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Comments are short papers which criticize or correct papers of other authors previously publisiégydital Review B. Each
Comment should state clearly to which paper it refers and must be accompanied by a brief abstract. The same publication schedule as
for regular articles is followed, and page proofs are sent to authors.
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Exact diagonalization study”

Shun-Qing Shen
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We discuss the Lagrange-multiplier method in a many-body system, and how to apply the Lagrange mul-
tiplier correctly to realize quantum constraint in a Hamiltonian for a quantum system. It is pointed out that the
discussion in Yanagisawa's pap&hys. Rev. B57, 6208(1998 ] lacks a basic knowledge of mathematics, and
that his conclusion is generally wronjg0163-182899)02720-4

The Lagrange-multiplier method is often used to mini-to replace theM constraint§ Eq. (2)]. It is expected that the
mize a function with a condition. In quantum many-body constraint could be realized by minimizing the expectation
physics it is also applied to realize some quantum constrairgdnergy with respect to the Lagrange multipliars
when we treat the Schdinger equation or the Hamiltonian
of a quantum system. A famous example is the use of the 5
chemical potential in a Hamiltonian of a many-body quan- 5—N<‘I’|H|_1|‘I’>=0- 4
tum system to adjust the number of particles in grand canoni- :
cal ens.emb_les. Although the methqd is yvell es,_tab!ishedrhe resulting equations are
there still exists some misunderstanding of its application. In
his recent paper, Yanagisawa investigated the Lagrange-
multiplier method in quantum systems by an exact diagonal-
ization study (referred to as Ref. 1 in this CommeénHis
discussion is based on a misunderstanding of the method,
and lacks a rigorous mathematics basis. His work also con- (P|Qi|¥)=0, (j=1,...M). (6)
tains some responses to my recent comment on his previous
work? In this Comment, | clarify several problems and makeFrom the notations, we should note the differences between
a response to his comment on how to introduce Lagrangggs.(2) and(6): the averages o®; in the statgd W) replace
multipliers into a Hamiltonian correctly. the original equations. Generally speaking, E¢B). are

To compare with Yanagisawa's work, | use the same noweaker than Eqgs(2). They are not equivalent except for
tations in this Comment as in Ref. 1. A Sctioger equation some special cases. For exampleQjfis semipositive defi-

H+2i 7\iQi>|‘I’>:E|‘I’>, )

with quantum constrai(d) is written as nite, the Lagrange multipliers can realize the constraints be-
cause, in this case, Eq&®) are equivalent to Eq€2). An-
H|W)=E[¥), (1) other available case is that if we consider only the ground-
state properties and know that the ground state is
Qi|Pry=0, (i=1,...M), (2 nondegenerate, Equation®) and (6) are also equivalent.

. o ) ) i However, we cannot use this if we want to prove the nonde-
whereH is the HamiltonianE is the eigenvalue¥) is the generacy of the ground state of a system.

wave function, and; is the operator for the_constraints. In (2) The Lagrange mU|tip|ieP\iQiTQi . If Q, are not semi-
order to solve_ I_Eqs.(l) and (2), we can mtrodl_Jce _the positive definite, or we have to consider the complete set of
Lagrange multipliers to fom".' a generallzed Hamiltonian tosolutions, the introduction of the Lagrange multipliers in Eq.
realize the quantum constraints |n. Ha). _ (3) usually enlarges the Hilbert space, JHare usually no
(1) The Lagrang_e .mUI.t'p“e“iQ‘ : O_ne way to m_trodgce_ longer equivalent to the original problem. Some unexpected
the Lagrange multiplier is to generalize the Hamiltonian iNgo1utions may exist in Eq$5) and (6). Hence the Lagrange
Eq. (D to multipliers cannot realize the constraints as expected. To this
M end one of the correct ways to introduce the Lagrange mul-
HL1=H+2 \Q, &) j[iplier to realizg the quantum constraint is to u?ngiTQi
i=1 instead of\;Q; in Eq. (3):
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S=z(ni;—ni)), (13
with the constraints of single occupancy,

Hip=H+ 2 MQfQ, )
which was, to my best knowledge, first proposed in my _ _
paper’ (Reference 1 did not mention any reference, while (mi 1+, —1)|¥)=0. (14

the method was commented uppfihe resulting conditions  p, (r:CiToCi » (0=1,1). Usually the quantum constraint is
are very difficult to realize. If we introduce the Lagrange multi-

" plier as in Ref. 1,
(V]Q/Qilv)y=0 tS)

instead of Eqs(6). Due to the semipositive definiteness of H2:%(CITCLLC;LCZ,T"'CILCLTC;TCZJ)"_ E(”m—”l,i)

Q!Q;, the conditions are reduced to Edg). This proves ’ ’ ’ ’ 4

that the problem oH | , is equivalent to the original problem.

Mathematically, it also proves the validity of the method in X(nz,T—nz,L)ﬂL,E Ni(njp+n; —1), (15

Eq. (7). Generally speaking, any mathematical transforma- =12

tion should guarantee that the transformed problem ishe physical space has been enlarged so that the condition of
equivalent to the original problem. However, it is anticipatedsingle occupancy is replaced by

that the transformed problem could be treated in a simpler

way. If the transformed problem is not equivalent to the (¥|(ni;+n;;—1)|¥)=0. (16

original one, it is hard to justify the transformation.
Reference 1 proposed that square terms cannot be usedlrhthe case the number of particle per site is no longer always

a real analysis. This is not true. Consider the same problerﬂqual to 1, and will be determined by the Sairger equa-

in Ref. 1; i.e., minimizing<®+y? under the condition+y tion of H, and the condition of Eq(16). The condition
—1, the function with a Lagrange multiplier is cannot guarantee single occupancy. For example, a local
State

fXY,N)=x2+y2—N(x+y—1)2 9)

Based on the variational principle we haxey=1 and\ |pi)= \/—(1 C| ¢C| ) )[0),
=+ with A(x+y—1)=3. It is apparent that Ref. 1 ne-
glected this set of 50|UU0”5 The same minimunxdfy?is  consisting of empty and double occupancies, satisfies the
obtained as in the usual way. is determined by the Euler condition
equations. If we assume thatis purely imaginary here, we
cannot find a solution no matter which way we introduce the <¢-|(ni 10 L)| oi)=1,
Lagrange multiplieF. It is worth emphasizing that whethgr
are complex or imaginary is a pseudoscientific problem.
From the principle of mathematicd; must be determined
by solving the resulting equations simultaneously. In the
guantum system we discussed, the expectation valiitisf
energy, which should be real. The author of Ref. 1 performed 17)
an exact diagonalization for a finite system by settiyg
imaginary. It should be noted how to compare a real eigenFrom Eq.(16), we have|b|=|d|. There are two sets of so-
value with a complex one. We cannot say simply that thdutions: (1) E=—2 with a=c#0 andb=d=0, andE=3
state with the lowest real part of the eigenvalue is the grounavith a= —c#0 andb=d=0. The two\;’s can be any finite
state. Thus the data listed in Tables | and Il in Ref. 1 do nowalues. These two solutions correspond to the two states with
make sense. total spin 0 and 1(2) E=0 with a=c=0, b==*=d, and\,

(3) A two-site exampleTo compare the results of the two =\,. Solutions(2) satisfy the conditiorfEq. (16)], but do
ways to introduce the Lagrange multiplier, let us re-examinenot satisfy the condition of the single occupancy. These two

where|0) is the vacuum state.
If we focus on a fixed humber of particle, say 2, andzhe
component of total spin 0, the wave function is

_ant At Tt tot +ot
\If—(acmczvl+ccmcl,ﬁbclchl,l+dcleczvl)|0>.

the two-siteS=3 Heisenberg model, states do not exist in the original Heisenberg model. This
illustrates that the Lagrange multipliers in E¢.5 do not
Hi=S;-S;. (100 realize the single occupancy, as expected. It enlarges the

There are four eigenstatestdf: one is the spin singlet state physical space, and some unphysical states are included.

with E=— 2, and others are the spin triplet witi— Ifzwe introduce thed La;)g\;range multipliers;(n; ;+n; |
order to justify the different Lagrange-multiplier methods, —1)7in Eq. (15) instead ofA;(n;,; +n;, —1),

we solve the problem in the fermion representation, where 1

the single occupancy of a fermion on a site is expected to be H3:_(CchllC2LCZT+ClLCITC2T02l)+ (Ng;—nNygy)
realized by the Lagrange multiplier. The spin operator can be

expressed in terms of the fermion operator c,

+_ .t X(nz,T_nz,l)"‘.Z 7\i(nm+ni,l—1)2, (18
S =CiCi 11 =)

oy we have the solutionE=—2 with a=c#0 andb=d=0,
S =G, Cis» (12 andE=1 witha=—c#0 andb=d=0. The two\,’s can be
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any finite values. These are the two physical states. The oth€r) has two unphysical states which are degenerate. That is
two unphysical states are excluded spontaneously. why we have two unphysical solutions in the example.
Comparison of the results of this simple example clearlyTherefore, the compatible properties df and Q; do not
illustrates that the two ways to introduce the Lagrange mulguarantee that the Lagrange multipliers in E).can realize
tipliers will lead to different resultsH, in Eq. (15) contains  the constraints.
two unphysical states thét; in Eq. (10) does not. Hence we Although we can justify very easily whether tlgg op-
cannot say that the Lagrange multiplier in E&5) is correct.  erators are semipositive definite, it is extremely difficult to
Although some other conditions can be used to exclude thdetermine whether the eigenstatedofor a many-body sys-
unphysical states for a few-body system, those conditions atem are nondegenerate or not. Especially when we want to
neither attached to the method itself nor have a solid mathprove the nondegeneracy of the ground state of a Hamil-
ematical foundation. They have gone beyond the method ittonian(see references in Ref),2;Q; is not a correct way to
self. It is common sense that a conclusion drawn from aealize the quantum constraints. In many-body physics, there
concrete example cannot be naively extended to a generate many examples to introduce the Lagrange multipliers.
case without a solid mathematical foundation, especiallyOne of the most famous examples in a many-body systems is
when we discuss a general method. the chemical potential to adjust the number of particles. In a
(4) Compatible Hand Q;: WhenQ; are not semipositive grand canonical ensemble the dispersion of the particle num-
definite, but allQ; andH are compatible, i.e[H,Q;]=0 and  bers
[Q;,Q;]=0, are Egs(1) and(2) equivalent to Eqs(5) and
6)? The two-siteqproblem we jgst discussedqhas given a ((AN)?)=(N?)—((N))?=(N).
negative answer. It is well known that two compatible opera-ry,iq i acceptable, or reasonable, since the relative disper-
tors can be_dlagonallzed S|multaneously,_ but this does nQtion ((AN)2)/(N) approaches zero in the thermodynamic
mean that eigenstates Hifare glways the mgen;tates(@f. limit. In a quantum many-body system, for example, the
Assume|,) and [i,), two eigenstates oH with energy spin+ Heisenberg model in the fermion representation, it is

e|genval_ue£1 andE,. From the commutators ¢ andQ;, quite difficult to realize the condition of single occupancy of
we obtain a fermion at each lattice site. On the Lagrange multipliers
(|[H, Qi1 42) = (E1— Ex) (1| Qi| ) =0.  (19) )\iQiTQi we hr_:we taken into account the _stro_ng correlations

. between particles. How to make approximation to treat the

If Es#Ey, (#1]Qil¢,) must be zero. But ifE;=E,,  multipliers goes beyond the scope of this Comment. When
(41|Qil#2) can be nonzero. Therefore, if all eigenstateslof e introduce one type of Lagrange multiplier, at least we
are nondegenerate, the eigenstateld afe automatically the  should guarantee that the method is correct for a solvable

eigenstates of; . In this case the Lagrange multipliers in case before we make other approximations such as a mean-
Eq. (3) can realize the constraints in BQ). However, if part  field approximation.

of the eigenstates dfl are degenerate, the eigenstatesdof
are no longer always the eigenstates@f Thus Eqs.(1)
and(2) are not equivalent to Eq$4) and(5). The latter can
contain more solutions that do not appear in E§sand(2). This work was supported by a CRCG research grant of
In the example of a two-site problem, the Hamiltonian in Eq.the University of Hong Kong.
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