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Issues and observations on applications of the constrained-path Monte Carlo
method to many-fermion systems
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We report several important observations that underscore the distinctions between the constrained-path
Monte Carlo method and the continuum and lattice versions of the fixed-node method. The main distinctions
stem from the differences in the state space in which the random walk occurs and in the manner in which the
random walkers are constrained. One consequence is that in the constrained-path method the so-called mixed
estimator for the energy is not an upper bound to the exact energy, as previously claimed. Several ways of
producing an energy upper bound are given, and relevant methodological aspects are illustrated with simple
examples.@S0163-1829~99!06319-5#
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I. INTRODUCTION

It is arguable that the fixed-node1 and constrained-path2

quantum Monte Carlo methods are the two most powe
and useful simulation techniques for computing accur
ground-state (T50 K) properties of large systems of inte
acting quantum particles. As the significantly older meth
the fixed-node method has been well studied, and its pro
ties are well documented.3 Less is known about the
constrained-path method, but because of our recent us
this method,4–8 we now can report several important expe
ences and observations that underscore features disting
ing it from both the continuum9,10 and lattice11 versions of
the fixed-node method.

There is a very strong analogy between the fixed-n
and constrained-path methods. Both, in a sense,
auxiliary-field methods, both project the ground-state wa
function from a trial wave function by an importanc
sampled, branched random walk, and both place a const
on this random walk to prevent the fermion sign proble
from rapidly producing exponentially growing variances.
number of technical details for their implementation are
same. In fact, the formal development of the constrain
path method2 relied on the existence of the fixed-nod
method. The three principal differences between the meth
are ~a! the state space where random walks have their s
port, ~b! the manner by which random walkers are co
strained, and~c! the part of the imaginary-time propagat
that is stochastically sampled.

The continuum version of the fixed-node method works
a first quantized representation and operates in coordi
space. The basis states are the complete orthonormal s
the particle configurations. The constrained-path met
works in a second quantized representation and operate
Fock space. Its basis states are the overcomplete
orthonormal set of Slater determinants

uf&5a1
†a2

†
•••aN

† u0&, ~1!
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M F i j cj
† creates a fermion in a quasipart

cle statei defined relative toM possible single-particle state
j created by the operatorcj

† , andu0& represents the vacuum
~In the one-band Hubbard modelM will be the number of
lattice sites!. In this basis classes of many-electron wa
functions like the BCS wave function are more easily us
and many-particle expectation values like superconduc
pairing correlation functions are more easily evaluated th
possible with the fixed-node method.2 The ease in the evalu
ation of ground-state observables, for example, is a con
quence of the ease in evaluating single-particle propaga
and using Wick’s theorem12 to express any multiparticle
propagator as a linear combination of products of o
particle propagators.

The differences in bases generate a difference in the
the random walks are constrained. Both methods rely o
trial stateuCT& to perform the constraint. In the continuum
version of the fixed-node method withr i representing a par
ticle’s position, the random walks are confined within a s
face defined by^RuCT&5CT(R)[CT(r1 ,r2 , . . . ,rN).0;
whereas in the constrained-path method, only random w
ers uf& satisfying^CTuf&.0 are permitted. The fixed-nod
method solves Schro¨dinger’s equation for the ground-sta
wave function inside the nodal surface. Unless that surfac
exact, only an approximate solution is obtainable. T
constrained-path condition, as we will discuss, has differ
implications. In certain cases, including some simple
amples detailed below, the constraint is never invoked,
hence the constrained-path method can sometimes pro
the exact solution even for systems of interacting fermio
We also give examples where the solution, though appro
mate, is extremely accurate. These examples includ
closed-shell Hubbard model with a large positiveU.

The resulting stochastic dynamics in the basis space~both
coordinate and Slater determinantal manifolds! is a Markov
process generated by a conditional probability connecte
the imaginary-timet propagator exp@2tH#, where H5T
1V is the Hamiltonian representing the system and, as us
T and V are the kinetic- and potential-energy operators,
spectively. The kinetic-energy propagator is nondiagona
12 788 ©1999 The American Physical Society
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PRB 59 12 789ISSUES AND OBSERVATIONS ON APPLICATIONS . . .
the coordinate basis representation, and its action can
viewed as a diffusion process in the basis space. On the o
hand, in the Slater determinant representation it is
potential-energy kernel that, after a Hubbard-Stratonov
transformation, generates the Markov chain. As a con
quence, noninteracting problems do not suffer from the
mion sign instability.

The main purpose of this paper is to illustrate that
constrained-path methodis not equivalent to the fixed-node
method in the space of Slater determinants. In Sec. II,
will summarize the essential mathematical structure of b
methods. In Sec. III, we discuss the mixed estimator for
energy and the extent to which it is an upper bound on
ground-state energy. In particular, we will conclude and
lustrate that in the constrained-path method it is not, in g
eral, an upper bound, contrary to previous claims and to
fixed-node method. In Sec. IV, we provide a correction to
mixed estimator that makes it a rigorous upper bound, p
several alternative ways to produce energy estimates tha
upper bounds. In Sec. V, we conclude by commenting
areas needing additional clarification and several other
ferences between the methods. Some of these differe
will be illustrated in the Appendix where we present
constrained-path simulation on a small toy problem
which many of the details can be generated analytically.
particular emphasis here will be the effects of matrix sta
lization.

II. SUMMARY OF THE TWO METHODS

Both the fixed-node and constrained-path methods pro
the ground stateuC0& from the long-time solution of the
imaginary-timet representation of Schro¨dinger’s equation
specified by a HamiltonianH,

]uC&
]t

52~H2E0!uC&. ~2!

Provided N05^C0uC(0)&Þ0 and H is time independent
the formal solution

uC~t!&5e2t(H2E0)uC~0!& ~3!

has the property

lim
t→`

uC~t!&5N0uC0&. ~4!

On the computer this limit is accomplished iteratively:

uC8&5e2Dt(H2ET)uC&, ~5!

whereDt is a small number,nDt5t, n is the current num-
ber of iterations~often called time slices!, andET is a trial
guess at the ground-state energyE0. The iterative process is
converted into a stochastic sampling process. As the ma
elements of the propagator exp@2t(H2ET)# between differ-
ent antisymmetric wave functions are not always posit
definite, constraints in the sampling are necessary to in
this. Additionally, importance sampling is also required
control the variances of computed results. IfET is adjusted
so that it equalsE0, then ast→`, the iteration becomes
stationary, i.e.,]uC&/]t50 anduC&}uC0&.

For simplicity, we will exclude branching from our dis
cussions and consider only time-reversal symmetric Ham
be
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tonians, that is, real symmetric operators for which t
ground-state wave functions can always be chosen to be
This analysis leaves out the very important case of syst
in the presence of external magnetic fields.13 Here we com-
pare the constrained-path method to the continuum fix
node approach. There are some technical differences
tween the continuum fixed-node method9,10 and the lattice
version11 we prefer to omit. In this regard we comment th
the constrained-path method does not distinguish betw
lattice and continuum fermions: both are treated on an eq
footing.

A. Fixed-node method

In the fixed-node method, one represents the ground s
as uC0&5(RuR&^RuC0&5(RC0(R)uR& where C0(R).0.
Asymptotically, the Monte Carlo procedure samples fro
the distributionP(R)5C0(R)/(RC0(R).

In the fixed-node method, one projects the iteration o
the basis of particle configurations$uR&%,

uC8&5e2Dt(H2ET)uC&. ~6!

Projecting this equation ontôR8u and inserting(RuR&^Ru
51 leads to

^R8uC8&5C8~R8!5(
R

^R8ue2Dt(H2ET)uR&C~R!, ~7!

and correspondingly the imaginary-time Schro¨dinger’s equa-
tion becomes

2
]C~R,t!

]t
5@2D¹21V~R!2ET#C~R,t!, ~8!

whereD5\2/2m, m is the fermion mass, andV(R) is the
potential energy.

C(R) must be positive to be interpreted as the limitin
probability distribution of the Markov chain. Fixing the nod
forces this by prohibiting any change in the particle config
rationR→R8 that changes the sign ofC(R). We will denote
the ground state produced under the constraint, i.e., unde
fixed-node condition, asuCc& and the eigenvalue of the
propagation@Eq. ~6!# as exp@2Dt(Eg2ET)#. This eigenvalue
definesEg , the growth energy.

After the so-called short-time approximation is made
the kernel of the integral, which is equivalent to making
Trotter approximation and a Hubbard-Stratonovich transf
mation on the exponential of the kinetic energy,2 the positiv-
ity of ^R8uexp@2Dt(H2ET)#uR& is trivially satisfied so it can
be interpreted as a transition probability defining a Mark
chain. We will call the resulting approximationK(R→R8).

It is critical to importance sample in order to reduce s
tistical fluctuations, especially when the potentialV(R) has
some singularities, for example, like the 1/r Coulomb singu-
larity. This means we generate a new distributionC̃c(R)
[CT(R)Cc(R) satisfying

C̃c8~R8!5(
R

K̃~R→R8!C̃c~R!, ~9!
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12 790 PRB 59CARLSON, GUBERNATIS, ORTIZ, AND ZHANG
where K̃(R→R8)5CT(R8)K(R→R8)/CT(R). The new
configurations are now sampled with a different probabili
The new distribution also satisfies a different equation
motion

2
]C̃c~R,t!

]t
52D¹2C̃c~R,t!1D¹@C̃c~R,t!F~R!#

1„EL~R!2ET…C̃c~R,t!, ~10!

where the ‘‘quantum drift’’F52¹ ln CT and the ‘‘local en-
ergy’’ EL(R)5HCT(R)/CT(R).

The Monte Carlo procedure represents the multidim
sional integral as a set of random walkers$uR&%, where each
member of the set is a different allowed particle configu
tion. A new configurationuR8& is sampled fromK̃(R→R8)
and rejected, thereby terminating this random walker, if
resulting value of the wave function is negative.

Since Cc(R,t)5C̃c(R,t)/CT(R), a variational upper
bound to the true energy is

Ev5

(
R

CcHCc

(
R

Cc
2

>E0 . ~11!

At large times walkers are distributed with a probability de
sity CT(R)Cc(R), and bothCT andCc go to zero linearly
near the nodal surface. Since the Hamiltonian and the c
straint are all local operators, this implies that the grow
energyEg is equal to the mixed estimate of the energyEm
~Refs. 9 and 10!,

Eg5Em[
^CTuHuCc&

^CTuCc&
5

(
R

CcHCT

(
R

CcCT

5

(
R

C̃c~R,t!EL~R!

(
R

C̃c~R,t!

. ~12!

The constrained propagator is identical to the exact one
cept near the nodal surface where the constraint acts.
constraint discards contributions that are orthogonal to b
CT andCc , and hence this region gives no net contributi
to either ^CTuHuCc& or ^CcuHuCc&. Therefore, the varia-
tional estimate of the energyEv is identical toEg andEm ,
and all are variational upper bounds.Em is more easily, ac-
curately, and efficiently computed thanEg or Ev .

Several characteristics of the fixed-node method are:~1!
The nodal surface ofCc(R) is exactly the same as that o
CT(R); ~2! the exact ground-state energy is obtainedonly if
the nodal surface ofCT(R) is exact; and~3! even for the
trivial case ofV(R)50, unless the exact nodal surface
used, only an approximate solution is produced.
.
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B. Constrained-path method

In the constrained-path method, one represents the gro
state asuC0&5(fcfuf&, where the Slater determinantsuf&
are chosen so that allcf.0. Asymptotically, the Monte
Carlo procedure samples from the distributionp(f)
5cf /(fcf . The decomposition ofuC0& in terms of the
uf& ’s is not unique. One could just as well haveuC0&
5(fdfuf&, where df.0. We will simply write uC0&
5(fuf&.

The constrained-path method works in a basis of Sla
determinants. Again one iterates Eq.~6!, placing constraints
on the random walks. A different kind of constraint is need
because a different basis is used. Here the sign proble
caused by transitions from a region where the over
^CTuf& is positive to a region where it is negative. The
two regions are not physically distinguishable; they invol
merely the exchange of fermions. Hence an arbitrary w
function can always be expanded in the restricted ba
where ^CTuf& is purely positive or purely negative. Th
original propagation mixes these two degenerate bases in
criminately, causing a sign problem.

To break this plus-minus symmetry, the random walks
constrained to the region̂CTuf&.0. This is an approxima-
tion because, in general, a wave function will have both po
tive and negative coefficientscf when expressed in this ba
sis. However, the constrained propagation yields all thecf
.0. To compare with the fixed-node method, we ske
some additional details: After the application of a Trott
approximation and Hubbard-Stratonovich transformation,
iterative equation becomes

uC8&5(
x

P~x!B~x!uC&, ~13!

wherex ~the Hubbard-Stratonovich field! is to be interpreted
as a multidimensional random variable distributed accord
to P(x), and B(x) is an operator approximating
exp@2DtH# for a given value of the random variable, who
general structure is a product of exponentials of one-b
operators.B(x) has the property of transforming one Slat
determinant into another. The Monte Carlo method is use
evaluate the multidimensional integration by using multip
random walkersuf&, and for each walker, sampling ax from
P(x) and then generating a new walker

uf8&5B~x!uf&. ~14!

Thus, if ^CTuf8&.0, ^CTuB(x)uf&.0.
Since the basis of Slater determinants is nonorthogo

and overcomplete, each member of the basis, in general,
linear combination of the others, i.e.,uf&5(f8

8 af8uf8&. A
prime is on the summation symbol because, while the su
mation may be over an infinite number of Slater determ
nants, the ones used need not exhaust the basis. WhileuCT&
may constrain auf& to be in the ‘‘positive’’ set, thisuf& can
overlap with a state in the ‘‘negative’’ set. In contrast to t
fixed-node condition, the constrained-path condition does
separate the basis into orthogonal sets. Whereas the fi
node condition must produce an approximate solution un
the nodes are exact, the constrained-path method can s
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PRB 59 12 791ISSUES AND OBSERVATIONS ON APPLICATIONS . . .
times produce the exact solution even if the constrain
wave function is approximate and has the wrong nodal s
face in configuration space.

Importance sampling is also implemented in t
constrained-path method. Withuf̃&5^CTuf&uf&, the itera-
tion on each walker becomes

uf̃8&5B~x!uf̃&, ~15!

but now the random variablex is sampled fromP̃(x)
}^CTuf8&P(x)/^CTuf&. We haveuC̃&5(f^CTuf&uf&.

Again a variational estimate of the energyEv can be con-
structed fromuCc&,

Ev5
^CcuHuCc&

^CcuCc&
>E0 , ~16!

but now the connection amongEv , Eg, and Em is unclear
because the constraint discards configurations that are
thogonal touCT&, and these discarded configurations are
necessarily orthogonal touCc&. As we will argue in the next
section, the mixed estimator is not always an upper boun
E0. This retracts previous claims ofEm being an upper
bound.2

Several characteristics of the constrained-path met
are:~1! The nodal surface of̂fuCc& is not the same as tha
of ^fuCT&; ~2! in some cases, the exact ground-state ene
can be obtainedeven if the nodal surface of̂fuCT& is ap-
proximate; and~3! for the trivial case ofV(R)50, the exact
solution is produced.

Perhaps the best known examples demonstrating the
ond point are the half-filled positive-U Hubbard models and
negative-U Hubbard models, two classes of models that
not have a sign problem. To illustrate the first two charac
istics of the constrained-path Monte Carlo~CPMC! method,
we consider the following half-filled positive-U Hubbard
model:

H52t (
s5↑,↓

~c1,s
† c2,s1c2,s

† c1,s!1U(
i 51

2

ni↑ni↓ , ~17!

which is also a simple model for a Heitler-London molecu
The two-particle ground state is given by

uC0&5
1

A2 t̃ 21~U2E0!2
F t̃ ~c1↑

† c1↓
† 1c2↑

† c2↓
† !

1
U2E0

A2
~c1↑

† c2↓
† 1c2↑

† c1↓
† !G u0&, ~18!

where t̃ 5A2t, and the ground-state energy isE05U/2

2A(U/2)212 t̃ 2. This state cannot be represented by
single Slater determinant, unlessU50. @See Eq.~1!#.

Since we want to study the nodal structure of differe
states, we need to parametrize the differentiable manifol
Slater determinants of two particles. We choose coordin
such that a generic point in the manifold (u1 ,u2) corre-
sponds to the normalized Slater determinant
g
r-

or-
t

to

d

y

ec-

o
r-

.

a

t
of
es

uf&5~cosu1c1↑
† 1sinu1c2↑

† !~cosu2c1↓
† 1sinu2c2↓

† !u0&.
~19!

Alternatively, from Eq.~1! we can represent this state by th
product of two 2312 matrices, i.e.,F5F↑F↓ where

F↑5S cosu1

sinu1
D ~20!

and

F↓5S cosu2

sinu2
D . ~21!

Then,

^fuC0&5
1

A2 t̃ 21~U2E0!2
F t̃ cos~u12u2!

1
U2E0

A2
sin~u11u2!G . ~22!

In Fig. 1 we display contour plots of this function for differ
ent values ofU. Clearly the nodal surfaces of^fuC0& are
different for the various values ofU. Nevertheless, in the
absence of importance sampling, one can prove analytic
that for anyU, ^fuCT&5^fuC0(U50)& remains positive
during the whole imaginary-time evolution; that is, the nod
constraint is never invoked, and therefore, the exact solu
is obtained after a large-t projection with the result that the
nodal surfaces of̂fuCc& and^fuC0& are the same but dif-
ferent from^fuCT&.

FIG. 1. Contour plots of the two-fermion ground-state wa
function ^fuC0& for various values of the interaction strengthU/t.
Notice the differences among the nodal structures.
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III. MIXED ESTIMATOR OF THE ENERGY

Independent of a quantum Monte Carlo process, whe
the mixed estimator for the energy@Eq. ~12!# an upper bound
for the ground-state energy or even the exact value? T
cases are apparent:~i! If uCT&[uCc&, then Em>E0. ~ii ! If
uCT&[uC0&, or uCc&[uC0&, then Em5E0. ~iii ! If uCc&
5U2nuCT&, wheren is an integer,U is a Hermitian operator
and @H,U#50, thenEm>E0.

Case~i! is simply the Rayleigh-Ritz variational principle
Case~ii ! is perhaps the most important feature of the mix
estimator: a good approximation to the ground-state w
function will produce a good approximation to the groun
state energy. Case~iii ! is what happens in quantum Mon
Carlo simulations: in principle, withU5exp@2DtH#, an up-
per bound on the energy is automatically produced. In
simulations, U2n→U2n•••U2U1 where Ui5exp@2DtHi#
with Hi representing an effective Hamiltonian satisfyin
@H,Ui #Þ0, so in generalEm is not a rigorous bound. Bu
since @H,Ui #'0, Em is in general expected to be a goo
estimate and a bound. Clearly to the extent that
constrained-path method in principle can produce the e
state vector, the mixed estimate of energy can be exact.

On general grounds we can say that if our constrai
evolution defines a Markov process with a stationary dis
bution uCc&, such that

HeffuCc&5EguCc& ~23!

andHeff5H1dH, then

^CcuHuCc&

^CcuCc&
5Em1dEm>E0 , ~24!

where

dEm5
^CTudHuCc&

^CTuCc&
2

^CcudHuCc&

^CcuCc&
. ~25!

It is clear that if dEm<0, Em is an upper bound to the
ground-state energy. However, in general, this is not ne
sarily the case.

It is interesting to mention that in the usual fixed-no
approach, where the state space manifold is the coordi
space,dH represents a hard-wall potential, i.e., it is infini
on the set of configurations$uRT&% defined by^RTuCT&50.
ThenEm is an upper bound toE0. We can see this by mini
mizing the following constrained functional:

F@ uCc&,^Ccu;hRT
,hRT

* #

5^CcuHuCc&2E^CcuCc&2(
RT

hRT
* ^RTuCc&

2(
RT

hRT
^CcuRT&, ~26!

where^RTuCT&5CT(RT)50 defines the nodal surfaceNT .
The resulting Euler’s equations are

HuCc&5EuCc&1(
RT

hRT
uRT&, ~27!
is

ee

d
e

-

e

e
ct

d
i-

s-

te

^CcuH5^CcuE1(
RT

hRT
* ^RTu, ~28!

Cc~RT!50, ~29!

which lead to

E5
^CTuHuCc&

^CTuCc&
5

^CcuHuCc&

^CcuCc&
>E0 . ~30!

From the first equation

^RuHuCc&5E^RuCc&1(
RT

hRT
^RuRT&, ~31!

(
R8

^RuHuR8&^R8uCc&5ECc~R!1(
RT

hRT
dRRT

, ~32!

H~R!Cc~R!5ECc~R!1(
RT

hRT
dRRT

. ~33!

Solving the constrained~fixed-node! problem is equivalent to
solving H(R)Cc(R)5ECc(R) within the region where
CT(R) has a definite sign, with the boundary conditio
Cc(RT)50. In this wayCc(R) is a continuous function of
R with discontinuous derivative atR5RT .

If we try to minimize a similar functional, but we use th
representation of Slater determinantsuf&, then an extremely
nonlocal term, which is not easily handled, appears in
resulting Euler equation:

(
f8

^fuHuf8&Cc@f8#5ECc@f8#1(
fT

hfT
^fufT&

~34!

with CT@fT#5^fTuCT&50 but in general̂ fufT&ÞdffT
.

As before, one can easily prove thatEm>E0. In other words,
if we had used the exact equivalent of the fixed-node c
straint, we would have gotten a variational upper bound
ing Em . It is important to stress that the constrained-pa
condition is a kind of global constraint as opposed to
local one that represents the fixed-node constraint in that
constrained-path condition does not impose on^fuCc& the
same nodal hypersurface as^fuCT&. In fact, we have nu-
merical examples wherêfuCT& does not define the exac
nodal structure, nevertheless we get the exact ground-s
energy forH, i.e., uCc&5uC0&. ~See, for instance, the ex
ample shown at the end of Sec. II!.

IV. ENERGY ESTIMATORS BOUNDING
THE GROUND-STATE ENERGY

A. Energy bounds

It is possible to construct a variety of other estimators t
produce upper bounds to the ground-state energy. In the
lowing we assume we have a stateuCc& that is an eigenstate
of the constrained propagator:

uCc&5 lim
t→`

e2tHQ uCT& ~35!

with eigenvalue exp@2tEg#,
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e2DtHQ uCc&5e2DtEguCc&. ~36!

The arrow indicates the direction of propagation with t
constraint applied to the wave function. Only those auxilia
fields that retain a positive overlap with the trial function a
retained in the sampling. The CPMC paths are not revers
in the standard sense, and hence the ‘‘time arrow’’ of
path is significant. In contrast, we denote the original unc
strained propagator as exp@2tH#, and sinceH is Hermitian,
the full propagation is reversible, at least when averaged o
paths. The effect of the constraint is simply given by t
difference between exp@2tHQ# and exp@2tH#.

The standard variational upper bound is given by

Ev5
^CcuHuCc&

^CcuCc&
>E0 , ~37!

where the function̂Ccu is the dual state ofuCc&; that is, the
constraint is applied in the oppositet direction. It is possible
to calculateEv directly, for example, by propagating tw
populations of random walkers. These two populations
be used as independent samples of^Ccu and of uCc&. Since
these walkers should be independently evaluated~at least
prior to the introduction of importance sampling!, we label
them aŝ C lcu and uC rc&. The importance function will pre-
sumably have to be a function of all the relevant overlap

I 5I ~ z^C lczC rc&u,^CTuC rc&,^C lcuCT&!. ~38!

The overlap of the left and right wave functions may
negative, so we have to assume the importance functio
only a function of the magnitude of that overlap. In the a
sence of importance sampling, the denominator in Eq.~37! is
the sum of the overlap between these two wave functio
Hence this term should be large in the importance functi

One can also evaluate the energy differenceEd[Ev
2Eg , given by

e2DtEg2e2DtEv'DtEd5
^Ccue2DtHQ2e2DtHuCc&

^CcuCc&
.

~39!

The numerator in this expression is the result of the c
straint: it is simply the overlap of̂Ccu with the stateuCd&
representing the difference between the full and constra
propagation:

uCd&5@e2DtHQ2e2DtH#uCc&. ~40!

This difference is simply the set of the configurations d
carded via the constraint.Ed is zero if these discarded con
figurations are, on average, orthogonal touCc&. In the fixed-
node method the configurations thrown away are
definition orthogonal both touCT& and uCc&. Here, though,
our configurations are in general orthogonal only touCT&,
and hence the variational and mixed estimates of the en
need not be equal.

It is still true, however, thatEm and Eg are equal in the
limit of zero time step. The density of configurations near
surfacê CTuf& goes to zero rapidly so that the surface co
tributions to the constrained propagator do not give a fin
contribution to the growth estimate of the energy.
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One can evaluateEd directly. To evaluate the energy dif
ference, we again need independent right- and left-h
wave functionsuC rc& and ^C lcu. Dividing the population
into two independent halves representing the left- and rig
hand states, we can evaluate the numerator by taking
overlaps of what is discarded~the difference between the fu
and constrained propagators acting onuCc&) with the inde-
pendent solution̂Ccu. The denominator is just the overla
^CcuCc& of the two solutions. For larger systems it wi
likely have high statistical errors, but the numerator may
small enough that this does not matter. An explicit numeri
example is presented in the next section.

There are several other ways to produce an energy dif
enceEd50. One possibility is to introduce a parameter
the trial state and vary it untilEd50. Another possibility is
changing the constraint. For example, we could discard c
figurations uf& for which the normalized overlap with th
trial wave function is less than or equal to some constana:

^CTuf&

@^CTuCT&^fuf&#1/2
<a. ~41!

Varying a until the average overlap of the discarded co
figurations and the constrained solutionuCc& is greater than
or equal to zero produces a variational upper bound for
energy, since thenEg>Ev . In this case it is not necessary t
evaluate the denominator of Eq.~39!. Also, this procedure is
exact for an exact constraining state, since in that case
could seta50.

We note that foraÞ0 the mixed estimateEm is not, in
general, equal to the growth estimateEg , as there is a finite
surface term that contributes to the difference. In fact,
difference Eg2Em provides a measure of the error intro
duced by the constraint. Numerical examples are provide
the following section.

This method is general in that it produces a variatio
upper bound to the energy for any Hamiltonian and any c
straint. The only restriction is thatuCd& has a positive over-
lap with the eigenstatêCcu of the constrained propagation
This restriction naturally implies a repulsive contribution
Eg and an increase in the value of the energy. This algorit
can be made quite general and applied to a variety of in
esting situations.

B. Numerical example

In this section we consider a simple numerical exam
illustrating the behavior of the various energy estimato
The particular example is the two-dimensional~2D! Hubbard
model on a 434 lattice with five up-spin and five down-spi
electrons. The exact ground-state energy of this small sys
was obtained by direct diagonalization. For the intermedi
coupling ofU58t and t51, the energy is217.51037.14

We used the free-particle wave functions for both the c
straint and the importance function in a series of CPM
calculations. As a variational wave function, the free-parti
wave functions are quite inaccurate, yielding an energy
211.50. We also used population sizes of 1000–2500 c
figurations, divided into two halves for independent left- a
right-hand wave functions. Averages were computed o
30–100 blocks with a propagation time~number of steps
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times Dt) of 2–10 per block. We verified that we hav
reached the equilibrium state before computing averages
that the blocks were large enough to avoid difficulties w
autocorrelations among individual energy estimates. All c
culations were performed on single workstations, though
tensions to large systems would require a parallel implem
tation.

The various energy estimators are plotted as a functio
the size of the time stepDt in Fig. 2. The exact ground-stat
energy is shown as a circle at the extrapolatedDt50 limit.
The two dashed curves illustrate the growth and mixed e
matesEg andEm . Eg is simply obtained from the change i
overlap with iteration

e2DtEg5
^CTuCc~t1Dt!&

^CTuCc~t!&
, ~42!

while Em is obtained by direct evaluation of Eq.~12!. Since
the propagator is approximate, these two estimates coin
only in the limit of smallDt.

As apparent from the figure, these two estimates
slightly below the exact energy. The value ofEg , extrapo-
lated to Dt50, is 217.517(2). During the course of this
calculation, we also evaluatedEd . In this case,Ed is small
and positive, and adding this difference toEg should produce
a variational upper bound to the ground-state energy.
trapolating toDt50, we findEd50.010(1), andhenceEv
5217.506(2). The accuracy of the variational bound
quite surprising: the exact energy is recovered with an ac
racy of two parts in 104, or better than 99.9% of the differ
ence between the exact and trial state energies.

We also plotted in Fig. 2 the result of a direct calculati
of Ev . Since we have independent calculations of the le
and right-hand states, it is possible to combine these in
direct calculation of the variational energyEv . In contrast to
the other estimators, this calculation should yield a va
tional upper bound independent of the time stepDt. We find
this to be true, but with a somewhat larger statistical er
than the other estimators. There also appears to be s

FIG. 2. Energy estimators as a function of time step for the
34 Hubbard model described in the text. Solid symbols indic
estimators which are variational upper bounds to the exact ene
nd
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residual statistical bias resulting from the finite populati
size. This estimator may be more difficult to compute re
ably for larger system sizes.

The statistical errors forEd also increase rapidly with
system size. Primarily this is a result of a large statisti
error in the denominator@Eq. ~39!#. Particularly for our
simple choices of trial states, the overlaps of the configu
tions representing the left- and right-hand population c
vary dramatically. The alternative method of altering t
constraint slightly@Eq. ~41!# should produce a more favor
able scaling with system size, though it remains to be de
onstrated that this is practical for very large simulations.

For the 434 case, we explicitly changed the constraint
introducing a finite value ofa. We could achieve a varia
tional upper bound by settinga50.0005; fora50.0003 we
could explicitly see that the sign of the overlap^CcuCd&
could lead to a violation of the upper bound. Fora
50.0005 and a time step of 0.005, we obtain a mixed e
mate Em5217.518(3) and a growth estimateEg5
217.505(3). Recall that onlyEg provides an upper bound in
the limit of zero time step. However, the small differen
Em2Eg indicates the accuracy of the solution. Extrapolati
to zero time step yieldsEg5217.510(10).

We also considered a 636 lattice with 13 spin-up and 13
spin-down electrons, again forU58. We are unaware of any
exact or quantum Monte Carlo calculations for this syst
size at this filling. These larger system size results are me
to serve as guides for future use rather than exhaustive
culations. They were obtained on a single-CPU workstat
over the course of a few days.

For the 636 system the constanta must be decrease
significantly. This is rather natural as one would expect it
scale roughly with a small power of the number of sing
particle orbitals. Again we use approximately 1000 config
rations averaged over 30–100 individual blocks with a to
propagation time of 2–4 per block. Here it is not clear if t
original choice ofa50 provides a variational upper bound
estimates ofEd bracket zero within the statistical errors o
the calculation. Fora50 we obtainEm5Eg5236.05(05).

Increasing the constanta to 1026 provides a variational
upper bound. In this case we obtainedEm5235.75(05) and
Eg5234.55(10) for a time step ofDt50.005. Extrapolat-
ing to Dt50 yields Em5235.80(05) and Eg5
235.25(20). It is possible that this bound could be furth
improved by using a somewhat smaller value ofa. Again,
the few percent difference betweenEg andEm indicates the
accuracy of the calculation.

V. CONCLUDING REMARKS

We presented several differences between
constrained-path and fixed-node Monte Carlo methods, s
major and some minor. The most significant consequenc
these differences is the mixed estimator in the CPM
method not being an upper bound to the exact energy as
in the fixed-node method. Alternate ways of producing
upper bound have been introduced.

While not an upper bound, the mixed estimator in t
CPMC method was argued to be very near the exact ans
Experience shows it is almost always above the exact
swer, and in cases where the CPMC results have been c

e
y.
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pared to fixed-node results, the CPMC mixed estimates
the energy always lie closer to the exact answer than
upper bound produced by the fixed-node method.15 Presum-
ably this accuracy is a consequence of the quality of
estimates of the wave function. As a rule of thumb, we fi
that the fewer nodal crossings the more accurate the pre
tion of the energy is. This observation is supported by
method discussed in Sec. IV to correct the mixed estimat
it produces an upper bound. This method depends on c
puting a contribution from those walkers thrown away;
none are thrown away~after the sampling is from the limit
ing distribution!, then the CPMC method in fact becom
exact.

There are several other differences between the meth
worth mentioning. In one continuous spatial dimension,
incident planes (xi5xj for all i and j corresponding to the
same spin species! exhaust the nodal surface set for loc
potentialsV; therefore, in the fixed-node method one can
the exact ground-state energy by using any nodal sur
with this property. The free-fermion wave function suffice
For general lattice fermion problems, even in one spa
dimension, the situation is more complicated: there are e
nodal surfaces that are not coincident planes. For cer
classes of Hubbard-like models the latter exhaust the wh
nodal set; therefore, it is possible to avoid the sign probl
and get the exact solution.16 On the other hand, the lattic
version of the fixed-node method11 always provides a varia
tional upper bound to the exact ground-state energy reg
less of the dimensionality, unless the constraining state is
exact ground-state wave function. We have been unabl
develop a similar understanding for the constrained-p
method where in one dimension we observe an absenc
nodal crossings and the mixed estimate of the energy ag
ing with exact results to statistical accuracy.17 We comment
that care must be taken in using nodal crossing as a rul
thumb. The accuracy of the Trotter approximation is co
trolled by the size ofDt. If Dt is large, the approximation is
poor, and nodal crossings can be induced into a problem
which there is no sign problem. IfDt is too small, the propa-
gation through phase space is too slow. For a poor choic
importance sampling population control can sweep aw
walkers that should cross the surface before they actually

We also remark that in the CPMC method there is mu
less need to perform a variational optimization ofuCT&
through Jastrow or Gutzwiller factors as seems to be ne
sary in the fixed-node method.8 This optimization process
does not affect the nodal surface but does reduce the en
of the starting configuration. While there is always som
advantage in doing this, the results of the CPMC meth
display considerable robustness to the choice of the c
straining wave function, which is also typically used as t
starting configuration. Simple choices, like free-fermi
wave functions, seem to work well. Quite different choic
of uCT& usually give satisfyingly similar results.8

In closing, we remark that some of our observations ab
the mixed estimator for the energy might be useful in co
structing and assessing estimation procedures used in
standard auxiliary-field projector quantum Monte Ca
method.18–20 In that method, the energy or more genera
some observableO is typically estimated21,22,19from
of
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O~t,t8!5
^CTue2(t2t8)HOe2t8HuCT&

^CTue2(t2t8)He2t8HuCT&
, ~43!

and then for larget this expression is either averaged ov
several values oft8 or evaluated at justt85t/2. Clearly, the
latter procedure may be preferable, even though the for
may have lower variance, as this estimator can be rewri
as

O~t,t8!5
^CLuOuCR&

^CLuCR&
~44!

revealing that fort8Þt it is basically just a mixed estimator
For estimating the energy or an observable that comm
with H, the utility of this estimator depends on how clo
either^CLu or uCR& approaches the ground-state wave fun
tion. For estimation of observables that do not commute w
the HamiltonianH, its utility depends on how close bot
^CLu and uCR& approach the ground-state wave function.
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APPENDIX: ILLUSTRATIVE EXAMPLE

We now introduce an exactly solvable fermion model
illustrate and visualize several features of the constrain
path method. This model has the Hamiltonian,

H52t~c1
†c21c2

†c31c2
†c11c3

†c2!1U~n1n21n2n3!

5T1V, ~A1!

and corresponds to spinless fermions coupled throug
nearest-neighbor repulsive interactionU on a three-site lat-
tice with open boundary conditions. In the following we w
concentrate on the two-particle solutions for which t
ground state is

uC0&5
1

A2t21~U2E0!2
@ t~c1

†c2
†1c2

†c3
†!

1~U2E0!c1
†c3

†#u0&, ~A2!

and E0, the ground-state energy, equalsU/2
2A(U/2)212t2.

Since we want to study explicitly the~imaginary-time!
evolution of the distribution of Slater determinants that ar
as a consequence of the constrained-path approach, we
to have some way of parametrizing the differentiable ma
fold of Slater determinants of two particles that has dime
sionN(M2N)52(322)52. We can parametrize a state
the two-particle Hilbert spaceH2 that belongs to the set o
normalizedSlater determinants by the 332 matrix,



e
b

r-
n-
nc
y

u
.

er

ity
de

In a
uct

me
om

the
,

a
C
the
be

f

om-

ve

12 796 PRB 59CARLSON, GUBERNATIS, ORTIZ, AND ZHANG
F5S cos~u12u2! 0

cosu1 cosu2

sinu1 sinu2

D . ~A3!

Therefore, the two angles (u1 ,u2) specify a point in the
manifold, and any stateuC& belonging to the Hilbert spac
H2 having support in that manifold can be represented
C@u1 ,u2#[^fuC&. In general, the usual property of a fe
mion wave function to be totally antisymmetric in spi
coordinate space is lost in this representation. For insta
the ground state of our model fermion system is given b

C0@u1 ,u2#5
1

A2t21~U2E0!2
$cos~u12u2!@ t cosu2

1~U2E0!sinu2#1t sin~u22u1!%, ~A4!

which is neither symmetric nor antisymmetric under perm
tations ofu1 andu2. Contour plots of it can be found in Fig
3 for different values of the interaction strengthU. In the
noninteracting case,U50, the ground state is a single Slat
determinant represented by the matrix

FT5S A3
4 0

1
2 ~11A 2

3 ! A 1
3

1
2 ~A22A 1

3 ! A 2
3

D , ~A5!

corresponding to the point u1,T5u2,T2p/6, u2,T

5arccos 1/A3 in the manifold.
For a given value ofU we would like to project out the

ground state from this noninteracting state. For simplic
we will leave out importance sampling and use a first-or
Trotter decomposition for the short-time propagator

FIG. 3. Contour plots of the two-fermion ground-state wa
function ^fuC0& for various values of the interaction strengthU/t.
y

e,

-

,
r

e2DtHuf&5e2DtVe2DtTuf&1O~Dt2! ~A6!

and stochastically iterate this expression for each walker.
matrix representation this iteration is equivalent to a prod
of noncommuting random matrices, i.e.,F(t)5U(t)FT

5) i 51
n (exp@2DtV#exp@2DtT#)FT , where the symmetric

matrix exp@2DtT# is given by

e2DtT5S u11

2

v

A2

u21

2

v

A2
u

v

A2

u21

2

v

A2

u11

2

D ~A7!

with u5cosh(A2tDt), v25u221. After the use of the dis-
crete (U.0) Hubbard-Stratonovich transformation

exp@2DtUnjnj 11#5 1
2 exp@2DtU~nj1nj 11!/2#

3(x561exp@mx~nj2nj 11!#,

the interaction part of the propagator at any imaginary-ti
slice i is represented by one of the four diagonal rand
matrices@each chosen with probability 1/4, i.e.,P(x)51/4],

e2DtV( i )[S a i 0 0

0 b i 0

0 0 g i

D
5e2DtU/2H S e6m 0 0

0 e2DtU/2 0

0 0 e7m
D ,

S e6m 0 0

0 e2DtU/272m 0

0 0 e6m
D J , ~A8!

where coshm5exp@DtU/2#. AlthoughU(t) is a random ma-
trix, its determinant detU(t)5exp@22tU# is not a random
number.

After a short propagation@Eq. ~A6!#, each point of the
Slater determinant manifold, representing the state of
system, performs a Brownian walk inu space. Therefore
one can consideru1(t) and u2(t) @such thatu1(0)5u1,T ,
and u2(0)5u2,T] as a set of random variables defining
random walker in imaginary time. However, in the CPM
method, to avoid the fermion sign problem, we constrain
walker with a constraining state that here we choose to
uC0(U50)&. In other words, each time Eq.~A6! is iterated,
we question if the sign of det@FT

TF(t)# has been changed. I
it has, then we ‘‘kill’’ the walker.

For the present example, the determinant can be c
puted analytically: At any time stepn>1,

det@FT
TF~t!#5

u1v

2n11
@a1b1f 21b1g1g212a1g1h2#;

~A9!
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where the functionsf i ,gi , andhi are most simply obtained
from the backwards recursion relations

f i5a ib i~u11! f i 111b ig i~u21!gi 1112a ig ivhi 11 ,

gi5a ib i~u21! f i 111b ig i~u11!gi 1112a ig ivhi 11 ,

hi5a ib iv f i 111b ig ivgi 1112a ig iuhi 11 , ~A10!

with f n115gn115hn1151 being the initial conditions.
Clearly the determinant Eq.~A9! is always positive, inde-

pendent of the values ofn,Dt, and U, which means that
there is no sign problem. Nevertheless, this example help
illustrate several important issues. The first is that the ex
ground-state energy can be stochastically obtained~as we
will show below! even if the nodal surface of̂fuCT& is
approximate. The second issue deals with the practical
merical implementation of the method. A ‘‘false’’ sign prob
lem „i.e., det@FT

TF(t)#,0… can occur as a consequence
numerical round-off errors. In fact, the use of matrix stab
zation techniques is crucial to avoid such phenomenon.21

Figure 4 shows the energy mixed estimatorEm as a func-
tion of imaginary time. All walkers start (t50) at the point
(u1,T ,u2,T) in u space. That means thatEm(t50)5U/2
2A2t, and as time evolves,Em→E0 if the constraint is not
evoked. As mentioned above, this is the case if matrix st

FIG. 4. Energy mixed estimator as a function of imaginary tim
averaged overNw walkers. The horizontal dashed line indicates t
value of the exact ground-state energyE0520.19615t.
Le

-
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lization techniques are properly used, otherwise we obse
‘‘false’’ nodal crossings. A typical random walkeru(t) is
displayed in Fig. 5. This figure clearly denotes that most
the time the walker prefers to stay near the upper right cor
of the space. This behavior is evidenced in the lower pane
the same figure, where it is shown that when the walker i
the upper right corner inu space the overlap with the exa
ground state is maximum~in fact, it is almost one!.

FIG. 5. The upper panel shows a typical random walk inu
space. Att50 the walker starts at (u1,T ,u2,T). The random walk
never crosses the nodal surface of^fuCT&. The lower panel dis-
plays the overlap of the walker with the exact ground state and
distance of the walker from the origin. Notice the clear correlat
between these two quantities.
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