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We report several important observations that underscore the distinctions between the constrained-path
Monte Carlo method and the continuum and lattice versions of the fixed-node method. The main distinctions
stem from the differences in the state space in which the random walk occurs and in the manner in which the
random walkers are constrained. One consequence is that in the constrained-path method the so-called mixed
estimator for the energy is not an upper bound to the exact energy, as previously claimed. Several ways of
producing an energy upper bound are given, and relevant methodological aspects are illustrated with simple
examples[S0163-182009)06319-9

I. INTRODUCTION where thea;rzE}VLl@ijc;r creates a fermion in a quasiparti-

cle state defined relative tdM possible single-particle states

It is arguable that the fixed-not@nd constrained-path | created by the operat(mj*, and|0) represents the vacuum.

guantum Monte Carlo methods are the two most powerfulln the one-band Hubbard mod® will be the number of

and useful simulation techniques for computing accuratdattice siteg. In this basis classes of many-electron wave
ground-state T=0 K) properties of large systems of inter- functions like the BCS wave function are more easily used,
acting quantum particles. As the significantly older methodand many-particle expectation values like superconducting
the fixed-node method has been well studied, and its propepairing correlation functions are more easily evaluated than

ties are well documentet.Less is known about the Possible with the fixed-node methédhe ease in the evalu-

constrained-path method, but because of our recent use 8fion of ground-state observables, for example, is a conse-
this method'8 we now can report several important experi- guence of the ease in evaluating single-particle propagators

ences and observations that underscore features distinguighld Using Wick's theorefd to express any multiparticle
ing it from both the continuu'® and latticé versions of propagator as a linear combination of products of one-
the fixed-node method. particle propagators.

. ' The differences in bases generate a difference in the way
There is a very strong analogy betwegn the f|xed-nod<%he random walks are constrained. Both methods rely on a
and constrained-path methods. Both, in a sense, arg

. i ; ial state|W ) to perform the constraint. In the continuum
auxm.ary-ﬂeld methpds, both prOjept the groun_d—state WaV&ersion of the fixed-node method with representing a par-
function from a trial wave function by an Importance- c|ers position, the random walks are confined within a sur-
samp_led, branched random walk, and both plac_e a constraifl o defined by(R|W ) =W (R) =V (r1,l5, . .. y)>0;
on this random walk to prevent the fermion sign problemyhereas in the constrained-path method, only random walk-
from rapidly producing exponentially growing variances. A grs| ) satisfying(W | ¢)>0 are permitted. The fixed-node
number of technical details for their implementation are themethod solves Schdinger’s equation for the ground-state
same. In fact, the formal development of the constrainedwave function inside the nodal surface. Unless that surface is
path methodl relied on the existence of the fixed-node exact, only an approximate solution is obtainable. The
method. The three principal differences between the methodsonstrained-path condition, as we will discuss, has different
are (a) the state space where random walks have their sugmplications. In certain cases, including some simple ex-
port, (b) the manner by which random walkers are con-amples detailed below, the constraint is never invoked, and
strained, andc) the part of the imaginary-time propagator hence the constrained-path method can sometimes produce
that is stochastically sampled. the exact solution even for systems of interacting fermions.
The continuum version of the fixed-node method works inWe also give examples where the solution, though approxi-
a first quantized representation and operates in coordinateate, is extremely accurate. These examples include a
space. The basis states are the complete orthonormal set @bsed-shell Hubbard model with a large positlve
the particle configurations. The constrained-path method The resulting stochastic dynamics in the basis sijaoth
works in a second quantized representation and operates aowordinate and Slater determinantal manifplidsa Markov
Fock space. Its basis states are the overcomplete noprocess generated by a conditional probability connected to
orthonormal set of Slater determinants the imaginary-timer propagator exp-7H], where H=T
+V is the Hamiltonian representing the system and, as usual,
it + T andV are the kinetic- and potential-energy operators, re-
|p)=ajaz---ay[0), @ spectively. The kinetic-energy propagator is nondiagonal in

0163-1829/99/5@0)/1278811)/$15.00 PRB 59 12 788 ©1999 The American Physical Society



PRB 59 ISSUES AND OBSERVATIONS ON APPLICATION.. .. 12 789

the coordinate basis representation, and its action can Henians, that is, real symmetric operators for which the
viewed as a diffusion process in the basis space. On the othgfound-state wave functions can always be chosen to be real.

hand, in the Slater determinant representation it is therhjs analysis leaves out the very important case of systems

potential-energy kernel that, after a Hubbard-Stratonovic P )
transformation, generates the Markov chain. As a conse-! thetrp])resencte qf egterr;ﬁl mat%n%tut: fliﬁiﬁeretwe COI’?' d
quence, noninteracting problems do not suffer from the ferParé the constrained-path method to the continuum fixed-

mion sign instability. node approach. There are some technical differences be-

The main purpose of this paper is to illustrate that thetween the continuum fixed-node metfidéiand the lattice
constrained-path methdd not equivalent to the fixed-node versiort! we prefer to omit. In this regard we comment that
method in the space of Slater determinants. In Sec. I, wéhe constrained-path method does not distinguish between
will summarize the essential mathematical structure of bottattice and continuum fermions: both are treated on an equal
methods. In Sec. Ill, we discuss the mixed estimator for thdooting.
energy and the extent to which it is an upper bound on the
ground—state. energy. In pe}rticular, we will C(_)n_clude Qnd il- A. Fixed-node method
lustrate that in the constrained-path method it is not, in gen- :
eral, an upper bound, contrary to previous claims and to the In the fixed-node method, one represents the ground state
fixed-node method. In Sec. IV, we provide a correction to the®S | ¥0) = Zr|R)}(R[W o) = SgWo(R)|R) where ¥o(R)>0.
mixed estimator that makes it a rigorous upper bound, plu§Symptotically, the Monte Carlo procedure samples from
several alternative ways to produce energy estimates that af@e distributionP(R) =W o(R)/Zg¥o(R). o
upper bounds. In Sec. V, we conclude by commenting on N th_e f|xed—nc_)de method, one projects the iteration onto
areas needing additional clarification and several other difthe basis of particle configuratio§R)},
ferences between the methods. Some of these differences
will be illustrated in the Appendix where we present a |¥')=e 2 H=ED|p), (6)
constrained-path simulation on a small toy problem for_ i ) ) )
which many of the details can be generated analytically. OProjecting this equation ont¢R'[ and inserting=g|R)(R|
particular emphasis here will be the effects of matrix stabi-=1 leads to
lization.

’ I\ —Afp’ ’ — Ia—AT(H-E
Il. SUMMARY OF THE TWO METHODS (RUIW)=""(R )_ER (Rle” =R W (R), (7)

Both the fixed-node and constrained-path methods proje
the ground statéW,) from the long-time solution of the
imaginary-time r representation of Schdinger’s equation
specified by a HamiltoniaHl,

Hnd correspondingly the imaginary-time Sadlirger’s equa-
tion becomes

YR

6|\P>_ Ho B ) aT
7——( —Ep)|¥). 2

=[-DV?+V(R)—E{]¥(R,7), (8)

whereD=#%2/2m, m is the fermion mass, and(R) is the
Provided No=(W¥,|¥(0))#0 andH is time independent, potential energy.
the formal solution W(R) must be positive to be interpreted as the limiting
o H(H-Ey) probability distribution of the Markov chain. Fixing the node
[W(r))=e ¥ (0)) 3 forces this by prohibiting any change in the particle configu-
has the property rationR— R’ that changes the sign &f(R). We will denote
the ground state produced under the constraint, i.e., under the
lim |[W(7))=No|¥q). (4)  fixed-node condition, a$¥.) and the eigenvalue of the
T propagatior Eqg. (6)] as exp—Ar(E,—Ey)]. This eigenvalue
definesk,, the growth energy.
After the so-called short-time approximation is made on
|w"y=e ATH-ED|p), (5)  the kernel of the integral, which is equivalent to making a
, ) Trotter approximation and a Hubbard-Stratonovich transfor-
whereA 7 is a small numbemA 7=, n is the current nUM-  y44i6n on the exponential of the kinetic enefge positiv-
ber of iterations(often called time sllce)§ and.ET is a trlal_ ity of (R’ |exf —A{H—Ep)]R) is trivially satisfied so it can
guess at the ground-state enetgy The iterative process is e interpreted as a transition probability defining a Markov
converted into a stochastic sampling process. As the matriXnain. We will call the resulting approximatida(R—R').
elements of the propagator ¢xpr(H—Er)] between differ- ¢ js critical to importance sample in order to reduce sta-
ent antisymmetric wave functlon_s are not always POSItiV&jstical fluctuations, especially when the potent4R) has
definite, constraints in the sampling are necessary to insurgyme singularities, for example, like the Toulomb singu-

this. Additionally, importance sampling is also required to,_ . ; o
. . ! larity. This means we generate a new distributidn(R)
control the variances of computed resultsElf is adjusted =¥ (R)W(R) satisfying

so that it equals€,, then asr—o, the iteration becomes
stationary, i.e.g|¥)/dr=0 and|¥)ox|W).

For simplicity, we will exclude branching from our dis- T(R)=, K(R=R)T(R) ©)
cussions and consider only time-reversal symmetric Hamil- ¢ R o

On the computer this limit is accomplished iteratively:
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where K(R—R’)=¥(R')K(R—R')/¥(R). The new B. Constrained-path method
configurations are now sampled with a different probability. |n the constrained-path method, one represents the ground
The new distribution also satisfies a different equation ofstate agWo) == 4¢,| ), where the Slater determinaris)
motion are chosen so that att,>0. Asymptotically, the Monte
Carlo procedure samples from the distribution(¢)
oV (R, 7) pe _ =c¢,/2_¢,c¢. The decomposition o_f\lfo> in terms of the
——,  ~ DVW(RN+DV[V(R,7F(R)] |#)'s is not unique. One could just as well hay# )
=3,d4/¢p), where d,>0. We will simply write |¥g)

+(EL(R)—EpT(R,7), 10 =24l¥).
The constrained-path method works in a basis of Slater

where the “quantum drift’F=2V In ¥, and the “local en- determinants. Again one iterates Ef), placing constraints

ergy” E_(R)=HW(R)/¥+(R). on the random walks. A different kind of constraint is needed
The Monte Carlo procedure represents the multidimenP&cause a different basis is used. Here the sign problem is

sional integral as a set of random walkéiR)}, where each caused by transitions from a region where the overlap

member of the set is a different allowed particle configura-§WT|¢> s positive ttor? “_egilcl’” C‘i"_’ht‘?re it II’1S Ef’gigve-_Thﬁse
tion. A new configurationR’) is sampled fr0n1~<(R—>R’) Wo regions are not pnysically distinguishable, they nvolve

and rejected, thereby terminating this random walker, if th merely the exchange of fermions. Hence an arbitrary wave
) ’ y g thi . ' Sunction can always be expanded in the restricted bases
resulting value of the wave function is negative.

) ~ o where (V1| ¢) is purely positive or purely negative. The
Since W(R,7)=W(R,7)/¥+(R), a variational upper griginal propagation mixes these two degenerate bases indis-
bound to the true energy is criminately, causing a sign problem.
To break this plus-minus symmetry, the random walks are
constrained to the regiofV 1| $)>0. This is an approxima-

; WHY, tion because, in general, a wave function will have both posi-
E,=—=E,. (11)  tive and negative coefficients, when expressed in this ba-
2 qu sis. However, the constrained propagation yields alldpe
R

>0. To compare with the fixed-node method, we sketch
some additional details: After the application of a Trotter
At large times walkers are distributed with a probability den-approximation and Hubbard-Stratonovich transformation, the
sity ¥ (R)¥(R), and both¥ and¥ go to zero linearly iterative equation becomes
near the nodal surface. Since the Hamiltonian and the con-
straint are all local operators, this implies that the growth
energyE, is equal to the mixed estimate of the enefgy W)= P(x)B(X)|¥), (13
(Refs. 9 and 10 X

wherex (the Hubbard-Stratonovich figlds to be interpreted

2 W HWY as a multidimensional random variable distributed according
(Ui H|P) | ° T to P(x), and B(x) is an operator approximating
Eq=Emn= Wy exd —AH] for a given value of the random variable, whose
The Z B general structure is a product of exponentials of one-body
R

operatorsB(x) has the property of transforming one Slater
determinant into another. The Monte Carlo method is used to
2 \TIC(R,T)EL(R) evaluate the multidimensional integration by using multiple
_ R (12) random walkersg¢), and for each walker, samplingkafrom
~ ' P(x) and then generating a new walker
; T (R,7)

|¢")=B(X)|¢). (14
The constrained propagator is identical to the exact one ex-
cept near the nodal surface where the constraint acts. THEWUS, if (W'1|¢’)>0, (¥+|B(x)|¢$)>0.
constraint discards contributions that are orthogonal to both Since the basis of Slater determinants is nonorthogonal
¥, and¥ ., and hence this region gives no net contributionand overcomplete, each member of the basis, in general, is a
to either (W|H|W.) or (W |H|¥.). Therefore, the varia- linear combination of the others, i.6¢)=3,a,/|¢’). A

tional estimate of the enerdy, is identical toEy andEp,, prime is on the summation symbol because, while the sum-
and all are variational upper bounds,, is more easily, ac- mation may be over an infinite number of Slater determi-
curately, and efficiently computed th&y or E,, . nants, the ones used need not exhaust the basis. \While

Several characteristics of the fixed-node method @e:  may constrain &¢) to be in the “positive” set, thig¢) can
The nodal surface o .(R) is exactly the same as that of overlap with a state in the “negative” set. In contrast to the
T+(R); (2) the exact ground-state energy is obtaiedly if  fixed-node condition, the constrained-path condition does not
the nodal surface o (R) is exact; and(3) even for the separate the basis into orthogonal sets. Whereas the fixed-
trivial case of V(R)=0, unless the exact nodal surface is node condition must produce an approximate solution unless
used, only an approximate solution is produced. the nodes are exact, the constrained-path method can some-
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times produce the exact solution even if the constraining U/t=0
wave function is approximate and has the wrong nodal sur-
face in configuration space.

Importance sampling is also implemented in the

constrained-path method. Witl) = (V| $)| ¢), the itera-
tion on each walker becomes

4" )=B(X)|$), (15)

but now the random variable is sampled fromP(x)
(Wl YP(X)[(V1|p). We have| V)=3 (V1| d)| ).

Again a variational estimate of the energy can be con-
structed from|W¥.),

v=<WC|H|\PC>2EO, (16) 920
<q,c|q,c> -1
but now the connection amorig,, Eg4, and E,, is unclear -2 N
because the constraint discards configurations that are or- 4&
thogonal to| W), and these discarded configurations are not =3=24 0 1 2 3
necessarily orthogonal {oF ;). As we will argue in the next 01

section, the mixed estimator is not always an upper bound to
Eo. This retracts previous claims d&,, being an upper
bound?

Several characteristics of the constrained-path metho
are: (1) The nodal surface df¢|¥.) is not the same as that R N N "
of (¢|¥+); (2) in some cases, the exact ground-state energy |$)=(C0S81C1;+5sin6;C;;)(COSH,C| +5iN0,C;))|0).
can be obtaine@ven ifthe nodal surface of¢| V) is ap- (19
proximate; and3) for the trivial case oV(R) =0, the exact
solution is produced.

Perhaps the best known examples demonstrating the s
ond point are the half-filled positive- Hubbard models and
negativet) Hubbard models, two classes of models that do [ cost,
not have a sign problem. To illustrate the first two character- T\ sin 61
istics of the constrained-path Monte CafloPMC) method,
we consider the following half-filled positive- Hubbard  and

model:
cosé,
H=—-t E (CIUCZU_'—C;o-Clo')—’_UE niTnilv (17) S|n02
o=T.0 7 T i=1

FIG. 1. Contour plots of the two-fermion ground-state wave
function{¢| W) for various values of the interaction strenddit.
alotice the differences among the nodal structures.

Alternatively, from Eq.(1) we can represent this state by the
groduct of two 2<12 matrices, i.e.p=®;® | where

(20

Then,
which is also a simple model for a Heitler-London molecule.

The two-particle ground state is given by 1
1 <¢|\PO>= \/ﬁ T COi 01_ 02)

~ 2t“+(U—Eyp)

|Wo)=—= t(CITCL‘*‘C;TC;l) 0
V2t2+(U~-Eo)? U—E,

+ sin(0,+ 6,) |. (22
U=Bo 4 v 4 4 V2
+——(c,C3,+¢3,¢1)) |0), (19
\/E In Fig. 1 we display contour plots of this function for differ-

~ ent values ofU. Clearly the nodal surfaces @fp|V,) are
where t=\2t, and the ground-state energy Ey=U/2 ifferent for the various values dfi. Nevertheless, in the
—V(U/2)?+2t2. This state cannot be represented by aabsence of importance sampling, one can prove analytically
single Slater determinant, unlesls=0. [See Eq(1)]. that for anyU, (¢|V1)=(¢|¥e(U=0)) remains positive
Since we want to study the nodal structure of differentduring the whole imaginary-time evolution; that is, the nodal

states, we need to parametrize the differentiable manifold ofonstraint is never invoked, and therefore, the exact solution
Slater determinants of two particles. We choose coordinateis obtained after a large-projection with the result that the
such that a generic point in the manifold,(6,) corre- nodal surfaces ofp|V.) and({¢|¥,) are the same but dif-
sponds to the normalized Slater determinant ferent from( | V).
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lll. MIXED ESTIMATOR OF THE ENERGY

P |H=(¥ |E+ * (Rql, 28
Independent of a quantum Monte Carlo process, when is (Wel (Wel RET nRT( i @8

the mixed estimator for the ener@igq. (12)] an upper bound
for the ground-state energy or even the exact value? Three ¥.(Rr)=0, (29
cases are apparerit) If |¥;)=|V¥,), thenE,=E,. (i) If
[Wr)=[Wo), or [Wo)=|Wy), then En=E,. (i) If [¥)
=U?"|WP<), wheren is an integery is a Hermitian operator, (W1|H|¥,) (W |H|P,)

which lead to

and[H,U]=0, thenE=E,. = = =E,. (30)
Case(i) is simply the Rayleigh-Ritz variational principle. (¥r[¥o) (WelWe)

Case(ii) is perhaps the most important feature of the mixedFrom the first equation

estimator: a good approximation to the ground-state wave

function will produce a good approximation to the ground- _

state energy. Cas@i) is what happens in quantum Monte <R|H|WC>_E<R|W°>+RET 77RT<R|RT>’ (31)

Carlo simulations: in principle, with =exd —A7H], an up-
per bound on the energy is automatically produced. In the e
simulations, U?"—U,,- - -U,U; where U;=exd —A7H] 2 (RIHIR"}(R |‘I’c>:E‘Pc(R)+RE MR OrR, (32)
with H; representing an effective Hamiltonian satisfying R T
[H,U;]#0, so in generak,, is not a rigorous bound. But
since[H,U;]=0, E,, is in general expected to be a good H(R)\IfC(R)zE‘lfC(R)JrE MRORR; - (33
estimate and a bound. Clearly to the extent that the Rr
constrained-path method in principle can produce the exa&olving the constrainedixed-nodé problem is equivalent to
state vector, the mixed estimate of energy can be exact. ~ solying H(R)W.(R)=EW(R) within the region where
On general grounds we can say that if our constrainedy (R) has a definite sign, with the boundary condition
evolution defines a Markov process with a stationary distri~y (R;)=0. In this wayW,(R) is a continuous function of
bution|W ), such that R with discontinuous derivative &=Ry.
_ If we try to minimize a similar functional, but we use the
Hel V)= E9|W°> (23 representation of Slater determinahs, then an extremely
andH 4=H+ 8H, then nonlopal term, which_ is not easily handled, appears in the
resulting Euler equation:

(FHIYe) e | se =€ (24)
(P Wy ——m e > <¢|H|¢'>\PC[¢']=E\PC[¢']+; 74( ¢l b7)
! T
where ¢ (34)
(W SH|W,)  (W|oH|W,) with W[ ¢1]=(é7|¥1)=0 but in generak ¢|pr)# Spp-
W) (Vv (25  As before, one can easily prove t&g=E,. In other words,

if we had used the exact equivalent of the fixed-node con-
It is clear that if SE,,<0, E,, is an upper bound to the straint, we would have gotten a variational upper bound us-
ground-state energy. However, in general, this is not necesng E,,. It is important to stress that the constrained-path
sarily the case. condition is a kind of global constraint as opposed to the
It is interesting to mention that in the usual fixed-nodelocal one that represents the fixed-node constraint in that the
approach, where the state space manifold is the coordinatmnstrained-path condition does not impose(@i¥.) the
space,s6H represents a hard-wall potential, i.e., it is infinite same nodal hypersurface &48|¥+). In fact, we have nu-
on the set of configurationgR+)} defined by(R|¥1)=0.  merical examples wherép|¥;) does not define the exact
ThenE,, is an upper bound t&,. We can see this by mini- nodal structure, nevertheless we get the exact ground-state
mizing the following constrained functional: energy forH, i.e., |¥.)=|¥,). (See, for instance, the ex-
ample shown at the end of Sec).ll
F[|\I’c>v<q’c| ; MRy WET]

IV. ENERGY ESTIMATORS BOUNDING
THE GROUND-STATE ENERGY
= <\Pc| H |q,c> - E<‘Pc|q’c> - 2 ﬂ§T< RT|\I}c>
Ry A. Energy bounds
It is possible to construct a variety of other estimators that
- RE 7IRT<‘I’c|RT>, (26) produce upper bounds to the ground-state energy. In the fol-
T lowing we assume we have a st#fe.) that is an eigenstate
where(R+| ¥ 1)=V¥(Ry) =0 defines the nodal surfac; . of the constrained propagator:
The resulting Euler's equations are —
|We)=lime™™|W) (35

T—®

HIW ) =E[¥c)+ 2 7 [Ry), @
Ry with eigenvalue exXp- 7],
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e_ﬁ|‘1’c>= e Mgy ), (36) One can evaIuatEd direqtly. To evaluat_e the energy dif-
ference, we again need independent right- and left-hand

The arrow indicates the direction of propagation with thewave functions|¥,.) and (¥ .|. Dividing the population
constraint applied to the wave function. Only those auxiliaryinto two independent halves representing the left- and right-
fields that retain a positive overlap with the trial function arehand states, we can evaluate the numerator by taking the
retained in the sampling. The CPMC paths are not reversibleverlaps of what is discarddthe difference between the full
in the standard sense, and hence the “time arrow” of theand constrained propagators acting|df.)) with the inde-
path is significant. In contrast, we denote the original unconpendent solutiof ¥ |. The denominator is just the overlap
strained propagator as gxprH], and sinceH is Hermitian, (W |¥ ) of the two solutions. For larger systems it will
the full propagation is reversible, at least when averaged ovdikely have high statistical errors, but the numerator may be
paths. The effect of the constraint is simply given by thesmall enough that this does not matter. An explicit numerical

difference between ekp 71(?] and exp—H]. example is presented in the next section.
The standard variational upper bound is given by There are several other ways to produce an energy differ-
enceE4=0. One possibility is to introduce a parameter in
(WH|P ) the trial state and vary it untE;=0. Another possibility is
UZWZ 0 37) changing the constraint. For example, we could discard con-

_ _ _ figurations|¢) for which the normalized overlap with the
where the functiof ¥ | is the dual state df¥’); that is, the  trial wave function is less than or equal to some constant
constraint is applied in the oppositedirection. It is possible

to calculateE, directly, for example, by propagating two (V| p)
populations of random walkers. These two populations can Vv = (41)
be used as independent samplegB| and of| V). Since [P Tr)(el¢)]

these walkers should be independently evaludtdleast
prior to the introduction of importance samplingve label
them as(¥ ;| and|¥,.). The importance function will pre-
sumably have to be a function of all the relevant overlaps

Varying « until the average overlap of the discarded con-
figurations and the constrained solutiph,) is greater than
or equal to zero produces a variational upper bound for the
' energy, since theky=E, . In this case it is not necessary to
_ evaluate the denominator of E@9). Also, this procedure is
=1 1P ) [ (P W) (Wi P ). (8 cxact for an exact constrainin(gA state, since Fi)n that case we
The overlap of the left and right wave functions may becould seta=0.
negative, so we have to assume the importance function is We note that fora#0 the mixed estimat&,, is not, in
only a function of the magnitude of that overlap. In the ab-general, equal to the growth estimd&ig, as there is a finite
sence of importance sampling, the denominator in(Bd.is  surface term that contributes to the difference. In fact, the
the sum of the overlap between these two wave functiondifference E;—E,, provides a measure of the error intro-
Hence this term should be large in the importance functionduced by the constraint. Numerical examples are provided in
One can also evaluate the energy differefeg=E, the following section.

—Ey4, given by This method is general in that it produces a variational
o upper bound to the energy for any Hamiltonian and any con-

A A (Ve d™M—e 2H|p ) straint. The only restriction is tha® 4) has a positive over-

e "Tu—e tTh=ATEy= W) : lap with the eigenstatéW¥ | of the constrained propagation.

(39) This restriction naturally implies a repulsive contribution to
Ey and an increase in the value of the energy. This algorithm
The numerator in this expression is the result of the concan be made quite general and applied to a variety of inter-
straint: it is simply the overlap of¥.| with the statg W) esting situations.
representing the difference between the full and constrained
propagation: B. Numerical example
|\Pd>=[e*m—e*““]|‘lfc). (40 In this section we consider a simple numerical example
illustrating the behavior of the various energy estimators.
This difference is simply the set of the configurations dis-The particular example is the two-dimensiof2D) Hubbard
carded via the constrainEy is zero if these discarded con- model on a 4« 4 lattice with five up-spin and five down-spin
figurations are, on average, orthogonal#t.). In the fixed-  electrons. The exact ground-state energy of this small system
node method the configurations thrown away are bywas obtained by direct diagonalization. For the intermediate
definition orthogonal both t¢¥ 1) and|¥ ). Here, though, coupling ofU=8t andt=1, the energy is- 17.51037-*

our configurations are in general orthogonal only|oy), We used the free-particle wave functions for both the con-
and hence the variational and mixed estimates of the energstraint and the importance function in a series of CPMC
need not be equal. calculations. As a variational wave function, the free-particle

It is still true, however, thaE,, andE, are equal in the wave functions are quite inaccurate, yielding an energy of
limit of zero time step. The density of configurations near the—11.50. We also used population sizes of 1000—2500 con-
surface(W 1| ¢) goes to zero rapidly so that the surface con-figurations, divided into two halves for independent left- and
tributions to the constrained propagator do not give a finitaight-hand wave functions. Averages were computed over
contribution to the growth estimate of the energy. 30-100 blocks with a propagation tim@umber of steps
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FIG. 2. Energy estimators as a function of time step for the 4

X 4 Hubbard model described in the text. Solid symbols indicat
estimators which are variational upper bounds to the exact energ

times A7) of 2—-10 per block. We verified that we have

reached the equilibrium state before computing averages an
that the blocks were large enough to avoid difficulties with

autocorrelations among individual energy estimates. All cal

culations were performed on single workstations, though ex

tensions to large systems would require a parallel impleme
tation.

The various energy estimators are plotted as a function
the size of the time stefy 7 in Fig. 2. The exact ground-state
energy is shown as a circle at the extrapolated=0 limit.
The two dashed curves illustrate the growth and mixed est
matesEy andE,,. Eg4 is simply obtained from the change in
overlap with iteration

(VP (7+AT)
- <\I,T|\Pc(7)>

—A7E

(42

while E,, is obtained by direct evaluation of E(L2). Since
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residual statistical bias resulting from the finite population
size. This estimator may be more difficult to compute reli-
ably for larger system sizes.

The statistical errors foE, also increase rapidly with
system size. Primarily this is a result of a large statistical
error in the denominatofEq. (39)]. Particularly for our
simple choices of trial states, the overlaps of the configura-
tions representing the left- and right-hand population can
vary dramatically. The alternative method of altering the
constraint slightly{Eq. (41)] should produce a more favor-
able scaling with system size, though it remains to be dem-
onstrated that this is practical for very large simulations.

For the 4< 4 case, we explicitly changed the constraint by
introducing a finite value otr. We could achieve a varia-
tional upper bound by setting=0.0005; fora=0.0003 we
could explicitly see that the sign of the overldy |V 4)
could lead to a violation of the upper bound. Fer
=0.0005 and a time step of 0.005, we obtain a mixed esti-
mate Ep,=-17.518(3) and a growth estimat&,=
—17.50%3). Recall that onlyE4 provides an upper bound in
Yhe limit of zero time step. However, the small difference
Em—E, indicates the accuracy of the solution. Extrapolating
tg zero time step yieldgy= —17.510(10).

We also considered a>66 lattice with 13 spin-up and 13
spin-down electrons, again fof=8. We are unaware of any

exact or quantum Monte Carlo calculations for this system

size at this filling. These larger system size results are meant

"o serve as guides for future use rather than exhaustive cal-
O(fulations. They were obtained on a single-CPU workstation

over the course of a few days.

For the 6X6 system the constant must be decreased
ig,igniﬁcantly. This is rather natural as one would expect it to
scale roughly with a small power of the number of single-
particle orbitals. Again we use approximately 1000 configu-
rations averaged over 30—100 individual blocks with a total
propagation time of 2—4 per block. Here it is not clear if the
original choice ofa=0 provides a variational upper bound,
estimates ofEy bracket zero within the statistical errors of
the calculation. For=0 we obtainE,,=E,= —36.05(05).

Increasing the constant to 10 ® provides a variational

the propagator is approximate, these two estimates coincidgpper bound. In this case we obtaired= —35.75(05) and

only in the limit of smallA 7.

As apparent from the figure, these two estimates lieng

slightly below the exact energy. The value Bf, extrapo-
lated toA7=0, is —17.5172). During the course of this
calculation, we also evaluatdsfl; . In this casefE, is small
and positive, and adding this differencelig should produce

Ey= —34.55(10) for a time step ok 7=0.005. Extrapolat-
to Ar=0 yields E,=-35.80(05) and E4=
—35.25(20). It is possible that this bound could be further
improved by using a somewhat smaller valueaofAgain,
the few percent difference betwe&y andE,, indicates the

accuracy of the calculation.

a variational upper bound to the ground-state energy. Ex-

trapolating toA7=0, we findE4=0.01Q1), andhenceE,
—17.5062). The accuracy of the variational bound is

V. CONCLUDING REMARKS

quite surprising: the exact energy is recovered with an accu- We presented several differences between the
racy of two parts in 1) or better than 99.9% of the differ- constrained-path and fixed-node Monte Carlo methods, some
ence between the exact and trial state energies. major and some minor. The most significant consequence of
We also plotted in Fig. 2 the result of a direct calculationthese differences is the mixed estimator in the CPMC
of E,. Since we have independent calculations of the leftmethod not being an upper bound to the exact energy as it is
and right-hand states, it is possible to combine these into i the fixed-node method. Alternate ways of producing an
direct calculation of the variational ener@y . In contrastto  upper bound have been introduced.
the other estimators, this calculation should yield a varia- While not an upper bound, the mixed estimator in the
tional upper bound independent of the time step We find  CPMC method was argued to be very near the exact answer.
this to be true, but with a somewhat larger statistical errolExperience shows it is almost always above the exact an-
than the other estimators. There also appears to be sonsgver, and in cases where the CPMC results have been com-



PRB 59 ISSUES AND OBSERVATIONS ON APPLICATION.. .. 12 795

pared to fixed-node results, the CPMC mixed estimates of <\PT|e—(T—T’)HOe—T’H|\I,T>
the energy always lie closer to the exact answer than the O(r,7")= Sy —v , (43
upper bound produced by the fixed-node metholresum- (e e |¥s)

ably this accuracy is a consequence of the quality of th%\nd then for larger this expression is either averaged over
estimates of the wave function. As a rule of thumb, we find 9 P 9

; -several values of’ or evaluated at just’ = 7/2. Clearly, the
that the fewer nodal crossings the more accurate the pred'?étter procedure may be preferable, even though the former

tion of thg energy Is. This observation is su.pported. by themay have lower variance, as this estimator can be rewritten
method discussed in Sec. IV to correct the mixed estimate sg

it produces an upper bound. This method depends on com-

puting a contribution from those walkers thrown away; if (V|0 W)

none are thrown awagafter the sampling is from the limit- O(r,7')= % (44
ing distribution, then the CPMC method in fact becomes (V1 [Vr)

exact.

. revealing that forr’ # 7 it is basically just a mixed estimator.
There are several other differences between the methogs,, estimating the energy or an observable that commutes

worth mentioning. In one continuous spatial dimension, coyyith H; the utility of this estimator depends on how close
incident planes X;=x; for all i andj corresponding to the  gjther(W | or |W¥ ) approaches the ground-state wave func-
same spin specigexhaust the nodal surface set for local tion, For estimation of observables that do not commute with
potentialsV; therefore, in the fixed-node method one can getthe HamiltonianH, its utility depends on how close both
the exact ground-state energy by using any nodal surfacgp | and|¥g) approach the ground-state wave function.
with this property. The free-fermion wave function suffices.
For general lattice fermion problems, even in one spatial
dimension, the situation is more complicated: there are extra
nodal surfaces that are not coincident planes. For certain We gratefully acknowledge illuminating discussions with
classes of Hubbard-like models the latter exhaust the whol&rik Koch on the variational aspects of the constrained-path
nodal set; therefore, it is possible to avoid the sign problenmethod. Most of this work was supported by the Department
and get the exact solutidfi.On the other hand, the lattice of Energy. S.Z. was supported by the National Science Foun-
version of the fixed-node methtidalways provides a varia- dation under Grant No. DMR-9734041 and by the Research
tional upper bound to the exact ground-state energy regard=orporation.

less of the dimensionality, unless the constraining state is the

exact ground-state wave function. We have been unable to APPENDIX: ILLUSTRATIVE EXAMPLE

develop a similar understanding for the constrained-path ) _

method where in one dimension we observe an absence of W€ now introduce an exactly solvable fermion model to
nodal crossings and the mixed estimate of the energy agregl_ustrate and V|s.ual|ze several feature§ of_ the constrained-
ing with exact results to statistical accurdéyiVe comment Path method. This model has the Hamiltonian,

that care must be taken in using nodal crossing as a rule of

thumb. The accuracy of the Trotter approximation is con- H=—t(cico+cics+cic,+cicy) +U(nyny+n,n)

trolled by the size ofA 7. If A7 is large, the approximation is T4V (A1)
poor, and nodal crossings can be induced into a problem for '
Wh'.Ch there is no sign probler_n.ﬂrls too small, the propa- - o4 corresponds to spinless fermions coupled through a
gation through phase space is too slow. For a poor choice q?[

. . . earest-neighbor repulsive interactibhon a three-site lat-
importance sampling population control can sweep awayice with open boundary conditions. In the following we will
walkers that should cross the surface before they act_ually d%‘oncentrate on the two-particle solutions for which the

We also remark that in the CPMC method there is muc ;

- . round state is

less need to perform a variational optimization |6 )
through Jastrow or Gutzwiller factors as seems to be neces-
sary in the fixed-node meth&dThis optimization process | _ 1 tefet s clet
does not affect the nodal surface but does reduce the energy 0= m[ (C2¢2+C2C3)
of the starting configuration. While there is always some
advantage in doing this, the results of the CPMC method +(U—Eg)clcllloy, (A2)
display considerable robustness to the choice of the con-
straining wave function, which is also typically used as theand E,, the ground-state energy, equalsu/2
starting configuration. Simple choices, like free-fermion— V(UR2)Z+ 212,
wave functions, seem to work well. Quite different choices Since we want to study explicitly thémaginary-time
of |W1) usually give satisfyingly similar resulfs. evolution of the distribution of Slater determinants that arise

In closing, we remark that some of our observations abou@s a consequence of the constrained-path approach, we need
the mixed estimator for the energy might be useful in conto have some way of parametrizing the differentiable mani-
structing and assessing estimation procedures used in tifield of Slater determinants of two particles that has dimen-
standard auxiliary-field projector quantum Monte CarlosionN(M—N)=2(3—2)=2. We can parametrize a state in
method®®=2° In that method, the energy or more generallythe two-particle Hilbert spacgt, that belongs to the set of
some observabl@ is typically estimateth?%1%from normalizedSlater determinants by thex@ matrix,

ACKNOWLEDGMENTS
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Ult=2 e *Mg)=e Ve AT g)+O(AT)  (AB)

—

and stochastically iterate this expression for each walker. In a
matrix representation this iteration is equivalent to a product
of noncommuting random matrices, i.eR(7)=U(7)Pt
=TI, (exd —A7V]exd —A7T]))®;, where the symmetric
matrix exgp—A7T] is given by

u+l1 v u—-1
2 2 2
efArT: % u % (A7)
u—1 v u+l
2 2 2

with u=cosh(/2tA7), v2=u?—1. After the use of the dis-
crete U>0) Hubbard-Stratonovich transformation

exd —ArUnjn;, ]=3exd —A7U(n;+n;;1)/2]

X Zy= z1€XH uX(Nj—nj1q)],

the interaction part of the propagator at any imaginary-time
slice i is represented by one of the four diagonal random
matrices[each chosen with probability 1/4, i.2(x)=1/4],

FIG. 3. Contour plots of the two-fermion ground-state wave
function{¢|¥,) for various values of the interaction strenddtit.

cog0,—6>) 0

b= cosf; cosb, | . (A3) a 0 O
sin 6, sind, e V= 0 B O
Therefore, the two anglesé(, 6,) specify a point in the 0 0
manifold, and any state¥’) belonging to the Hilbert space gt h 0 0
‘H, having support in that manifold can be represented by AU —ATUR
W[ 6,,0,]=(¢|¥). In general, the usual property of a fer- =e 0 e 0 I
mion wave function to be totally antisymmetric in spin- 0 0 e H
coordinate space is lost in this representation. For instance, .
the ground state of our model fermion system is given by € 0 0
0 e—ATU/ZIZ,u 0 , (A8)
0 0 erH

1
Wl 04,0,]= —————={coq 6,— 6,)[t cOSH
ol 01.6>] 2t2+(U—E0)2{ 01— 6,)[ 2 ~ _
where costu=exd A7U/2]. Althoughi/(7) is a random ma-
+(U—Eg)sind,]+tsin(6,—6,)}, (Ad) trix, its determinant dé#( ) =exd —27U] is not a random
number.
which is neither symmetric nor antisymmetric under permu-  After a short propagatiofiEq. (A6)], each point of the
tations of#, and #,. Contour plots of it can be found in Fig. Slater determinant manifold, representing the state of the
3 for different values of the interaction strengdth In the system, performs a Brownian walk i@ space. Therefore,
noninteracting case) =0, the ground state is a single Slater one can conside#,(7) and 6,(7) [such thatd;(0)= 017,

determinant represented by the matrix and 6,(0)=6,1] as a set of random variables defining a
random walker in imaginary time. However, in the CPMC
3 0 method, to avoid the fermion sign problem, we constrain the
walker with a constraining state that here we choose to be
Or=|( F(1+ \/é) \/g \ (A5)  |¥y(U=0)). In other words, each time E(AB) is iterated,
%(\/5— \/g) z we question if trle _si”gn of dE;IﬂCI)(r)] has been changed. If
it has, then we “kill” the walker.

For the present example, the determinant can be com-

corresponding - to  the point 0,7=0p7=7/6,  Oz7 puted analytically: At any time step=1

=arccos 143 in the manifold.
For a given value ofJ we would like to project out the

ground state from this noninteracting state. For simplicity, de{q,;p(ﬂ]: u+—v[a1,31f2+ B1¥19>+ 2a1y1h,];

we will leave out importance sampling and use a first-order 20+l

Trotter decomposition for the short-time propagator (A9)
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FIG. 4. Energy mixed estimator as a function of imaginary time
averaged oveN,, walkers. The horizontal dashed line indicates the
value of the exact ground-state eneigy= —0.19615.

where the functions; ,g;, andh; are most simply obtained
from the backwards recursion relations

fi=aiBi(u+Dfi 1+ Biyvi(u—1)gi 1+ 2a;yivhi g,

gi=aBi(u—1)fi 1+ Biyi(u+1)gis1+2aiyivhiq,

hi=aiBivfi 1t Biyivgi+1+2aiyuhiyy,  (AL0)

with f,,,1=0n:+1=hn+1=1 being the initial conditions.
Clearly the determinant E4A9) is always positive, inde-
pendent of the values ai,Ar, and U, which means that
there is no sign problem. Nevertheless, this example helps FP2ce- Alr=0 the walker starts atélr,6;y). The random walk
illustrate several important issues. The first is that the exaclo el crosses the nodal Surface@'q’ﬁ' The lower panel dis-

- ; plays the overlap of the walker with the exact ground state and the
gr.ound-state energy Ca!” be stochastically obtalfmdvye distance of the walker from the origin. Notice the clear correlation
will shqw below even if the nodal surche C(fgb|\I’T>.IS between these two quantities.
approximate. The second issue deals with the practical nu-
merical implementation of the method. A “false” sign prob- ) )
lem (i.e., deEq)$q)(T)]<o) can occur as a consequence oflization techniques are properly used, otherwise we observe
numerical round-off errors. In fact, the use of matrix stabili- “false” nodal crossings. A typical random walket(7) is
zation techniques is crucial to avoid such phenoménon.  displayed in Fig. 5. This figure clearly denotes that most of

Figure 4 shows the energy mixed estimagy as a func-  the time the walker prefers to stay near the upper right corner
tion of imaginary time. All walkers start7=0) at the point of the space. This behavior is evidenced in the lower panel of
(617,627) in 6 space. That means th&,(r=0)=U/2  the same figure, where it is shown that when the walker is at
—/2t, and as time evolveE,,— E, if the constraint is not the upper right corner i space the overlap with the exact
evoked. As mentioned above, this is the case if matrix stabiground state is maximurfin fact, it is almost ong

FIG. 5. The upper panel shows a typical random walkéin
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