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Weak-coupling phase diagram of the extended Hubbard model
with correlated-hopping interaction
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A one-dimensional model of interacting electrons with on-dite nearest-neighbo¥, and correlated-
hopping interactiorT* is studied at half filling using the continuum-Ilimit field theory approach. The ground-
state phase diagram is obtained for a wide range of coupling constants. In addition to the insulating spin- and
charge-density wave phases for latdeand V, respectively, we identify bond-located ordered phases corre-
sponding to an enhanced Peierls instability in the systeniTfor0, |U—2V|<8T*/# and to a staggered
magnetization located on bonds between site§fox 0, |U—2V|<8|T*|/#. The general ground-state phase
diagram including insulating, metallic, and superconducting phases is disc{S6463-1829)07119-2

[. INTRODUCTION with a unique possibility to study unconventional mecha-
nisms for Cooper pairing, metal-insulator, and insulator-
Since the discovery of higfi, superconductivity there is superconductor transitions.
continuous interest in models of interacting electrons with An interesting CH model with a rich ground-state phase
unconventional correlation mechanisms. Among othersdiagram has been proposed by Simon and Affgizne 1D
models with correlated-hoppin@H) interactiod 3" are the  version of the Simon-Aligia Hamiltonian reads
subject of current studies. In addition to the usual interaction 3=t > Qn,n+1,u(1—13n,—o)(1—l3n+1,—u)
between electrons on the same it and/or on nearest- n,o
neighbor(nn) sites (), these models contain terms describ-
ing the modification of the electronic hopping motion by the +tea Qnns1oPn—oPns1o+ttad
presence of other particles. Such a term emerges rather natu- no
rally in the construction of a tight-binding Hamiltonfaand R R R R R
describes the interaction between charges located on bonds X Qnn+16(Pn—ctPn+1-0—2Pn - oPn+1-0)
and on lattice sitegthe bond-charge interactipnGenerally, ne

a model with CH interaction can naturally be viewed either 1 . A

as an effective model obtained after integrating out addi- +§Un2 Pn,aPn,—a+V; PnPn+1; (1)
tional degrees of freedom* or as a phenomenological 7

model. where Pn,UZCRUCn,a- anEO'pn,O" and Qn,n+1,a

The CH model was first proposed by Foglio and Falikov = ¢! P CLLUCW_ The first term interchanges an

in 1979 to describe the low-energy properties of mixed vaglectron and a hole, while the second term interchanges an

lence system&n the eighties the bond-charge coupling waselectron and a doublotdoubly occupied sifebetween nn

discussed mainly in the context of organic conductors, e.gsites. The effect ofy is to destroy a doublon in the presence

doped polyacetelene, to describe the interplay between Cowf a nn hole into two electrons on nn sites, and vice versa.

lomb repulsion and Peierls dimerization effett¥’ It is useful to rewrite the HamiltoniafL) in the standard
The interest in models with CH interaction increased aftefvay, combining the two-body and the three-body terms. As a

the discovery of highF. superconductivity. Hirsch was the result the Hamiltonian is rewritten as

first who pointed out that the CH interaction provides a

mechanism for a superconducting instabifitySoon after, " ‘ :

ERler, Korepin, and Schoutens proposed the integrable su- H:_t% (Cn,ocn+1yv+Cn+1,ocnxo)_“% Cn,oCn,o

persymmetric extension of the Hubbard model with a par- ' '

ticular, strongly correlated “kinematics” and a truely super- 1 ~ - -

conducting ground state of the-pairing type'? These +§U% Pn,aPan’LV; PnPn+1

results were intensively explored later in the context of su- '

perconductivity in highf, oxides: electrons with CH inter- N N A -

action were studied using the BCS-type mean-field +t nZT Qnn+1o(Pn-otPri1-0o)

approach>* the field theory renormalization-group ’

treatment® the exact solution for particular values of cou- . A - -

pling constants, and by numerical techniqlf&$! Several +T nz:’f Qnn+10Pn—oPn+1-0- @

exactly solvable one-dimensiondD) models of interacting '

electrons with CH coupling were proposed and intensivelyHere t=—tyq, t*=tep—tqq, and T*=2tgg—ten—teq-

studied??~?" These models with CH interaction provide us There areN, particles, N, sites, and the band filling’
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=Ng2Ny is controlled by the chemical potential. ground-state phase diagram of thdilled extended Hubbard
The 2D version of the Hamiltoniafl) has been derived model is well studied®*the low-energy properties of the
by Simon and Aligia as an effective one-band model resultmodel are essentially determined by the parameéter?|V/|.
ing from tracing out the oxygen degrees of freedom inThe insulating ground state fdd>2|V| is dominated by
cuprates. The model was studied by analytical and numeri-spin-density-wave(SDW) correlations. The lineU=2|V|
cal methods, especially in the limit of strong corresponds to a Luttinger liquidL) phase. In the case of
interactions’®=3" The main attention was focused on the repulsive nn interaction\(>0), theU =2V line corresponds
search for a superconducting ground state. Away from halfo a transition from the SDW phaggor U>2V) into an
filling and for t* =t the properties of the system are deter-insulating LRO CDW phase fod <2V.*°=*3|n the case of
mined by the two-body CH termt{) and are in qualitative attractive nn interaction (<0), the U=2|V/| line corre-
agreement with results for the standard CH modelsponds to a transition from the insulating SDW phase into a
(T*=0).2*"* There is a transition into a superconductingmetallic phase with dominating  superconducting
phase for particular band fillings and sufficiently small on-instabilities*
site repulsiorf®*” The effective interaction originating from  When the CH interaction is added to the model two new
the t* term that appears in the continuum-limit theory, is aspects appear. The first is tsige-off-diagonal characteof
given byt* cosgry).!® Therefore, in the half-filled band case the CH coupling, which provides a possibility for bond-
the three-body term becomes crucial. Fbe=t and T* <0 located ordering. The second is the symmetry aspect. In the
an insulator-metal transition for sufficiently sm&landV  general case the CH interaction violates the electron-hole
has been demonstratét%2132The nature of superconduct- symmetry!! This leads to an essential band-filling depen-
ing instabilities in the metallic phase was investigated nu-dence of the phase diagra®
merically and within a mean-field approath>® Recently, Let us first consider the symmetry aspect. The three gen-
also the possibility for realizing triplet superconductivity erators of the spin-S@) algebra
(TS) in the ground state of the mod€&) at half filling was
studied?-®
An important feature of the CH interaction is gge-off-
diagonal nature At half filling this provides the principal
possibility for realizingbond located ordering®® In this , ; ;
paper, we study the model Hamiltonié®) using the weak- S :; 5(Cn,1Cn.1 = Cn, Cn,) ®)
coupling field-theory approach. We focus on twarch for
bond-located-ordered phaseSuch an ordering has not been commute with the Hamiltonia2) which shows its S(2)-
considered in previous studies. We show thatTbe>0 the  spin invariance.
three-body interaction enhances the Peierls instability in the The electron-hole transformation
system. Near the frustration lind=2V of the extended ot
(U—V) Hubbard modef? for |U—2V|<8T*/x and V> Cno—(=1)Cng, ®)
—4T*/7_T the long-range-ordered_RO) dimerized ground convertsH{t,U,V,t*, T*} - H{T,U,V,T*, T*} with
state with order parameter

— t —_ T
S+—; Cn,TCn,l' S —; Cn,LquT’

T=t—2t*-T*, Tr=—t*-T* 7

_(_1\n A~
Adimer=(—1) ; Qnn+ 1o (3) and therefore the Hamiltonig®) does possess electron-hole
. ) ) ] symmetry for 2* +T*=0.
is realized. ForT* <0 the bond-located spin-density-wave At nalf filling and for V=2t* + T* =0 the model(2) is
(bd-SDW) phase with order parameter characterized by an additional important symmetry. The
transformation
Apgsow=(—1)" 0Qnnsae ) '
o CnYT—>CnYT
and the charge-density-wav€DW) phase show an identical c. —(—1)ct ®)
power-law decay of the correlation functions at large dis- n| e
tances for|U—2V|<8|T*|/# and V>0. The bd-SDW interchanges the charge and spin degrees of freedom and
phase corresponds to a staggered magnetization located oanverts
bonds between sites. . .
The paper is organized as follows: In Sec. Il the symme- H(t,U, T")—H(t,—U,T"). ©)

try of the model is reviewed. In Sec. Ill the continuum-limit Therefore, in this case, the charge sector is governed by the

bosonized version of the model is constructed. In Sec. IV, W&ame S(2) symmetry as the spin sector and the model has
discuss the weak-coupling phase diagram. Finally, Sec. V i?he SU2)®SU(2) symmetry® with generators
devoted to a discussion and to concluding remarks on the

ground-state phase diagram. -
77+:§n: (—l)”c;r]chh, Uj :En: (=1)"cp, Cny,
Il. SYMMETRIES OF THE MODEL

. . 1
In the absence of the CH interactiotf € T* =0) Eq.(2) =S “(1-cfc .—ct ¢ 10
is the Hamiltonian of the extended Hubbard model. The g 2 5(17Cn1Cn1 = Cn,1Cn)- (0
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For the half-filled Hubbard model the $2)®SU(2) sym- In terms of the continuum fields the free Hamiltonian
metry implies that the gapful charge and the gapless spireads
sectors forU>0 are mapped by the transformation E&)

into a gapful spin and a gapless charge sectorUetO. i ot ot _

Moreover, atU<0 the model is characterized by the coex- HOZEO_'UFE;J dX[:R; R, =1L 0L 1], (13)
istence of CDW and singlet superconductit®) instabili-

ties in the ground stat¥. which is recognized as the Hamiltonian of a free massless

Contrary to the on-site Hubbard interactidrthe T* term  pjrac field and the symbsl: : denote normal ordering with
remains invariant with respect to the transformation @g. respect to the ground state of the free system.
This immediately implies that for a giveR* and forU=0 The advantage of the linearization of the spectrum is two-
the properties of the charge and the spin sectors are identicab|d: the initial lattice problem is reformulated in terms of
for U#0 there exists a critical value of the Hubbard COU-smooth continuum fields and — using the bosonization pro-
pling U, corresponding to a crossover from tig¢ domi-  cedure — is mapped to the theory of two independimthe
nated regime into & dominated regime. The LL parameters weak-coupling limi} quantum sine-Gordo(SG) models de-
of the model characterizing the gapless chaigg) @nd spin  scribing charge and spin degrees of freedom, respectively.
(Ks) degrees of freedom ate.=Ks=1. In terms of the continuum fields the initial lattice opera-
For nonzero nn interactionV(#0) the spin SW2) sym-  tors have the form
metry remains unchanged, while the symmetry of the charge
sector is reduced to a () symmetry (conservation of R
charge. In this case, the gapless charge sector is param- pp,—
etrized by a fixed-point value of the paramet€g=K?} ,
which essentially depends on the bare values of the coupling =ag{[:RI(X)R,(x): +: LT (X)L ,(x):]
constants. This results in a different power-law decay at large
distances for density-density and superconducting correla- +(= 1) TRIOL, () +LI(X)R,(x)]},
tions, supporting CDW foiv>0 and superconductivity for (14)
V<0. However, due to the SB)-spin symmetry the dy-
namical generation of a gap in the spin excitation spectrum
supports SS superconductivity. In the case of a gapless spin;Qn Nl
sector both SS and TS correlations show an identical power- o
law decay at large distances.

=Pno-

N| -

~ 2
EQn,nJrl;(r_ ;

=2a5i (— )" RI(X)L,(x) — LT (X)R,(X)]
I1l. CONTINUUM-LIMIT THEORY AND BOSONIZATION +O(ag). (15)

In this section, we construct the continuum-limit version
of the model Eq(2) at half filling. While this procedure has
a long history and is reviewed in many plaé&dor clarity
we briefly sketch the most important points and focus our
attention on the three-body term.

The field-theory treatment of 1D systems of correlated
electrons is based on the weak-coupling approach (16)
[U],|V],]t*|,| T*|<t. Assuming that the low-energy physics
is controlled by states near the Fermi pointske (kg 1
=7/2a,y, wherea, is the lattice spacingwe linearize the ZRL(X)RU(X)Z+ZLZ(X)LU(X)Z—>—&X¢U(X), (17)
spectrum around these points and obtain two sped@s \/;
each spin projectiownr) of fermionsR,(n) andL ,(n) which
describe excitations with dispersion relatiofs= *vgp. 1
Here,ug=2ta, is the Fermi velocity and the momentuyis RIOOR(X): = (LI(X)L,(X):— = —=P,(x), (18
measured from the two Fermi points. More explicitly, one \/;
decomposes the momentum expansion for the initial lattice
operators into two parts centered arouh# to obtain the + [
mapping: Ry(X)L(X)— —

The second step is to use the standard bosonization ex-
pressions for fermionic biline&t$

—i[:R"o,R,:—:LTa,L -]_>1{P2(x)+(a )2}
IxgYX Mo =Y X=0o - 2 o X()DO' ’

exd —iVamg,(x)]. (19

27Tao

Cn,o—1"Ry(N) +(=1)"L,(N), (1) e thereby obtain

where the fieldR,(n) andL ,(n) describe right-moving and

left-moving particles, respectively, and are assumed to be 1 1

smooth on the scale of the lattice spacing. This allows usto  Pn,c-—0 \/——9x%—(— 1)”Esm( \/E%) '
introduce the continuum field®,(x) andL ,(x) by ™ 0

(20
R,(n)—VagR,(x=nay), ,
L ()= VAL ,(x=nag). (12 Qupaio = (- ot Ve, )+ (@D
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. .| 2 , 1
:pn,a::Pn+l,o:_)+a0 ;(U')XQDU) +2 COS( 1677-@0)

2,2

2
+(=1)"— coq mm] +o
0

(22

Here, ¢,—; (x) and P,_; (X) are a scalar field and its

conjugate momentum, respectively,
and spin-down subsystems. In deriving E2_2) the follow-

ing operator product expansion relations have been used:

2Oxp(X):isin \/Ego(er ag):

1
=~ Ima :cof VAmp(x)]:+ -+, 23
0
:sin VAme(x)]::sin VAme(x+ag)]:
=const- %:coi V16mo(x)]: —adm:[dyp(x)]%+ -+ .
(24)
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_ 1 9.
Ks=(1—gs) 1/221"'5931 ms=>—,

2 (31)

Vg 1 UF 1
UC:K_C: 1—59C \ Us:K_Sva 1—595 . (32

gCS
- .

M¢s= (33

related to the Spin-URhe small dimensionless coupling constants are given by

1
9e=— 5 (U+6V+8T*/m), (34)
1 *
gu=—ﬁ(U—2V+8T [), (35
1 *
0s=9, =5 (U~2V—8T*/m), (36)
1 *
Qes= 5 (V+2T*/m). 37)

In Egs. (21)—(24) dots denote the higher order terms in ex- The relation betweerK. (Ks), m; (mg), and g¢ (9s),

pansion with respect ta,.
Finally, introducing the bosonic chargep{) and spin
(@y) fields

1 Ke
<pc=m(¢>¢+<m), Pe=\ 5 (Pi+Pp), (29

1 Ksg
QDSZW(%_%), Ps:\/;(PT_PL)a (26)

converting X,ap,—fdx and taking the limit ag—0,

t—ow,2tag=ve we rewrite the model Hamiltonian in the

following way:

H=Hc+Hst Hes,

where

chvcf dx[%[Pg(x)—"(&x@c)z]_’_ %COQ VSWKC@C)] )
0
(27

Hszvsj dx E[Pg(XH ((?X‘Ps)2]+ EZSCOS( VB8TKseo) 1,
2 aj

(28)

M

HCSZUFa_;Sf dxcog V87K .p.)coq V8K ps).

0

(29)
Here, we have defined
_ 1 g

Ke=(1-go) =1+50., me=5_, (30

gy (g;) and Mg g¢s is universal in the weak-coupling
limit.

As it follows from Eqgs.(27)—(37) the three-body interac-
tion contributes to marginally relevant scattering processes
with scaling dimensionalitied,=2K. =2 andd,=2K =2
given by H. and H, as well as to the spin-charge coupling
given by theH s term. The scaling dimensionality of the
latter isd=d.+ds=4, and therefore, the spin-charge cou-
pling is strongly irrelevant in the weak-coupling limit. From
numerical studies of the extended-V Hubbard modéf+3
it is known that this interaction does not lead to qualitative
change in the phase diagram at least Vo 2.5, far apart
the range of applicability of our approach. In what follows,
the H.s term will be ommited. In this case, performed map-
ping of the initial lattice Hamiltonian Eq(2) into the con-
tinuum theory of two decoupled quantum SG models Eqgs.
(27)—(28) allows to study the ground-state phase diagram of
the system based on the infrared properties of the SG Hamil-
tonians. The corresponding behavior of the SG model is de-
scribed by the pair of renormalization group equations for
the effective coupling constani§ (Ref. 47

dr,/dL=—T_T,

dlg/dL= -T2, (39
dr, /dL=-T,,
dlg/dL=~-T2, (39

whereL =In(ag) andI';(0)=g;. Each pair of Eqs(38) and

(39) describes the Kosterlitz—Thouless transitfoin the
charge and spin channels. The flow lines lie on the hyperbo-
las

2 2 2 2 2
I~ Tu) = Me(e)=9c(s) ~ Gu() » (40)
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and—depending on the relation between the bare coupling gJ_(g“)
constantgy.) andgy, y—exhibit two different regimes.
For g.=|du| (9s=|g.]), we are in the weak coupling
regime; the effective madd .— 0. The low-energylarge
distancg behavior of the gapless chargspin degrees of ~

freedom is described by a free-scalar field

1
Hc(s)zzvc(s)f dx{(axac(s))2+(ax(Pc(s))z?h (41 \
(g.)
Whereo-'xec(s): PC(S) . §s18
The corresponding correlations show a power law decay
<ei\fmqo(x)efi\s‘m¢(x’)>~|X_Xr|fK’ (42) /

<ei «mo(x)e—wme(x')>~|x_x,|71/|<, (43) é \

and the only parameter controlling the infrared behavior in

the gapless regime is the fixed-point value of the effective
coupling constant& . .

Forg.<|gy (9s<|g,|) the system scales to the strong-
coupling regime; depending on the sign of the bare mas

. N OT
Mg the effective massMe()— e, which signals the In addition we use a set of order paramet®describing the

crossover to the strong-coupling regime and indicates th ;
dynamical generation of a commensurability gap in theshortwavelength fluctuations of th@ndlocated charge and

charge(spin excitation spectrum. The fieldg. (¢s) get spin density
ordered with the vacuum expectation valtfes

\/T Adimer:(_l)nz: Qn,n+1,o
Me(g) >0 7
8Kc(s) ( c(s) )

(44) ~co9 V27K .p.)coq V27K ps), (49

BN

X

Z

FIG. 1. The renormalization-group flow diagram; the arrows
genote the direction of flow with increasing length scale.

<qDC(S)>:
0 (Me(<0).

Abd-SDWZ(_:I-)nZ O'Qn,n+l,<r

IV. PHASE DIAGRAM 7

Let us now consider the weak-coupling ground-state ~sin(\2mKcpe)sin(V2mKs@s). (50
phase diagram of the model E®). To clarify the symmetry
properties of the various ground states of the system we use With the results of the previous section for the excitation
the usual order parameters describing the short waveleng@Pectrum and the behavior of the corresponding fields Egs.

fluctuations of thesite-located charge-density, (42)-(44) we now analyze the ground-state phase diagram.
Acpw=(—1)">, Pn.o~SINV27K @) cOg aKpy), A. The SU(2)®SU(2) symmetric case

We first consider the S2)®SU(2) symmetric case for

(49 2t* +T*=V=0. In this case, the coupling constants param-
the site-located spin-density etrizing the charge and spin degrees of freedom are given by
ASDW: ; OPn,c™ cog VZWKC(PC)Sin( VZWKS¢S)! 9c=0y=— L(U + 8'|'*/71-)7
TUE
(46)
and two superconducting order parameters corresponding to 1 .
singlet (Ag9d and triplet (Arg) superconductivity 9s=0.1 ~Tor (U—8T*/m). (51)

_pt t t +
Asdx)=R;(X)L | (X) =R (X)L{(x) Although the given parameters are determined within the
> weak-coupling approachd;|<1) the relations Eqg51) are
NeX[{i \ /—Wac)cos( 27Ksps), (47)  universal and determinedly the symmetries of the model
Ke only. This strongly restricts the scaling trajectories along the
separatrixu=0 (see Fig. 1L The SU2)®SU(2) is easily
AX)=R{()LT)+RI)LI(x) seen from Eqgs(51): each channel is characterized by one
parameterg. and gs, respectively, and the electron-hole

Nexp<i A lz—wac)sin( 27Ksps). (48  transformation Eq(8) only interchanges the bare values of
Ke these parameters.
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@ T>0 -$T*/ n 8T*/n (Acpw(X)Acpw(X'))=(AsdX)Agd X))
i V<@, >=0
Ke=1 C DimerAr' = :CDW - =(Agimed ¥) Agimed X))~ |x—x'| 1.
SS+CDW | 0 Dimer! U (54)
reT I e T | |
We next consider the case* <0 [see Fig. 2b)]. The
spin-gap regime is realized fdy <—8|T*|/7<0 and the
b T'<0 8T*/x -8T*/ = charge-gap regime fdd > 8| T*|/7>0. Therefore, the prop-
K =1 c |Luttingerliquid{ Ac <%>=0 erties of the model in the sectors; AU>8|T*|/7) and
i ., B iSDW A C, (U< —8|T*|/w) are the same as in the corresponding A
SS+CDW | 0 U and C sectors in the case f >0.
Ay <g>=0 | K-K~-1 ‘! Ke=1 However, for—8|T*|/m<U<8|T*|/ both, the charge

and the spin channel are gapless. The fixed point values of
FIG. 2. Phase diagram of the model Hamiltonian &yfor the  the LL parameters are given by
case of a half-filled banda) V=0, T*>0 and(b) T* <0.

Kr=K:=1.

It follows from Eq. (51) that for U>—8T*/7 there is a  Using Egs.(45—(50) and(42) and (43) one obtains thall
gap in the charge excitation spectrum, and ghefield is  correlations show an identicat-[x—x'|~? decay at large
ordered with vacuum expectation valdg.)=0. In the distancesn this case.
weak-coupling regime fod < —8T*/# whereM .—0, gap-
less charge excitations are described by the free bose field B. Effects of V

with the fixed-point valueK} =1. . : :
; . : . Let us now consider the weak-coupling phase diagram of
The Spin sector Is massive for< ST*(”' The dynammal the model Eq(2) for V+# 0. From Eqgs(34)—(36) one obtains
generation of a gap in the spin sector is accompanied by tht‘fﬁat there is a gap in the spin-excitation spectrum Wor

ordering of the ¢4 field with vacuum expectation value <2V+8T*/ T ;
. : 7. The charge-excitation spectrum is gapped
{¢5=0. ForU>8T*/m, the spin sector is gaplesils—0 ¢, U>2|V|—-8T*/x and — in the case of repulsive nn in-

: H *
and the fixed-point valu&s =1. , teraction ¥>0) — for U<2V—8T*/x. The lineU=2|V|
There are three different sectors in the phase diagram. We g1« - corresponds to a metallic LL phase. This deter-

start with a discussion of the*>0 casefsee Fig. 23)]. mines five different sectors in the phase diagram.
Sector A:U=8T*/#x. There is a gap in the charge exci- We start with theT* >0 case[see Fig. 8)].

tation spectrum. The charge field is orderge)=0. The Sector A:U>2V+8T*/#. This is the sector dominated
spin excitation s*pectrum]s gapless. The fixed-point value OBy on-site repulsion. The properties of the system in this
the parameteKs=1. Using Eqs.(45—(50) and (42) and  gector coincide with that of sector A for the=0 case. The
(43) one obtains that the superconducting and CDW instajine U =2V +8T*/# marks the transition into the spin-gap
bilities are suppressed. The SDW aBumer correlations  rggime.
show an identical power-law decay at large distances Sector B]U—2V|<8T*/m, V>—4T*/a. In this sector

PN A _ PNy |—1 both channels are massive and the LRO dimerized phase is
(Aspw(X) Aspw(X')) = (Agimed X) Agimer X))~ X=X |(52-) realized. The lineU=2V—-8T*/# corresponds to a non-

magnetic metallic phase. Along this line the charge gap is

The coexistence of the SDW arimerizationinstabilities  zero, while the spin gap remains finite, akg=1—2V/xt
in the repulsive Hubbard model is the mechanism for the<1. The TS instability is suppressed, while the SS correla-

Spin-Peierls transition a>t. tions
Sector B: §*/7>U>—8T*/x. For U<8T*/m a spin
gap opens. The charge and spin channels are gapped and (AgdX)Agd X)) ~|x—x"| " Ke (55
both, charge and spin fields are orderég,)=(¢<)=0. In ) ) )
this case, the LRO dimerized phase decay at large distances faster than the density-density cor-
relations
(AdimedX)Agimed X"))~const (53

A A "N={(Ay; A g !
is realized in the ground state. {Acow(¥)Acow(X))=(AdimelX) Adimed X))

Sector C:.U<—8T*/#x. At U=—8T*/x the charge gap ~|x=x"|Ke, (56)
closes. FotJ<—8T*/# the phase diagram is similar to that
of the half-filled attractive Hubbard model, i.e., thereisagap Sector G: U<2V—-8T*/7 and V>0. A gap in the
in the spin excitation spectrum. Due to the (8lspin sym-  charge-excitation spectrum opens once again; however, in
metry the vacuum expectation val(es)=0. The SDW and this sector the vacuum expectation value of the charge field
TS fluctuations are completely suppressed. The charge exds (¢.)=+/7/8K.. The spin sector is gapped wifps)=0.
tation spectrum is gapless and the fixed-point value of the&Jsing Eqs(45)—(50) one obtains a LRO CDW in the ground
parameterK. [due to the Si®)-charge symmetryis K? state
=1. The CDW, SS, an®imer correlations show an identi-
cal power-law decay at large distances (Acpw(X)Acpw(Xx'))~const. (57
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@) U21V1+8T*/ U sive and the vacuum expectation value of the ordered charge
J field is (@)= \7/8K,. Using Eqs.(45—(50) one obtains in
this sector an insulating phase with dominating CDW and
bd-SDW instabilities showing a power-law decay at large
distances

SDW + Dimer
A

Dimer

(LRO) U-2V+8T*/ &

CDW (LRO) (Acpw(X)Acpw(X'))
o /ST*/n 2v =(Apg.sow ¥ Apg.sow X' ) ~Ix=x'|"1 (59

-8T*/ =

CDW with the critical indices governed by the 8)-spin symme-
C (LRO) (o try of the model.

U-2V-8T*/ =
V. DISCUSSION AND SUMMARY

b) 1L " : " In this paper, we have studied the one-dimensional ex-
U2|I_V|>+8|T K A U UEVABIT U tended Hubbard model with CH interactions at half filling.
U-2V-8| T*| We have demonstrated that the CH interaction can lead to
SDW 7 bond located ordering in the ground state. Along the lihe
=2V>0, for a “repulsive” three-body couplingT* >0),
the LRO dimerized phase corresponding to an enhanced
Peierls instability in the system, is realized. In the case of an
C, CDW(LRO) “attractive” three-body term T* <0) the bd-SDW phase
81T I/ v corresponding to a bond located staggered magnetization
is—together with the CDW—the most divergent instability
in the system. Fof* — 0 the sector with new phases shrinks
to the lineU =2V and the ground state phase diagram of the
extended Hubbard mod8*3is recovered.

ForV=0 andT* <0, the SDW insulator-metal transition
atU=U.=8|T*|/= is in qualitative agreement with results
of numerical studied®> However, contrary to the numerical

FIG. 3. Phase diagram of the model Hamiltonian &y.for the  results showing a TS phase fdr<<U . our results indicate a
case of a half-filled band an@ T* >0, (b) T*<0. metallic LL phase in this case, witldentically divergent

density-density and superconducting instabilities due to the

In the case of a repulsive nn interactioX 0), the effect  SU(2)©SU(2) symmetry of the model. Moreover, due to the
of T*>0 is to split the SDW to CDW transition &1=2V  SU(2)-spin symmetry of the model, the dynamical genera-
into two parts substituting a metallic phase along the tion of a spin gap folJ<—U.<0, supports only the SS
=2V line by the LRO dimerized phase fofU—2V| instabilities. FoV#0 we find that the metallic phase shrinks
<8T*/. due to the repulsive nn coupling up to the lihe=2V

Sector G: U<—|2V+8T*/x| andV<0. Here, a gap  +8|T*|/#. There is no superconductivity for>0 in the
exists in the spin-excitation spectrum, the spin field is orweak-coupling phase diagram.
dered with(ps)=0. The charge excitation spectrum is gap-  Although the phase diagram was studied within the
less and the fixed-point value of the parame{gr<1. The  continuum-limit approach, assuming the bare values of the
SS instability is the dominating one. At=2V+8T*/7 the  coupling constants much less than the bandwidth, the phase
spin gap closes. Triplet superconductivity is no longer supdiagram is strongly controlled by the symmetry of the model.
pressed, an&K,=1, K .>1. This allows to suppose that the features of the phase diagram

Sector D: 2/+8T*/m<U<—2V—8T*/x. In this sec-  will persist also in the limitU,V>t, as far as the ground-
tor the system shows the properties of the LL metal withstate phase diagram of the extended Hubbard model is essen-

D

SS + TS 81T /n

SS + TS *
+ 81T/

CDW iL
C (LRO) G

dominating superconducting instabilities tially the same in both limit§®43
However, in the case of strong CH interaction, numerical
(AsdX)Asd X)) = (AreX)A S(x’))~|x—x’|‘1‘l’Kc studies of the model(2) with “attractive” three-body
s S ={Aar T :

(58 interactiorf®3%313%as well as exact results obtained Hit
=0, |[t*|=t (Refs. 18-21 show strong tendency towards
superconducting ordering in the ground state. This discrep-
Finally, we analyze the casE* <0 [see Fig. 8)]. The  ancy between the weak-coupling phase diagram and proper-
phase diagram once again consists of five different sectorsties of the system in the case of strong CH interactiuti-
Sectors A, G, C,, and D are identical to the correspond- cate the presence of an additional phase transition with
ing sectors for theT* >0 case. Particular is sector B: increasing correlated hopping couplind\s far as all mar-
|U—2V|<8|T*|/7 andV>0. In this sector, the spin spec- ginally relevant terms are incorporated within the
trum is gapless while the charge excitation spectrum is maszontinuum-limit approachthis transition has to be charac-
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terized by a critical value of the coupling constaMore-  trix renormalization-group studies of sufficiently long chains
over, the exact solutions show local-p@oublor supercon-  will be very interesting to shed light on this question.
ductivity, hence the transition seems to be completely
determined by the finite bandwidth effects and therefore
could not be traced within infinite ban@ontinuum-limiy
approach. In analogy with the pair-hopping model, where the G.J. gratefully acknowledges the kind hospitality at the
transition into the local-pair superconducting state is due t&Center for Electronic Correlations and Magnetism at the
the level-crossing phenomensdhpne may assume a similar University of Augsburg. This work was financially supported
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