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Elastic and optical properties of a- and k-Al2O3
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We present theoretical results for various properties of the stablea and metastablek phase of alumina, in
particular elastic and optical properties. Two different computational methods have been used, the dacapo
plane-wave-pseudopotential and the full potential linearized muffin tin orbital methods. The calculations are
based upon a recent determination of the crystal structure ofk-Al2O3. Comparison between the two methods
and available experimental data show that they are both reliable for calculating the ground-state and mechani-
cal properties for this type of complex material.@S0163-1829~99!09519-3#
t
lu
n
d
-
its

.
ts
t
s
in

or
ri-
di
s
le

ra
o

de
n

te
t

th
o

re

in

en

lo
na

be-

nt
ked
py-

or
ion

oc-
he
e

est-
bor

e
an

si-
the

g
wo
py
nes.
the

ties
of

and
ure
I. INTRODUCTION

Aluminum oxide~alumina! is a ceramic material of grea
interest both for applications and fundamental studies. A
mina is also fascinating from the point of view that it ca
appear in many different phases. During the last few deca
the stablea phase~corundum! has undergone thorough ex
perimental and theoretical investigations. A review of
properties is given by French.1 The material is highly insu-
lating, characterized by mixed ionic and covalent bonding
is also very hard and wear resistant. Recent developmen
industrial applications of alumina have directed interest
other, metastable, phases of alumina, in particular the
calledg andk phases. The complicated crystal structure
these cases has provided both experimentalists and the
cians with different, nontrivial challenges. As for the expe
mental situation, one of the main obstacles for deeper stu
of the properties of the various phases of alumina consist
the difficulty in producing a significant amount of a samp
that is pure and homogeneous, i.e., without distortions, g
boundaries, etc. On the theoretical side, the complexity
the crystal structure of this material has prevented its un
standing on a first-principle level. Instead, approximatio
and phenomenological theories with empirical parame
had to be relied upon in the investigations of ground-sta
mechanical, optical, and other properties. However, with
increase of computer speed and power, alumina has bec
accessible forab initio studies. Hence, there have been
sults presented from such studies of bulk2 and surface3

a-Al2O3, as well as for the important case of impurities
this system.4

The task of determining the positions of the constitu
atoms in k-Al2O3 has not been solved until recently5,6

~1997!, and in this paper, we present some results that fol
from a knowledge of the crystal structure of kappa alumi
PRB 590163-1829/99/59~20!/12777~11!/$15.00
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We especially focus on the differences and similarities
tween thek anda phases.

In general, the complicated bulk structure of the differe
phases of alumina can be viewed upon as close-pac
stacking sequences of oxygen with aluminum atoms occu
ing octahedral and/or tetrahedral interstices.

The a-Al2O3 unit cell can be described as hexagonal
rhombohedral, depending on the crystallographical definit

of the space groupR3̄c . The crystal structure7 consists of O
atoms in a close-packed hexagonal array with Al atoms
cupying two-thirds of the octahedral interstitial sites. T
oxygen layers are in anABABABstacking sequence, wher
each O atom is bonded to four Al atoms in a distortedsp3

arrangement, while the Al atoms are bonded to six near
neighbor oxygen atoms. There are two nearest-neigh
bond lengths, 1.86 Å and 1.96 Å .

The crystal structure of thek-Al2O3 unit cell belongs to
the orthorhombic class with point groupmm2 and space
groupPna21, containing eight molecular units per cell. Th
unit cell consists of four close-packed oxygen layers in
ABAC stacking sequence along thec axis and Al atoms
occupying both octahedral and tetrahedral interstitial po
tions. The Al ions can be arranged in six layers. Each of
Al layers situated between theB and A and between theC
and A oxygen layers consists of four Al atoms occupyin
octahedral sites. The remaining four Al planes consist of t
Al atoms each, where the Al atoms in two layers occu
tetrahedral positions, the other two occupy octahedral o
One of each type of plane will be in between the rest of
oxygen layers~see Fig. 1!.

Elastic constants of materials describe physical proper
of importance beyond the macroscopic elastic behavior
the material. For instance, elastic aspects of dislocations
dislocation interactions are accounted for, and fract
12 777 ©1999 The American Physical Society
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12 778 PRB 59B. HOLM et al.
toughness can be calculated using linear fracture mecha
Elastic constants are also a measure of the strength o
forces between the atoms. From a geophysical point of vi
the study of the elastic properties of Al2O3 is important for
the understanding of the elastic behavior of the earth’s lo
mantle. Al2O3 is also used as an example of the applicabi
of the classical elastic theory to trigonal crystals. Con
quently, there are a lot of experimental data available ab
the elastic constants ofa-Al2O3.

Gieske and Barsch8 have measured the six single-crys
elastic constants of Al2O3, using the ultrasonic pulse supe
position method as a function of hydrostatic pressure up
10 kbar. They found a linear pressure dependence for al
elastic constants. Tefft9 reported the temperature dependen
of the elastic constants ofa-Al2O3, using a resonance tech
nique in the temperature range of 80–900 K. Gotoet al.10

measured the elastic constants of single-crystala-Al2O3 up
to 1825 K using the rectangular parallelepiped resona
method. They have demonstrated that the elastic stiffn
constantsc11 and c33 show a large decrease, whilec12 and
c13 show only a slight decrease with temperature. Thec44
decreases linearly with temperature whereasc14 is almost
constant in the measured temperature range. Rece
Zouboulis and Grimsditch11 measured the elastic constan
c11, c33, andc44 using Brillouin scattering in the tempera
ture range 300–2100 K, extending by 300 K the high
temperature previously attained.

Although electronic structure calculations have recen
been performed fora-Al2O3, there is only one case that ha
been applied to the calculation of the elastic constant12

There, full potential linear combination of Gaussian-ty
orbitals–fitting function~LCGTOFF! technique was used t
obtain the equation of state and elastic constants of co
dum. Only the symmetry-preserving elastic constants,
c111c12, c33 andc13, out of six elastic constants were ca
culated. As far as other recent electronic struct
calculations2 of a-Al2O3 are concerned, they are limited t
the calculation of the lattice parameters, bulk modulus,
equation of state~EOS!.

FIG. 1. Crystal structure ofk alumina in three and two dimen
sions. Capital letters denote oxygen stacking layers and small le
the aluminum ones.
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The dielectric function is a key quantity for the study
the optical properties of a material. Accurate knowledge
the dielectric functions over a wide range of wavelengths
indispensable for many applications. There is a continu
experimental effort to study the optical properties of Al2O3.
Recently, Harmanet al.13 measured the optical constants
a-Al2O3 using spectroscopic ellipsometry in the nea
infrared–near-ultraviolet spectral region~1.2–5.4 eV! at
room temperature. They used their own data as well as
available in the literature for modeling of the optical co
stants over the 0–30 eV energy range. Tomikiet al.14 re-
ported the optical constants ofa-Al2O3 at 297 and 10 K over
the range of photon energies 6–120 eV.

Zouboulis and Grimsditch11 have shown that Brillouin
scattering can be used to measure the elastic and op
properties of materials. They have demonstrated the t
perature dependence of the ordinary and extraordinary
fractive indices. Bortz and French15 performed optical reflec-
tivity measurements on a single crystal ofa-Al2O3 from 5 to
40 eV using light produced by a laser plasma light sou
~LPLS!. This was the first application, to our knowledge,
LPLS to vacuum ultraviolet spectroscopy of solids.

In the late 1970s, Arakawa and Williams16 presented ab-
sorption data on anodized Al2O3 films for incident photon
energies from 5 to 18 eV. From their measured transmitta
and reflectance data of single-crystal Al2O3, they have de-
rived the optical constants, dielectric constants, and ene
loss functions over the energy range 8–28.5 eV. They h
interpreted their data in terms of excitons, interband tran
tions, and collective oscillations.

In spite of the availability of such a vast amount of e
perimental data, there has been no serious attempt to s
the optical properties theoretically withab initio methods.
There is only one first-principles calculation available f
the optical properties ofa-Al2O3. Ching and Xu17 studied
the electronic and optical properties using an orthogon
ized ~frozen-core! linear combination of atomic orbitals
~OLCAO! method in local-density approximation~LDA !. In
these calculations, no detailed comparison has been m
between experiment and theory.

The main aim of this paper is to presentab initio calcu-
lations of the elastic and optical properties of thek phase, as
well as to provide additional data for thea phase, as an
improvement over the calculations available in the literatu
The paper is organized in the following way. In Sec. II, w
give a brief review of the methods of calculation. Section
is devoted to the discussion of the electronic structure, o
cal response, and elastic properties. Finally, Sec. IV sum
rizes our results.

II. THEORETICAL BACKGROUND

The rapid development of theoretical methods and
crease of computer capacity during the past years has m
‘‘computational experiments’’ possible for more and mo
complex materials. Our calculations use two differe
approaches—the plane-wave pseudopotential met
~PWPP! ~Ref. 18! and the full potential linear muffin-tin or-
bital method~FPLMTO!.19 This enables us to compare th
performance of the former method with that of the latt
which can be considered more accurate as it does not de
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PRB 59 12 779ELASTIC AND OPTICAL PROPERTIES OFa- AND k-Al2O3
upon the typical pseudo-potential approximations.20 Both
methods rely upon density-functional theory~DFT!,21–23 but
while the PWPP method provides wave functions for
valence electrons only, the FPLMTO one takes the core e
trons into account as well, thus naturally demanding a m
more substantial computer effort.

The general background to DFT is well described in, e
the original papers21,22 and more recent reviews.24,25 In the
used dacapo program package,26 as in all PWPP methods
the interaction of the valence electrons with the atomic co
is represented by pseudopotentials. The pseudopoten
used for oxygen and aluminum are the norm-conserving
tentials of Troullier and Martins27 and Bacheletet al.,28 re-
spectively. The one-electron wave functions are expande
a plane-wave basis with a cutoff energy of 650 eV. To
duce the number ofk points needed we use a finite electron
temperature of 0.1 eV, when determining the occupat
numbers, and then extrapolate all total energies to zero e
tronic temperature.29 In the self-consistent iterations, eightk
points in a Monkhorst-Pack30 sampling are used. This i
deemed adequate for thek-Al2O3 crystal.31 The exchange
and correlation energy is treated self-consistently within
local-density approximation,32,33and non-self-consistently in
the generalized-gradient approximation~GGA!, so-called
post-GGA,34,35respectively, depending on the purpose of t
calculation.

The FPLMTO method19 solves a Dirac~for the core elec-
trons! and a~modified! Schrödinger equation~for the valence
and semicore electrons!. The total energy of the system
again obtained within the LDA, for which the
Hedin-Lundqvist36 parametrization is used. The wave fun
tions are expanded by means of linear muffin-tin orbit
inside the nonoverlapping muffin-tin spheres that surrou
each atomic site in the crystal.37,38 The muffin-tin radius is
consistently chosen such that the muffin-tin spheres occ
66% of the total volume. A so-called double basis set, wh
allows two tails with different kinetic energies for eac
muffin-tin orbital with a givenl-quantum number, has bee
used.

The calculations are performed for one fully hybridizin
energy panel, in which we use values for theEn’s related to
the valence orbitals: 3s, 3p, and 3d for Al and 2s, 2p, and
3d for O. Within the muffin-tin spheres the basis set, cha
density, and potential are expanded in spherical harmo
with a cutoff of l max56. Outside the muffin-tin spheres, i
the interstitial region, the wave functions are Hankel or Ne
mann functions, which are represented by a Fourier se
using reciprocal-lattice vectors. The same expansion is u
to represent the charge density and the potential. This tr
ment of the wave functions, charge density, and poten
does not rely upon any geometrical approximations.

A. Calculation of dielectric function

The (q50) dielectric function is calculated in the mo
mentum representation, using the FPLMTO result of o
electron structure calculation. This requires matrix eleme
of the momentum,p, between occupied and unoccupie
eigenstates. To be specific, the imaginary part of the die
tric function, e2(v)[Im e(q50,v), is calculated from39
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4p2e2

Vm2v2 (
knn8s

^knsupi ukn8s&^kn8supj ukns&

3 f kn~12 f kn8!d~ekn82ekn2\v!. ~1!

In Eq. ~1!, e is the electron charge,m its mass,V is the
volume of the unit cell, andf kn is the Fermi distribution.
Moreover,ukns& is the crystal wave function correspondin
to thenth eigenvalue with crystal momentumk and spins.

With our spherical wave basis functions, the mat
elements of the momentum operator are conveniently ca
lated in spherical coordinates and for this reason the mom
tum is writtenp5(mem* pm ,40 wherem is 21, 0, or 1, and
p215(1/A2)(px2 ipy), p05pz , and p15(21/A2)(px
1 ipy).

41

The evaluation of the matrix elements in Eq.~1! is done
over the muffin-tin region and the interstitial one separate
The integration over the muffin-tin spheres is done in a w
similar to what Khan,42 Oppeneer,43 and Gasche39 have done
in their calculations using the atomic-sphere approximati
A full and detailed description of the calculation of the m
trix elements is presented in Ref. 44. The summation o
the Brillouin zone in Eq.~1! is performed using a linea
interpolation on a mesh of uniformly distributed points, i.
the tetrahedron method. Matrix elements, eigenvalues,
eigenvectors are calculated in the irreducible part of the B
louin zone. The correct symmetry for the dielectric const
was obtained by averaging the calculated dielectric functi
Finally, the real part of the dielectric function,e1(v), is
obtained frome2(v) using the Kramers-Kronig transforma
tion,

e1~v![Re@e~q50,v!#

511
1

pE0

`

dv8e2~v8!S 1

v82v
1

1

v81v D . ~2!

For all our calculations of optical properties, the irredu
ible Brillouin zone has been sampled by 360k points for the
a phase and 240 for thek phase. In order to speed up co
vergence, we have associated each eigenvalue with a Ga
ian broadening of 270 meV.

B. Calculation of elastic constants for single-crystal
and polycrystalline aggregates

The crystal structure of thek phase is orthorhombic an
that of thea phase is trigonal. The respective symmetr
imply that there are nine independent elastic moduli for thk
phase and six for thea phase to be determined. Using thea
phase as a point of reference, we conclude that the PW
method is ample for this type of calculation. Furthermore,
we are concerned with energy differences only, the LDA
sufficient for good results. This fact has been observed
similar situations.4,45 Thus, the LDA has been used throug
out the calculation of elastic constants.

The calculations are made by analyzing the energetic
havior of the crystal when applying small strains~this was
accomplished by varying the primitive vectors of the u
cell!. As the strains couple to the vibrational modes, the
oms have to be relaxed for each variation of the unit c
when performing the total-energy calculations, as was d
by Karki et al.46 To guide the reader, we show how the ela
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12 780 PRB 59B. HOLM et al.
tic constants for thek phase were obtained. The ones for t
a phase are obtained in a similar manner, but in accorda
with its symmetry.

From the theory of elasticity, the change of energy p
unit volume in the crystal, when the vectors of the unit c
are being altered, is given by

dU5
1

2
~c11exx

2 1c22eyy
2 1c33ezz

2 !1c12exxeyy1c13exxezz

1c23eyyezz1
1

2
~c44eyz

2 1c55ezx
2 1c66exy

2 !.

For a change in the respective vector,

exx5
da

a
, eyy5

db

b
, ezz5

dc

c
, eyz5

dcb

b
,

ezx5
dac

c
, exy5

dba

a
,

whereda is the change in vectora in its own direction, and
so forth, whiledcb, e.g., means a change in vectorc in the
direction ofb. Now, a deviation from the metastable config
ration of k alumina will result in an increase of the tot
energy of the crystal. If, e.g., the vectora is changed by an
amountda, in the direction ofa, the change of total energ
dE will, to leading order, be proportional to the square
da, and so on. A simultaneous change of the length of
vectors will result in the following change of energy:

dE5AAda21BBdb21CCdc2

1ABdadb1ACdadc1BCdbdc.

The constantsAA, BB, CC, AB, AC, andBC are deter-
mined in the following way: By changing the length of ea
vector individually by different amounts, we obtain for ea
direction a table of energies as a function of the deviati
This table is then least-squares fitted to a function tha
parabolic to leading order, and thus the constantsAA, BB,
and CC are obtained from the curvature. To determine
other constants, the length of two vectors in the unit cell
changed simultaneously. With the previously known co
stants, a new fit over two variables can be made, say, of
functionsx2, y2, andxy. This will yield the remaining con-
stants. In a similar manner, for a pure shear, we chang
vector in the direction of another. In an obvious notation,
deviation in energy is given by

dE5Adcb21Bdac21Cdba2

and the constantsA, B, andC can be determined by a qua
dratic fit in one variable. So now we havedU5dE/V. The
total-energy calculations are for one unit cell, soV5abc.
Equating our parabolic fits to the expression fordU, and
identifying coefficients, we finally obtain

c1152AA
a

bc
, c2252BB

b

ac
, c3352CC

c

ab
,

c125
AB

c
, c135

AC

b
, c235

BC

a
,

c4452A
b

ac
, c5552B

c

ab
, c6652C

a

bc
.
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For polycrystalline samples it is not possible to calcula
the individual elastic constantsci j , but one can measur
polycrystalline bulk modulus and shear modulus. In the
erature there are several schemes for averaging the el
constants and sound velocities. For the comfort of the rea
we provide here a quick review of these schemes, and als
the definition of some of the physical quantities later p
sented.

Voigt47 has proposed that the averaging of the relatio
expressing the stress in a single crystal in terms of st
should be made over all possible lattice orientations. Reu48

has proposed the averaging of the relations expressing
strain in terms of the given stress.

According to the Voigt47 approximation, there is a simpl
relation between the isotropic shear and bulk moduli o
polycrystalline aggregate and the single-crystal elastic c
stants,ci j :

BV5 f 1~ci j !, GV5 f 2~ci j ! . ~3!

The above equations can be expanded as follows:

BV5
1

9
~c111c221c33!1

2

9
~c121c131c23!, ~4!

GV5
1

15
~c111c221c332c122c132c23!1

1

5
~c441c551c66!.

~5!

Reuss48 has derived a linear relation between the isotro
shear and bulk moduli of a polycrystalline aggregate and
corresponding single-crystal elastic constants,si j ~the com-
pliances!:

BR5 f 3~si j !, GR5 f 4~si j !. ~6!

The above equations can be expanded as follows:

BR5
1

~s111s221s33!12~s121s131s23!
, ~7!

GR

5
15

4~s111s221s33!24~s121s131s23!13~s441s551s66!
.

~8!

Hill 49 has proved that the Voigt and Reuss equations r
resent upper and lower limits of the true polycrystalline co
stants, and he has shown that the polycrystalline moduli
the arithmetic mean values of the Voigt and Reuss mod
and thus given by

GH5
1

2
~GR1GV!, BH5

1

2
~BR1BV!. ~9!

Now definitions follow of some other useful physical qua
tities, that describe the mechanical properties of a mate
and which will later be presented for the aluminas.

The longitudinal modulus can be written as

MH5BH1
4

3
GH . ~10!

Young’s modulusE can be calculated using Hill’s shear~G!
and bulk~B! moduli, given by the following equation

E5
9BG

3B1G
. ~11!
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Similarly the Poisson’s ratio can be defined, using Hill’s lim
its, by the following equation

n5
3B22G

2~3K1G!
. ~12!

The probable values of the average shear and longitud
sound velocities can be calculated from Hill’s equations
follows:

ns5AS GH

r D , n l5A~BH1 4
3 GH!/r. ~13!

The averaged sound velocity can be computed using
two equations above and can be defined as

nm5F1

3 S 2

ns
3

1
1

n l
3D G21/3

. ~14!

The Debye temperatureu, which is proportional to the soun
velocity, can be calculated by the equation50

uD5
h

k F 3n

4p S NAr

M D G1/3

nm , ~15!

whereh is the Planck’s constant,k the Boltzmann’s constant
NA Avogadro’s number,r the density,M the molecular
weight, andn is the number of atoms in the molecule.

III. RESULTS

A. Electronic structure and band gaps

The electronic structure has been calculated with both
PWPP1GGA and FPLMTO methods fora- and k-Al2O3.
In this section a general characterization of the results
given. For thea phase there are experimental results av
able for several quantities, while such are absent
k-Al2O3. In this way a comparison of theoretical and expe
mental results fora-Al2O3 serves to give an indication of th
accuracy of our predictions for thek phase.

Figure 2 shows the calculated PWPP total density
states for thea phase. The electronic states below the Fe
level are dominated by O-2p states. The corresponding up
per valence-band~UVB! density of states~DOS! peak is
about 7.2 eV wide and separated by a huge gap of abo
eV from the O-2s states, which have a DOS peak width
about 3 eV.

For thea phase, soft-x-ray and photon-energy-spectr
measurements show a UVB width of 9.2–9.5 eV,51 polarized
x-ray emission experiments show one around 8 eV,52 and
x-ray-photoemission measurements show one around
eV.53 The higher experimental values for the UVB width, c
to the calculated 7.2 eV, can be due to broadening proce
present in the experiment. The width of the lower valen
band~LVB ! O-2s DOS peak is calculated to be 3 eV, locat
at around216 to219 eV from the top of the valence ban
In the x-ray photoemission experiment this width is 6 eV53

This LVB difference may be due to correlation effects
these deep-lying semicore-like states, not accounted fo
the LDA. The bottom of the conduction band~CB!, i.e., the
peak around 10 eV, mainly consists of Al-3s states, and the
peak around 15 eV comes from the antibonding O-2p and
Al-3 p states. The CB also has a fair amount of contribut
from Al-3d states.
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The energy-band structure calculated for thea phase is
shown in Fig. 3. There is a direct band gap of 6.6 eV~Ref.
54! at theG point. The experimental band gap is 8.8 eV1

This type of underestimate is a well-known feature of DF
mainly when applied to semiconductors and insulato
which occurs because one is wrongly interpreting the t
unoccupied states of the system with the correspond
Kohn-Sham states of DFT.55 The top of the valence band i
very flat, which suggests a very large effective hole ma
This is also an indication of the strong bond between

FIG. 2. Calculated density of states~DOS! for Al2O3 in ~a! a
phase and~b! k phase~Ref. 6! at experimental volume.
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12 782 PRB 59B. HOLM et al.
corresponding electrons and the host atom. The calcul
average effective mass of the conduction band at theG point
is around 0.4 electron masses. Our effective mass supp
the measurements of transport properties by Willset al.,56

which suggest that the dominating charge carriers are e
trons.

In the case of thek phase, the O-2p and O-2s states are
8.3 and 4.3 eV wide, respectively, and separated by a ga
8.2 eV. The peak in the LVB DOS is situated at around216
to 220 eV from the top of the valence band. There is a dir
band gap of 5.4 eV for thek phase at theG point.6

In short, a- and k-Al2O3 have rather similar electroni
structures. The major differences—in addition to those
posed by the difference in atomic structure—are t
k-Al2O3 has slightly broader energy bands, a wider ene
gap between the upper and lower valence bands, and a
rower band gap, i.e., bridging at the Fermi level. The ove
agreement between experiment and theory fora-Al2O3

makes the predictions at large fork-Al2O3 likely to apply
also in reality.

FIG. 3. Calculated energy band structure of Al2O3 in ~a! a
phase and~b! k phase~Ref. 6! at the equilibrium volume along the
major symmetry directions.
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B. Optical properties

From the electronic structure, optical properties of bo
a- and k-Al2O3 have been calculated with the FPLMT
method. For thea phase, there are experimental results
several optical quantities given by Arakawa and Williams16

while such are absent in thek phase. Hence, a comparison
theoretical and experimental results fora-Al2O3 serves to
give an indication of the accuracy of our predictions for t
k phase.

Figures 4 and 5 show the imaginary and real parts of
dielectric functions of thea andk phases,e2(v) ande1(v),
respectively. For thea phase our calculatede2(v) shows
two main peaks at around 11 and 15.5 eV and two we
shoulders at around 12.5 and 14 eV; whereas for thek phase,
it has two main peaks at around 10 and 14 eV and one w
shoulder around 15.5 eV. The experimental data16 for
a-Al2O3 show interband transitions at 13, 16.5, and 20.5 e
The latter small structure is absent in our calculatede2,
where we just see a smooth variation in this energy ran
For the first two main peaks there is a constant differe
between the calculated and experimental positions, ma

FIG. 4. Calculated~solid! and experimental~Ref. 16! ~dotted!
imaginary part of the dielectric function,e2 for a-Al2O3 and the
calculated one~dashed! for the k phase.

FIG. 5. Calculated~solid! and experimental~Ref. 16! ~dotted!
real part of the dielectric functione1 for a-Al2O3 and the calculated
one ~dashed! for the k phase.
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because our band gap is smaller than the experimental
by approximately 2 eV. If we shift the calculated curve
2.0 eV, the calculated spectrum would be in better agreem
with experiment. However, the steep slope near the abs
tion edge and the sharp peak, both present in the experim
tal spectrum, are absent in the calculated one. This excit
peak is naturally missing in our calculated spectra, beca
they only involve interband transitions from valence-
conduction-band states.

The behavior of thee2(v) curve fork-Al2O3, in general,
agrees with that of thea phase. However, the rigid shift i
about 3.0 eV.

The origins of the different peaks in the calculated diel
tric functions can be deduced in terms of interband tran
tions. According to selection rules, only such transitions
allowed that imply a change of the angular momentum qu
tum numberl by 1, i.e.,D l 561. Fora-Al2O3 the first peak
at around 11 eV in the calculated spectrum can be assig
to transitions from Al-3p to Al-3s states. Transitions from
Al 3d to Al 3p may give rise to the second main pe
around 15.5 eV.

The real part of the dielectric functione1 is given by a
Kramers-Kronig analysis ofe2. In Fig. 5 the calculatede1 of
both phases are compared to experimental data of tha
phase. As one can see, most features of the measured
are well reproduced by our calculations. The calculatede1
curves for thea andk phases become negative at 17.3 a
18.2 eV, and both become positive again at 23.6 eV,
corresponding experimental values for thea phase being
17.7 and 24.5 eV, respectively. In the high-energy regi
the calculated and measurede1 curves show very similar
behavior. On the other end of the spectrum, the dielec
function e1(0) is calculated to be 3.2 for both thea andk
phases, whereas the experimentala-Al2O3 result is 3.1,13

hence showing very good agreement. The calculation
Ching and Xu17 gives a value of 3.86, in worse agreeme
than our FPLMTO value.

The calculated optical constantsn and k are shown in
Figs. 6 and 7 together with the experimental data of Araka
and Williams. Our calculated values of the ordinary refra
tive indexes for thea andk phases are both 1.79, while th

FIG. 6. Calculated~solid! and experimental~Ref. 16! ~dotted!
optical constantn for a-Al2O3 and the calculated one~dashed! for
the k phase.
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measured values by Zouboulis and Grimsditch is 1.774
the a phase. The calculated value of the ordinary refract
index by Ching and Xu17 using the OLCAO method is 1.96
Our present theoretical result for the refractive index is
excellent agreement with experiment. In passing, we po
out here that we do not agree with the argument of Ch
and Xu, who claim that the difference in their calculated a
experimental values is due to the excitonic effects that
not included in the theory. Our calculated spectra in Figs
and 7 show a good general agreement with experiment
though there is some discrepancy regarding the peak p
tions, mainly, as already mentioned, originating in the sho
comings that follow when describing the conduction regim
of the band structure with DFT.

We have also calculated the optical reflectivity conduct
ity. We have compared these with the recent experime
data of Bortz and French.15 In Fig. 8 we show the reflectivity
spectrum. The measured spectrum shows an excitonic p
at 9.1 eV, which is not present in our calculations. Howev
the other features of the experimental spectrum, at 1
12.9, 14.9, 17.4, and 21.8 eV, are well represented in

FIG. 7. Calculated~solid! and experimental~Ref. 16! ~dotted!
optical constantk for a-Al2O3 and the calculated one~dashed! for
the k phase.

FIG. 8. Calculated~solid! and experimental~Ref. 15! ~dotted!
reflectivity (%) fora-Al2O3 and the calculated one~dashed! for the
k phase.
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calculations, which show features at 11.3, 12.5, 14.4, 1
19.5, and 22.0 eV, respectively. Bortz and French also
served a peak at 32 eV, as do we in our calculations. T
last peak arises from interband transitions from the LV
O-2s states to the antibonding O-2p states. Observe that th
calculated positions of the features are very similar for b
phases.

The calculated and experimental optical conductivities
plotted in Fig. 9. The measured conductivity is genera
higher than the calculated one. Our calculations show
main peaks, and features at 11.5, 12.4, 14.5, 16.5, 17.4,
30.5 eV, again for both phases. The measured spec
shows an excitonic feature at 9.1 eV and other feature
12.4, 13.2, 14.5, 17.4, and 31.5 eV. Thus, apart from featu
resulting from many-body effects~excitons, etc.!, good
agreement between the calculated and measured spectr
been obtained. Further, the similarity of the last few physi

FIG. 9. Calculated~solid! and experimental~Ref. 15! ~dotted!
conductivity ~arb. units! for a-Al2O3 and the calculated one
~dashed! for the k phase.

FIG. 10. Calculated~solid! and experimental~Ref. 16! ~dotted!
energy loss function~arb. units!, 2 Im 1/e for a-Al2O3.
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properties calculated for the two phases investigated in
cates their similarity as far as optical properties are c
cerned.

In Fig. 10, we have plotted the energy-loss functi
2 Im(e)21 for the a phase. This function is proportional t
the probability that fast electrons traversing the bulk mate
will lose energy. For a free-electron gas, withe2;0,
2 Im(e)21 has a maximum at the plasma energyEp given
by

Ep5
h

2p F S 4pNne2

meff
D G1/2

, ~16!

where N is the number of atoms~or molecules! per unit
volume, meff the effective mass of the electrons, andn the
number of electrons per atom~or molecule! that would par-
ticipate in the volume-plasma oscillations induced by f
electrons traversing the material. We can assumemeff to be
the free-electron mass, because, in the absence of stron
terband transitions in the vicinity of the plasma resonan
the behavior of the valence electrons would be virtually li
that of unbound or free electrons that undergo plasma os
lations. Hence, one would expect the peak of2Im(e)21 to
be in the vicinity of the plasma energy calculated using
total number of valence electrons. The total number of
lence electrons per Al2O3 molecule is 24 and substitution o
this number and withmeff equal to the free-electron mas
into the above equation yieldsEp527.8 eV. It is seen from
Fig. 10 that for Al2O3 , 2 Im(e)21 has its maximum at 25.8
eV from experiment and at 25.0 eV from our calculation
thus showing that our assumptions are reasonable.

TABLE I. Comparison between the experimental and theoret
crystallographic lattice parameters for Al2O3.

Expt. Calc.
ka ab k a

V (Å3) 359.10 255.04 352.07,c 351.2d 255.1,e 253,d 255e

b/a 1.7189 1.0 1.7182 1.0
c/a 1.8482 2.73 1.8481 2.731,c 2.73,d 2.721e

B ~GPa! 254.4 251.8,c 246.7d 244.0,c 253.5,d 243.8e

aReference 65.
bReference 64.
cPWPP.
dFPLMTO.
eLCGTOFF.

TABLE II. Calculated~PWPP! values for the elastic constant
ci j for k-Al2uO3 together with calculated and experimental ones
the a phase.

Elastic constants~GPa!

Constants c11 c22 c33 c44 c55 c66 c12 c13 c23

k-Al2O3 460 410 450 120 140 160 125 95 14

a-Al2uO3 480 480 140 155 117
a-Al2O3

a 497 502 147 163 117

aReference 8.



4
4
3

PRB 59 12 785ELASTIC AND OPTICAL PROPERTIES OFa- AND k-Al2O3
TABLE III. The isotropic bulk modulus (B in GPa!, shear modulus (G in GPa!, longitudinal modulus
~GPa!, Young’s modulus~GPa!, and Poisson’s ratio.

BR BV BH GR GV GH MH E n

k-Al2O3 229.4 227.8 228.6 144.8 147.7 146.3 423.7 361.7 0.2
a-Al2O3 245.7 246.4 246.1 156.8 158.6 157.7 456.4 390 0.2
Expt. (a-Al2O3) a 253 255 248 164 165.3 164.7 467.6 404.6 0.2

aReference 8.
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C. Elastic properties

In this section we present our results for the elastic pr
erties. Also for these, there exist experimental data for tha
phase but none for thek phase. So thea alumina results
serve to give confidence in the methods, while thek ones are
theoretical predictions. We emphasize again that the rea
that the elastic constants ofk alumina have not yet bee
determined experimentally is that this phase only grows
small grains. It is thus hard to obtain pure, isotropic, spe
mens that are large enough for experimental investigatio

Calculated values for equilibrium volume, axial ratio
and bulk moduli obtained from the EOS for thek and a
phases are presented in Table I. For thea phase we have als
included the results from the recent calculations
Boettger12 and thus demonstrate that three different com
tational methods give results in mutual agreement and
satisfactory agreement with experiment.8

Table II lists calculated values for the elastic constants
the k anda phases along with experimental data for thea
phase. As previously mentioned, six and nine independ
elastic constants exist for thea and k phases, respectively
consistent with their symmetry. In general, our calcula
elastic constants for thea phase are lower than the expe
mental ones by some 4–5 %. In the case ofc13, our calcu-
lated value agrees exactly with the experimental value.

One can observe that the calculated elastic constants,c11,
c33, c44, c12, andc13, of thek phase are 20–30 GPa lowe
than the corresponding calculated elastic constants of tha
phase. There is one exception, however, namelyc66 for
which the calculated values for both phases are equal.

In order to compare our calculated elastic constants of
a phase with the values from the LCGTOFF calculation12

and lattice-dynamics~LD! calculations,57 Table III shows
calculated numbers for the four symmetry-preserving ela
constants,c111c12, c33, c13, andct , together with experi-
mental data.8 The tetragonal shear modulus,ct, can be de-
fined by the following equation

ct5
1

6
@~c111c12!12c3324c13#. ~17!

There is very close agreement between ours
Boettger’s12 calculated values for these four elastic consta
of a-Al2O3 ~Table III!. His calculated values of elastic con
stants (c111c12) and ct, however, are in better agreeme
with experiment than our present values, while forc33 and
c13 the opposite is true. The deviations from experiment
typically 5% or less, nonetheless. As argued in Ref. 12,
systematic deficiency can again be attributed to the DFT.
also possible to calculate three other elastic properties
are routinely accessible from EOS measurements.
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The static bulk modulus58 can be calculated by the follow
ing equation:

B5
c33~c111c12!22c13

2

~c111c12!12c3324c13

. ~18!

The pressure derivatives of the hexagonal lattice const
are given by

a85
c332c13

2c13
2 2c33~c111c12!

~19!

and

c85
~c111c12!22c13

2c13
2 2c33~c111c12!

. ~20!

As seen in Table IV, our calculated values for the press
derivatives and Boettger’s values are in good mutual a
experimental agreement, as are those for the bulk modu

In Table V, we present our calculated bulk and she
moduli in the Ruess, Voigt, and Hill approximations for th
k and a phases, together with the longitudinal modulu
Young’s modulus, and Possion’s ratio within the H
scheme. Our calculated values for polycrystalline aggreg
are lower for thek phase than for thea phase. In compari-
son with experimental ones, possible only for thea phase,
all our calculated values are within less than 5% off t
measured ones.

In Table VI, we have also calculated the Debye tempe
ture for thek anda phases from our elastic constants. O
calculated sound velocities and Debye temperatures for tha
phase are within 2% of the experimental value. The cal
lated values for thek phase are lower than for thea phase.

TABLE IV. Theoretical and experimental values for fou
symmetry-preserving elastic constants of corundum~in GPa!.

(c111c12) c33 c13 ct

LDa 697 455 130 181
LCGTOFFb 652.4 478.3 115.4 191.2
PWPP~present! 635 480 117 188
Expt.c 660.2 501.8 117.2 199.2
Expt.d 660.1 500.9 116.0 199.6

aReference 57.
bReference 12.
cReference 8.
dReference 9.
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All these comparisons with experiment fora-alumina sug-
gest that our calculated values for thek phase should be
highly reliable.

In an experimental investigation of the mechanical pro
erties ofk alumina by So¨derlundet al.,59 elastic anisotropy
has indeed been found, in contrast to the elastic isotrop
a-alumina. The elastic constant in the direction of crys
growth was found to be higher than in perpendicular dir
tions. The direction of growth is parallel toc, and elastic
properties along this direction are easier to determine t
properties perpendicular to it. In the same investigation
was also found that the elastic constants ofk-Al2O3, as com-
pared to thea phase, are lower mainly in directions perpe
dicular to c, while alongc they are higher. Our theoretica
results are in satisfactory agreement with these observat
since we notice that on the average the constants that d
mine the elastic behavior perpendicular to thec axis
(c11, c22, andc12) are lower than the constants describi
properties along it (c33, c13, andc23). However, our results
indicate a profound elastic anisotropy between thea and b
axes, which has yet to be seen experimentally.

IV. CONCLUSIONS

We have presented results for electronic, elastic, and
tical properties of thek and a phases of aluminum oxide
with two different electronic structure methods. As far as
k phase is concerned, our results for the elastic and op
properties are predictions, and we welcome experiment
prove them. For thea phase, our calculations give differen
results for the elastic constants, confirming the earlier fi
principles calculation by Boettger12 for symmetry-preserving
elastic constants and extending the database to nonsymm
ones. Our calculated values for shear and bulk modul
polycrystallinea-Al2O3 aggregates are in good agreeme
with experiment, as are the calculated shear and longitud
velocities as well as the Debye temperature.

For thea phase, we have also made a detailed comp
son between our calculated optical properties and meas
spectra from two different experiments. Our calculated v
ues for the ordinary refractive index and static dielect

TABLE V. Theoretical and experimental values for the bu
modulus (B; GPa! and the pressure derivatives of lattice paramet
(a8 andc8; GPa21) for a-Al2O3.

B a8 c8

PIB ~TF!a 264 20.000 89 20.001 09
PIB ~KS!a 356 20.001 10 20.001 46
OLCAOb 242
LAPW1LOc 257
LCGTOFFd 248.7 20.001 27 20.001 48
PWPP~present! 246.2 20.001 31 20.001 45
Expt.e 254.4
Expt.f 257 20.001 22 20.001 36
Expt.g 239 20.001 37 20.001 34

aReference 67. eReference 64.
bReference 17. fReference 65.
cReference 2. gReference 66.
dReference 12.
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functions are in better agreement with experiment than
earlier calculation of Ching and Xu.17 However, the remain-
ing discrepancy between the calculated and experimenta
electric functions is somewhat unsatisfactory. A remedy
this would be to take excitonic effects into consideration.60

To give an account for our conclusions of the cons
quences of the phase transition betweena andk alumina, we
note the following.

Optical properties seem to be virtually unaffected, th
being indicated by our reported similarity between the r
evant quantities for the two phases. Elastic properties
other virtues that depend on lattice dynamics, on the ot
hand, are significantly altered, generally becoming lower
magnitude in thek phase and showing anisotropy.

The interesting fact that the band gap of thek phase is
;1 eV lower in our LDA calculations deserves special
tention. This question needs to be further investigated, as
general, a DFT calculation does not reproduce the band
correctly. However, following intuition, this error should b
systematic, and if this is the case,k alumina, because of its
smaller band gap, could show good conductivity or semic
ductivity at elevated temperatures. This phenomenon ha
ready been detected in thea phase1 and is due to the reduc
tion of the band gap with temperature, partly because
lattice expansion, partly because the electrons couple to
brational modes. To resolve this question, a many-body
culation, e.g., invoking a GW correction,61 should be per-
formed for both phases. Such a calculation has already b
performed for an oxide, Li2O.62 However, Li2O has a unit
cell containing 3 atoms, whereas the one ofa-Al2O3 has 10
and the one ofk 40. So further theoretical investigation, an
extensive computer power, will be necessary.

In summary, electronic, elastic, and optical properties
thek anda phases of aluminum oxide have been calcula
with two different electron structure methods. A number
comparisons with experimental results fora-alumina suggest
that our calculated results for thek phase should have hig
predictive value. For ground-state and mechanical proper
the results following from the PWPP method are as good
those from the more time consuming FPLMTO method.

ACKNOWLEDGMENTS

The authors are grateful to Olle Eriksson for discussio
and to Carlo Ruberto for permission to use his band-struc
calculation data ona-Al2O3. We are also grateful to J.M
Wills for letting us use hisFPLMTO code. We wish to thank

s
TABLE VI. The density (r in g/cm3), shear, longitudinal, and

mean sound velocity (n l , ns , nm in 105 cm/s) and the Debye
temperature (u) obtained from the mean sound velocity (u in K!.
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