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Theory of orientation-sensitive near-edge fine-structure core-level spectroscopy
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We derive an expression for the double differential scattering cross section for inner-shell excitation of
atoms by fast electrons. Using the augmented plane-waves approach for description of the photo electron, we
find the inelastic scattering cross section to be a function of energy loss and momentum transfer, which is
priori not proportional to the local symmetry-projected unoccupied density of states. We show the importance
of symmetries and choice of coordinate systems, which may necessitate the consideration of cross terms in the
expression for the inelastic scattering cross section, coupling different angular momenta of the final state. This
has important consequences for the interpretation of energy loss near-edge structure and its counterpart x-ray
absorption near edge structuf80163-182609)00820-9

I. INTRODUCTION isolated atom$;®> more recently for atoms embedded in the
potential created by neighboring atorfesg., Refs. 3, 6, 7,
The double differential scattering cross section for the exand references therginAs already argued in the beginning
citation of an atom by a fast electron is given in the first Bornof EELS&°the detailed fine structure of an edge is due to the

approximation by influence of the crystal potential on the final stétg, and
thus the observed electron loss near-edge stru¢ELNES)
Po 4y* k 1 might be explained by referring to the unoccupied density of
B0 a2 K ES(Q, E), (1) states(DOS).
0 Modern method€ for a simulation of ELNES employ
where we defined the dynamic form fact@FF) density-functional theoryDFT) combined with an adequate

expression for the exchange and correlation potethtia a
_ tool to obtain single-electron wave functions for the final
S(Q.E)=2, Kile'RIf)PS(E+E—Ey). (2)  state. Often, the dipole approximation is used and integration
& over all directions of scattering is implied. A major advan-
a, is the Bohr radiusy=(1— 8%~ Y2 the relativistic factor, tage of EELS, namely the ability of selectin@, is thus
and kq.k the length of the fast electron’s wave vectdgs  deliberately Waste_d, and indeed interpretation of momentum
andk before and after interaction, respectively. The kinemat'esolved ELNES is rare and mostly qualitatir;** even
ics of scattering defin@=k,—k, the scattering vector in the though its principal interest is generally admitted. _
Fourier-transformed Coulomb interaction potential. In the ©On the other hand, the experimentalist is confronted with
case where the dipole approximatigf?R=1+iQR is justi-  @n ambiguous definition of the tranS|t|?rl1gmatr|x element. In
fied, the direction ofQ plays the same role as the polariza- real-spacemultiple scattering methods™'® the matrix ele-
tion vector e does in x-ray absorption spectrometiyAS) ~ Ment in Eq.(2) is explicitly evaluated, taking into account
for moderate photon energies, and formulas derived for eled€flection of the photoelectron wave function by neighboring
tron energy loss spectromet(EELS) may be applied to atoms, a_nd is traced back to an expression proportional to the
XAS 23 unoccupied DOS% In reciprocal-space band-structure
The DFF is essentially a sum, restricted by conservatiofnethods the transition-matrix elementaspriori taken as a
of energyE;— E; = E with E the energy transferred from the Mere weighting factor to the DOS(E),
fast electron to the atom, over transition probabilities be-

tween initial and final eigenstates belonging to the atom’s S(Q,E)=|M(Q,E)|?x(E). (€)
Hamiltonian. In the one-electron approximation these states
are one-particle wave functions. As a formal justification of Eq(3), Fermi’s golden rule is

In order to explain observed edge shapes in EELS, themployed® In practice, the dipole-selection rule is “super-
DFF in Eg. (2) was repeatedly evaluated, in the past forimposed” on Eq.(3) to yield
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S(Q.E)=[IM;11(Q.E)|?x1+1(E) S

t _ t’ (vk ) , |” ~ ,
+IM_1(Q.E)Px_1(E)1. @ Ua(R)= 2 2 Do (U (B, R) Yy (R)

wherel is the angular-momentum quantum number of the @

initial state. Often, the energy dependence of the matrix elewhere the expansion coefficierily, , (vk) are determined

ments|M,.,(Q,E)|? is neglected and the ELNES is directly by the boundary conditions on the sphere’s surface. The

compared to the partial DOS. component of vk) inside of spherd is a coherent superpo-
We show that the formulation of Eq3) is somewhat sition of angular momentum eigenstates, which are defined

arbitrary, and derive the DFF by an explicit evaluation of thewith respect to a certain coordinate system centered on the

matrix element squared in E@2), using a band-structure atom.

approach in reciprocal space. This may indeed lead to the From Eq.(7) we may derive thé’'m’-like charge density

partial DOS under the restriction that one takes an averag@side of the atomic sphettedue to the band statek),

over all directions ofQ. This condition is mentioned in the )

original works®? to which most authors refer when they Pt (R)=1D} o (KU (E i R Y (R)Z (8)

compare ELNES to the partial DOS, but it often passes un- ) ) o

noticed afterwards. In the case wh&ehas a definite direc- HF?nce, by integration over the whole sphefey definition,

tion and no integration is performed, we show that the DOS/ o'dRF|u; (R)[?=1], the local partial charge is

may be insufficient to describe the ELNES, and the more . .

complex expression of E¢12) must be used, involving vari- Uy = 1Dy (VKO [2. 9

ous eigenstates to the angular momentum of the final StateSumming all local partial charges of different band states but

the same energy’, we obtain the local partial DOS
II. AFORMULA FOR (Q,E) RESOLVED ELNES

We study the inner-shell excitation of a given atom sur- Xlt,m,(e’):2 |D|t,m,(vk)|28(e'—E,,k). (10
rounded by other atoms, in the special geometry defined by vk
the crystal. As we shall see, the calculation proceeds along
the same lines as for single isolated atdP§Ve use for the
initial (core state of energyE,, an atomic wave function
separable into a radial and an angular part

We use the expression E(y) for the final states in the
DFF Eq.(2), for the initial states we employ E¢5), and we
insert the expansion E@6) for the interaction operator. As
stated above, the sum overis a sum over the two spin
. |~ orientations and the magnetic quantum numirerand we
(Rli)=un(R)Yn(R) (®)  sum all transition probabilities to energetically allowed band
- states vk), taking care of the coherent expansion in Eq).
with R=R/R, and expand the interaction operator into\hen calculating the modulus squared. In a way similar to

spherical waves, the derivations in Refs. 4 and 5, transforming integrals over
N spherical harmonics intoj3symbols?? and defining the ra-
4 - - - dial integrals
dR=473 3 VU VLURLQR.  (© )
X=0 u=-2

R
wherej, (x) is the spherical Bessel function of order The (I (Qnenne Jo dR R un(R) A (QRU (€".R),
core-level statdi) is supposed to be completely sharp in (1)
energy, and we assume that contributions from differeht |\ horee = E,+E, we arrive at our main result
are sufficiently separated in energy so that we have only to
sum over degeneraay, as well as the two magnetic-spin

quantum numbers. S(Q,E)=2,E, Z ; E Am(—1) " FLpA N
The sum over final eigenstates to the one-particle Hamil- Fm? LIM7RE N
tonian in the crystal is a sum over band indiceand wave X (21+1)V2N+1)(2N + 1) (21 + 1) (2L +1)
vectorsk in the first Brillouin zone, determining a Bloch
state| vk) of energyE,,. As the initial state wave function XYLQ)* Y2 QA Q) nern {ia (Q)nerier

decays very rapidly with increasing, we can consider the
matrix elements in Eq.2) to be nonvanishing only inside of (D N LA D S

a sphere of radiuR, centered on atorh This is the reason o o o0lo o o

why ELNES is said to test thecal DOS. We, thus, need an
expression for the band statek) only inside this sphere. I N [ N

Among the many different methods to obtain one-particle X% -m u m’)(—m u' M’)

Bloch states for electrons in crystals, we choose Slater’s aug-

mented plane-wave method since it intrinsically is based on N ‘ .o

an expansion of the Bloch state into atomlike waves inside of X Ek Dy (VK)D 1y (VK)* (€' —E o). (12)
spheres centered on the atoms, matched to plane waves in the !

interstitial regior?® The band state’s component inside of The factor 2 stems from the two spin orientations, and the 3
spheret reads symbols express the tensorial character of B3R, which

X
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projects the final state on selected angular moménta’ K
and directionsm’,M’. This corresponds to the projection X.tr(f')Z > Xlt,m,(ff). (17
expressed by any scalar prod@R. In case of smal, all m=-1'
radial integrals in Eq(11) with A#1 are small compared to
the (\=1) contribution? and then the first two Bsymbols  The coefficienta;,(Q,€") in Eq. (16) can be interpreted as
represent the dipole-selection rife=1+1L’=|*1. There- the matrix element of Eq3). For smallQ, it includes the
fore ELNES is said to test the dipole-selected local partiadipole-selection rule, Eq4). Obviously, all cross terms in
(i.e.,1"-projected DOS. Egs.(12) and(13) vanish as soon as we do not distinguish a
Surprisingly, the energy restricted sum over band states iarticular direction, and this is what is done in the deriva-
the last line of Eq(12) is not the local partial DOS defined tions of, e.g., Miler and Wilkins!® who correctly interpret
in Eq. (10). Collecting all the terms preceding the energy-X-ray absorption near-edge structu¢ANES) spectra in
restricted sum in Eq(12) into momentum- and energy- terms of the partial DOS.
dependent coefficients, we may write, using the Kronecker The — slightly nonchalant — reference to Fermi's golden
symbolsc;:» and Sy rule as a “derivation” of Eq.(3), however, is wrong: multi-
plication of the transition-matrix element by the number of
states per energy implies that transitions take place between
S(QE)= 2 by (Q€) x| (€) eigenstates to the unperturbed Hamiltonian, and that the
I'm’ number of such eigenstates is counted. Eigenstates in a crys-
tal are Bloch waves, labeled by ), and not angular mo-
+ 2 2 Crimm(QueN) (1= 8L Smemr) mentum eigenstates, labeled by ,m’). We implicitly ap-
I".L" m'.m’ plied Fermi's golden rule in summing over final band states
. . |vk) in Eq. (2). The coherent composition of each singular
X2, Dy (VK)DL 4y (7K)* 8(e' —E,i).  (13)  band state by angular momentum eigenstates gave rise to the
vk cross terms of Eqg12) and (13).

The DFF is composed of one term proportional to the
momentum- and direction-projected local DOS, and a second |||, DISCUSSION: K-SHELL EXCITATION TREATED

term containing contributions from the coupling of different IN THE DIPOLE APPROXIMATION
final angular momenta, resulting from the coherent composi- o . .
tion of the band statfk). These cross terms in E€L3) can In the case oK-shell excitation treated in the dipole ap-

be attributed to the fact that a special direct@ris selected ~Proximation, we havé=0, m=0 andA=\"=1. Equation
in a nonspherically symmetric geometry, as was in fact al{12) then simplifies to
ready pointed out by Saldff.

If we average Eq(12) over all possible directions dd,

we obtain SQE)=22 4m-9-Y,(Q*Y,.(Q)
o
— 1 . _ ) <011)2<01 1)
Sen(QE) 7= dTSQE) X1 @nl g o of lo b -,
o I+l 0 1 1 .
—202+1)S S (aa+1) “lo 4 EK D, (vk)
1"=0 x=|1—1"]
"2 XD _ . (vk)* 8(€e' —E,), (18
X 0 0 0) |<j}\(Q)>I"IE’||’|2Xi[’(E,)'

where we made use of the properties of thesgmbols im-
(14 posingl'=L"=1 andm’=—u, M'=—pu’ for nonvanish-
ing S(Q,E). Using explicit formulas for the B symbolg?

In the step from Eq(12) to Eq. (14) we made use of the 5 the definition of the generalized logaDOS

orthogonality of the spherical harmonics and of

D ( oA )( D N ) _ 5I’L’5m’M’. E;,M,M,(G'):% Dtl,ﬂ(vk)Dtl,#r(Vk)* S(e' —E),
-m u m/l-m u M 21" +1 (19
(15

mgy

Proceeding as in the step from HG2) to Eq. (13), Eg. (18) transforms into

J— = 1 ,X\/: 2 !
Sun(QE)=2 a(Q,exi (e, e~ SQB)=872 YD)V, (O juQ) e ~ 1)
1’ M
i.e., DFF and thus inelastic scattering cross section are in- XEL ()=, Suu(Q.E). (20)
deed proportional to the local partial DOS P !
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A. Interpretation in the (I’,m’) basis With these relations we expand tipecomponent of band

Interpretation of Eq.(20) is straightforward: In the state|vk) Eq. (7) inside of the atomic sphereein terms of
momentum-resolved experiment we project the final state ofPital functions,
the direction ofQ, therefore we select certajm, ' compo- ‘ ¢ ~ ¢ ~
nents of the final state that are linked to the orientatioof Yuk,p(R)=[D(¥K)p(R) + Dy(vK)py(R)
in the chosen coordinate syst&m which theu,u’ compo- ~
nents of the final state are )cliefei{r)eda the sphlériléal harr?wn- +DAPKPAR) U =1(Euk,R) (26)
ics with argumen®. Expression(20) considers such projec- with
tion on single components of the final state in terms with
u=u'", which relate to the dipole-allowed locptDOS

1
Xpu(€)=Epul€), (21) Di(vk):=— L Di +1(vk) =D _1(vk)],

but it also accounts for the coherence of the final-state wave
function by simultaneous projection g and ' compo-
nents withu' # u. The latter contribution to the DFF we call

o . . [
the cross-term contribution, and in the special cas¢-shell y(vK)i=——=[D} , 1(vk)+ D] _1(vk)], (27
excitation treated in the dipole approximation this cross-term V2
contribution follows from Eq.(20) by summation over
um,u'=—1,0+1, keeping only summands wila# w'. The th(vk) :=Dt1’0( vk),

sum contains six terms, and remarking that for each

S,.(QE) in Eg. (200 the relaton S,,(QE) °" inversely,
=S, .(Q,E)* holds(this is necessary in order to obtain real

quantities for the DFF; we may write

1 .
Scr, (Q.E)=2RgS;11(Q,E)+ S 1(Q.E) Di.1(rk)= :E[D;wk)m;(vk)],
+SO,*1(Q1E)]1 (22)
whereas the contribution to the DFF directly proportional to Dtl,o(Vk): th( vk). (28)

the m’-like DOS reads

Spos, (Q.E)= 877(11(Q)>ner012 |Y1(Q)|2Xp L(€). The py,py,p, character DOS is defined e;(é7 Py P, (€")
23 S DY yz(vk)|25(e —E,i), respectively, and in the ap-
pend|x the relations between the varioxy,z, and + 1,0,
) _ —1 p-character DOS are discussed. Making use of(E§).
B. Treatment using py ,py ,p, orbitals and Eqs(A1) and(A4) derived in the appendix, we translate
The DFF is composed by one part proportional to thethe DFF inm’ representation inta,y,z representation. The
m’-like p-character DOS, Eq23), and a second part con- contribution proportional to then’-like p-character DOS,
taining the cross terms from simultaneous occupation of difEQ. (23), reads
ferentm’ orbitals, Eq.(22). However, it is often desirable
and more clear to identify contributions due to*“chemical” , 5 Qf+ Q§ ¢ ¢
Px, Py, andp, orbitals aligned parallel to thg, y, andz Spos,, (QE)=3(j1(Q))ner01 Q2 [xp, (€ )+Xpy(5 )]
axes, respectively. These are defined by

Q2
R, 25k >] (29

~ 3
px<R>:=—f[Y LR-YLRI=\ R

whereas the cross-term contribution E22) is the sum of

py(ﬁ)::+ é[Yil(ﬁ)"”Yl—l(ﬁ)]: \/%%, (24
2RdS;; _1(Q,BE)]

pAR)=Y}(R)= \/i& S
. 0 IR :(jl(Q))§E,01|3 XQZ y[XLX(e’)—tiy(e’)]

The inversion of Eq(24) is

QxQy
1 +1220 S, RgDY(vk)DY(vk)*15(¢' ~E,

Yil(R I_\/—[px R)_|py R, Q? E gD,(vk)D y(v )*16(e )
(30)

Y5(R)=pLR). (29  and
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2R4Sy 1(Q,E)+Sy_1(Q,E)] +SCTXyZ(Q,E), must be the same in the two cases. Equation
(32 is independent of the sign &, , but theQ,-dependent
12<j1(Q)>Ee’01 lines of Eq.(33) change sign when the mirror is applied to
= > Q. As we demand identity of the two DFF for any values of
Q Qy,Q;, both sums overi,k), which are multiplied byQ,
must vanish.
x| —Q,Q,>, REDY(vk)D!(vk)*]8(e' —E,) The disappearance of the cross terms corresponds to the
vk diagonalization of the photoelectron’s density matrix, where

the p,,py, andp, orbitals in that special coordinate system
—QZQyE Ra[th(vk)Dty(vk)*] become eigenstates of the photoelectron. In cases, where the
vk respective site has a point group symmetry with at least two
perpendicular mirror plangse., at least for two of the three
X (€' — Evk)]. (3D axes the positive and negative directions are equiveieist
in principle always possible to choose a coordinate system

We see that part of the-1,+1 cross term may in fact be such that cross terms can be avoided. However, with lower

interpreted by a pure,,p, DOS contribution, which is due symmeEry ,th's Is not posgble for a genealdirection. )
to p, and p, orbitals being a combination of (3,1) and In (I'm") representation, the same argument applies for
(1,+1) states. the SOYH(Q,E),SQV,l(Q,E) cross terms. Thé&_; 1(Q,E)

An interpretation of the DFF in terms @, p,, andp, term, however, disappears only if addlthnally to two perpen-
orbitals yields a term proportional to thg , p,, or p, like d|c.ular mirror planes, thex and they axis are equivalent.
DOS This can again be shown by a symmetry argumentGor
similar to that of the preceding paragraph and applied to the

6(j1(Q))2 (Q%—QjJ) term in Eq.(30). More obviously, equivalence of
1 e’ . . . "o ’ .
Spos, (Q.E)= —Z”M[Q)Z(tix(ef)jLQiXLy(Er) x andy axis |mpI|ethpX(e )—X;y(e ). Then, Eq.(A3) is
Q valid and the first part of the cross-term contribution B3f)
2.t (1 disappears. Such complete annulment of $he ,,1(Q,E)
+Qzxp ()], (32) . ;O L
z term can only be achieved for symmetries higher than ortho-

and a second term proportional to cross products of exparffombic. _
sion coefficients inta,, p,, or p, orbitals As a general remark, it must be stated tha-aesolved

ELNES (or an e-resolved XANES$ experiment tests one
12(] (Q))Z sir_lgle direction onto which _the electron states are projected.
Ser (Q,E)= ZAI X /nerol It is, therefore, always possible to exclude all cross term and
xyz 2 (xy)-plane DOS contributions, when the coordinate system

is chosen such tha is aligned to thez axis, Q,=Q,=0.

t t * From Eq.(32) we see that in this case the DFF is directly

X +QXQY% REDX(#IOD,(vk)"] proportional to the locap, DOS and all cross-terms in Eq.
(33) or Eq. (22) are zero. Once the coordinate system is

X (€' —E ) —Q,0,.> chosen, anisotropy of the atomic environm&lg.,xgx(e’)
vk i)(:az(f')] will result in anisotropy of the obtained spectra
X R DY(vk)Di(vk)*]18(e" —E,x) when Q is tilted off the z axis, according to Eq.32). Such

experiments are reported in, e.g., Refs. 7 and 13. Additional
evidence for a dependence of the signal on the sign of the
component), ,Q, ,Q, is traced back to the cross-term con-
tribution according to Eq(33) and accounts for antisymme-

X (e —E ) |- (33) ;r);(/isof the atomic environment projected on tkey, andz

-Q,Q,>, REDY(rk)DY(rk)*]
vk

IV. EXAMPLE: OXYGEN K-SHELL EXCITATION
IN RUTILE

C. Existence of cross terms

The genuine coherence terms in E§3) represent the

symmetry of the final state. Only if the local point-group ~ From a practical point of view, thd (m’) basis is much
symmetry permits choice of a coordinate system witheasier to use than Cartesian orbital functions, especially
equivalence of negative and positive axes for at least one dfhen going beyond the dipole approximation and when
the directions coupled, i.e., if the plane perpendicular to thaghells other than the&K shell are studied. We therefore
direction is a mirror plane, these coherences disappear. Inmplemented® Eq. (12) in the LAPW (linearized augmented
deed, imagine they(z) plane to be a mirror planex plane wavep code WiIEN97 (Ref. 25. The question how to
equivalent to—x. Then the physics of the problem do not find the LAPW equivalent ofD,t,m,(vk)Df,m,(yk)* and
change whether we employ a scattering vec®y ,Qy,Q,) other numerical details shall be treated elsewR&Here, we

or a scattering vector<{Q,,Q,,Q,). In other words, the just present the simulation of the ELNES duekisshell ex-
sum of Egs. (32) and (33, S(Q,E)=SDOSM(Q,E) citation (n=1,=0) of one particular oxygen atom in rutile
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0.30 T T T T T T

0.25 .

0.20 -

0.15 -

DOS [1/6V]

0.10 |-

0.05 -

1 2 3 4 5 6 7 8

FIG. 1. Unit cell of TiQ, (rutile). For simulation of the ELNES 0.00
the two coordinate systeng$) and(2) were used.
energy beyond the Fermi level feV]

T:]OZ’ _lat;etl)eddt_’y O_l in_ Fizg. 1. Thedglzc_trogic S,Itrthur? a2nd FIG. 3. Localp-character DOS beyond the Fermi level of oxy-
chemical bonding in T|.O was s'tu ied in e_tal in Ref. 7-gen, defined in systenil). Due to the (110) mirror, ti ()
We choose forQ two different orientations with respect to *
the crystal, one in001] direction(parallel to thec axis, see
Fig. 1) and one along thgl10] direction, keeping the abso-
lute length constant &=3.9 nm ! (this corresponds to the
minimum length ofQ due to an energy loss of 530 eV at 200
keV primary energy. Calculations are performed using two . ) o
different coordinate systent$) and(2). In order to show the symmetry—prOJect_ed DOS is used. This y_|elds_ the correct re-
relation between DOS and spectrum more clearly, we did not!!t ©NY ('jn coordinate syster(::ll) wherelQ is aligned to_l';he_
include instrumental and life-time broadening in the simula-Z 8XIS and cross terms as well as in-plane DOS contributions
tions. In the chosen exampl@,«agl with ay the approxi- disappear. There, the result is directly proportional to the

H t ' . . .
mate extension of the oxygeK shell, so that the dipole PzKe DOSXPZ(G_) shown in Fig. 3. In the second coordi-
selection rule applies. Consequently, cross terms couple difate system, which is actually the one used by the band-
ferentm’,M’ of p-character final state$’(=L’=1), and we  Structure codeQ is parallel to thex axis. However, the result
may refer to the results of discussion in the preceding seds not proportional to thep,-like DOS [which is of course
tion. identical to thep,-like DOS of coordinate systerl), cf.

Figure 2 gives the ELNES of O1 wit@ parallel to thec ~ Figs. 3 and 4because the calculation is based on thenf’)
representation, and there the cross terms of(Z2). must be
0.30 T : : : : ; taken into account. The correction that is necessary in order

:X‘py(e’). The spectrum obtained witQ parallel to[ 001] is pro-
portional toX;)Z(s’), cf. Fig. 2.

axis of tetragonal rutile according to E@3) where just the

to obtain the same result as in coordinate systenis given
0.25 | . by the first part of Eq(30), proportional to the difference of
px- andp,-like DOS defined with respect to coordinate sys-
0.20 | . tem(2). Indeed, we must not expect any genuine cross terms
described in Eq(33) when using the coordinate systeg)
= 015 . since both (10) and (001) planes are mirror planes for the
'§ local environment of O1, i.e+4x and—x as well ast+y and
s 010 s
% 0.30
5 005} s
8 0.25 |- .
iS
0.00
-~ 020F s
3
-0.05 - . = sl i
§ .
0.10 T 0.10 .
-0.15 0.05 .
1 2 3 4 5 6 7 8
energy beyond the Fermi level [eV] 0.00 < — -
1 2 3 4 5 6 7 8
FIG. 2. Simulation of the ELNES due té-shell excitation of energy beyond the Fermi level [eV]
the oxygen atom O1 in Fig. 1 witQ in [001] direction. The solid
line corresponds to the DOS-based formula &) using coordi- FIG. 4. Same as Fig. 3, but defined in systém All three

nate systen{l), where it yields the correct result for the givén components of the DOS are different, thglike DOS is identical
The dashed line is the result of E@3) in coordinate systeni). to the p,-like DOS defined in coordinate systefh). A spectrum
The dash-dotted line is the cross-term correction necessary in sysbtained withQ parallel to theg[110] direction will be proportional
tem (2), proportional toX‘px(e’)—tiy(e’). to X})Z(e’), cf. Fig. 5.
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0.30 T T T T T T

0.25 |- 2) —— 1
(1) cross-correction —-———
0.20 - _

015 . -

0.05 |-

intensity [arb. units]

0.00

-0.05 |-

-0.15

1 2 3 4 5 6 7 8
energy beyond the Fermi level [eV]

FIG. 5. Simulation of the ELNES due tig-shell excitation of
the oxygen atom O1 in Fig. 1 witQ parallel to thg 110] direction

polarization-dependent XANES experiments within band-
structure methods in reciprocal space. The interest of such
experiments is the possibility to study the detailed geometry
and patrtition of unoccupied electronic states, and this in turn
implies the interpretation of spectra in terms of the local
symmetry-projected DOS. The theoretically and numerically
simplest approach is based onl&,n") representation of the
unoccupied states. For local point-group symmetries lower
than orthorhombic, an interpretation in terms of just the
(I",m") DOS is insufficient, and coupling of different mo-
menta of the final state must be considered. As was discussed
for the special case of thk€-shell excitation treated in the
dipole approximation, such cross terms may partly be traced
back to DOS contributions in a Cartesian coordinate system.
If, however, the local point-group symmetry does not contain
at least two mirror planes perpendicular to each other, cross
terms will persist even in a Cartesian picture, and an inter-
pretation using only the DOS is impossible. This in turn
makesQ-dependent ELNES experiments sensitive to not just
differences of the unoccupied states along orthogonal direc-
tions, but also to inversion symmetry along one single direc-
tion. Thus it is hoped that the presented approach stimulates
both theoreticians and experimentalists to continue studies in

in tetragonal rutile. The solid line is the true spectrum, which for thethiS prospering field.

given Q and using coordinate syste(®), results from the DOS-
based formula Eq(23). The dashed line is the result of E@®3)
using coordinate systeid). In this system, and witk) pointing in
[110] direction, the cross-term correction is necesgdash-dotted
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zy-coupling cross-terms. Note that the cross-term correction  AppeNDIX A: RELATIONS BETWEEN THE DOS

in the Tit,, band’ (the energy region between 2 and 4.5 eV
beyond the Fermi levghas(mostly) opposite sign than the

contribution of the ['m’)-DOS based formula Eq23),

while in the Tie, band(from 5 to 7 eV sign and magnitude

For the localp-character DOS we derive from E(28)

coincide. This is a consequence of the required nonzero over-

lap between the respective -and p, orbitals with the Ti-

d orbitals ofey or t,; symmetry, respectively. This is also

the reason, why thep, DOS in coordinate systen®2) is
almost zero in the Te, band.
The situation is different withQ parallel to the[110]

t ' 1 t ’ t '
Xp,fl(e ):E[pr(e )+Xpy(€ )]

direction, where the resulting spectrum is shown as solid line + Ek Im[ D5(vk)Dy(vk)*]8(e’ —E ),

in Fig. 5. The spectrum is directly proportional to thglike

DOS if coordinate systen(2) is used, as may be seen by

comparing Figs. 4 and 5, and therefore may be described by

Eqg. (23) alone. Using coordinate systeftt), neither +Xx, 1

—X nor +y,—y directions are equivalent, and we obtain i . (' )=5[xp (¢')+xp (€]
genuinexy-coupling cross terms of the type described in Eq. ’ 277 Y
(33). Since thex andy axis of coordinate systerfil) are
equivalent[due to the mirror(110)], XLX(G,):X;y(G,) and

the (+1,— 1) cross term of Eq.30) is always identical to the
xy-coupling cross term. Nevertheless, in theefiband the
cross-term correction is again of equal sign and magnitude as
the ('m’)-DOS contribution.

—Ek Im[DX(vk)D}(vk)*18(e’ —E ),

Xpol€)=xp.(€) (A1)
V. CONCLUSION

We have derived a formula that permits correct quantita-
tive simulation of momentum-resolved ELNES or and from Eq.(27)
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t ‘ ) et This is also seen in the generalized expressions
Xp (€'):=2 [DY(vK)[?8(e' ~E i) =3[ xp, (€)
X vk (=01 N _1r t ot '
B -11(€)= = 30xp (€) ~xp (€)]
TXp_(€N]-RAEp 41 a(eN], (A2)
~i2, RED(rk)D}(rk)*]8(e ~E ),
vk

Xp, (€)= 25 [Dy(vk)[23(¢' =B = 3Lxp, ,(€) (Ad)

t ’ R Et B ’ ’
+Xp,l(€ )]+ Rd p+1-1(€ )] E:),O,l(er):_'—%% th(vk)[D;(vk)*—iD;(vk)*]

Xp,(€1):=2, DAk |?8(' ~E ) = xpl€)- X 8(e' —E.,),
If we can choose a system of coordinates such xhetdy o 1 . . .
axis become equivalent, Epo+1(€)=— ﬁ % D (vK)[Dy(vk)* +iD (vk)*]
t 1y =t ' =t =
Xo (€)= (€)=RAED 1 1(¢)]=0.  (A3) XS —E.p).
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