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We present theoretical results for various properties of the statsled metastable phase of alumina, in
particular elastic and optical properties. Two different computational methods have been used, the dacapo
plane-wave-pseudopotential and the full potential linearized muffin tin orbital methods. The calculations are
based upon a recent determination of the crystal structure Alf,O;. Comparison between the two methods
and available experimental data show that they are both reliable for calculating the ground-state and mechani-
cal properties for this type of complex materigb0163-18209)09519-3

I. INTRODUCTION We especially focus on the differences and similarities be-
tween thex and « phases.

Aluminum oxide(aluming is a ceramic material of great In general, the complicated bulk structure of the different
interest both for applications and fundamental studies. Aluphases of alumina can be viewed upon as close-packed
mina is also fascinating from the point of view that it can stacking sequences of oxygen with aluminum atoms occupy-
appear in many different phases. During the last few decaddag octahedral and/or tetrahedral interstices.
the stablex phase(corundum has undergone thorough ex-  The a-Al,O; unit cell can be described as hexagonal or
perimental and theoretical investigations. A review of itsrhombohedral, depending on the crystallographical definition
properties Is given by Fre_n&h'l’_he_materlal is highly INSU- " of the space grouﬂgc. The crystal structufeconsists of O
!atlng, characterized by mixed ionic and covalent bonding. Ita}OmS in a close-packed hexagonal array with Al atoms oc-
IS also very ha_rd and wear resistant. Recent deve!opments 8upying two-thirds of the octahedral interstitial sites. The
industrial applications of alumina have directed interest to . .
other, metastable, phases of alumina, in particular the sgxygen Iayers_are in aABABABstacking sequence, where
called y and « phases. The complicated crystal structure ineaCh O atom is ponded to four Al atoms in a d'St.omﬂ
these cases has provided both experimentalists and theorefiyangement, while the Al atoms are bonded to six nearest-
cians with different, nontrivial challenges. As for the experi- N€ighbor oxygen atoms. There are two nearest-neighbor
mental situation, one of the main obstacles for deeper studid¥®nd lengths, 1.86 Aand1.96 A. _
of the properties of the various phases of alumina consists of The crystal structure of the-Al,O; unit cell belongs to
the difficulty in producing a significant amount of a samplethe orthorhombic class with point groupm2 and space
that is pure and homogeneous, i.e., without distortions, graigroupPna2,, containing eight molecular units per cell. The
boundaries, etc. On the theoretical side, the complexity ofinit cell consists of four close-packed oxygen layers in an
the crystal structure of this material has prevented its underABAC stacking sequence along tleeaxis and Al atoms
standing on a first-principle level. Instead, approximationsoccupying both octahedral and tetrahedral interstitial posi-
and phenomenological theories with empirical parametersions. The Al ions can be arranged in six layers. Each of the
had to be relied upon in the investigations of ground-stateAl layers situated between tH& and A and between th€
mechanical, optical, and other properties. However, with theand A oxygen layers consists of four Al atoms occupying
increase of computer speed and power, alumina has becomsetahedral sites. The remaining four Al planes consist of two
accessible foab initio studies. Hence, there have been re-Al atoms each, where the Al atoms in two layers occupy
sults presented from such studies of Butknd surfac® tetrahedral positions, the other two occupy octahedral ones.
a-Al,03, as well as for the important case of impurities in One of each type of plane will be in between the rest of the
this systenf. oxygen layergsee Fig. 1

The task of determining the positions of the constituent Elastic constants of materials describe physical properties
atoms in k-Al,O; has not been solved until recemtfy of importance beyond the macroscopic elastic behavior of
(1997, and in this paper, we present some results that follovthe material. For instance, elastic aspects of dislocations and
from a knowledge of the crystal structure of kappa aluminadislocation interactions are accounted for, and fracture
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The dielectric function is a key quantity for the study of
the optical properties of a material. Accurate knowledge of
the dielectric functions over a wide range of wavelengths is

o 000 indisp_ensable for many applications. There is a continued
OOOOQQ experimental effort to study the optical properties 0f@J.
Recently, Harmaret al*® measured the optical constants of

O%BOOO a-Al,O; using spectroscopic ellipsometry in the near-
5 000 infrared—near-ultraviolet spectral regiofi.2—5.4 eV at

QQOO O room temperature. They used their own data as well as data
OO0 068 available in the literature for modeling of the optical con-
stants over the 0—30 eV energy range. Tonskiall* re-
ported the optical constants afAl,O5 at 297 and 10 K over
the range of photon energies 6-120 eV.

Zouboulis and Grimsditch have shown that Brillouin

(9}

>

-]

>

Zla;o;lnm ? scatteripg can be qsed to measure the elastic and optical
octabedral position properties of materials. They ha_ve demonstrated 'Fhe tem-
Alatomin O perature dependence of the ordinary and extraordinary re-
tetrahedral position fractive indices. Bortz and Frenttperformed optical reflec-

o _ tivity measurements on a single crystalafAl ,O5 from 5 to
FIG. 1. Crystal structure ok alumina in three and two dimen- 40 gy using light produced by a laser plasma light source

sions. Capital letters denote oxygen stacking layers and small letteﬁ;PLS). This was the first application, to our knowledge, of
the aluminum ones. LPLS to vacuum ultraviolet spectroscopy of solids.

toughness can be calculated using linear fracture mechanics. In the late 1970s, Arakawa and WilliaMigresented ab-
Elastic constants are also a measure of the strength of tH@rption data on anodized AD; films for incident photon
forces between the atoms. From a geophysical point of viewenergies from 5 to 18 eV. From their measured transmittance
the study of the elastic properties of @, is important for ~and reflectance data of single-crysta,,®@4, they have de-
the understanding of the elastic behavior of the earth’s lowefived the optical constants, dielectric constants, and energy-
mantle. ALO; is also used as an example of the applicability/0ss functions over the energy range 8-28.5 eV. They have
of the classical elastic theory to trigonal crystals. Consejnterpreted their Qata in terms of excitons, interband transi-
quently, there are a lot of experimental data available abou{ons, and collective oscillations.

the elastic constants af-Al,Os. In spite of the availability of such a vast amount of ex-

Gieske and Barséthave measured the six single-crystal Perimental data, there has been no serious attempt to study
elastic constants of ADs, using the ultrasonic pulse super- the optical properties theoretically withb initio methods.
position method as a function of hydrostatic pressure up td Nere is only one first-principles calculation %Va"ap'e for
10 kbar. They found a linear pressure dependence for all sif1e Optical properties o&-Al,O5. Ching and Xd” studied
elastic constants. Teffteported the temperature dependenceth® electronic and optical properties using an orthogonal-
of the elastic constants af-Al,O5, using a resonance tech- ized (frozen-corg _Ilnear comb!nanon of_ atomic orbitals
nique in the temperature range of 80-900 K. Getal!® (OLCAO) method in local-density approximatidhDA). In
measured the elastic constants of single-crystall ,O; up these caIcuIatlt_)ns, no detailed comparison has been made
to 1825 K using the rectangular parallelepiped resonancB&tween experiment and theory. o
method. They have demonstrated that the elastic stiffness The main aim of this paper is to preseii initio calcu-
constantsc;; and ca3 show a large decrease, whitg, and lations of the elqstlc anq 'opt|cal properties of thphase, as
c13 show only a slight decrease with temperature. The yvell as to provide additional _data for_ the phase, as an
decreases linearly with temperature whereggis almost |mproveme_nt over the ca_tlculatlons a\_/allable in the literature.
constant in the measured temperature range. RecentlyNe paper is organized in the following way. In Sec. Il, we
Zouboulis and Grimsditdh measured the elastic constants 9Ive a brief review of the methods of calculation. Section I1I
C11, Cas, andcy, using Brillouin scattering in the tempera- 1S devoted to the dlscu§S|on of the eleptronlc structure, opti-
ture range 300-2100 K, extending by 300 K the highesP_al response, and elastic properties. Finally, Sec. IV summa-
temperature previously attained. rizes our results.

Although electronic structure calculations have recently
been performed for-Al,Og3, there is only one case that has
been applied to the calculation of the elastic constnts.
There, full potential linear combination of Gaussian-type The rapid development of theoretical methods and in-
orbitals—fitting function(LCGTOFBP technique was used to crease of computer capacity during the past years has made
obtain the equation of state and elastic constants of coruri‘computational experiments” possible for more and more
dum. Only the symmetry-preserving elastic constants, i.egomplex materials. Our calculations use two different
Cq11+C12, Ca3 @andcyg, out of six elastic constants were cal- approaches—the plane-wave pseudopotential method
culated. As far as other recent electronic structuraPWPB (Ref. 18 and the full potential linear muffin-tin or-
calculationd of a-Al,O; are concerned, they are limited to bital method(FPLMTO).* This enables us to compare the
the calculation of the lattice parameters, bulk modulus, angerformance of the former method with that of the latter,
equation of statéEOS. which can be considered more accurate as it does not depend

Il. THEORETICAL BACKGROUND
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upon the typical pseudo-potential approximatiéhdBoth ) 41262

methods rely upon density-functional thedBFT), %~ but e(0)= gz 2 (kna|pi|kn’ a)(kn’o|p;lkna)
while the PWPP method provides wave functions for the knn'o

valence electrons only, the FPLMTO one takes the core elec- X fn(1—fynr) 8(€knr — €kn— fiw). 1
trons into account as well, thus naturally demanding a much

more substantial computer effort. In Eq. (1), eis the electron chargem its mass} is the

the original papef&?? and more recent reviev?é?® In the Moreover,|kna) is the crystal wave function corresponding
used dacapo program pack&§ess in all PWPP methods, to thenth eigenvalue with crystal momentuknand spino.

the interaction of the valence electrons with the atomic cores With our spherical wave basis functions, the matrix
glements of the momentum operator are conveniently calcu-

is represented by pseudopotentials. The pseudopotentiaI od | herical dinat d for thi h
used for oxygen and aluminum are the norm-conserving po-a ed in spnerical coordinates and for this reason the momen-

; : _ % 40 o
tentials of Troullier and Martirfé and Bachelett al,?® re- tum_|s er\/tlenp—ﬁﬂe#p#, _where,u IS i 0, or\/&, and
spectively. The one-electron wave functions are expanded iH—_l_(411/ 2)(Px—iPy)s Po=Pz, and p;=(—1/v2)(px
a plane-wave basis with a cutoff energy of 650 eV. To re-" 'Py)-

duce the number df points needed we use a finite electronic The evalua_mo_n of the matrix e'e_me”t?'” Ed) is done
over the muffin-tin region and the interstitial one separately.

temperature of 0.1 eV, when determining the OCC'“'patlonl'he integration over the muffin-tin spheres is done in a way

numbers, and the'; extrapolate all total energies to zero eleg; - 1o \what Kharf? Oppeneef? and Gasch¥ have done
tronic temperaturé® In the self-consistent iterations, eight

. ; R _ % in their calculations using the atomic-sphere approximation.
points in a Monkhorst-Pack sampling are used. ThiS IS A f| and detailed description of the calculation of the ma-
deemed adequate for theAl,O; crystal:

: : The exchange yix elements is presented in Ref. 44. The summation over
and correlation energy is treated self-consistently within thgne Brillouin zone in Eq.(1) is performed using a linear
local-density approximatioff,**and non-self-consistently in - interpolation on a mesh of uniformly distributed points, i.e.,
the generalized-gradient approximatid@®GA), so-called the tetrahedron method. Matrix elements, eigenvalues, and
post-GGA?***respectively, depending on the purpose of thegigenvectors are calculated in the irreducible part of the Bril-
calculation. louin zone. The correct symmetry for the dielectric constant
The FPLMTO methotf solves a Diradfor the core elec- as obtained by averaging the calculated dielectric function.
trons and a(modified Schralinger equatiortfor the valence  Finally, the real part of the dielectric functior,(w), is

and semicore electropsThe total energy of the system is gptained frome,(w) using the Kramers-Kronig transforma-
again obtained within the LDA, for which the tjgn

Hedin-Lundqvist® parametrization is used. The wave func-

tions are expanded by means of linear muffin-tin orbitals

inside the nonoverlapping muffin-tin spheres that surround 1 (=

each atomic site in the crystit®® The muffin-tin radius is =1+ ;J dw'fz(w')(

consistently chosen such that the muffin-tin spheres occupy 0

66% of the total volume. A so-called double basis set, which For all our calculations of optical properties, the irreduc-

allows two tails with different kinetic energies for each ible Brillouin zone has been sampled by 36points for the

muffin-tin orbital with a givenl-quantum number, has been @ phase and 240 for the phase. In order to speed up con-

used. vergence, we have associated each eigenvalue with a Gauss-
The calculations are performed for one fully hybridizing ian broadening of 270 meV.

energy panel, in which we use values for thgs related to

the valence orbitals: 8 3p, and 3 for Al and 2s, 2p, and B. Calculation of elastic constants for single-crystal

3d for O. Within the muffin-tin spheres the basis set, charge and polycrystalline aggregates

dgnsity, and potential are expanded in s_phgarical harmo_nics The crystal structure of the phase is orthorhombic and

with a cutoff of I,=6. Outside the muffin-tin spheres, in ot of the o phase is trigonal. The respective symmetries

the interstitial region, the wave functions are Hankel or Neu;p, o that there are nine independent elastic moduli forhe

mann functions, which are represented by a Fourier Se”%ase and six for the phase to be determined. Using the

€1(w)=Rg e(q=0,0)]
1

o'-—w oto

. (2

using reciprocal-lattice vectors. The same expa_msion_is USEShase as a point of reference, we conclude that the PWPP
to represent the charge density and the potential. This treaf; 4 js ample for this type of calculation. Furthermore, as
ment of the wave functions, ch_arge dens[ty, ?”d potentialye are concerned with energy differences only, the LDA is
does not rely upon any geometrical approximations. sufficient for good results. This fact has been observed in
similar situationg*® Thus, the LDA has been used through-
out the calculation of elastic constants.

The calculations are made by analyzing the energetic be-
The (@=0) dielectric function is calculated in the mo- havior of the crystal when applying small straifthis was
mentum representation, using the FPLMTO result of ouraccomplished by varying the primitive vectors of the unit
electron structure calculation. This requires matrix elementsell). As the strains couple to the vibrational modes, the at-
of the momentum,p, between occupied and unoccupied oms have to be relaxed for each variation of the unit cell
eigenstates. To be specific, the imaginary part of the dielecwvhen performing the total-energy calculations, as was done
tric function, e,(w)=Im e(q=0,w), is calculated fror? by Karki et al*® To guide the reader, we show how the elas-

A. Calculation of dielectric function
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tic constants for the phase were obtained. The ones for the For polycrystalline samples it is not possible to calculate
a phase are obtained in a similar manner, but in accordanc®® individual elastic constants; , but one can measure
with its symmetry. polycrystalline bulk modulus and shear modulus. In the lit-

From the theory of elasticity, the change of energy pef€rature there are several schemes for averaging the elastic
unit volume in the crystal, when the vectors of the unit cellconstants and sound velocities. For the comfort of the reader,

are being altered, is given by we provide here a quick review of these schemes, and also of
1 the definition of some of the physical quantities later pre-
OU = = (Cp1€2,+ Cp2, + C3382,) + C1084x8 v+ C1a8xxE sented. . .
7 (C11€ict CafyyF Cax2r) + C1Puyy+ C1PuCzz Voigt*’ has proposed that the averaging of the relations
1 ) ) ) expressing the stress in a single crystal in terms of strain
+C238yy€771 5 (Caslyzt Coslit CeeCiy) - should be made over all possible lattice orientations. R&uss

has proposed the averaging of the relations expressing the

For a change in the respective vector, strain in terms of the given stress.

da ob oC och According to the Voidt’ approximation, there is a simple
ST SwTp G S relation between the isotropic shear and bulk moduli of a
polycrystalline aggregate and the single-crystal elastic con-
sac Ssba stantscj; :
€=, Ey=—,
e Yo a Bv="fi(cij), Gv=falcj) . ()]

where da is the change in vectat in its own direction, and The above equations can be expanded as follows:

so forth, whileéscbh, e.g., means a change in vecton the 1 2

direction ofb. Now, a deviation from the metastable configu- By=7g(Ca1+ Capt Cag) + 5 (Caot C1at Ca3), 4)
ration of « alumina will result in an increase of the total L L
energy of the crystal. If, e.g., the vectais changed by an

amogztéa, in thg direction gtj)fa, the change of tc?tal er¥ergy Gy=15(C11t Caz+ 337 Ca2™ Cag™ Coa) + 5 (CasT CosT Coo)-
SE will, to leading order, be proportional to the square of 5)
éa, and so on. A simultaneous change of the length of all

s . ; Reus#® has derived a linear relation between the isotropic
vectors will result in the following change of energy:

shear and bulk moduli of a polycrystalline aggregate and the
SE=AASa%+BBsh2+ CCésc? corresponding single-crystal elastic constasts,the com-
pliances:
+ + + .
ABédasdb+ACsasc+BCshésc Br="fa(sy), Gr="fa(s)). ©6)

The constantd\A, BB, CC, AB, AC, andBC are deter- The above equations can be expanded as follows:
mined in the following way: By changing the length of each 1

vector individually by different amounts, we obtain for each o=
direction a table of energies as a function of the deviation. (S117+Spo+S33) +2(S1p+S13+Sp3) |
This table is then least-squares fitted to a function that i%R

parabolic to leading order, and thus the constéms BB,

and CC are obtained from the curvature. To determine the 15

other constants, the length of two vectors in the unit cell are :4(511+ Sgpt S33) — 4(S1o+ S13 Sp) + 3(Sga+ Ses+ Seg)
changed simultaneously. With the previously known con-

stants, a new fit over two variables can be made, say, of the (8)

functionsx?, y_z, andxy. This will yield the remaining con- Hill *° has proved that the Voigt and Reuss equations rep-
stants. In a similar manner, for a pure shear, we change @gent upper and lower limits of the true polycrystalline con-

vector in the direction of another. In an obvious notation, thégisnts and he has shown that the polycrystalline moduli are
deviation in energy is given by the arithmetic mean values of the Voigt and Reuss moduli

)

SE=Ascb?+Bjac?+Coba? and thus given by
and_thg constant, B, and C can be determined by a qua- GHZE(GR“L Gv), BH:E(BR+ By). 9
dratic fit in one variable. So now we hawi = SE/V. The 2 2

total-energy calculations are for one unit cell, ¥e=abc. Now definitions follow of some other useful physical quan-
Equating our parabolic fits to the expression #ld, and tities, that describe the mechanical properties of a material,
identifying coefficients, we finally obtain and which will later be presented for the aluminas.

The longitudinal modulus can be written as

a b c
C11= ZAAb_C, 022:28851 C33:2CC%, MH:BH_’_EGH (10)
3Gn-
ClZZﬁr C13=§, c23=§, Young’s modulusE can be calculated using Hill's sheds)
c b a and bulk(B) moduli, given by the following equation
b c a 9BG
Cyy= ZAE:, CSSZZBQ! C66:2CR' E= 3B+G (11)
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Similarly the Poisson’s ratio can be defined, using Hill's lim- 15 :
its, by the following equation ol Al |
3B—-2G 12
V_—2(3K+G)' (12 05| 1
T 0.0 [ A T t ptipedo
The probable values of the average shear and longitudinal
sound velocities can be calculated from Hill's equations as wl  Al-p
follows:
0.5
/[[G
Vo= (—H), v=V(By+3Gy)/p. (13 = oo A ’“}M“" : :
Y
g g 1.0 F Al-d
The averaged sound velocity can be computed using the C
two equations above and can be defined as 2 05
12 1 —-13 @ 00 —h—i ety : :
vm=|2| 313 (14 L eof | O-s 1
8 Vs ¥ 8 40
The Debye temperatum which is proportional to the sound 0}
velocity, can be calculated by the equafin 00 , , .
h|3n (N 13 60F  O=
o= | — 22| | o, (15) g P
kidm\ M 40
whereh is the Planck’s constark,the Boltzmann’s constant, i . e
N, Avogadro’s numberp the density,M the molecular oo e 00 100 200 300
weight, andn is the number of atoms in the molecule. @) Energy (eV)
4.0
ll. RESULTS 30 Al-s
20 F
A. Electronic structure and band gaps ol /}\k /j/V\\
The electronic structure has been calculated with both the 00 ' . ' : AL
PWPP+GGA and FPLMTO methods foe- and «-Al,0;. 30t Alp
In this section a general characterization of the results is 20 |
given. For thea phase there are experimental results avail- = 10 /j\\ /‘/\/\\\
able for several quantities, while such are absent for S oo : : ' | |
x-Al,03. In this way a comparison of theoretical and experi- z 30 Ald
mental results for-Al,05 serves to give an indication of the 8 20f
accuracy of our predictions for the phase. 5 10} ﬂ//\w
Figure 2 shows the calculated PWPP total density of w00 : . ; MV\
states for ther phase. The electronic states below the Fermi R 0! 0o
level are dominated by Off2states. The corresponding up- 200 |
per valence-bandUVB) density of statedDOS) peak is 100 |
about 7.2 eV wide and separated by a huge gap of about 8 00 , — —
eV from the O-3 states, which have a DOS peak width of 300 | 0-p
about 3 eV. 200 |
For the o phase, soft-x-ray and photon-energy-spectrum 100 |
measurements show a UVB width of 9.2-9.5 %\p,olarized 00 . . . OV
x-ray emission experiments show one around 8°&¥nd o T ey ey

X-ray-photoemission measurements show one around 15

eV.>% The higher experimental values for the UVB width, cf.  FIG. 2. Calculated density of staté®OS) for Al,O; in (a) a

to the calculated 7.2 eV, can be due to broadening processebase andb) « phase(Ref. § at experimental volume.

present in the experiment. The width of the lower valence-

band(LVB) O-2s DOS peak is calculated to be 3 eV, located The energy-band structure calculated for thephase is

at around— 16 to — 19 eV from the top of the valence band. shown in Fig. 3. There is a direct band gap of 6.6 @éf.

In the x-ray photoemission experiment this width is 6 8V. 54) at theT point. The experimental band gap is 8.8 &V.
This LVB difference may be due to correlation effects in This type of underestimate is a well-known feature of DFT,
these deep-lying semicore-like states, not accounted for imainly when applied to semiconductors and insulators,
the LDA. The bottom of the conduction ba@B), i.e., the  which occurs because one is wrongly interpreting the true
peak around 10 eV, mainly consists of A$-3tates, and the unoccupied states of the system with the corresponding
peak around 15 eV comes from the antibonding @&hd  Kohn-Sham states of DFP.The top of the valence band is
Al-3p states. The CB also has a fair amount of contributionvery flat, which suggests a very large effective hole mass.
from Al-3d states. This is also an indication of the strong bond between the
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15.0 6.0

10.0 1

4.0

[ ———
5.0 1
N
=~ w
L 0.0 1 ]
2 50 ;g
& 1 — "
-10.0
0.0 . — ' ' '
0.0 50 10.0 150 200 25.0 300
Energy (eV)
150 1 B FIG. 4. Calculatedsolid) and experimenta{Ref. 16 (dotted
>_/\< % imaginary part of the dielectric functiorg, for «-Al,O5; and the

calculated onddashedl for the « phase.

-20.0
r

B. Optical properties

From the electronic structure, optical properties of both
a- and k-Al,O5 have been calculated with the FPLMTO
method. For thex phase, there are experimental results for
several optical quantities given by Arakawa and Williaths,
while such are absent in thephase. Hence, a comparison of

&

f 00 , . theoretical and experimental results ferAl,O; serves to

2 = — : give an indication of the accuracy of our predictions for the
z = « phase.

Figures 4 and 5 show the imaginary and real parts of the
dielectric functions of thexr andx phasese,(w) ande;(w),
respectively. For thex phase our calculated,(w) shows
two main peaks at around 11 and 15.5 eV and two weak
R R R e el shoulders at around 12.5 and 14 eV; whereas foktpbase,

Y s xuv RT Y it has two main peaks at around 10 and 14 eV and one weak

FIG. 3. Calculated energy band structure ob®j in (@ «  Shoulder around 15.5 eV. The experimental Hatfor
phase andb) « phase(Ref. ) at the equilibrium volume along the a-A|203 show interband transitions at 13, 16.5, and 20.5 eV.
major symmetry directions. The latter small structure is absent in our calculatgd
where we just see a smooth variation in this energy range.

Iéor the first two main peaks there is a constant difference
Between the calculated and experimental positions, mainly

-10.0

-15.07

corresponding electrons and the host atom. The calculat
average effective mass of the conduction band aftipeint

is around 0.4 electron masses. Our effective mass supports 4,
the measurements of transport properties by Wélisl,>®

which suggest that the dominating charge carriers are elec- ALO

trons. ol 273
In the case of the phase, the O and O-2 states are ’

8.3 and 4.3 eV wide, respectively, and separated by a gap of

8.2 eV. The peak in the LVB DOS is situated at arountic - — o(Cale.)

to —20 eV from the top of the valence band. There is a direct & **| - ‘;((gz;))

band gap of 5.4 eV for the phase at th& point®

In short, - and x-Al,O5; have rather similar electronic
structures. The major differences—in addition to those im- Lo
posed by the difference in atomic structure—are that
x-Al,O3 has slightly broader energy bands, a wider energy
gap between the upper and lower valence bands, and a nar -, ‘ - s .
rower band gap, i.e., bridging at the Fermi level. The overall 5 10 lsﬁ)nergy (ev";"’ 20 300
agreement between experiment and theory &AlI,O4
makes the predictions at large farAl,O; likely to apply
also in reality.

FIG. 5. Calculatedsolid) and experimenta(Ref. 16 (dotted
real part of the dielectric functiog, for a-Al,05 and the calculated
one (dashed for the « phase.
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3.0 15
A1203 3
= ]
EXME —— o(Calc.) gL
g -——- % (Calc.) g
g - (Expt.) g
o o {EXpL. S
£ g j
Sl Bos | 1/
s*r N & I —— a(Calc)
_____ j ———-x(Calc.)
--------------------- o (Expt.)
0.0 . . . . 0.0 P AR S . - .
50 10.0 15.0 20.0 25.0 300 0.0 5.0 10.0 15.0 20.0 25.0 30.0
Energy (eV) Energy (eV)
FIG. 6. Calculatedsolid) and experimenta{Ref. 16 (dotted FIG. 7. Calculatedsolid) and experimenta{Ref. 16 (dotted
optical constanh for a-Al,0O5; and the calculated on@ashed for optical constank for «-Al,O5; and the calculated on@ashed for
the k phase. the k phase.

because our band gap is smaller than the experimental onfeasured values by Zouboulis and Grimsditch is 1.774 for
by approximately 2 eV. If we shift the calculated curve by the » phase. The calculated value of the ordinary refractive
2.0 eV, the calculated spectrum would be in better agreemenidex by Ching and Xt/ using the OLCAO method is 1.96.
with experiment. However, the steep slope near the absor@ur present theoretical result for the refractive index is in
tion edge and the sharp peak, both present in the experimegxcellent agreement with experiment. In passing, we point
tal spectrum, are absent in the calculated one. This excitonigut here that we do not agree with the argument of Ching
peak is naturally missing in our calculated spectra, becausgnd Xu, who claim that the difference in their calculated and
they only involve interband transitions from valence- toexperimental values is due to the excitonic effects that are
conduction-band states. not included in the theory. Our calculated spectra in Figs. 6
The behavior of the(w) curve fork-Al,Oz, in general,  and 7 show a good general agreement with experiment, al-
agrees with that of ther phase. However, the rigid shift is though there is some discrepancy regarding the peak posi-
about 3.0 eV. tions, mainly, as already mentioned, originating in the short-
The origins of the different peaks in the calculated dielec-comings that follow when describing the conduction regime
tric functions can be deduced in terms of interband transiof the band structure with DFT.
tions. According to selection rules, only such transitions are We have also calculated the optical reflectivity conductiv-
allowed that imply a change of the angular momentum quanity. We have compared these with the recent experimental
tum numbed by 1, i.e.,Al==*1. Fora-Al,0; the first peak  data of Bortz and Frencht.In Fig. 8 we show the reflectivity
at around 11 eV in the calculated spectrum can be assignegbectrum. The measured spectrum shows an excitonic peak
to transitions from Al-3 to Al-3s states. Transitions from at 9.1 eV, which is not present in our calculations. However,
Al 3d to Al 3p may give rise to the second main peakthe other features of the experimental spectrum, at 12.0,
around 15.5 eV. 12.9, 14.9, 17.4, and 21.8 eV, are well represented in our
The real part of the dielectric functios, is given by a
Kramers-Kronig analysis of,. In Fig. 5 the calculated; of
both phases are compared to experimental data ofathe
phase. As one can see, most features of the measured dai 3¢y
are well reproduced by our calculations. The calculated
curves for thea and « phases become negative at 17.3 and _
18.2 eV, and both become positive again at 23.6 eV, the®
corresponding experimental values for thephase being
17.7 and 24.5 eV, respectively. In the high-energy region,
the calculated and measured curves show very similar
behavior. On the other end of the spectrum, the dielectric
function €,(0) is calculated to be 3.2 for both the and «
phases, whereas the experimeniahl,O; result is 3.1%3
hence showing very good agreement. The calculation of
Ching and Xd’ gives a value of 3.86, in worse agreement , ,
than our FPLMTO value. 50 100 150
The calculated optical constantsand k are shown in
Figs. 6 and 7 together with the experimental data of Arakawa FIG. 8. Calculatedsolid) and experimenta{Ref. 15 (dotted
and Williams. Our calculated values of the ordinary refrac-reflectivity (%) fora-Al,O3 and the calculated ordashedifor the
tive indexes for thex and « phases are both 1.79, while the « phase.

200
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0.7 TABLE I. Comparison between the experimental and theoretical
crystallographic lattice parameters for,8.
Ale3
0s - Expt. Calc.
g " K2 a® K a
2 . —— a(Calc)
E L/ ---- x(Calc.) vV (A% 350.10 255.04 352.07351.2' 255.1°253¢ 255°
E o3t ~=-_ ol (Expt.) b/a 1.7189 1.0 1.7182 1.0
=z cla 1.8482 273 1.8481 2.7312.739 2.72F
g B (GPa 254.4 251.8,246.F 244.0° 253.5% 243.¢
© 0.1
) . __ %Reference 65.
__________ PReference 64.
PWPP.
o1 - : - - - dFPLMTO.
5.0 10.0 15.0 20.0 25.0 30.0 350 e
Energy (eV) LCGTOFF.

FIG. 9. Calculatedsolid) and experimenta{Ref. 15 (dotted
conductivity (arb. unitg for «-Al,O; and the calculated one
(dashed for the k phase.

properties calculated for the two phases investigated indi-
cates their similarity as far as optical properties are con-
cerned.

. : In Fig. 10, we have plotted the energy-loss function
calculations, which show features at 11.3, 12.5, 14.4, 16.6, Im(e) * for the & phase. This function is proportional to
19.5, and 22.0 eV, respectively. Bortz and French also ob; . . .

. . -the probability that fast electrons traversing the bulk material

served a peak at 32 eV, as do we in our calculations. This . X

. X o will lose energy. For a free-electron gas, witdpy~0,

last peak arises from interband transitions from the LVB™ Im(e) L has a maximum at the plasma ene ven
0O-2s states to the antibonding OpXtates. Observe that the € P By 9

calculated positions of the features are very similar for bothby

phases. h [[47Nné
The calculated and experimental optical conductivities are ,ﬁz[ (m—)
plotted in Fig. 9. The measured conductivity is generally eff
higher than the calculated one. Our calculations show two
main peaks, and features at 11.5, 12.4, 14.5, 16.5, 17.4, aghere N is the number of atomgor molecules per unit
30.5 eV, again for both phases. The measured spectruiplume, mg the effective mass of the electrons, amdhe
shows an excitonic feature at 9.1 eV and other features dumber of electrons per atotor moleculg that would par-
12.4,13.2, 14.5, 17.4, and 31.5 eV. Thus, apart from featureéicipate in the volume-plasma oscillations induced by fast
resulting from many-body effectgexcitons, etd, good electrons traversing the material. We can assuamgto be
agreement between the calculated and measured spectra @@ free-electron mass, because, in the absence of strong in-
been obtained. Further, the similarity of the last few physicakerband transitions in the vicinity of the plasma resonance,
the behavior of the valence electrons would be virtually like
20 - - - - - that of unbound or free electrons that undergo plasma oscil-
lations. Hence, one would expect the peak-dim(e) ! to
be in the vicinity of the plasma energy calculated using the
total number of valence electrons. The total number of va-
lence electrons per AD; molecule is 24 and substitution of
this number and withm.s equal to the free-electron mass
into the above equation yields,=27.8 eV. It is seen from
Fig. 10 that for ALO5, — Im(e) ! has its maximum at 25.8
eV from experiment and at 25.0 eV from our calculations,
thus showing that our assumptions are reasonable.

112
: (16)

15 |

1.0 |

TABLE Il. Calculated(PWPB values for the elastic constants
c;; for k-Al,|O; together with calculated and experimental ones of
the a phase.

Loss Function —Im 1/¢

0.5

Elastic constantsGPa

Constants Cy; Cz Cs3 Cas Css Ces Ci2 Ci3  Cos

k-Al,0; 460 410 450 120 140 160 125 95 145

0.0 . . L . .
090 50 100 150 20.0 250

Energy (eV) a-Al,|O; 480 480 140 155 117
a-Al,02 497 502 147 163 117

FIG. 10. Calculatedsolid) and experimentalRef. 16 (dotted
energy loss functiortarb. unit3, — Im 1/e for a-Al,O;. aReference 8.
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TABLE lll. The isotropic bulk modulus B in GPa, shear modulus® in GP3, longitudinal modulus

(GP3, Young’'s modulug§GP4g, and Poisson’s ratio.

BR BV BH GR GV GH M H E 14
Kk-Al,0; 229.4 2278 228.6 144.8 147.7 146.3 423.7 361.7 0.24
a-Al,03 2457 2464 246.1 156.8 158.6 157.7 456.4 390 0.24

Expt. (a-Al,05) @ 253 255 248 164  165.3 1647 467.6 4046 0.23

8Reference 8.
C. Elastic properties The static bulk moduld& can be calculated by the follow-

In this section we present our results for the elastic prop!N9 eguation:

erties. Also for these, there exist experimental data forathe
phase but none for the phase. So ther alumina results
serve to give confidence in the methods, while thenes are
theoretical predictions. We emphasize again that the reason
that the elastic constants ef alumina have not yet been The pressure derivatives of the hexagonal lattice constants
determined experimentally is that this phase only grows irare given by

small grains. It is thus hard to obtain pure, isotropic, speci-

mens that are large enough for experimental investigations.

Calculated values for equilibrium volume, axial ratios, a'= >
and bulk moduli obtained from the EOS for theand « 2C73—C33(Cy1+Cy)
phases are presented in Table I. Fordhghase we have also
included the results from the recent calculations of2"
Boettgel? and thus demonstrate that three different compu-
tational methods give results in mutual agreement and in
satisfactory agreement with experimént.

Table 1l lists calculated values for the elastic constants of
the k and @ phases along with experimental data for the ,
phase. As previously mentioned, six and nine independerﬁs seen in Table IV, our’calculated vaI_ues for the pressure
elastic constants exist for the and x phases, respectively, derivatives and Boetiger's values are in good mutual and
consistent with their symmetry. In general, our calculatecEXPerimental agreement, as are those for the bulk modulus.
elastic constants for the phase are lower than the experi- N Table V, we present our calculated bulk and shear
mental ones by some 4—5%. In the casegf. our calcu- moduli in the Ruess, Voigt, ar_1d Hill approximations for the
lated value agrees exactly with the experimental value. X a”d,“ phases, together with t,he longitudinal modulus,

One can observe that the calculated elastic constaqts, Young's modulus, and Possion’s ratio within the Hill
Cas, Cass C1p, andcys, Of the x phase are 20—30 GPa lower scheme. Our calculated values for polycrystalline aggregates

than the corresponding calculated elastic constants ofrthe @€ lower for thex phase than for ther phase. In compari-
phase. There is one exception, however, nammyy for son with experimental ones, possible only for ihghase,
which the calculated values for both phases are equal. all our calculated values are within less than 5% off the

In order to compare our calculated elastic constants of th'€asured ones.

« phase with the values from the LCGTOFF calculatidns N Table VI, we have also calculated the Debye tempera-
and lattice-dynamicgLD) calculations’ Table Il shows ture for thex and « phases from our elastic constants. Our

calculated numbers for the four symmetry-preserving elasti€@/culated sound velocities and Debye temperatures fax the
CONStantsgy,+ Cyp, Cas, Cra, andc;, together with experi- phase are within 2% of the experimental value. The calcu-

mental datd The tetragonal shear modulug, can be de- lated values for thec phase are lower than for the phase.
fined by the following equation

Cax(Cyy+Cpp) — 22
g cstutl 13 18
(C1y+C1p) +2C33—4Cy3

C33—Ci3

(19

d

, (€11t C1p)—2Cy3
=— _
2C73—C33(C111+Cy0)

(20

TABLE IV. Theoretical and experimental values for four

¢ 1 symmetry-preserving elastic constants of corundimGP3.
c =g[(011+ C1p) +2C33—4Cy3]. 17
(C11tC1) Ca3 Ci3 c'

There is very close agreement between ours and|p?2 697 455 130 181
Boettger's? calculated values for these four elastic constants | cGTOFR 652.4 4783 1154  191.2
of a-Al,O5 (Table II). His calculated values of elastic con-  pwpp(present 635 480 117 188
stants €;;+Cy5) and c', however, are in better agreement Expt® 660.2 501.8 117.2  199.2
with experiment than our present values, while égg and Exptd 660.1 5009 1160 1996

c13 the opposite is true. The deviations from experiment are

typically 5% or less, nonetheless. As argued in Ref. 12, thiSReference 57.
systematic deficiency can again be attributed to the DFT. It iSReference 12.
also possible to calculate three other elastic properties théReference 8.

are routinely accessible from EOS measurements.

dreference 9.
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TABLE V. Theoretical and experimental values for the bulk  TABLE VI. The density  in g/cnt), shear, longitudinal, and
modulus B; GP3 and the pressure derivatives of lattice parametersnean sound velocity {, vs, vy in 10° cm/s) and the Debye

(a’ andc’; GPa'?) for a-Al,Os;. temperature ) obtained from the mean sound velocitg i K).
B a’ c’ p Y| Vg Vm 0

PIB (TF)? 264 —0.000 89 —0.001 09 k-Al,04 3.870 10.48 6.16 6.83 997

PIB (KS)? 356 —0.001 10 —0.001 46 a-Al,04 3.984 10.72 6.30 6.98 1029

OLCAQ® 242 Expt2 (x-Al,05) 3.786

LAPW+LO® 257 Expt’® (a-Al,0;)  3.985 10.84 6.44 7.13 1051

LCGTOFF 248.7 —0.001 27 —0.001 48

PWPP(present 2462  -000131 -0001 45  reference 63,

Expt® 254 4 Reference 8.

EXpt.f 257 —0.001 22 —0.001 36

Expt9 239 —0.001 37 —0.001 34 functions are in better agreement with experiment than the

earlier calculation of Ching and Xif.However, the remain-

°Reference 67. ‘Reference 64. ing discrepancy between the calculated and experimental di-
"Reference 17. 'Reference 65. electric functions is somewhat unsatisfactory. A remedy for
‘Reference 2. %Reference 66. this would be to take excitonic effects into considerafidn.
‘Reference 12. To give an account for our conclusions of the conse-

guences of the phase transition betweesnd « alumina, we

All these comparisons with experiment feralumina sug-  note the following.
gest that our calculated values for tkephase should be  Optical properties seem to be virtually unaffected, this
highly reliable. being indicated by our reported similarity between the rel-

In an experimental investigation of the mechanical prop-evant quantities for the two phases. Elastic properties and
erties of x alumina by Sderlundet al.>® elastic anisotropy other virtues that depend on lattice dynamics, on the other
has indeed been found, in contrast to the elastic isotropy dand, are significantly altered, generally becoming lower in
a-alumina. The elastic constant in the direction of crystalmagnitude in thec phase and showing anisotropy.
growth was found to be higher than in perpendicular direc-  The interesting fact that the band gap of thephase is
tions. The direction of grOWth is parallel to, and elastic ~1 eV |ower in our LDA Ca|cu|ati0ns deserves Specia| at-
properties along this direction are easier to determine thagention. This question needs to be further investigated, as, in
properties perpendicular to it. In the same investigation ifgeneral, a DFT calculation does not reproduce the band gap
was also found that the elastic constant&ekl,03, as com-  correctly. However, following intuition, this error should be
pared to thex phase, are lower mainly in directions perpen- systematic, and if this is the case alumina, because of its
dicular toc, while alongC they are hlgher Our theoretical smaller band gap, could show good Conductivity or semicon-
results are in satisfactory agreement with these observationgyctivity at elevated temperatures. This phenomenon has al-
since we notice that on the average the constants that detq@ady been detected in thephasé and is due to the reduc-
mine the elastic behavior perpendicular to tiieaxis tjon of the band gap with temperature, partly because of
(C11, C2, andcyy) are lower than the constants describing attice expansion, partly because the electrons couple to vi-
properties along itdss, Ci3, andcys). However, our results  prational modes. To resolve this question, a many-body cal-
indicate a profound elastic anisotropy between dhendb  cylation, e.g., invoking a GW correctiGh,should be per-

axes, which has yet to be seen experimentally. formed for both phases. Such a calculation has already been
performed for an oxide, LD .52 However, L,O has a unit
IV. CONCLUSIONS cell containing 3 atoms, whereas the oneneAl,O5 has 10

. . and the one ok 40. So further theoretical investigation, and
We have presented results for electronic, elastic, and o

Rextensive computer power, will be necessary.
tical properties of thex and &« phases of aluminum oxide P P ’ y

: : . In summary, electronic, elastic, and optical properties of
with two different electronic structure methods. As far as th%‘je,( and« phases of aluminum oxide have been calculated

« phase is concerned, our results for the elastic and opticglih wyo different electron structure methods. A number of
properties are predictions, and we welcome experiments 19, 2 1isons with experimental results foralumina suggest
prove them. For ther phase, our calculations give different that our calculated results for thephase should have high
results for the elastic constants, confirming the earlier ﬁrSt'predictive value. For ground-state and mechanical properties
principles calculation by BoettgErfor symmetry-preserving e e jits following from the PWPP method are as good as

elastic constants and extending the database to nonsymme;wose from the more time consuming FPLMTO method
ones. Our calculated values for shear and bulk moduli o '

polycrystalline a-Al,O5 aggregates are in good agreement
with experiment, as are the calculated shear and longitudinal
velocities as well as the Debye temperature.

For the @ phase, we have also made a detailed compari- The authors are grateful to Olle Eriksson for discussions
son between our calculated optical properties and measurethd to Carlo Ruberto for permission to use his band-structure
spectra from two different experiments. Our calculated val-calculation data orw-Al,O;. We are also grateful to J.M.
ues for the ordinary refractive index and static dielectricWills for letting us use hisPLMTO code. We wish to thank
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