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Ab initio structural, elastic, and vibrational properties of carbon nanotubes

Daniel Sánchez-Portal, Emilio Artacho, and Jose´ M. Soler
Departamento de Fı´sica de la Materia Condensada and Instituto Nicola´s Cabrera, C-III, Universidad Auto´noma de Madrid,

28049 Madrid, Spain

Angel Rubio
Departamento de Fı´sica Teo´rica, Universidad de Valladolid, 47011 Valladolid, Spain

Pablo Ordejo´n
Departamento Fı´sica, Universidad de Oviedo, 33007 Oviedo, Spain

~Received 11 November 1998!

A study based onab initio calculations is presented on the structural, elastic, and vibrational properties of
single-wall carbon nanotubes with different radii and chiralities. These properties are obtained using an imple-
mentation of pseudopotential-density-functional theory, which allows calculations on systems with a large
number of atoms per cell. Different quantities are monitored versus tube radius. The validity of expectations
based on graphite is explored down to small radii, where some deviations appear related to the curvature-
induced rehybridization of the carbon orbitals. Young moduli are found to be very similar to graphite and do
not exhibit a systematic variation with either the radius or the chirality. The Poisson ratio also retains graphitic
values except for a possible slight reduction for small radii. It shows, however, chirality dependence. The
behavior of characteristic phonon branches as the breathing mode, twistons, and high-frequency optic modes,
is also studied, the latter displaying a small chirality dependence at the top of the band. The results are
compared with the predictions of the simple zone-folding approximation. Except for the known deficiencies of
the zone-folding procedure in the low-frequency vibrational regions, it offers quite accurate results, even for
relatively small radii.@S0163-1829~99!02919-7#
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I. INTRODUCTION

Carbon nanotubes have excited a considerable intere
the condensed-matter and materials research communiti
the last few years, and much experimental and theore
work has been devoted to them as prototype of o
dimensional ordered systems with promising technolog
applications.1 Electronic transport in conducting nanotubes
one of the issues that has attracted more attention, espec
after the developments that made possible the synthes
large quantities of single-wall nanotubes~SWNT! forming
crystalline ropes.2,3 Experiments showed a peculiar metal
behavior above 35 K, which was understood in terms of
coupling between the conduction electrons and long wa
length twistons, i.e., torsional-shape vibrations.4 The quanti-
tative understanding and characterization of this and o
related phenomena require the detailed knowledge of b
the structure and the vibrations of these tubes.

The structure of carbon nanotubes is qualitatively w
known through the simple construction of rolling a perfe
graphene sheet, where only one parameter is to be d
mined: the lattice parameter or a bond length. The symm
of the tubes is less restrictive than in graphite and sev
parameters are needed to determine completely the struc
Among other things, these parameters define the differen
between inequivalent bonds, which condition the position
the Fermi surface in the conducting armchair tubes. It is v
difficult to obtain direct experimental information for th
structure, and very little theoretical information has be
given so far.5–7

Besides possible nanotechnological applications, car
PRB 590163-1829/99/59~19!/12678~11!/$15.00
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nanotubes are promising candidates for composite mate
where their low weight and very high Young modulus can
of use. Their elastic properties have thus received consi
able attention as well. The nanotube’s unusual strength ar
from a combination of high stiffness and an extraordina
flexibility and resistance to fracture.8–10 The Young modulus
of SWNT has been measured from the amplitude of th
thermal vibrations11 and by measuring the bending force of
pinned nanotube by an atomic-force microscope.12 The ex-
perimental results give a Young modulus in the range of o
TPa, similar to the one of graphite when pulled parallel
the sheets, but the experimental uncertainity is quite h
There is also a dispersion of theoretical values8,9,13–16in the
literature for this quantity corresponding to different appro
mations, but also to different definitions of the effective se
tional area.

Raman experiments17 offer valuable information for the
vibrations of ropes of single-wall armchair (n,n) tubes. The
use of resonant Raman scattering18 allows us to discriminate
the vibrations stemming from tubes of different diameters
looking mainly at the A1g breathing mode that exhibit a
strong dependence on tube diameter. Furthermore, the
cal E2g phonon peak shows size-dependent multiple sp
tings that are nearly independent of chirality and can be u
to determine the tube diameter.19 Raman scattering, howeve
is limited to the neighborhood of the center of the Brillou
zone, and additional selection rules limit the number of
brations detectable to seven per tube type. The theore
characterization of the vibrational modes can complem
this knowledge allowing to correlate tube diameter to a s
cific vibrational frequency. There is theoretical informatio
12 678 ©1999 The American Physical Society
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available based on empirical force constants17 and tight-
binding Hamiltonians,20,21 but a first-principles theoretica
reference is still lacking22 ~except for the breathing mode7!.

The strong similarity of the chemistry of carbon nan
tubes to graphite allows theoretical analyses to be done b
on empirical methodologies imported from studies on gra
ite. They range from the direct zone folding23 of the results
for graphite to the quantum-mechanical studies ba
on tight-binding Hamiltonians fitted to graphit
properties.20,21,24 Effective interatomic potentials,13 force-
constant models,15 or nonorthogonal tight-binding16 have
also been tried. The performance of the different techniq
varies, from the qualitative picture offered by zone foldin
with intrinsic deficiencies for low frequencies, to the ve
quantitative results of tight-binding approaches. The cur
ture of the tubes, however, disturbs the chemistry in a w
that can cause the deviation, from the graphite-based des
tion, for narrow tubes. Zone folding and force constants
glect curvature altogether. Model potentials can only acco
for the different distances among the atoms. Tight bind
captures part of the chemical strain through the geom
dependence of its electronic matrix elements, even tho
their absolute value depend on the electronic structure
graphite. It is then important to be able to compute the d
ferent properties for any tube radius using a tool that d
not depend on a fit to graphitic properties, so as to study
narrow-tube properties with the same degree of accurac
the wide ones.

In the present paper we present anab initio study of the
structural, elastic, and vibrational properties of single-w
carbon nanotubes for different diameters and chiralities
address the points mentioned above. The behavior of
different properties is monitored versus tube radius, and
performance of the different approximations used in the
erature is studied to ascertain on their different ranges
applicability. Section II describes the methodological deta
The results and discussion are presented in Sec. III, to fi
with the concluding remarks in Sec. IV.

II. COMPUTATIONAL SCHEME

The first-principles scheme used in this study was
scribed in detail elsewhere,25 where it was already applie
and tested on large fullerene molecules. It is based on
local-density approximation~LDA ! to density-functional
theory.26 Core electrons are replaced by nonlocal, normc
serving pseudopotentials,27 whereas valence electrons are d
scribed within the linear combination of atomic orbita
~LCAO! approximation. In this paper we have used a mi
mal basis set of ones and threep orbitals per carbon atom
Although this basis is certainly not complete, it provides
sufficiently accurate description of the systems and effe
that we intend to study.

The radial shape of the atomic basis functions is cho
according to the prescription of Sankey and Niklewsk28

This consists in using the solution of the atom with t
pseudopotential as a basis for the LCAO calculation; th
pseudoatomic orbitals~PAO! are calculated with the bound
ary condition that they vanish outside a given radiusr c . The
PAO’s are, therefore, slightly excited, since their kinetic e
ergy is increased due to the vanishing boundary condit
ed
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They are strictly localized, which is very advantageous fro
the computational point of view. For a review of the quali
of these PAO bases for electronic structure calculations,
refer the reader to Ref. 29. In this paper, we have use
radial cutoff of r c54.1 Bohr.

The use of atomic orbitals, and a combination of efficie
techniques, allow us to calculate the LDA Hamiltonian wi
an order-N effort ~i.e., a cost that scales linearly with th
number of atoms, both in time and in memory!.25 This makes
it possible to reach system sizes with a much larger num
of atoms than the standard techniques. Some of the Ha
tonian matrix elements are computed by interpolation of p
calculated two- and three-center integral tables, whereas
ers are obtained by direct integration in a real-space g
The fineness of the grid is expressed by the maximum kin
energy of a plane wave that can be represented in it, a
usually done in plane wave calculations. Note that, in o
case, the grid is used to represent the charge density, an
the wave functions. In this paper we have used a cutoff of
Ry for the grid integrations.

The solution of the Hamiltonian matrix can be done
straight diagonalization@which is anO(N3) operation#, or
using recently developed order-N techniques,30,31 which are
very advantageous for systems with large numbers of at
~typically, the crossover between the two solutions is arou
100 atoms, for calculations with minimal bases!. The sys-
tems under study in this paper are in the range between
and 200 atoms, and therefore diagonalization of the Ham
tonian is feasible and competitive with an order-N technique.
We have used diagonalization throughout this paper.

Calculations were performed for the following tube
~4,4!, ~6,6!, ~8,8!, ~10,10!, ~10,0!, and ~8,4!. They were all
considered as isolated, infinitely long tubes. For that purpo
we used periodic-boundary conditions on a supercell ge
etry with sufficient lateral separation among neighbori
tubes. For the purpose of sampling the Brillouin zone in
direction of the tube axis, as well as for the computation
the force-constant matrix for phonon calculations~see be-
low!, we used supercells containing several unit cells in
axis direction. The supercells consisted of five unit cells
the armchair (n,n) tubes@80, 120, 160, and 200 atoms fo
the ~4,4!, ~6,6!, ~8,8!, and~10,10! tubes, respectively#, three
unit cells for the zigzag~10,0! tube~120 atoms!, and one unit
cell for the chiral ~8,4! tube ~112 atoms!. The supercell
length in the tube-axis direction is similar for all of them, th
number of atoms changing because of the different tube
dii. Only theG point of the supercell was used in the phon
calculations, although more completek-point samplings were
tested showing no significant differences with theG-point
results.

The atomic structures of the tubes were obtained by c
ful minimization of the total energy by means of the calc
lated Hellman-Feynman forces, including Pulay-like corre
tions to account for the fact that the basis set is not comp
and moves with the atoms.25 The minimizations were per
formed using a dissipative molecular-dynamics algorith
which allows the geometry optimization with no symmet
conditions imposed. The residual forces in the optimizatio
were always smaller than 0.04 eV/Å . The energy was m
mized and the structure relaxed for different values of
lattice constant along the tube axis. This procedure allows
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12 680 PRB 59DANIEL SÁNCHEZ-PORTALet al.
to determine the most stable lattice constant along the t
as well as the Young modulus and the Poisson ratio.

For the phonon calculations, we first obtain the forc
constant matrix in real space using a finite-differen
approach.32,33 We used finite-atomic displacements of 0.
Å, and the force constants were taken as the average o
results obtained with positive and negative displacements
eliminate anharmonic effects. All atoms are equivalent
symmetry, in the nanotubes, and therefore we only ca
lated the force constants for one of the atoms in the super
and generated the rest of the matrix using the symmetry
erations.

The force-constant matrix has to be computed betwee
given atom and all the rest in the system. However, it
known that the force constants decrease rapidly with dista
~in nonpolar systems!, so that only the elements of atom
sufficiently close need to be computed. To do so, we set u
supercell large enough that a sufficient number of neighb
in the tube-axis direction is included. It must be also kep
mind that, in the supercell geometry, a given atomic d
placement in the central cell is always accompanied by
same displacement of all the images. The supercell m
therefore, be large enough so that the effect of the im
displacement is negligible. The cells discussed above w
built with these observations in mind. Once the forc
constant matrix in real space has been obtained, we calc
the dynamical matrix in reciprocal space, and diagonaliz
to obtain the phonon modes and frequencies as a functio
the one-dimensional~1D! crystalline momentum vector in
the direction of the tube.

III. RESULTS AND DISCUSSION

A. Structural properties

We first study the equilibrium structural properties of t
nanotubes. As a reference, we have first computed the e
librium bond distance for a single-graphene plane, for wh
we obtain a value of d51.436 Å , close to the
experimental34 ~1.419 Å! and LDA plane-wave
calculations35 ~1.415 Å! in graphite. Our value is slightly
larger than the one obtained with plane waves, the sm
difference being due to the basis set. For all the tubes stu
here we have found that the average carbon bond leng
within 1% of the graphitic value. No appreciable symmet
breaking distortions have been observed. However, by s
metry, for the (n,n) and (n,0) tubes there are two inequiva
lent bonds, three in general, for chiral tubes. Figure 1~a!
shows the value of these two bond lengths as a function
tube radius~in units of the graphene bond length! for the
(n,n) tubes studied here. The differences between th
bonds and graphite, and between the two kinds of bonds
small but significant. Two effects are apparent:~i! both bond
lengths increase~as compared with the graphene referen!
with decreasing tube radius;~ii ! the difference between them
also increases with decreasing radius. Both effects can
easily understood in terms of the rehybridization and
weakening of thep bonds induced by the curvature.6 As
shown in Fig. 1~a!, the longer bond is the one perpendicu
to the tube axis in the (n,n) tubes. This is in contrast with
the results of Ref. 7. This discrepancy is due to the sm
k-point sampling used in that paper.36
e,
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Figure 1~b! shows the variation of the bond angles wi
the tube radius for the (n,n) tubes. As for the bond dis
tances, there are two inequivalent bond angles in (n,n)
tubes. The behavior of the bond angles is very similar to
one expected from ideal ‘‘rolling’’ of a graphene plane
form the tube, also shown in Fig. 1~b!. In this case, one of
the angles would maintain a value of 120°, whereas the o
would decrease for smaller tube radii, leading to the incre
ing tube curvature. In the fully relaxed structures, bo
angles are smaller than 120°, so that the curvature stre
more distributed around the tube area. Since the ideal 1
angle now shares some of the cost of the curvature, the o
angle increases slightly from its ideal value. Neverthele
we see that deviation from the ideal behavior is only relev
for the tubes with small radius, being almost negligible f
tubes larger than (6,6).

FIG. 1. Structural and electronic variations with tube radius.~a!
Length of the two inequivalent bonds in (n,n) tubes in units of the
bond length in graphite. Circles are for the bond perpendicula
the tube axis, and the squares for the other inequivalent b
length.~b! The two inequivalent bond angles in (n,n) tubes. Con-
tinuous lines show the angles resulting from an ideal graphene
ing. ~c! Tube-radius dilation as compared to the ideal radius.~d!
Position of the Fermi surface (kF) in the Brillouin zone. Squares
and circles stand for the ideal and relaxed structures, respecti
The continuous line indicates the ideal zone-folded value.
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As a consequence of the increase in bonding distan
shown in Fig. 1~a!, the actual tube radii are slightly large
than those resulting from an ideal rolling of the graphe
sheet. This is plotted in Fig. 1~c!. Again, this deviation is
more pronounced for the tubes with smaller radius, and
behavior approaches the ideal for large radii tubes.

The structural distorsions affect the electronic structure
these metallic tubes. Although the study of the electro
properties is not the focus of this paper, it is worth discuss
what is the effect of the structural parameters on the Fe
level, since this has implications for the physics of the
systems, for example, in the interpretation of very rec
scanning tunneling spectroscopy experiments on s
SWNT.37 In a zone-folding model based on the graphe
band structure, the Fermi level of all (n,n) tubes would be
located at a wave vector of23 p/L ~with L being the lattice
constant in the tube axis!. For the real tube structure, th
position of the Fermi level will change due to the reduc
symmetry, with its two inequivalent bonds~those perpen-
dicular to the tube axis, and those nonperpendicular!. In a
simple Hückel model this reduced symmetry is describ
with two different hopping interactionst' and t8, both dif-
ferent from the ideal graphene hoppingt. The Fermi wave
vector in this case iskF5(2/L)arccos(t' /2t8). In real tubes,
the Fermi surface moves because of two reasons:~i! The
rolling of the graphene plane to form the tube originate
change of the electronic potential in the inequivalent bo
of the tube, even in the case where the structure is take
the ideal graphene rolling, i.e., with both bonds kept at
same graphene bond length.~ii ! The difference in bond
lengths for the two inequivalent bonds in the relaxed str
ture change the hopping matrix elements. In order to dis
guish these two effects, we show in Fig. 1~d! the calculated
values of the Fermi wave vector for the fully relaxed stru
tures, and for the ideal graphene rolling tubes, obtained w
our LDA-LCAO formulation. We see that the main effect
the Fermi level shift is the rolling to form the tube, where
the difference in bond lengths brought by the structure re
ation gives only a minor correction tending to bringkF closer
to the graphene value. We see that the deviation from
graphene Fermi level are relatively large, increasing w
decreasing tube radii.

B. Elastic properties

1. Strain energy

Figure 2~a! shows the strain energy per atom~energy rela-
tive to a planar graphene sheet! as a function of the radius o
the tube. The data follows quite well the behavior expec
from classical elasticity theory,38 Est5C/r 2, wherer is the
radius of the tube andC is a constant that depends on t
Young modulusY and thicknessh of the wall in a model
tube: C5Yh3a/24. A least-squares fit to the results of th
(n,n) tubes yields a value ofC52.00 eV Å2/atom, in very
good agreement with recent LDA calculations.7 For the other
two tubes studied,~8,4! and~10,0!, we obtain slightly larger
values~2.15 and 2.16 eV Å2/atom, respectively!.

It is to some extent suprising that the predictions fro
elasticity theory are so closely followed by the detailedab
initio calculations. In fact, the assignment of a thicknesh
for a single atomic layer is not a well-defined procedu
es
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Adamset al.39 provided an alternative explanation based
microscopic arguments. They use a very simplified mode
which the energetics of many different fullerene structu
depend on a single structural parameter: theplanarity fp ,
which is the angle formed by thep orbitals of neighbor
atoms. Asuming that the change in total energy is mainly d
to the change in thetp interaction between these orbitals, an
that this change is proportional to cosfp , the r 22 behavior
is predicted. Adams et al. obtained a value of C
52.12 eV Å2/atom using non-self-consistent firs
principles calculations. Previous calculations using Ters
and Tersoff-Brenner potentials13 predict the same depen
dence and gave a value ofC'1.5 and 1.2 eV Å2/atom, re-
spectively.

We note in Fig. 2~a! that the (n,n) tubes are energetically
more stable as compared to other chiralities with the sa
radius. This difference is, however, very small and will d

FIG. 2. ~a! Strain energy versus tube radius. Solid line draw
across the (n,n) data corresponds to a least-squares fit to theC/r 2

behavior. The twoC/r 2 functions passing through the~8,4! and
~10,0! data are also shown~in this scale they appear as one line!.
The r 2a behavior is clearly shown in the inset. The value obtain
for a from the logarithmic fit is 2.0560.02. ~b! Young modulus
versus tube radius. Open symbols for themultiwall geometry, and
solid symbols for the single-wall-nanotube crystalline-rope confi
ration. The experimental value of the c11 elastic constant of graphite
is also shown.~c! Poisson ratio versus tube radius.
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12 682 PRB 59DANIEL SÁNCHEZ-PORTALet al.
crease as the tube diameter increases due to ther 22 behav-
ior. This is expected, since in the limit of large radii the sa
graphene limit is obtained, regardless of chirality.

2. Young modulus

Measurements of the amplitude of the intrinsic therm
vibrations of the tubes11 allow an undirect determination o
the Young modulus, yielding an average value of 1.8 T
There is a large uncertainty in the results, however, w
values ranging from 0.40 to 4.15 TPa. Furthermore, m
surements of the restoring force on bent nanotubes with
atomic-force microscope give an average value of 1
60.59 TPa. Since the corresponding elastic constant
graphite (c11) is also of the order of 1 TPa, it is still a
question whether the rolling of the graphene plane to ob
nanotubes increases or decreases its stiffness.

Theoretical calculations can help in solving the issue,
the calculations performed so far also show a great dis
sion in their predictions. Some theoretical estimates rep
values of the order of 5 TPa~Ref. 40! based on an empirica
Keating force-constant model for the finite-capped~5,5!
tube. This unreasonably high value can be due to the s
size of the aggregates used to describe the tube, with onl
to 400 atoms. Yakobsonet al.,9 in a study of the structura
instabilities of SWNT for large deformations, and usin
Tersoff-Brenner potentials, obtain an estimate for the You
modulus of about 5.5 TPa, by fitting their results to the co
tinuum elasticity theory. However, Robertsonet al.,13 using
the same potential, report a small weakening of the stiffn
of nanotubes as the diameter decreases, and therefo
Young modulus for the nanotubes smaller than the one
graphene. They find a systematic dependence with the ch
ity which, although being small, increases with decreas
tube radius. Lu,15 using a force-constant model fitted to r
produce the phonons and elastic constants of graphite,
tains elastic properties that are essentially independent o
licity and tube radius, and comparable to those of graph
~with values of the Young modulus below 1 TPa!. Finally,
recent tight-binding16 calculations give values of the order o
1 TPa for the SWNT, quite insensitive to the chirality of th
nanotube, and mainly determined by the tubule diame
approaching the graphitic limit for diameters of;1.2 nm.

Part of the discrepancies in the theoretical results
cussed above is merely due to a different definition of
Young modulus in these systems. From the point of view
elasticity theory, the definition of the Young modulus i
volves the specification of the value of thethicknessof the
tube wall. As discussed in the previous section, it is not cl
how to define this width for a SWNT, where the wall
composed of only one shell of atoms. The anomalously la
value obtained by Yakobsonet al.9 is due to an assignmen
of a value ofh50.6 Å for the thickness of the graphen
plane, which is obviously too small. Other authors15,16 have
used the graphite interlayer spacing of 3.4 Å in their cal
lations.

In order to avoid this definition problem, we have an
lyzed our results on the elastic stiffness of the nanotu
using the second derivative of the strain energy with resp
to the axial strain:d2E/de2. To obtain this quantity for the
different tubes, we have performed structural relaxations
the nanotubes, subject to deformations between21.0% and
e
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1.0%, at intervals of 0.13%. The total energies for deform
tions in the interval~20.75%, 0.75%! where fitted to a third-
order polynomial, andd2E de2 was obtained from the sec
ond derivative at zero strain. The results are shown in Ta
I. We have estimated the numerical error of these results
taking different intervals in the fitting procedure:~20.5%,
0.5%! and~21.0%, 1.0%!, and obtain that the typical uncer
tainty of the calculation ofd2E/de2 is of the order of 10%.
From Table I we see that the average value in the tube
about 56 eV. The variation between tubes with different ra
and chirality is very small, and always within the limit o
accuracy of the calculation. We therefore can conclude
the effect of curvature and chirality on the elastic propert
is small.

For comparison, we have also calculated the values
d2E/de2 for a single graphene sheet. Three calculations w
done, with different supercells. In all the cases, only theG
point of the supercells was used reproducing thek-point sam-
pling of the tube calculations. Two of them were the unroll
equivalents of the supercells used for the~4,4! and ~10,10!
tubes. These cells were used to allow for a direct check
the curvature effects, comparing the planar and tubular
ometry. The third one was a rectangular~nearly square! cell
of 17.41317.23 Å , with 112 atoms, thus providing a mo
uniform k-point sampling, and, therefore, a more confide
estimation of the elastic constant. The results~also displayed
in Table I! clearly show that there are no appreciable diffe
ences between the results obtained for the nanotubes
those of graphene, the differences being within the unc
tainty of the calculation. These data confirm that the effec
curvature on the Young modulus of the SWNT is sm
down to radii of the order of, at least, 2.8 Å .

Our results are in good agreement with those obtained
Robertsonet al.13 using Tersoff-Brenner potentials, who fin
values around 59 eV/atom, with very little dependence w
radius and/or chirality. Futhermore, we can obtain an exp
mental estimate of this quantity using the elastic consta13

c1151.06 TPa of bulk graphite, from which we obta
d2E/de2.c11Va558.2 eV/atom~where Va is the atomic
volumen in graphite!. This value agrees well with the resul
obtained here, and with those of Robertsonet al.13

If one insists on calculating the Young modulus using t
standard bulk definition, instead of the well-defined seco
derivative used above, one must choose a definition of

TABLE I. Calculated values ofd2E/d2e for different tubes. The
values for a graphene plane obtained with different supercells
also shown~see text for details!.

Tube R~Å! d2E/d2e (eV)

~4,4! 2.794 56
~5,5! 3.463 55
~6,6! 4.140 56
~8,8! 5.498 59
~10,10! 6.864 52
~8,4! 4.211 54
~10,0! 3.979 60
Graphene~4,4! 50
Graphene~10,10! 54
Graphene~large! 60
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effective area per carbon atom. Here we calculate the Yo
moduli considering two different geometries:~i! a multiwall-
like geometry, in which the normal area is calculated us
the wall-wall distance as the one in multiwall tubes, which
very approximately equal to the one of graphite, i.e.,
effectivethicknessof the tube wall is taken to be 3.4 Å , and
~ii ! a rope configuration of single wall tubes, where the tub
would be arranged forming a hexagonal closed packed
tice, with a lattice constant of (2r 13.4 Å ), beingr the tube
radius. The results are shown in Fig. 2~b!. For the crystalline
rope geometry, the decrease of the Young modulus with
creasing the tube radius is due to the quadratric increas
the effective area in this configuration, while the number
atoms increases only linearly with the tube diameter. T
computed values for the SWNT ropes are, however, still v
high, even comparing with other carbon fibers.41

3. Poisson ratio

The Poisson ration is given by the variation of the radiu
of the SWNT resulting from longitudinal deformations alon
the tube axis:

Dr

r
52n

D l

l
~1!

wherel is the tube length. We have calculatedn for the tubes
under study, and find that in all cases the Poisson rati
positive: an elongation of the tube reduces its diameter.
results are shown in Fig. 2~c!. We obtain values aroundn
50.14 ~from 0.12 to 0.16! for the armchair (n,n) tubes, and
a little larger for other chiralities: 0.19 for~10,0! and 0.18 for
~8,4!. The uncertainty of the obtained values is of the ord
of 10%. These results reveal a slight decrease of the Poi
ratio with the tube radius, and a stronger dependence
chirality. Our results are close to the value ofn50.19 ob-
tained by Yakobsonet al.9 using Tersoff-Brenner potentials
but considerably smaller than the valuen50.28 given by
Lu15 with a force-constant model andn50.26 from a tight-
binding calculation.16 The corresponding magnitude alon
the basal plane in graphite isn50.16.42,43

C. Vibrations

In our study of the vibrational properties of SWNT, w
have first computed the phonon spectrum of a sin
graphene plane, which is shown in Fig. 3~a!. This will serve
as a test of the accuracy of the calculation method, and
reference for the interpretation of the nanotube results. A
the graphene-phonon structure is needed to obtain nano
phonons within the zone-folding approach.

The calculation of the graphene phonons has been
formed using the nearly square supercell of 112 atoms
scribed in previous sections. The calculatedab initio
phonon-dispersion curves are, in general, in quite g
agreement with experiments for graphite.44 The most re-
markable disagreement is for the frequency of the high
optical bands, which atG is around 1690 cm21 in our cal-
culations, and 1580 cm21 in the experiment. This differenc
is attributed to the use of a minimalsp3 basis in the calcu-
lation. However, our calculations reproduce well the ov
bending of the LO band~i.e., the highest frequency is not a
theG point, but at intermediate points betweenGM andGK).
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This has important consequences in the phonon structur
the nanotubes, especially in the zone-folding scheme, wh
the overbending leads to Raman-active modes in the na
tubes, which are higher in frequency than those of graphe
Also, our results show good quantitative agreement with
periment for the lower-frequency band. For example, for
out-of-plane ~Z direction of graphene! transversal-optical
mode@labeled in Fig. 3~a! as~ZO!#, we obtain a frequency o
861 cm21, to be compared with the corresponding infrare
active mode in bulk graphite of 868 cm21. Acoustic bands
are also well reproduced.

The main features in the phonon dispersion of Fig. 3~a!
are in good agreement with other density-function
calculations,45,46 but differ from the phonon bands obtaine
with empirical force-constant models,23,47 especially around
the M point.

Sound velocities are extracted from the slope of
acoustic branches. We obtain 24 km/s and 18 km/s for
LA and the in-plane TA branches, respectively. These res
agree very well with the sound velocities that can be
tracted from the experimental data of Ref. 44 for the graph
~0001! surface phonons,'24 and 14 km/s. The out-of-plan
transversal band@~ZA! in Fig. 3~a!# has a zero sound veloc
ity. Fitting the frequencies below 80 cm21 to a parabolic
function v5dq2, a value ofd'631027m2 s21 is obtained,
in very good agreement with previous estimations.49

The sound velocities of the LA and TA branches allow
to calculate back the in-plane stiffness~71.6 eV/atom! and
the shear modulus~40.3 eV/atom! of the graphene shee
respectively. Both values are higher than the ones obta
directly ~see previous subsection! due to error propagation
the elastic constants depend quadratically on the sound
locities, and these are delicate to obtain due to numer
problems close to theG point. The other way around, th
sound velocity calculated using the experimental basal-pl
shear modulus of bulk graphite (c6650.44 TPa42! is 14
km/s, which is indeed quite close to our value.

From the quadratic behavior of the ZA band we can a
estimate the energy necessary to roll up the graphene p
to form the tubes. It can be easily shown that the str

FIG. 3. ~a! Calculated phonon structure for a graphene sheet.~b!
Zone-folding result for the~4,4! tube, obtained from the graphen
ab initio phonons in panel~a!. Ab initio dispersion relations for the
~4,4! ~c!, and the~10,10! ~d! nanotubes. In~c! and~d!, thicker lines
are used to mark two special branches: the acoustic band
twiston mode~torsional shape vibrations!, the other~with finite fre-
quency atG) is the breathing mode.
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energy per carbon atom can be approximated byEst5C/r 2

whereC5d2mc/2, beingmc the carbon atom mass andr the
tube radius. The value obtained forC is 2.3 eV Å2/atom,
which is only 7% higher than the calculated constant for
~10,0! and ~8,4! tubes, and 13% higher than the same co
stant for (n,n) tubes.

We next investigate the phonon structures of the na
tubes considered here. Let us first comment on the nume
errors in the calculated vibrational frequencies. These
mainly originated from the residual forces in the structu
relaxation, the finite atomic displacements in the forc
constant matrix calculation, and the finite grid utilized in t
integration of the Hamiltonian matrix elements. We have
timated this numerical error from the differences in the f
quencies obtained for the~10,0! tube by displacing two dif-
ferent ~but equivalent by symmetry! atoms for the
calculation of the force-constant matrix. We find that t
error is about 10 cm21 for the high part of the spectrum
~frequencies higher than 1300 cm21), and could increase up
to 30 cm21 for some of the lower branches. The breathi
mode and the acoustic bands are more stable, showing e
of about 15 cm21. Uncertainties of the same magnitude ha
been reported by other authors performing similar calcu
tions on graphitic systems.46,48

Figures 3~c! and 3~d! show the calculatedab initio 1D
dispersion relations for the armchair~4,4! and~10,10! tubes.
The zone-folding results for the tube~4,4!, obtained from the
grapheneab initio dispersion relations, are also displayed
the panel~b! of the same figure. The difference between t
ab initio and the zone-folding frequencies are a conseque
of curvature and relaxation effects, and are, therefore, a m
sure of their importance in the phonon spectrum.

From the results of Fig. 3 we see that, apart from so
small differences, which we will analyze in the following
the general agreement between theab initio results and the
zone-folding predictions is considerably good. This is t
case even for the tubes with smaller radii, where the cur
ture effects in the phonon frequencies are expected to
more important, and the zone-folding scheme could star
break down. The agreement is particularly good for the
per part of the spectrum, and worsens for decreasing freq
cies. This is mainly due to the failure of the zone-foldin
approach to describe the breathing modes and two of
acoustic bands of the tube~those corresponding to motion i
the directions perpendicular to the tube axis!. In particular,
within the zone-folding scheme, the breathing mode appe
with zero frequency, and the two translational modes app
with finite frequency. It should be noticed that these de
ciencies can be corrected,23 and an analytical expresion ca
be obtained for the breathing mode frequencies making s
lar assumptions as those made in the zone-folding sche
the use of force constants from a graphene plane. J
et al.23 showed that this model predicts a 1/r dependence o
the frequency of this mode, regardless of chirality.

The deficiencies mentioned above are absent in theab
initio results, without having to resort to additional corre
tions. In Figs. 3~c! and 3~d! we display with thicker lines the
phonon bands associated with the breathing and twis
modes for theab initio results.

The twistons are torsional acoustic modes, which h
been proposed to be of relevance for the peculiar linear
e
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pendence of the electrical resistivity with temperature in
metallic (n,n) tubes.4 These vibrational modes break the r
flexion symmetry of the tubes, and open a gap at the Fe
level, producing a strong electron-phonon coupling, key
the understanding of that behavior. The sound velocity
these modes is, therefore, important for the electronic pr
erties of the (n,n) tubes. Our results indicate that the twisto
mode sound velocity is lower than the corresponding va
obtained for graphene~TA band! for all the studied tubes
and slowly diminish with decreasing tube radius. For t
~10,10! tube, the twiston sound velocity is 15 km/s, i.e., 17
lower than the value found in the graphene plane, and for
narrower tube~4,4! the value decreases to 13 km/s.

Figure 4 shows the Raman and infrared active mode
the G point. These have been assigned according to theDnd
groups,23 which predict 7 infrared-active modes and 1
Raman-active modes for the (n,n) tubes, and 8 infrared- and
16 Raman-active modes for the (n,0) regardless of their ra
dius. We note that, for the~10,0! tube, the highest Raman
active mode in theab initio calculation has a frequenc
larger than the corresponding frequencies for the (n,n)
tubes. In our calculation this highest Raman active mode
a frequency even larger than that predicted by the zo
folding scheme. This is in contrast with the findings for t
(n,n) tubes. In the~10,0! tube, this mode corresponds to a
optical vibration in which the displacement vector is paral
to the tube axis. Although the position of this mode is qu
sensitive to the numerical precision of the calculation~and in

FIG. 4. Ab initio frequencies of the Raman and infrared acti
modes for the (n,n) series and for the (10,0) nanotube. Filled sym
bols indicate the breathing mode.
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particular to the Brillouin zone sampling utilized!, we can
conclude that this tube presents optical frequencies that
higher than those of (n,n) tubes with comparable radii.

We have also analyzed the dependence of the breat
mode frequency with the tube radius and chirality. The
sults are shown in Fig. 5. The breathing mode is aA1g sym-
metry mode~being, therefore, Raman active!, in which there
is a monopolar inward and outward vibration of the atoms
simple approach, based on the force constants derived
the graphene plane, predicts a change of the frequency o
mode asA/r , independently of chirality, wherer is the tube
radius and A51092 cm21 Å .23 Recent LDA frozen-
phonon calculations7 of this mode confirm the prediction o
the r 21 behavior, the constantA having a weak dependenc
on chirality, 1180 and 1160 cm21 Å for (n,n) and (n,0),
respectively. Our calculations confirm the previous resu
indicating once again that the effect of curvature on the va
of the force constants is small, even for the small radii tu
considered here. Only the~4,4! tube presents an importan
deviation from the predicted behavior, with an apprecia
decrease in the breathing-mode frequency. This effect is
ready noticeable in the~5,5! tube, although to a smaller ex
tent. This effect can be understood as a consequence o
hybridization changes and the decrease of thep interaction,
induced by the curvature. Ar 21 fit of the results for tubes
with radius greater than 3.8 Å gives a value of 11
cm21 Å for the constantA, in very good agreement with
Ref. 7, as clearly shown in Fig. 5. The possible chiral
dependence of the breathing mode, if any, is well below
resolution of our data. As pointed out in Ref. 7, the value
A can be estimated from the stretching constant of
graphene plane neglecting all the possible effects of cu
ture. Taking our calculated value of 60 eV/atom~see previ-
ous sections! for this elastic constant, we obtain a valueA
51166 cm21 Å .

One of the most important differences between theab
initio and zone-folding frequencies is a general softening
frequencies when curvature effects are taken into acco
This is especially clear for the higher-frequency bands, bu

FIG. 5. Ab initio breathing mode frequencies as a function of t
inverse tube radius, for~8,4!, ~10,0! and five (n,n) tubes. The con-
tinuous line is a linear fit to the data excluding the~4,4! and ~5,5!
tubes. Dot-dashed line shows the behavior obtained by Jishiet al.
~Ref. 23! using a force-constants model. Dashed and dotted l
show the result of the LDA calculations by Ku¨rti et al. ~Ref. 7! for
the (n,n) and (n,0) tubes, respectively. In this scale the dotted li
is hidden by the continuous one. Error bars as estimated~see the
text!.
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also observable for the intermediate frequencies. The shi
not uniform, and therefore the distribution and, in som
cases, the ordering of the Raman- and Ir-active modes
affected by curvature effects. This effect is most evident
the ~4,4! tube, where the curvature is more pronounced.
show in Fig. 6 the vibrational density of states for the~4,4!
tube, comparing theab initio and the zone-folding results
The figure shows the decomposition of the modes in ra
and tangential~parallel and perpendicular to the tube axis!.
We see that the radial modes correspond to frequencies
low 800 cm21, corresponding roughly to the out-of-plan
bands of graphene. The softening of the frequencies in thab
initio calculation are apparent in this figure, especially
the higher-frequency modes. Also, the upper limit of rad
vibrations is lowered by about 100 cm21 in the ab initio
calculation compared with the zone-folding results, for t
~4,4! tube.

Several papers17,19 have recently made use of the fre
quency of the higher optically active modes as an experim
tal signature of the tube radii. In graphite there is only o
Raman-active optical mode~with zero wave vector! at 1580
cm21, which in our calculation appears at 1690 cm21. In the
nanotubes, it splits into multiple peaks, which are origina
in the zone folding of the graphene bands. The frequencie
theseqz50 tube modes depend on radius and chirality.
the zone-folding scheme, these modes sample the co
sponding optical bands of graphite, with wave vectorsqn
5n/r (n50,1,2, . . . ) along the circumference direction. O
these, only a small number~independent of the tube radius!
are Raman or Ir active.23,47Kasuyaet al.19 were able to mea-
sure the frequency of the highest Raman modes for tub
with different radii, and found that these corresponded to
n51 LO band, andn51 andn52 TO bands of graphite~in
order of decreasing frequencies!. They found the value of the
observed frequencies to be in excellent agreement with
direct zone-folding results. The radius of the narrower tub
in their sample was 5.5 Å , which, assuming an armcha
conformation, would correspond to the~8,8! tubule. It is,
therefore, interesting to see whether these results are m

s

FIG. 6. Vibrational density of states for~a! graphene,~b! the
~4,4! tube in the zone-folding approximation, and~c! the ab initio
results for the same tube. The curves are decomposed in the d
ent directions of the displacement vector. For graphene,Z indicates
modes perpendicular to the plane, andX andY within the plane. For
the ~4,4! tube, the modes are decomposed in radial, tangential,
parallel to the tube axis.
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fied for tubes with smaller radii, as was the case for
breathing mode discussed above.

Figure 7~a! shows the frequencies of the higher-optic
modes obtained from theab initio calculation, whereas Fig
7~b! shows the results from the zone-folding approach. S
eral facts are worth noticing in the comparison. As was
case for the breathing mode, the~4,4! tube deviates very
significantly from the zone-folding behavior. The maximu
ab initio frequency is about 50 cm21 lower than the zone-
folding prediction, and the symmetries and activities of t
higher-frequency peaks are very different. For the lar
tubes, it seems that theab initio results tend to confirm the
symmetry assignments of the zone-folding approach, s
porting the analysis of experimental results in terms of
simple zone-folding scheme. The apparent softening of
maximum frequencies for the~10,10! tubule in Fig. 7~a! is
due to numerical error~the 10 cm21 error bar discussed
above, possibly slightly larger for the largest tube!. The
maximum frequency for this tube should approach the
obtained by the zone-folding method since the curvatur
the smallest. This serves as a measure of the accuracy o
calculation.

IV. CONCLUSIONS

We have presented the results ofab initio calculations for
single-wall carbon nanotubes with different chiralities a
radii, addressing structural, elastic, and vibrational prop
ties. The cases studied include (n,n) tubes~with n ranging
from 4 to 10!, and the~8,4!, and~10,0! tubes. We have also
presented a detailed comparison with the results of o
usual approaches like elasticity theory for elastic proper

FIG. 7. Frequencies for the higher optical modes for differ
tubes,~a! ab initio, and~b! from the zone-folding scheme. We sho
the frequencies of the highest vibrational mode, the two high
Raman-active modes, and the highest Ir-active mode. The sym
try of each mode is also shown.
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or the zone-folding approach for the vibrations. Our resu
serve to validate most of the predictions of these simp
theories, and to point out their limits of applicability. Th
following conclusions can be drawn from our results:

~i! Relaxation effects due to the tube curvature are sm
in general. The inequivalent bonds in a tube enhance t
differences in bond length and angles with decreasing t
radius. The symmetry inequivalent bonds give rise to a sm
shift in the Fermi surface location for the (n,n) tubes,
mainly related to the lower symmetry of the tubes as co
pared with graphene, and only slightly modified by the stru
tural relaxation.

~ii ! The strain energy follows thea/r 2 law expected from
elasticity theory quite accurately for tubes as narrow as~4,4!.
For armchair tubes, which have slightly lower strain ener
than other chiralities, the constant has a value ofa
52.00 eVÅ /atom.

~iii ! Sensible definitions of the Young modulus are us
for two different geometries: multiwall and single-wa
tubes. In the former case the values are very similar to
one of graphite. Single-wall tubes show values smaller th
graphite. In any case, we propose the elastic constant per
mass as the relevant quantity, since it does not depend o
geometry of the system. This is shown to be quite similar
the correspondent quantity in graphite, for all the stud
tubes, and larger than in any known fiber.

~iv! The Poisson ratio also retains graphitic values exc
for a possible slight reduction for small radii. It shows
chirality dependence: (n,n) tubes display smaller value
than ~10,0! and ~8,4!. Our results for the (n,n) tubes are
consistent with the experimental basal Poisson ratio
graphite.

~v! The phonon bands behave as expected from sim
schemes, except for slight deviations, which become m
important for the narrower tubes. The zone-folding analy
gives a good qualitative~and sometimes quantitative! picture
of many of the properties studied here, except for kno
deficiencies in the low-frequency vibrational spectra. For
smallest radii, the zone-folding description of the hig
frequency vibrations is insufficient, too.

~vi! The breathing mode follows theA/r law predicted by
graphene-derived force-constants calculations. The obta
value ofA is consistent with that calculated from the in-pla
stretching elastic constant of graphene. It, however, seem
soften with respect to the expectations for the smallest r
tubes, like ~4,4!. A similar softening is observed for th
twiston modes, whose sound velocity diminishes for decre
ing radii.

~vii ! The high-frequency optic modes are sensitive to
kind of tube and to its radius. The frequencies of the high
modes tend to diminish with decreasing radii by effect of t
curvature.
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