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A study based omb initio calculations is presented on the structural, elastic, and vibrational properties of
single-wall carbon nanotubes with different radii and chiralities. These properties are obtained using an imple-
mentation of pseudopotential-density-functional theory, which allows calculations on systems with a large
number of atoms per cell. Different quantities are monitored versus tube radius. The validity of expectations
based on graphite is explored down to small radii, where some deviations appear related to the curvature-
induced rehybridization of the carbon orbitals. Young moduli are found to be very similar to graphite and do
not exhibit a systematic variation with either the radius or the chirality. The Poisson ratio also retains graphitic
values except for a possible slight reduction for small radii. It shows, however, chirality dependence. The
behavior of characteristic phonon branches as the breathing mode, twistons, and high-frequency optic modes,
is also studied, the latter displaying a small chirality dependence at the top of the band. The results are
compared with the predictions of the simple zone-folding approximation. Except for the known deficiencies of
the zone-folding procedure in the low-frequency vibrational regions, it offers quite accurate results, even for
relatively small radii[S0163-182€09)02919-1

[. INTRODUCTION nanotubes are promising candidates for composite materials
where their low weight and very high Young modulus can be
Carbon nanotubes have excited a considerable interest of use. Their elastic properties have thus received consider-
the condensed-matter and materials research communities @ble attention as well. The nanotube’s unusual strength arises
the last few years, and much experimental and theoreticdfom a combination of high stiffness and an extraordinary
work has been devoted to them as prototype of oneflexibility and resistance to fractufe’° The Young modulus
dimensional ordered systems with promising technologicabf SWNT has been measured from the amplitude of their
applications: Electronic transport in conducting nanotubes isthermal vibrations' and by measuring the bending force of a
one of the issues that has attracted more attention, especiafynned nanotube by an atomic-force microsc&pg&he ex-
after the developments that made possible the synthesis pkrimental results give a Young modulus in the range of one
large quantities of single-wall nanotubéSWNT) forming  TPa, similar to the one of graphite when pulled parallel to
crystalline rope$:® Experiments showed a peculiar metallic the sheets, but the experimental uncertainity is quite high.
behavior above 35 K, which was understood in terms of thelhere is also a dispersion of theoretical vafties~*°in the
coupling between the conduction electrons and long wavehiterature for this quantity corresponding to different approxi-
length twistons, i.e., torsional-shape vibratidriEhe quanti- mations, but also to different definitions of the effective sec-
tative understanding and characterization of this and othetional area.
related phenomena require the detailed knowledge of both Raman experiment5 offer valuable information for the
the structure and the vibrations of these tubes. vibrations of ropes of single-wall armchain,f) tubes. The
The structure of carbon nanotubes is qualitatively welluse of resonant Raman scatteffhallows us to discriminate
known through the simple construction of rolling a perfectthe vibrations stemming from tubes of different diameters by
graphene sheet, where only one parameter is to be detdooking mainly at the A, breathing mode that exhibit a
mined: the lattice parameter or a bond length. The symmetrgtrong dependence on tube diameter. Furthermore, the opti-
of the tubes is less restrictive than in graphite and severalal B, phonon peak shows size-dependent multiple split-
parameters are needed to determine completely the structuténgs that are nearly independent of chirality and can be used
Among other things, these parameters define the differences determine the tube diametérRaman scattering, however,
between inequivalent bonds, which condition the position ofis limited to the neighborhood of the center of the Brillouin
the Fermi surface in the conducting armchair tubes. It is verygone, and additional selection rules limit the nhumber of vi-
difficult to obtain direct experimental information for the brations detectable to seven per tube type. The theoretical
structure, and very little theoretical information has beencharacterization of the vibrational modes can complement
given so far~’ this knowledge allowing to correlate tube diameter to a spe-
Besides possible nanotechnological applications, carboaific vibrational frequency. There is theoretical information
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available based on empirical force constahtand tight-  They are strictly localized, which is very advantageous from
binding Hamiltoniang®2! but a first-principles theoretical the computational point of view. For a review of the quality
reference is still lacking (except for the breathing mofle  of these PAO bases for electronic structure calculations, we
The strong similarity of the chemistry of carbon nano-refer the reader to Ref. 29. In this paper, we have used a
tubes to graphite allows theoretical analyses to be done basegdial cutoff ofr.=4.1 Bohr.
on empirical methodologies imported from studies on graph- The use of atomic orbitals, and a combination of efficient
ite. They range from the direct zone foldffigf the results  tgchniques, allow us to calculate the LDA Hamiltonian with
for graphite to the quantum-mechanical studies basedn grgerN effort (ie., a cost that scales linearly with the
on t'ght'(?'zqggng Hamiltonians ~ fitted to graphite nymper of atoms, both in time and in mempfy This makes
properties’®?!2* Effective interatomic POteﬁt'a'E? force- it hossible to reach system sizes with a much larger number
constant m(_)deléfi or nonorthogonal t'ghtfb'”d'ﬁ@ have 4 atoms than the standard techniques. Some of the Hamil-
also been tried. The performance of the different techniqueg,nian matrix elements are computed by interpolation of pre-
varies, from the qualitative picture offered by zone folding, c5\cylated two- and three-center integral tables, whereas oth-
with intrinsic deficiencies for low frequencies, to the very o5 are obtained by direct integration in a real-space grid.
quantitative results of tight-binding approaches. The curvathe fineness of the grid is expressed by the maximum kinetic
ture of the tubes, however, disturbs the chemistry in a Wa¥nergy of a plane wave that can be represented in it, as is
that can cause the deviation, from the graphite-based desc”B'sualIy done in plane wave calculations. Note that, in our
tion, for narrow tubes. Zone folding and_ force constants Netase, the grid is used to represent the charge density, and not
glect curvature altogether. Model potentials can only accounf,a \wave functions. In this paper we have used a cutoff of 60
for the different distances among the atoms. Tight bindingRy for the grid integrations.
captures part of the chemical strain through the geometry "o solution of the Hamiltonian matrix can be done by

dependence of its electronic matrix elements, even thouQQtraight diagonalizatiofiwhich is an®(N®) operatior, or

their absolute value depend on the electronic structure Ot']sing recently developed ordar-technique$®3! which are

graphite. It is then important to be able to compute the dify oy "5 qvantageous for systems with large numbers of atoms

ferent properties for any tube radius using a tool that doegy nically, the crossover between the two solutions is around
not depend on a fit to graphitic properties, so as to study theq atoms, for calculations with minimal baseShe sys-

narrow-tube properties with the same degree of accuracy a8ms under study in this paper are in the range between 80

the wide ones. and 200 atoms, and therefore diagonalization of the Hamil-

In the present paper we presentaminitio study of the (45 i feasible and competitive with an ordétechnique.
structural, elastic, and vibrational properties of smgle-waIIWe have used diagonalization throughout this paper.
carbon nanotubes for different diameters and chiralities to Calculations were performed for the following tubes:

address the points mentioned above. The behavior of th 4, (6,6), (8,9, (10,10, (10,0, and (8,4). They were all

different properti(ra]s i;, monitored versus tube radijus, arr;d th onsidered as isolated, infinitely long tubes. For that purpose,
performance of the different approximations used in the lityye seq periodic-boundary conditions on a supercell geom-

erature is studied to ascertain on their different ranges o try with sufficient lateral separation among neighboring

applicability. Section Il describes the methodological details , os For the purpose of sampling the Brillouin zone in the
The results and discussion are presented in Sec. Ill, to finisb

_ ) _ irection of the tube axis, as well as for the computation of
with the concluding remarks in Sec. IV. the force-constant matrix for phonon calculatioisee be-
low), we used supercells containing several unit cells in the
axis direction. The supercells consisted of five unit cells for
the armchair §,n) tubes[80, 120, 160, and 200 atoms for

The first-principles scheme used in this study was dethe (4,4), (6,6), (8,8, and(10,10 tubes, respectively three
scribed in detail elsewheré,where it was already applied unit cells for the zigzag10,0 tube(120 atomy and one unit
and tested on large fullerene molecules. It is based on theell for the chiral (8,4) tube (112 atom The supercell
local-density approximation(LDA) to density-functional length in the tube-axis direction is similar for all of them, the
theory?® Core electrons are replaced by nonlocal, normconnumber of atoms changing because of the different tube ra-
serving pseudopotentiatéwhereas valence electrons are de-dii. Only theI" point of the supercell was used in the phonon
scribed within the linear combination of atomic orbitals calculations, although more complétg@oint samplings were
(LCAO) approximation. In this paper we have used a mini-tested showing no significant differences with thepoint
mal basis set of one and threep orbitals per carbon atom. results.

Although this basis is certainly not complete, it provides a The atomic structures of the tubes were obtained by care-
sufficiently accurate description of the systems and effectéul minimization of the total energy by means of the calcu-
that we intend to study. lated Hellman-Feynman forces, including Pulay-like correc-

The radial shape of the atomic basis functions is chosetions to account for the fact that the basis set is not complete
according to the prescription of Sankey and Niklewki. and moves with the atonfS.The minimizations were per-
This consists in using the solution of the atom with theformed using a dissipative molecular-dynamics algorithm,
pseudopotential as a basis for the LCAO calculation; thesevhich allows the geometry optimization with no symmetry
pseudoatomic orbital@AO) are calculated with the bound- conditions imposed. The residual forces in the optimizations
ary condition that they vanish outside a given radiysThe  were always smaller than 0.04 eV/A . The energy was mini-
PAQ's are, therefore, slightly excited, since their kinetic en-mized and the structure relaxed for different values of the
ergy is increased due to the vanishing boundary conditionattice constant along the tube axis. This procedure allows us

Il. COMPUTATIONAL SCHEME
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to determine the most stable lattice constant along the tube, @ 1010 T . . . .
as well as the Young modulus and the Poisson ratio. S 408 L ]

For the phonon calculations, we first obtain the force- 2 @ ]
constant matrix in real space using a finite-difference 2 1006 1
approach??% We used finite-atomic displacements of 0.02 2 004 | ]
A, and the force constants were taken as the average of the 8 T
results obtained with positive and negative displacements, to g 9% [ 1
eliminate anharmonic effects. All atoms are equivalent by o 1,000 ' ' ' ' '
symmetry, in the nanotubes, and therefore we only calcu- —_ —
lated the force constants for one of the atoms in the supercell, g 1200 1 ]
and generated the rest of the matrix using the symmetry op- P 1195 .
erations. \:/ 1190 L

The force-constant matrix has to be computed between a oy 1185 | 1
given atom and all the rest in the system. However, it is S '
known that the force constants decrease rapidly with distance 2 1180 1
(in nonpolar systems so that only the elements of atoms B 41175

sufficiently close need to be computed. To do so, we set up a 15

supercell large enough that a sufficient number of neighbors <
in the tube-axis direction is included. It must be also kept in <
mind that, in the supercell geometry, a given atomic dis- % 10 r 1
placement in the central cell is always accompanied by the =
same displacement of all the images. The supercell must, Bo05¢t .
therefore, be large enough so that the effect of the image k] (10,10) |
displacement is negligible. The cells discussed above were T 0.0 . , . . .
built with these observations in mind. Once the force- oéa
constant matrix in real space has been obtained, we calculate ' ' ' ' ' T
the dynamical matrix in reciprocal space, and diagonalize it = 066 ]
to obtain the phonon modes and frequencies as a function of = ]
the one-dimensionallD) crystalline momentum vector in ~ 0.64 .
the direction of the tube. o) (d)
0.62 | .
Ill. RESULTS AND DISCUSSION 0.60 P T S R
20 30 40 50 60 70
A. Structural properties Radius ( A)

We first study the equilibrium structural properties of the ) o )
nanotubes. As a reference, we have first computed the equi- F'G- 1. Structural and electronic variations with tube radias.
librium bond distance for a single-graphene plane, for whic ength of the two inequivalent bonds in,f) tubes in units of the
we obtain a value ofd=1.436 A. close ’to the ond length in graphite. Circles are for the bond perpendicular to

X the tube axis, and the squares for the other inequivalent bond
experlmentzfl“ (1419 A and LDA plane-wave length. (b) The two inequivalent bond angles in,f) tubes. Con-

. 5 . . . .
lcalculat;]ong é1'415 ﬁ)bln_grzphlfteh. C?ur value is Slr']ghtly inuous lines show the angles resulting from an ideal graphene roll-
arger than the one obtained with plane waves, the Smi&g. (c) Tube-radius dilation as compared to the ideal radids.

difference being due to the basis set. For all the tubes studigs ition of the Fermi surfacekf) in the Brillouin zone. Squares

here we have found that the average carbon bond length ig,q circles stand for the ideal and relaxed structures, respectively.

within 1% of the graphitic value. No appreciable symmetry-the continuous line indicates the ideal zone-folded value.
breaking distortions have been observed. However, by sym-

metry, for the ,n) and (0,0) tubes there are two inequiva-  Figure 1b) shows the variation of the bond angles with
lent bonds, three in general, for chiral tubes. Figufe) 1 the tube radius for then(n) tubes. As for the bond dis-
shows the value of these two bond lengths as a function dfances, there are two inequivalent bond angles rign)

tube radius(in units of the graphene bond lengtfor the  tubes. The behavior of the bond angles is very similar to the
(n,n) tubes studied here. The differences between thesene expected from ideal “rolling” of a graphene plane to
bonds and graphite, and between the two kinds of bonds, aferm the tube, also shown in Fig(H). In this case, one of
small but significant. Two effects are apparditboth bond  the angles would maintain a value of 120°, whereas the other
lengths increaséas compared with the graphene refergnce would decrease for smaller tube radii, leading to the increas-
with decreasing tube radiu6i) the difference between them ing tube curvature. In the fully relaxed structures, both
also increases with decreasing radius. Both effects can bengles are smaller than 120°, so that the curvature stress is
easily understood in terms of the rehybridization and themore distributed around the tube area. Since the ideal 120°
weakening of ther bonds induced by the curvatteds  angle now shares some of the cost of the curvature, the other
shown in Fig. 1a), the longer bond is the one perpendicularangle increases slightly from its ideal value. Nevertheless,
to the tube axis in then(;n) tubes. This is in contrast with we see that deviation from the ideal behavior is only relevant
the results of Ref. 7. This discrepancy is due to the smalfor the tubes with small radius, being almost negligible for
k-point sampling used in that pap&r. tubes larger than (6,6).
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As a consequence of the increase in bonding distances 0.40 e T
shown in Fig. 1a), the actual tube radii are slightly larger = 035 | o ]
than those resulting from an ideal rolling of the graphene ] - @ 20
sheet. This is plotted in Fig.(d). Again, this deviation is © 030 3 T
more pronounced for the tubes with smaller radius, and the %, 025 | 30 .
behavior approaches the ideal for large radii tubes. = L (4.4) N PRy

The structural distorsions affect the electronic structure of o 020 1 Log () 1
these metallic tubes. Although the study of the electronic 2 015 | (5,5)
properties is not the focus of this paper, it is worth discussing q‘:; 010 L
what is the effect of the structural parameters on the Fermi T |
level, since this has implications for the physics of these n 005 (8.8)
systems, for example, in the interpretation of very recent 000 bt
scanning tunneling spectroscopy experiments on short '

SWNT3' In a zone-folding model based on the graphene T 207 " MWNT ' "]
band structure, the Fermi level of alh,n) tubes would be & (b) a o  graphites)
located at a wave vector df#/L (with L being the lattice @ 10r 5 5 g 1
constant in the tube ayisFor the real tube structure, the % ©
position of the Fermi level will change due to the reduced g o080 r * . T
symmetry, with its two inequivalent bondshose perpen- = I % Py

dicular to the tube axis, and those nonperpendig¢ular a 2 060 Nanorope .
simple Hickel model this reduced symmetry is described 3 .
with two different hopping interactions andt’, both dif- > 0.40 L L L L L
ferent from the ideal graphene hoppihgThe Fermi wave —T——T—
vector in this case ikg=(2/L)arccos(, /2t’'). In real tubes, 049 | (©) . (100 ]
the Fermi surface moves because of two reas¢insThe 2 . 84)

rolling of the graphene plane to form the tube originates a O o7t (10,10) -
change of the electronic potential in the inequivalent bonds o 015 | 5:5) ° o |
of the tube, even in the case where the structure is taken as g o o (8.8)

the ideal graphene rolling, i.e., with both bonds kept at the Solr (6.6) 1
same graphene bond lengttii) The difference in bond 011 b @9 i

lengths for the two inequivalent bonds in the relaxed struc- 20 3'0 4'0 5'0 elo =0
ture change the hopping matrix elements. In order to distin- ’ ' ' ’ ' ’
guish these two effects, we show in Figdilthe calculated Radius (A)

values of the Fermi wave vector for the fully relaxed struc- ) _ .
tures, and for the ideal graphene rolling tubes, obtained with G- 2 (@ Strain energy versus tube radius. Solid line drawn
our LDA-LCAO formulation. We see that the main effect of 270SS thert,n) data c0 rresponds to a least-squares fit toctfie
the Fermi level shift is the rolling to form the tube, whereasbfgav'gr' The tV‘I'OC/rh f“”.C"‘;]’?S paslsmt? through th@,4) an_d
the difference in bond lengths brought by the structure relax£ ;0 data are also showtin this scale they appear as one Jine

tion aiv I . tion tending to bri | Ther™ ¢ behavior is clearly shown in the inset. The value obtained
ation gives only a minor correction tending to brikgcloser for a from the logarithmic fit is 2.0%0.02. (b) Young modulus

to the graphene_ value. We see that the deylatlon _from _thgersus tube radius. Open symbols for thaltiwall geometry, and

graphene Fermi level are relatively large, increasing withgjiq symiols for the single-wall-nanotube crystalline-rope configu-

decreasing tube radii. ration. The experimental value of the @lastic constant of graphite
is also shown(c) Poisson ratio versus tube radius.

B. Elastic properties

Adamset al° provided an alternative explanation based on

microscopic arguments. They use a very simplified model in
Figure 2a) shows the strain energy per atgemergy rela- which the energetics of many different fullerene structures
tive to a planar graphene sheas a function of the radius of depend on a single structural parameter: phenarity ¢, ,
the tube. The data follows quite well the behavior expectedvhich is the angle formed by the orbitals of neighbor
from classical elasticity theor? Eq,=C/r?, wherer is the  atoms. Asuming that the change in total energy is mainly due
radius of the tube an€ is a constant that depends on the to the change in the, interaction between these orbitals, and
Young modulusY and thicknessh of the wall in a model that this change is proportional to cég, ther ~2 behavior
tube: C=Y h*a/24. A least-squares fit to the results of theis predicted. Adamsetal. obtained a value ofC
(n,n) tubes yields a value dE=2.00 eV A%atom, invery =2.12 eVA?atom using non-self-consistent first-
good agreement with recent LDA calculatiohBSor the other  principles calculations. Previous calculations using Tersoff
two tubes studied(8,4) and (10,0, we obtain slightly larger and Tersoff-Brenner potentiafs predict the same depen-

1. Strain energy

values(2.15 and 2.16 eV &/atom, respectively dence and gave a value 6f~1.5 and 1.2 eV K/atom, re-
It is to some extent suprising that the predictions fromspectively.
elasticity theory are so closely followed by the detaibdul We note in Fig. 2a) that the f,n) tubes are energetically

initio calculations. In fact, the assignment of a thickness more stable as compared to other chiralities with the same
for a single atomic layer is not a well-defined procedure.radius. This difference is, however, very small and will de-
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crease as the tube diameter increases due tothdédehav- TABLE |. Calculated values ofi’E/d?e for different tubes. The
ior. This is expected, since in the limit of large radii the samevalues for a graphene plane obtained with different supercells are
graphene limit is obtained, regardless of chirality. also shown(see text for details
2. Young modulus Tube R(A) d’E/d%e (eV)

Measurements of the amplitude of the intrinsic thermal(4,4) 2.794 56
vibrations of the tubés allow an undirect determination of (5,5) 3.463 55
the Young modulus, yielding an average value of 1.8 TPag,6) 4.140 56
There is a large uncertainty in the results, however, withg g 5.498 59
values ranging from 0.40 to 4.15 TPa. Furthermore, mea¢10,19 6.864 52
surements of the restoring force on bent nanotubes with agg 4 4.211 54
atomic-force microscope give an average value of 1.2§q 3.979 60
+0.59 TPa. Since the corresponding elastic constant foéraphene(4,4) 50
graphite €44) is also of the order of 1 TPa, it is still a Graphend10,10 54
guestion whether the rolling of the graphene plane to obtaira;rl,ﬁphene(Iarge 60

nanotubes increases or decreases its stiffness.
Theoretical calculations can help in solving the issue, but
the calculations performed so far also show a great dispert.0%, at intervals of 0.13%. The total energies for deforma-
sion in their predictions. Some theoretical estimates repottions in the interval—0.75%, 0.75%where fitted to a third-
values of the order of 5 TP@ef. 40 based on an empirical order polynomial, ana@l’E de® was obtained from the sec-
Keating force-constant model for the finite-cappé&sl5) ond derivative at zero strain. The results are shown in Table
tube. This unreasonably high value can be due to the small We have estimated the numerical error of these results by
size of the aggregates used to describe the tube, with only upking different intervals in the fitting proceduré:-0.5%,
to 400 atoms. Yakobsoet al.? in a study of the structural 0.5% and(—1.0%, 1.0%, and obtain that the typical uncer-
instabilities of SWNT for large deformations, and using tainty of the calculation oti>E/de? is of the order of 10%.
Tersoff-Brenner potentials, obtain an estimate for the Yound-rom Table | we see that the average value in the tubes is
modulus of about 5.5 TPa, by fitting their results to the con-about 56 eV. The variation between tubes with different radii
tinuum elasticity theory. However, Robertsenal.!® using  and chirality is very small, and always within the limit of
the same potential, report a small weakening of the stiffnesaccuracy of the calculation. We therefore can conclude that
of nanotubes as the diameter decreases, and thereforetre effect of curvature and chirality on the elastic properties
Young modulus for the nanotubes smaller than the one ok small.
graphene. They find a systematic dependence with the chiral- For comparison, we have also calculated the values of
ity which, although being small, increases with decreasingi?’E/de? for a single graphene sheet. Three calculations were
tube radius. LU? using a force-constant model fitted to re- done, with different supercells. In all the cases, only Ehe
produce the phonons and elastic constants of graphite, olpoint of the supercells was used reproducingkipint sam-
tains elastic properties that are essentially independent of h@ling of the tube calculations. Two of them were the unrolled
licity and tube radius, and comparable to those of graphenequivalents of the supercells used for {de4) and (10,10
(with values of the Young modulus below 1 TP&inally, tubes. These cells were used to allow for a direct check of
recent tight-binding’ calculations give values of the order of the curvature effects, comparing the planar and tubular ge-
1 TPa for the SWNT, quite insensitive to the chirality of the ometry. The third one was a rectangu(aearly squargecell
nanotube, and mainly determined by the tubule diametemwf 17.41x17.23 A, with 112 atoms, thus providing a more
approaching the graphitic limit for diameters 6f1.2 nm. uniform k-point sampling, and, therefore, a more confident
Part of the discrepancies in the theoretical results disestimation of the elastic constant. The res(dtso displayed
cussed above is merely due to a different definition of than Table |) clearly show that there are no appreciable differ-
Young modulus in these systems. From the point of view ofences between the results obtained for the nanotubes and
elasticity theory, the definition of the Young modulus in- those of graphene, the differences being within the uncer-
volves the specification of the value of tkisicknessof the  tainty of the calculation. These data confirm that the effect of
tube wall. As discussed in the previous section, it is not cleacurvature on the Young modulus of the SWNT is small
how to define this width for a SWNT, where the wall is down to radii of the order of, at least, 2.8 A .
composed of only one shell of atoms. The anomalously large Our results are in good agreement with those obtained by
value obtained by Yakobscet al® is due to an assignment Robertsoret al® using Tersoff-Brenner potentials, who find
of a value ofh=0.6 A for the thickness of the graphene values around 59 eV/atom, with very little dependence with
plane, which is obviously too small. Other authdr€ have  radius and/or chirality. Futhermore, we can obtain an experi-
used the graphite interlayer spacing of 3.4 A in their calcu-mental estimate of this quantity using the elastic conStant
lations. c11=1.06 TPa of bulk graphite, from which we obtain
In order to avoid this definition problem, we have ana-d?E/de?=c,,V,=58.2 eV/atom(where V, is the atomic
lyzed our results on the elastic stiffness of the nanotubesolumen in graphite This value agrees well with the results
using the second derivative of the strain energy with respedbtained here, and with those of Robertsiral 13
to the axial straind?E/de?. To obtain this quantity for the If one insists on calculating the Young modulus using the
different tubes, we have performed structural relaxations fostandard bulk definition, instead of the well-defined second
the nanotubes, subject to deformations betwedn0% and derivative used above, one must choose a definition of the
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effective area per carbon atom. Here we calculate the Young Graphene sheet (44 @4 (10,10)
. . . . A . initio calculation Zone folding Ab initio Ab initio

moduli considering two different geometrigg). a multiwall- 1800 o ®)

like geometry, in which the normal area is calculated using  1e00 N_\ 1 B E

the wall-wall distance as the one in multiwall tubes, whichis 1 @ ] _\\' > f

very approximately equal to the one of graphite, i.e., the? 5 L

effectivethicknesof the tube wall is taken to be8A , and 5 12001 | 7,

(ii) a rope configuration of single wall tubes, where the tubesg Racll PN 17 J /S

would be arranged forming a hexagonal closed packed lat-g s | - S

tice, with a lattice constant of (2-3.4 A), beingr the tube g 00 | A é ] Z A

radius. The results are shown in FigbR For the crystalline wl 1 j -

rope geometry, the decrease of the Young modulus with in- TA 7ff 72

creasing the tube radius is due to the quadratric increase ¢ = 2°, - \ "/ L

the effective area in this configuration, while the humber of of v a— . X

atoms increases only linearly with the tube diameter. The
computed values for the SWNT ropes are, however, still very FIG. 3. (a) Calculated phonon structure for a graphene slibgt.

high, even comparing with other carbon fibé&}s. Zone-folding result for theé4,4) tube, obtained from the graphene
ab initio phonons in panela). Ab initio dispersion relations for the
3. Poisson ratio (4,9 (c), and the(10,10 (d) nanotubes. Irfc) and(d), thicker lines

are used to mark two special branches: the acoustic band is a

The Poisson ratia is given by the variation of the radius iston mode(torsional shape vibrationsthe otherwith finite fre-
of the SWNT resulting from longitudinal deformations along quency af") is the breathing mode.

the tube axis:
This has important consequences in the phonon structure of
ﬂz _ Vﬂ (1) the nanotubes, especially in the zone-folding scheme, where
r | the overbending leads to Raman-active modes in the nano-
wherel is the tube length. We have calculatedor the tubes  tubes, which are higher in frequency than those of graphene.
under study, and find that in all cases the Poisson ratio iéIso, our results show good quantitative agreement with ex-
positive: an elongation of the tube reduces its diameter. Thgeriment for the lower-frequency band. For example, for the
results are shown in Fig.(€). We obtain values around  out-of-plane (Z direction of graphenetransversal-optical
=0.14(from 0.12 to 0.1 for the armchair G,n) tubes, and mode[labeled in Fig. &) as(Z0)], we obtain a frequency of
a little larger for other chiralities: 0.19 f¢10,0 and 0.18 for 861 cnT ', to be compared with the corresponding infrared-
(8,4). The uncertainty of the obtained values is of the orderactive mode in bulk graphite of 868 cm. Acoustic bands
of 10%. These results reveal a slight decrease of the Poiss@fe also well reproduced.
ratio with the tube radius, and a stronger dependence with The main features in the phonon dispersion of Fi@) 3
chirality. Our results are close to the value w£0.19 ob- are in good agreement with other density-functional
tained by Yakobsort al® using Tersoff-Brenner potentials, calculations}>“°but differ from the phonon bands obtained
but considerably smaller than the valwe=0.28 given by  With empirical force-constant modetd;” especially around
Lu'® with a force-constant model ang=0.26 from a tight- the M point.

binding calculatiort® The corresponding magnitude along Sound velocities are extracted from the slope of the
the basal plane in graphite is=0.16%24 acoustic branches. We obtain 24 km/s and 18 km/s for the

LA and the in-plane TA branches, respectively. These results
agree very well with the sound velocities that can be ex-
tracted from the experimental data of Ref. 44 for the graphite
In our study of the vibrational properties of SWNT, we (0001 surface phononss 24 and 14 km/s. The out-of-plane
have first computed the phonon spectrum of a singlé¢ransversal banfiZA) in Fig. 3@] has a zero sound veloc-
graphene plane, which is shown in FigaB This will serve ity. Fitting the frequencies below 80 crh to a parabolic
as a test of the accuracy of the calculation method, and asfanction w= 592, a value of6~6x 10 'm?s ! is obtained,
reference for the interpretation of the nanotube results. Alsan very good agreement with previous estimatihs.
the graphene-phonon structure is needed to obtain nanotube The sound velocities of the LA and TA branches allow us
phonons within the zone-folding approach. to calculate back the in-plane stiffne6&l.6 eV/atom and
The calculation of the graphene phonons has been pethe shear modulug40.3 eV/atom of the graphene sheet,
formed using the nearly square supercell of 112 atoms deespectively. Both values are higher than the ones obtained
scribed in previous sections. The calculatetd initio  directly (see previous subsectipdue to error propagation:
phonon-dispersion curves are, in general, in quite goodhe elastic constants depend quadratically on the sound ve-
agreement with experiments for grapHifeThe most re- [ocities, and these are delicate to obtain due to numerical
markable disagreement is for the frequency of the higherproblems close to th& point. The other way around, the
optical bands, which aF is around 1690 cm® in our cal-  sound velocity calculated using the experimental basal-plane
culations, and 1580 cnt in the experiment. This difference shear modulus of bulk graphite ge0.44 TP&) is 14
is attributed to the use of a minimap?® basis in the calcu- km/s, which is indeed quite close to our value.
lation. However, our calculations reproduce well the over- From the quadratic behavior of the ZA band we can also
bending of the LO band.e., the highest frequency is not at estimate the energy necessary to roll up the graphene plane
theI point, but at intermediate points betweleh andI'K).  to form the tubes. It can be easily shown that the strain

C. Vibrations
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energy per carbon atom can be approximatedEy= C/r? Raman active modes
whereC= §°m./2, beingm, the carbon atom mass andhe {n,n) tubes (10,0) tude
tube radius. The value obtained f@ris 2.3 eV A%/atom, 1900 L8 2 e :
which is only 7% higher than the calculated constant for the Ll U R R
(10,0 and (8,4 tubes, and 13% higher than the same con- 1, 1400 1 N N
stant for (1,n) tubes. £ 1200 - I
We next investigate the phonon structures of the nano- 2’1000 o 10 7
tubes considered here. Let us first comment on the numerical g 8OF o o 2 T F 5
errors in the calculated vibrational frequencies. These are geoor ° 5 o ° A
mainly originated from the residual forces in the structural = 400F o . 5 o8 4L
relaxation, the finite atomic displacements in the force- 200 - :oe 10 |
constant matrix calculation, and the finite grid utilized in the 0 > 8 e s ’
integration of the Hamiltonian matrix elements. We have es- 4 6 8 10 10
timated this numerical error from the differences in the fre- n
guencies obtained for th@0,0 tube by displacing two dif- Infrared active modes
ferent (but equivalent by symmetyy atoms for the {n,n) tubes (10,0) tube
calculation of the force-constant matrix. We find that the 1800 1 o o o .
error is about 10 cm! for the high part of the spectrum PR O T I
(frequencies higher than 1300 ¢, and could increase up PRET N R A
to 30 cm ! for some of the lower branches. The breathing 81200 1F 71
mode and the acoustic bands are more stable, showing errors 21000 [ 1
of about 15 cm . Uncertainties of the same magnitude have € soof ., o o ° 1[ -]
been reported by other authors performing similar calcula- % 600 o s o o 4L 2]
tions on graphitic systenf§:# £ w0l ° :
Figures 3c) and 3d) show the calculate@b initio 1D L TS A
dispersion relations for the armché,4) and (10,10 tubes. 200 1 10 7
The zone-folding results for the tulgé,4), obtained from the 0 % 6 8 10 10
grapheneab initio dispersion relations, are also displayed in n

the panelb) of the same figure. The difference between the
ab initio and the zone-folding frequencies are a consequence FIG. 4. Ab initio frequencies of the Raman and infrared active
of curvature and relaxation effects, and are, therefore, a me&10des for theii,n) series and for the (10,0) nanotube. Filled sym-
sure of their importance in the phonon spectrum. bols indicate the breathing mode.

From the results of Fig. 3 we see that, apart from some
small differences, which we will analyze in the following, pendence of the electrical resistivity with temperature in the
the general agreement between #ieinitio results and the metallic (n,n) tubes? These vibrational modes break the re-
zone-folding predictions is considerably good. This is theflexion symmetry of the tubes, and open a gap at the Fermi
case even for the tubes with smaller radii, where the curvalevel, producing a strong electron-phonon coupling, key to
ture effects in the phonon frequencies are expected to bé@e understanding of that behavior. The sound velocity of
more important, and the zone-folding scheme could start téhese modes is, therefore, important for the electronic prop-
break down. The agreement is particularly good for the uperties of the (,n) tubes. Our results indicate that the twiston
per part of the spectrum, and worsens for decreasing frequefrode sound velocity is lower than the corresponding value
cies. This is mainly due to the failure of the zone-folding obtained for graphen€TA band for all the studied tubes,
approach to describe the breathing modes and two of thand slowly diminish with decreasing tube radius. For the
acoustic bands of the tulithose corresponding to motion in (10,10 tube, the twiston sound velocity is 15 km/s, i.e., 17%
the directions perpendicular to the tube axis particular, lower than the value found in the graphene plane, and for the
within the zone-folding scheme, the breathing mode appeararrower tubg(4,4) the value decreases to 13 km/s.
with zero frequency, and the two translational modes appear Figure 4 shows the Raman and infrared active modes at
with finite frequency. It should be noticed that these defi-theI’ point. These have been assigned according tdthe
ciencies can be correctédland an analytical expresion can groups?® which predict 7 infrared-active modes and 15
be obtained for the breathing mode frequencies making simiRaman-active modes for the,f) tubes, and 8 infrared- and
lar assumptions as those made in the zone-folding schem&6 Raman-active modes for tha,Q) regardless of their ra-
the use of force constants from a graphene plane. Jisldius. We note that, for th€l0,0 tube, the highest Raman-
et al?® showed that this model predicts a Hependence of active mode in theab initio calculation has a frequency
the frequency of this mode, regardless of chirality. larger than the corresponding frequencies for timen)

The deficiencies mentioned above are absent inalhe tubes. In our calculation this highest Raman active mode has
initio results, without having to resort to additional correc-a frequency even larger than that predicted by the zone-
tions. In Figs. &) and 3d) we display with thicker lines the folding scheme. This is in contrast with the findings for the
phonon bands associated with the breathing and twistofn,n) tubes. In thg10,0 tube, this mode corresponds to an
modes for theab initio results. optical vibration in which the displacement vector is parallel

The twistons are torsional acoustic modes, which havéo the tube axis. Although the position of this mode is quite
been proposed to be of relevance for the peculiar linear desensitive to the numerical precision of the calculaiiand in
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FIG. 5. Ab initio breathing mode frequencies as a function of the 0 500 1000 1500
inverse tube radius, fg8,4), (10,0 and five f,n) tubes. The con- Frequency (em™)
tinuous line is a linear fit to the data excluding t#%4) and (5,5 FIG. 6. Vibrational density of states fqg) graphene(b) the

tubes. Dot-dashed line shows the behavior obtained by Jtsal. (4’4) tube in the Zone_folding approximation’ a(E) the ab initio

(Ref. 23 using a force-constants model. Dashed and dotted linegesylts for the same tube. The curves are decomposed in the differ-
show the result of the LDA calculations by Kuet al. (Ref. 7 for  ent directions of the displacement vector. For graph&riedicates

the (n,n) and (0,0) tubes, respectively. In this scale the dotted line modes perpendicular to the plane, ahdndY within the plane. For

is hidden by the continuous one. Error bars as estiméted the  the (4,4) tube, the modes are decomposed in radial, tangential, and
text). parallel to the tube axis.

particular to the Brillouin zone sampling utilizedwe can  also observable for the intermediate frequencies. The shift is
conclude that this tube presents optical frequencies that arot uniform, and therefore the distribution and, in some
higher than those ofr(;n) tubes with comparable radii. cases, the ordering of the Raman- and Ir-active modes are
We have also analyzed the dependence of the breathirgffected by curvature effects. This effect is most evident in
mode frequency with the tube radius and chirality. The rethe (4,4) tube, where the curvature is more pronounced. We
sults are shown in Fig. 5. The breathing mode &, sym-  show in Fig. 6 the vibrational density of states for {de4)
metry mode(being, therefore, Raman actjyén which there  tube, comparing theb initio and the zone-folding results.
is @ monopolar inward and outward vibration of the atoms. AThe figure shows the decomposition of the modes in radial
simple approach, based on the force constants derived froand tangentialparallel and perpendicular to the tube axis
the graphene plane, predicts a change of the frequency of thi#e see that the radial modes correspond to frequencies be-
mode asA/r, independently of chirality, wheneis the tube low 800 cmi !, corresponding roughly to the out-of-plane
radius and A=1092 cm! A .2 Recent LDA frozen- bands of graphene. The softening of the frequencies ialhe
phonon calculatiorfsof this mode confirm the prediction of initio calculation are apparent in this figure, especially for
ther ~* behavior, the constart having a weak dependence the higher-frequency modes. Also, the upper limit of radial
on chirality, 1180 and 1160 cnt A for (n,n) and (n,0),  vibrations is lowered by about 100 crhin the ab initio
respectively. Our calculations confirm the previous resultscalculation compared with the zone-folding results, for the
indicating once again that the effect of curvature on the valu€4,4) tube.
of the force constants is small, even for the small radii tubes Several papet$!® have recently made use of the fre-
considered here. Only th@,4) tube presents an important quency of the higher optically active modes as an experimen-
deviation from the predicted behavior, with an appreciabletal signature of the tube radii. In graphite there is only one
decrease in the breathing-mode frequency. This effect is aRaman-active optical modgvith zero wave vectgrat 1580
ready noticeable in thés,5) tube, although to a smaller ex- cm™*, which in our calculation appears at 1690 ¢imin the
tent. This effect can be understood as a consequence of timanotubes, it splits into multiple peaks, which are originated
hybridization changes and the decrease ofithiateraction, in the zone folding of the graphene bands. The frequencies of
induced by the curvature. A~ ! fit of the results for tubes theseq,=0 tube modes depend on radius and chirality. In
with radius greater than 3.8 A gives a value of 1160the zone-folding scheme, these modes sample the corre-
cm ' A for the constanta, in very good agreement with sponding optical bands of graphite, with wave vectqs
Ref. 7, as clearly shown in Fig. 5. The possible chirality=n/r (n=0,1,2 ...) along the circumference direction. Of
dependence of the breathing mode, if any, is well below theéhese, only a small numbéindependent of the tube radjus
resolution of our data. As pointed out in Ref. 7, the value ofare Raman or Ir active®*’ Kasuyaet al1° were able to mea-
A can be estimated from the stretching constant of thesure the frequency of the highest Raman modes for tubules
graphene plane neglecting all the possible effects of curvawith different radii, and found that these corresponded to the
ture. Taking our calculated value of 60 eV/atdsee previ- n=1 LO band, anch=1 andn=2 TO bands of graphitén
ous sectionsfor this elastic constant, we obtain a valAe order of decreasing frequencje$hey found the value of the
=1166 cm! A. observed frequencies to be in excellent agreement with the
One of the most important differences between #ie  direct zone-folding results. The radius of the narrower tubes
initio and zone-folding frequencies is a general softening ofn their sample was 5. A , which, assuming an armchair
frequencies when curvature effects are taken into accountonformation, would correspond to th8,8) tubule. It is,
This is especially clear for the higher-frequency bands, but isherefore, interesting to see whether these results are modi-
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— Al ‘El ' or the zone-folding approach for the vibrations. Our results
T 1690 | (a) E2? * izl 1 serve to validate most of the predictions of these simpler
g I El 69 ]/5310 1 theories, and to point out their limits of applicability. The
‘; 1670 - (6.6) ’ ®EH following conclusions can be drawn from our results:
g [ 4 10,10y 1 . (i) Relaxation.effeqs due to the tgbe curvature are smal.l
S 1650 1 e o max. freq 1 in general. The inequivalent bonds in a Fube enhaqce their
g AL ~ max. Raman freq. d|ffv_erences in bond Iength f_:md angles Wlth de(_:reasmg tube
& 1630 | 3 A max. IR freq. 1 radius. The symmetry inequivalent bonds give rise to a small
I El ¥ 2nd max. Raman freq. | shift in the Fermi surface location for then,n) tubes,
1610 L ‘ . ‘ mainly related to the lower symmetry of the tubes as com-
— T T pared with graphene, and only slightly modified by the struc-
= 4705 | (D) ] tural relaxation.
= e o E2 ©OR2 e (i) The strain energy follows the/r? law expected from
L El A El <E2 elasticity theory quite accurately for tubes as narrowdad.
> 1695 | A El AEL For armchair tubes, which have slightly lower strain energy
g o v v v | than other chiralities, the constant has a value of
3, Al Al Al Al =2.00 eVA /atom.
O 1685 q (iii) Sensible definitions of the Young modulus are used
= E2 ] for two different geometries: multiwall and single-wall
v tubes. In the former case the values are very similar to the
B T S VBT one of graphite. Single-wall tubes show values smaller than
Radius (A) graphite. In any case, we propose the elastic constant per unit

mass as the relevant quantity, since it does not depend on the
FIG. 7. Frequencies for the higher optical modes for differentgeometry of the system. This is shown to be quite similar to
tubes,(a) ab initio, and(b) from the zone-folding scheme. We show the correspondent quantity in graphite, for all the studied
the frequencies of the highest vibrational mode, the two highestubes, and larger than in any known fiber.
Raman-active modes, and the highest Ir-active mode. The symme- (iv) The Poisson ratio also retains graphitic values except
try of each mode is also shown. for a possible slight reduction for small radii. It shows a
chirality dependence:n(n) tubes display smaller values
fied for tubes with smaller radii, as was the case for thehan (10,0 and (8,4). Our results for the rf,n) tubes are

breathing mode discussed above. consistent with the experimental basal Poisson ratio of
Figure 7a) shows the frequencies of the higher-optical graphite.
modes obtained from thab initio calculation, whereas Fig. (v) The phonon bands behave as expected from simple

7(b) shows the results from the zone-folding approach. Sevschemes, except for slight deviations, which become more
eral facts are worth noticing in the comparison. As was thémportant for the narrower tubes. The zone-folding analysis
case for the breathing mode, tti¢,4) tube deviates very gives a good qualitativeand sometimes quantitativpicture
significantly from the zone-folding behavior. The maximum of many of the properties studied here, except for known
ab initio frequency is about 50 cnt lower than the zone- deficiencies in the low-frequency vibrational spectra. For the
folding prediction, and the symmetries and activities of thesmallest radii, the zone-folding description of the high-
higher-frequency peaks are very different. For the largefrequency vibrations is insufficient, too.
tubes, it seems that theb initio results tend to confirm the (vi) The breathing mode follows th&/r law predicted by
symmetry assignments of the zone-folding approach, supgraphene-derived force-constants calculations. The obtained
porting the analysis of experimental results in terms of thevalue ofA is consistent with that calculated from the in-plane
simple zone-folding scheme. The apparent softening of thetretching elastic constant of graphene. It, however, seems to
maximum frequencies for th€l0,10 tubule in Fig. Ta) is soften with respect to the expectations for the smallest radii
due to numerical errofthe 10 cm® error bar discussed tubes, like (4,4). A similar softening is observed for the
above, possibly slightly larger for the largest tub&he  twiston modes, whose sound velocity diminishes for decreas-
maximum frequency for this tube should approach the onéng radii.
obtained by the zone-folding method since the curvature is (vii) The high-frequency optic modes are sensitive to the
the smallest. This serves as a measure of the accuracy of okind of tube and to its radius. The frequencies of the highest
calculation. modes tend to diminish with decreasing radii by effect of the
curvature.

IV. CONCLUSIONS
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