and CDW ins
bilities are suppressed. The SDW andDimer correlations
show an identical power-law decay at large distances

^DSDW~x!DSDW~x8!&5^Ddimer~x!Ddimer~x8!&;ux2x8u21.
~52!

The coexistence of the SDW andDimerization instabilities
in the repulsive Hubbard model is the mechanism for
Spin-Peierls transition atU@t.

Sector B: 8T* /p.U.28T* /p. For U,8T* /p a spin
gap opens. The charge and spin channels are gapped
both, charge and spin fields are ordered,^wc&5^ws&50. In
this case, the LRO dimerized phase

^Ddimer~x!Ddimer~x8!&;const ~53!

is realized in the ground state.
Sector C:U<28T* /p. At U528T* /p the charge gap

closes. ForU<28T* /p the phase diagram is similar to th
of the half-filled attractive Hubbard model, i.e., there is a g
in the spin excitation spectrum. Due to the SU~2!-spin sym-
metry the vacuum expectation value^ws&50. The SDW and
TS fluctuations are completely suppressed. The charge e
tation spectrum is gapless and the fixed-point value of
parameterKc @due to the SU~2!-charge symmetry# is Kc*
51. The CDW, SS, andDimer correlations show an identi
cal power-law decay at large distances

FIG. 2. Phase diagram of the model Hamiltonian Eq.~2! for the
case of a half-filled band:~a! V50, T* .0 and~b! T* ,0.
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^DCDW~x!DCDW~x8!&5^DSS~x!DSS~x8!&

5^Ddimer~x!Ddimer~x8!&;ux2x8u21.

~54!

We next consider the caseT* ,0 @see Fig. 2~b!#. The
spin-gap regime is realized forU,28uT* u/p,0 and the
charge-gap regime forU.8uT* u/p.0. Therefore, the prop-
erties of the model in the sectors A1 (U.8uT* u/p) and
C1 (U,28uT* u/p) are the same as in the corresponding
and C sectors in the case ofT* .0.

However, for28uT* u/p,U,8uT* u/p both, the charge
and the spin channel are gapless. The fixed point value
the LL parameters are given by

Kc* 5Ks* 51.

Using Eqs.~45!–~50! and ~42! and ~43! one obtains thatall
correlations show an identical;ux2x8u22 decay at large
distancesin this case.

B. Effects of V

Let us now consider the weak-coupling phase diagram
the model Eq.~2! for VÞ0. From Eqs.~34!–~36! one obtains
that there is a gap in the spin-excitation spectrum forU
,2V18T* /p. The charge-excitation spectrum is gapp
for U.2uVu28T* /p and – in the case of repulsive nn in
teraction (V.0) – for U,2V28T* /p. The lineU52uVu
28T* /p corresponds to a metallic LL phase. This dete
mines five different sectors in the phase diagram.

We start with theT* .0 case@see Fig. 3~a!#.
Sector A:U.2V18T* /p. This is the sector dominate

by on-site repulsion. The properties of the system in t
sector coincide with that of sector A for theV50 case. The
line U52V18T* /p marks the transition into the spin-ga
regime.

Sector B:uU22Vu,8T* /p, V.24T* /p. In this sector
both channels are massive and the LRO dimerized phas
realized. The lineU52V28T* /p corresponds to a non
magnetic metallic phase. Along this line the charge gap
zero, while the spin gap remains finite, andKc.122V/pt
,1. The TS instability is suppressed, while the SS corre
tions

^DSS~x!DSS~x8!&;ux2x8u21/Kc ~55!

decay at large distances faster than the density-density
relations

^DCDW~x!DCDW~x8!&5^Ddimer~x!Ddimer~x8!&

;ux2x8u2Kc. ~56!

Sector C1: U,2V28T* /p and V.0. A gap in the
charge-excitation spectrum opens once again; howeve
this sector the vacuum expectation value of the charge fi
is ^wc&5Ap/8Kc. The spin sector is gapped with^ws&50.
Using Eqs.~45!–~50! one obtains a LRO CDW in the groun
state

^DCDW~x!DCDW~x8!&;const. ~57!
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In the case of a repulsive nn interaction (V.0), the effect
of T* .0 is to split the SDW to CDW transition atU52V
into two parts substituting a metallic phase along theU
52V line by the LRO dimerized phase foruU22Vu
,8T* /p.

Sector C2 : U,2u2V18T* /pu and V,0. Here, a gap
exists in the spin-excitation spectrum, the spin field is
dered with^ws&50. The charge excitation spectrum is ga
less and the fixed-point value of the parameterKc,1. The
SS instability is the dominating one. AtU52V18T* /p the
spin gap closes. Triplet superconductivity is no longer s
pressed, andKs51, Kc.1.

Sector D: 2V18T* /p,U,22V28T* /p. In this sec-
tor the system shows the properties of the LL metal w
dominating superconducting instabilities

^DSS~x!DSS~x8!&5^DTS~x!DTS~x8!&;ux2x8u2121/Kc.
~58!

Finally, we analyze the caseT* ,0 @see Fig. 3~b!#. The
phase diagram once again consists of five different secto

Sectors A, C1, C2, and D are identical to the correspon
ing sectors for theT* .0 case. Particular is sector B
uU22Vu,8uT* u/p andV.0. In this sector, the spin spec
trum is gapless while the charge excitation spectrum is m

FIG. 3. Phase diagram of the model Hamiltonian Eq.~2! for the
case of a half-filled band and~a! T* .0, ~b! T* ,0.
-
-

-

s.

s-

sive and the vacuum expectation value of the ordered ch
field is ^wc&5Ap/8Kc. Using Eqs.~45!–~50! one obtains in
this sector an insulating phase with dominating CDW a
bd-SDW instabilities showing a power-law decay at lar
distances

^DCDW~x!DCDW~x8!&

5^Dbd-SDW~x!Dbd-SDW~x8!&;ux2x8u21 ~59!

with the critical indices governed by the SU~2!-spin symme-
try of the model.

V. DISCUSSION AND SUMMARY

In this paper, we have studied the one-dimensional
tended Hubbard model with CH interactions at half fillin
We have demonstrated that the CH interaction can lead
bond located ordering in the ground state. Along the lineU
52V.0, for a ‘‘repulsive’’ three-body coupling (T* .0),
the LRO dimerized phase corresponding to an enhan
Peierls instability in the system, is realized. In the case of
‘‘attractive’’ three-body term (T* ,0) the bd-SDW phase
corresponding to a bond located staggered magnetiza
is—together with the CDW—the most divergent instabili
in the system. ForT*→0 the sector with new phases shrin
to the lineU52V and the ground state phase diagram of
extended Hubbard model40–43 is recovered.

For V50 andT* ,0, the SDW insulator-metal transitio
at U5Uc58uT* u/p is in qualitative agreement with result
of numerical studies.35 However, contrary to the numerica
results showing a TS phase forU,Uc our results indicate a
metallic LL phase in this case, withidentically divergent
density-density and superconducting instabilities due to
SU~2!^SU~2! symmetry of the model. Moreover, due to th
SU~2!-spin symmetry of the model, the dynamical gene
tion of a spin gap forU,2Uc,0, supports only the SS
instabilities. ForVÞ0 we find that the metallic phase shrink
due to the repulsive nn coupling up to the lineU52V
18uT* u/p. There is no superconductivity forV.0 in the
weak-coupling phase diagram.

Although the phase diagram was studied within t
continuum-limit approach, assuming the bare values of
coupling constants much less than the bandwidth, the ph
diagram is strongly controlled by the symmetry of the mod
This allows to suppose that the features of the phase diag
will persist also in the limitU,V@t, as far as the ground
state phase diagram of the extended Hubbard model is es
tially the same in both limits.40,43

However, in the case of strong CH interaction, numeri
studies of the model~2! with ‘‘attractive’’ three-body
interaction28,30,31,35as well as exact results obtained atT*
50, ut* u5t ~Refs. 18–21! show strong tendency toward
superconducting ordering in the ground state. This discr
ancy between the weak-coupling phase diagram and pro
ties of the system in the case of strong CH interactionindi-
cate the presence of an additional phase transition w
increasing correlated hopping coupling. As far as all mar-
ginally relevant terms are incorporated within th
continuum-limit approach,this transition has to be charac
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terized by a critical value of the coupling constant. More-
over, the exact solutions show local-pair~doublon! supercon-
ductivity, hence the transition seems to be complet
determined by the finite bandwidth effects and theref
could not be traced within infinite band~continuum-limit!
approach. In analogy with the pair-hopping model, where
transition into the local-pair superconducting state is due
the level-crossing phenomenon,51 one may assume a simila
scenario for transition in the CH model as well. Density m
m
s
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trix renormalization-group studies of sufficiently long chain
will be very interesting to shed light on this question.
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25R. Bariev, A. Klümper, A. Schadschneider, and J. Zittartz, Eu

phys. Lett.32, 85 ~1995!.
26M. Quaisser, A. Schadschneider, and J. Zittartz, Europhys.

32, 179 ~1995!.
27A. Schadschneider, G. Su, and J. Zittartz, Z. Phys. B102, 397

~1997!.
y,
s:

,

s.

v.

.

-

tt.

28L. Arrachea, A. Aligia, E. Gagliano, K. Hallberg, and C. Balseiro,
Phys. Rev. B50, 16 044~1994!.

29A. Aligia, L. Arrachea, and E. Gagliano, Phys. Rev. B51, 13 774
~1995!.

30E. Gagliano, A. Aligia, L. Arrachea, and M. Avignon, Phys. Rev.
B 51, 14 012~1995!.

31L. Arrachea, A. Aligia, and E. Gagliano, Physica C268, 233
~1996!.

32L. Arrachea, E. Gagliano, and A. Aligia, Phys. Rev. B55, 1173
~1997!.

33K. Michielsen and H. de Raedt, Int. J. Mod. Phys. B11, 1311
~1997!.

34M. E. Simon, A. Aligia, and E. Gagliano, Phys. Rev. B56, 5637
~1997!.

35A. Aligia, E. Gagliano, L. Arrachea, and K. Hallberg, Eur. Phys.
J. B 5, 371 ~1998!.

36L. Arrachea and A. Aligia, Physica C303, 141 ~1998!.
37M. Airoldy and A. Parola, Phys. Rev. B51, 16 327~1995!.
38G. I. Japaridze, Phys. Lett. A201, 239 ~1995!.
39G. I. Japaridze and E. Mu¨ller-Hartmann, J. Phys.: Condens. Mat-

ter 9, 10 509~1997!.
40V. J. Emery, inHighly Conducting One-Dimensional Solids, ed-

ited by J. T. Devreese, R. P. Evrard, and V. E. Van Doren
~Plenum, New York, 1979!; J. Solyom, Adv. Phys.28, 201
~1979!.

41J. Voit, Phys. Rev. B45, 4027~1992!.
42J. E. Hirsch, Phys. Rev. Lett.53, 2327~1984!; Phys. Rev. B31,

6022 ~1985!; J. Cannon and E. Fradkin,ibid. 41, 9435~1989!.
43J. Cannon, R. Scaletter, and E. Fradkin, Phys. Rev. B44, 5995

~1991!; G. P. Zhang,ibid. 56, 9189~1997!.
44H. Frahm and V. E. Korepin, Phys. Rev. B42, 10 553~1990!; N.

Kawahami and S.-K. Yang, Phys. Lett. A148, 359 ~1990!.
45For a recent review see A. O. Gogolin, A. A. Nersesyan, and A.

M. Tsvelik, Bosonization and Strongly Correlated Systems
~Cambridge University Press, Cambridge, 1998!.

46A. Luther and V. J. Emery, Phys. Rev. Lett.33, 589 ~1974!.
47P. Wiegmann, J. Phys. C11, 1583 ~1978!; D. Boyanovsky, J.

Phys. A22, 2601~1989!.
48J. M. Kosterlitz and D. Thouless, J. Phys. C6, 1181 ~1973!; 7,

1046 ~1974!.
49K. A. Muttalib and V. J. Emery, Phys. Rev. Lett.57, 1370~1986!;

T. Giamarchi and H. J. Schulz, J. Phys.~Paris! 49, 819 ~1988!;
Phys. Rev. B33, 2066~1988!.

50A. A. Nersesyan, Phys. Lett. A153, 49 ~1991!.
51G. Bouzerar and G. I. Japaridze, Z. Phys. B104, 215 ~1997!.


