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Comments are short papers which criticize or correct papers of other authors previously published inPhysical Review B. Each
Comment should state clearly to which paper it refers and must be accompanied by a brief abstract. The same publication sc
for regular articles is followed, and page proofs are sent to authors.

Comment on ‘‘Lagrange-multiplier method in correlated-electron systems:
Exact diagonalization study’’

Shun-Qing Shen
Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China

~Received 30 March 1998!

We discuss the Lagrange-multiplier method in a many-body system, and how to apply the Lagrange mul-
tiplier correctly to realize quantum constraint in a Hamiltonian for a quantum system. It is pointed out that the
discussion in Yanagisawa’s paper@Phys. Rev. B57, 6208~1998!# lacks a basic knowledge of mathematics, and
that his conclusion is generally wrong.@S0163-1829~99!02720-4#
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The Lagrange-multiplier method is often used to mi
mize a function with a condition. In quantum many-bo
physics it is also applied to realize some quantum constr
when we treat the Schro¨dinger equation or the Hamiltonia
of a quantum system. A famous example is the use of
chemical potential in a Hamiltonian of a many-body qua
tum system to adjust the number of particles in grand can
cal ensembles. Although the method is well establish
there still exists some misunderstanding of its application
his recent paper, Yanagisawa investigated the Lagran
multiplier method in quantum systems by an exact diagon
ization study1 ~referred to as Ref. 1 in this Comment!. His
discussion is based on a misunderstanding of the met
and lacks a rigorous mathematics basis. His work also c
tains some responses to my recent comment on his prev
work.2 In this Comment, I clarify several problems and ma
a response to his comment on how to introduce Lagra
multipliers into a Hamiltonian correctly.

To compare with Yanagisawa’s work, I use the same
tations in this Comment as in Ref. 1. A Schro¨dinger equation
with quantum constraint~s! is written as

HuC&5EuC&, ~1!

Qi uC&50, ~ i 51, . . . ,M !, ~2!

whereH is the Hamiltonian,E is the eigenvalue,uC& is the
wave function, andQi is the operator for the constraints. I
order to solve Eqs.~1! and ~2!, we can introduce the
Lagrange multipliers to form a generalized Hamiltonian
realize the quantum constraints in Eq.~2!.

~1! The Lagrange multiplierl iQi : One way to introduce
the Lagrange multiplier is to generalize the Hamiltonian
Eq. ~1! to

HL15H1(
i 51

M

l iQi ~3!
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to replace theM constraints@Eq. ~2!#. It is expected that the
constraint could be realized by minimizing the expectat
energy with respect to the Lagrange multipliersl i :

d

dl i
^CuHL1uC&50. ~4!

The resulting equations are

S H1(
i

l iQi D uC&5EuC&, ~5!

^CuQi uC&50, ~ j 51, . . . ,M !. ~6!

From the notations, we should note the differences betw
Eqs.~2! and~6!: the averages ofQi in the stateuC& replace
the original equations. Generally speaking, Eqs.~6! are
weaker than Eqs.~2!. They are not equivalent except fo
some special cases. For example, ifQi is semipositive defi-
nite, the Lagrange multipliers can realize the constraints
cause, in this case, Eqs.~6! are equivalent to Eqs.~2!. An-
other available case is that if we consider only the grou
state properties and know that the ground state
nondegenerate, Equations.~2! and ~6! are also equivalent
However, we cannot use this if we want to prove the non
generacy of the ground state of a system.

~2! The Lagrange multiplierl iQi
†Qi : If Qi are not semi-

positive definite, or we have to consider the complete se
solutions, the introduction of the Lagrange multipliers in E
~3! usually enlarges the Hilbert space. HL1 are usually no
longer equivalent to the original problem. Some unexpec
solutions may exist in Eqs.~5! and ~6!. Hence the Lagrange
multipliers cannot realize the constraints as expected. To
end one of the correct ways to introduce the Lagrange m
tiplier to realize the quantum constraint is to usel iQi

†Qi

instead ofl iQi in Eq. ~3!:
12 689 ©1999 The American Physical Society
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HL25H1(
i

l iQi
†Qi , ~7!

which was, to my best knowledge, first proposed in m
paper.2 ~Reference 1 did not mention any reference, wh
the method was commented upon.! The resulting conditions
are

^CuQi
†Qi uC&50 ~8!

instead of Eqs.~6!. Due to the semipositive definiteness
Qi

†Qi , the conditions are reduced to Eqs.~2!. This proves
that the problem ofHL2 is equivalent to the original problem
Mathematically, it also proves the validity of the method
Eq. ~7!. Generally speaking, any mathematical transform
tion should guarantee that the transformed problem
equivalent to the original problem. However, it is anticipat
that the transformed problem could be treated in a sim
way. If the transformed problem is not equivalent to t
original one, it is hard to justify the transformation.

Reference 1 proposed that square terms cannot be us
a real analysis. This is not true. Consider the same prob
in Ref. 1; i.e., minimizingx21y2 under the conditionx1y
51, the function with a Lagrange multiplier is

f ~x,y,l!5x21y22l~x1y21!2. ~9!

Based on the variational principle we havex5y5 1
2 and l

51` with l(x1y21)5 1
2 . It is apparent that Ref. 1 ne

glected this set of solutions. The same minimum ofx21y2 is
obtained as in the usual way.l is determined by the Eule
equations. If we assume thatl is purely imaginary here, we
cannot find a solution no matter which way we introduce
Lagrange multiplier.3 It is worth emphasizing that whetherl i
are complex or imaginary is a pseudoscientific proble
From the principle of mathematics,l i must be determined
by solving the resulting equations simultaneously. In
quantum system we discussed, the expectation value ofH is
energy, which should be real. The author of Ref. 1 perform
an exact diagonalization for a finite system by settingl i
imaginary. It should be noted how to compare a real eig
value with a complex one. We cannot say simply that
state with the lowest real part of the eigenvalue is the gro
state. Thus the data listed in Tables I and II in Ref. 1 do
make sense.

~3! A two-site example: To compare the results of the tw
ways to introduce the Lagrange multiplier, let us re-exam
the two-siteS5 1

2 Heisenberg model,

H15S1•S2 . ~10!

There are four eigenstates ofH1: one is the spin singlet stat
with E52 3

4 , and others are the spin triplet withE5 1
4 . In

order to justify the different Lagrange-multiplier method
we solve the problem in the fermion representation, wh
the single occupancy of a fermion on a site is expected to
realized by the Lagrange multiplier. The spin operator can
expressed in terms of the fermion operator c,

Si
15ci ,↑

† ci ,↓ , ~11!

Si
25ci ,↓

† ci ,↑ , ~12!
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z5 1

2 ~ni ,↑2ni ,↓!, ~13!

with the constraints of single occupancy,

~ni ,↑1ni ,↓21!uC&50. ~14!

ni ,s5ci ,s
† ci ,s (s5↑,↓). Usually the quantum constraint i

very difficult to realize. If we introduce the Lagrange mult
plier as in Ref. 1,

H25 1
2 ~c1,↑

† c1,↓c2,↓
† c2,↑1c1,↓

† c1,↑c2,↑
† c2,↓!1

1

4
~n1,↑2n1,↓!

3~n2,↑2n2,↓!1 (
i 51,2

l i~ni ,↑1ni ,↓21!, ~15!

the physical space has been enlarged so that the conditio
single occupancy is replaced by

^Cu~ni ,↑1ni ,↓21!uC&50. ~16!

In the case the number of particle per site is no longer alw
equal to 1, and will be determined by the Schro¨dinger equa-
tion of H2 and the condition of Eq.~16!. The condition
cannot guarantee single occupancy. For example, a l
state

uf i&5
1

A2
~12ci ,↑

† ci ,↓
† !u0&,

consisting of empty and double occupancies, satisfies
condition

^f i u~ni ,↑1ni ,↓!uf i&51,

whereu0& is the vacuum state.
If we focus on a fixed number of particle, say 2, and thz

component of total spin 0, the wave function is

C5~ac1,↑
† c2,↓

† 1cc2,↑
† c1,↓

† 1bc1,↑
† c1,↓

† 1dc2,↑
† c2,↓

† !u0&.
~17!

From Eq.~16!, we haveubu5udu. There are two sets of so
lutions: ~1! E52 3

4 with a5cÞ0 andb5d50, andE5 1
4

with a52cÞ0 andb5d50. The twol i ’s can be any finite
values. These two solutions correspond to the two states
total spin 0 and 1.~2! E50 with a5c50, b56d, andl1
5l2. Solutions~2! satisfy the condition@Eq. ~16!#, but do
not satisfy the condition of the single occupancy. These t
states do not exist in the original Heisenberg model. T
illustrates that the Lagrange multipliers in Eq.~15! do not
realize the single occupancy, as expected. It enlarges
physical space, and some unphysical states are included

If we introduce the Lagrange multipliersl i(ni ,↑1ni ,↓
21)2 in Eq. ~15! instead ofl i(ni ,↑1ni ,↓21),

H35
1

2
~c1,↑

† c1,↓c2,↓
† c2,↑1c1,↓

† c1,↑c2,↑
† c2,↓!1

1

4
~n1,↑2n1,↓!

3~n2,↑2n2,↓!1 (
i 51,2

l i~ni ,↑1ni ,↓21!2, ~18!

we have the solutionsE52 3
4 with a5cÞ0 andb5d50,

andE5 1
4 with a52cÞ0 andb5d50. The twol i ’s can be
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any finite values. These are the two physical states. The o
two unphysical states are excluded spontaneously.

Comparison of the results of this simple example clea
illustrates that the two ways to introduce the Lagrange m
tipliers will lead to different results.H2 in Eq. ~15! contains
two unphysical states thatH1 in Eq. ~10! does not. Hence we
cannot say that the Lagrange multiplier in Eq.~15! is correct.
Although some other conditions can be used to exclude
unphysical states for a few-body system, those conditions
neither attached to the method itself nor have a solid m
ematical foundation. They have gone beyond the method
self. It is common sense that a conclusion drawn from
concrete example cannot be naively extended to a gen
case without a solid mathematical foundation, especi
when we discuss a general method.

~4! Compatible HandQi : WhenQi are not semipositive
definite, but allQi andH are compatible, i.e.,@H,Qi #50 and
@Qi ,Qj #50, are Eqs.~1! and ~2! equivalent to Eqs.~5! and
~6!? The two-site problem we just discussed has give
negative answer. It is well known that two compatible ope
tors can be diagonalized simultaneously, but this does
mean that eigenstates ofH are always the eigenstates ofQi .
Assumeuc1& and uc2&, two eigenstates ofH with energy
eigenvaluesE1 andE2. From the commutators ofH andQi ,
we obtain

^c1u@H,Qi #uc2&5~E12E2!^c1uQi uc2&50. ~19!

If E1ÞE2 , ^c1uQi uc2& must be zero. But ifE15E2 ,
^c1uQi uc2& can be nonzero. Therefore, if all eigenstates oH
are nondegenerate, the eigenstates ofH are automatically the
eigenstates ofQi . In this case the Lagrange multipliers
Eq. ~3! can realize the constraints in Eq.~2!. However, if part
of the eigenstates ofH are degenerate, the eigenstates oH
are no longer always the eigenstates ofQi . Thus Eqs.~1!
and~2! are not equivalent to Eqs.~4! and~5!. The latter can
contain more solutions that do not appear in Eqs.~1! and~2!.
In the example of a two-site problem, the Hamiltonian in E
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~7! has two unphysical states which are degenerate. Th
why we have two unphysical solutions in the examp
Therefore, the compatible properties ofH and Qi do not
guarantee that the Lagrange multipliers in Eq.~3! can realize
the constraints.

Although we can justify very easily whether theQi op-
erators are semipositive definite, it is extremely difficult
determine whether the eigenstates ofH for a many-body sys-
tem are nondegenerate or not. Especially when we wan
prove the nondegeneracy of the ground state of a Ha
tonian~see references in Ref. 2!, l iQi is not a correct way to
realize the quantum constraints. In many-body physics, th
are many examples to introduce the Lagrange multiplie
One of the most famous examples in a many-body system
the chemical potential to adjust the number of particles. I
grand canonical ensemble the dispersion of the particle n
bers

^~DN!2&5^N2&2~^N&!2}^N&.

This is acceptable, or reasonable, since the relative dis
sion A^(DN)2&/^N& approaches zero in the thermodynam
limit. In a quantum many-body system, for example, t
spin-12 Heisenberg model in the fermion representation, it
quite difficult to realize the condition of single occupancy
a fermion at each lattice site. On the Lagrange multipli
l iQi

†Qi we have taken into account the strong correlatio
between particles. How to make approximation to treat
multipliers goes beyond the scope of this Comment. Wh
we introduce one type of Lagrange multiplier, at least
should guarantee that the method is correct for a solva
case before we make other approximations such as a m
field approximation.
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