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Shape and dielectric mismatch effects in semiconductor quantum dots
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The combined effect of shape and dielectric mismatch between dot and matrix on several electronic prop-
erties of semiconductor quantum dots have been studied. In particular, the electronic properties of spherical and
cubic quantum dots that have been analyzed are the integrated density of states, the polarization self-energy
corrections to single-particle energies, the doping with impurities, excitonic Coulomb energies, and Coulomb
blockade energies. It has been found that, in spite of the highly nonhomogeneous polarized charge density
induced at the boundaries of the cubic quantum dot, the electronic properties are essentially independent on the
dot shape for all the range of dielectric mismatch.@S0163-1829~99!00119-8#
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I. INTRODUCTION

Semiconductor quantum dots~QD! can be characterize
as systems where the carriers~electrons, holes! are confined
in the three spatial directions. An immediate and clear c
sequence of this confinement is that their electronic struc
collapses to a series of discrete levels, contrary to the c
tinuous density of states associated to bulk semiconduc
or to their higher dimensional relatives, such as quant
wells and quantum wires. Besides, this discrete level st
ture can only be filled by a finite number of particles, wh
in quantum wells and wires, because of the incomplete c
finement, it is still possible to have a macroscopic occupa
of the samples. Given these features, semiconductor qua
dots are also termed as artificial atoms or zero-dimensio
systems.1–3

One issue whose importance increases as dimension
reduced is the shape of these artificial structures: with on
few exceptions, most of the dot calculations assume a sph
cal shape, because the high symmetry allows analytica
sults in many cases. This is one issue that motivated
present work: To what extent are the QD properties dep
dent of the assumed shape for the QD? As a test we com
several properties, such as one-electron energies thro
their integrated density of states~IDOS! and polarization
self-energy corrections, binding energy of arbitrarily locat
impurities, excitonic Coulomb interactions, and two-electr
properties, of equal volume spherical and cubic quant
dots ~SCD’s and CQD’s, respectively!. While neither of the
two shapes can be taken too seriously, approximately SQ
are believed to form when grown from a colloid
suspension;4 on the other side, other growth procedures su
as self-ordering mechanisms during epitaxy of lattic
mismatched materials~typically, InGaAs/GaAs! seem to
give rise to QD’s of pyramidal shape.5 Finally, the twofold
cleaved edge overgrowth technique of Wegscheideret al.6

should form QD’s close to a cubic shape at the intersec
of three quantum wells. One additional reason to adopt
cubic geometry as an alternative to the spherical geomet
that calculations can be carried out rather easily, altho
not so easily as in the spherical geometry. Any other sh
choice, besides these two, almost inevitably leads to n
separable wave functions and accordingly to complica
PRB 590163-1829/99/59~19!/12487~12!/$15.00
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two- or three-dimensional numerical calculations, even
solve the single-particle case.7

A second important issue in the physics of quantum d
are dielectric mismatch or image charge effects. Most of
time, quantum dots of a given semiconductor material
embedded in a matrix of a different semiconductor or gl
material, whose dielectric properties are usually quite diff
ent as compared with the dot material. This dielectric m
match at the QD interface has important consequences,
the presence of charged particles inside the dot~electrons,
holes, impurities, etc.! they induce superficial charges at th
boundaries. These induced charges interact in turn with
particles, and as these interactions are of the same magn
as the Coulomb interaction between the real particles, t
should be taken into account from the beginning. While th
already exists in the literature a vast number of theoret
papers devoted to this issue, in the specific case of quan
dots all of them assume the spherical geometry, where
culations can be done quite easily, almost analytically.8 It is
the aim of the present contribution to study thecombined
effect of both shape and dielectric confinement effec
which as far as we know has not been addressed previou

All the calculations to be presented below are made us
the so-called strong confinement approximation,9 whose va-
lidity is restricted to dot sizes smaller than the effective Bo
radius of the semiconductor in question. In practical term
and this will be discussed in detail below, it amounts
treating electron-hole, electron-electron, and hole-hole C
lomb interactions as perturbations from the single-parti
kinetic-energy contributions.

The rest of the paper is organized as follows: We give
Sec. II all the necessary theoretical results and general b
ground which will be used in the following sections; Sec.
is devoted to the results for one-particle energies, polar
tion self-energy corrections, impurity properties, and exci
and two-electron features, while in Sec. IV we give the co
clusions. All the detailed derivation of the results presen
in the main body of the paper~mainly Sec. II! are given in
the appendix.

II. THEORY

The aim of this work is focused on the study of the d
pendence of several electronic properties of quantum dot
12 487 ©1999 The American Physical Society
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12 488 PRB 59P. G. BOLCATTO AND C. R. PROETTO
the geometry and dielectric mismatch between dot and
trix. Within the envelope wave-function approach to t
effective-mass approximation,10 the relevant Hamiltonian for
an electron-hole pair confined by infinite barriers inside
QD with dielectric constant«1 embedded in a matrix with
dielectric constant«2 is given by

H~re ,rh!5He~re!1Hh~rh!1Vc~re ,rh!, ~1!

where

He~re!52
\2

2me*
¹e

21Vs~re!, ~2!

and

Hh~rh!52
\2

2mh*
¹h

21Vs~rh!. ~3!

In He (Hh) the first term corresponds to the electr
~hole! kinetic energy, the second one to the self-ene
which arises as result of the interaction between the elec
~hole! and the surface charge density induced by itself at
boundary. Besides,me* (mh* ) denotes the electron~hole! ef-
fective mass of the semiconductor well-acting material. T
last termVc is the generalized Coulomb interaction~includ-
ing the interaction with the induced charges, see below! be-
tween the electron and hole. The Hamiltonian given by
~1! may also be used to study the problem of doping qu
tum dots: taking the limitmh*→`, the hole becomes a clas
sical particle and it can be assimilated to a static donor
purity which can be located inside or outside the quant
dot.

The expressions forVc(re ,rh), Vs(re), andVs(rh) can be
obtained from basic electrostatics as11

Vc~re ,rh!52
e0

2

«1

1

ure2rhu
2

e0

«1
E dr 8

spol~r 8,rh!

ure2r 8u
, ~4!

and

Vs~r !5
e0

2

2«1
E dr 8

spol~r 8,r !

ur2r 8u
, ~5!

where2e0 is the electron charge andspol is the polarized
charge density at the dot boundaries induced by the hole.
energy potentialVc(re ,rh) is invariant under the exchange o
electron and hole coordinates. When there is not dielec
mismatch in the system («15«2), Vc is reduced to the bare
Coulomb interactionVc(re ,rh)52e0

2/«1ure2rhu and Vs(r )
50. The expressions~4! and ~5! are dependent of the QD’
geometry, and explicit expressions for them are given bel

For spherical quantum dots~SQD! of radiusR, we will
use the corresponding expressions given in Ref. 12:
a-
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Vc~re ,rh!52
e0

2

«1R (
l 50

`

Pl~cosg!

3FQ~12 r̄ h!S r̄ ,
l

r̄ .
l 11

1
~« r21!~ l 11!

~« r11!l 11
r̄ ,

l r̄ .
l D

1Q~ r̄ h21!S « r~2l 11!

~« r11!l 11

r̄ e
l

r̄ h
l 11D G , ~6!

and

Vs~r !5
e0

2

2«1R (
l 50

`
~« r21!~ l 11!

~« r11!l 11
r̄ 2l . ~7!

In Eqs.~6! and~7!, Pl(cosg) are the Legendre polynomi
als of orderl, g the angle between electron and hole~mea-
sured from the origin at the dot center!, r̄ ,( r̄ .) the smallest
~greatest! betweenr̄ e and r̄ h , Q(x) the step function, and
« r5«1 /«2 the dielectric contrast. All distances are measu
in units of the dot radiusR, that isr̄ 5r /R. While the second
term in the right-hand side of Eq.~6!, corresponding to the
hole outside the QD, never contributes in our infinite barr
approximation for the exciton problem, it gives a nonze
contribution even in this limit for the impurity problem, in
which case the hole coordinate is assimilated to the impu
coordinate, which can be located outside the QD.

On the other side, the corresponding expressions fo
cubic quantum dot~CQD! of side 2Q, which are derived in
detail in the appendix, can be approximated by

Vc~re ,rh!52
e0

2

«1Q F 1

Ap
E

0

` dt

At
f~ x̄e ,x̄h ,t !

3f~ ȳe ,ȳh ,t !f~ z̄e ,z̄h ,t !1 f ~re ,rh!G , ~8!

and

Vs~r !5
e0

2

2«1Q F 1

Ap
E

0

` dt

At
f

~ x̄,x̄,t !
8 f

~ ȳ,ȳ,t !
8 f

~ z̄,z̄,t !
8 1 f ~r !G ,

~9!

where we have defined thef functions as (%[x,y,z),

f~ %̄e ,%̄h ,t !5Q~12%̄h! (
l 52`

`

j u l ue2t[ %̄e22l 2~21! l %̄h] 2

1Q~ %̄h21!

2« r

~« r11! (l 50

`

j u l ue2t[ %̄e2~21! l ~2l 1%̄h!] 2

~10!

with u%̄eu<1 and j5(« r21)/(« r11). In the equations
above all the distances are measured in units of the half e
of the dotQ, that is,%̄5%/Q. f (re ,rh) is a correction func-
tion which guarantees that Eqs.~8! and~9! are equal to Eqs.
~4! and ~5!. In most of the casesf (re ,rh) is essentially a
constant ~i.e., independent of coordinates! approximately
equal tof (re ,rh)[C.0.89« r(« r21). Only when the impu-
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FIG. 1. Absolute value of the potential energy2Vc(r ,0) as a function of the distance from the dot center@Eq. ~4!#. Full line, spherical
geometry; dashed line, cubic geometry withr running along thê100& directions; dashed-dotted line, cubic geometry withr running along
the^110& directions; dotted line, cubic geometry withr running along thê111& directions. The lower isolated curve corresponds to the b

Coulomb interaction, equal to 2/r̄ in units of Ry* . The inset shows the contribution to the potential energy due to polarized charges
dot boundary.
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rity is outside the dot,f (re ,rh) is dependent ofrh , because
in this case the potential energy has to tend towards
asymptotic expressione0

2/«2r h . In Eq. ~9! the real charge
contribution must be excluded~this is the meaning of the
primes in thef functions!.

In Fig. 1 we plot the absolute value of the potential ene
Vc(re ,rh) for the particular caserh50 andre[r taking val-
ues inside and outside the dot. The lower curve correspo
to the absence of dielectric mismatch at the dot boundary
which case only the first term in Eq.~4! contributes and
2Vc(r ,0) reduces to 2/r̄ ~in effective units!. The upper set of
curves correspond to a typical dielectric mismatch« r53, the
difference between both sets of curves being the polariza
contribution given by the second term in Eq.~4!. The inset
displays precisely only this contribution to the potential e
ergy. As far as we know, this is the first time that the pote
tial energy of a cubic dot with dielectric contrast is pr
sented. The first thing to note is the close similarity betwe
the results for spherical and cubic dots. While just a sim
curve is enough for the spherical dot, corresponding tr
moving along an arbitrary radial direction, for the cubic ca
in principle each radial direction gives a different result.
consequence, for the cubic dot we have plotted the pote
along three representative directions. The cusp in the po
tial energy as the coordinate moves along a^100& direction is
easily explained as in this case the particle is moving
wards the center of one of the cube faces, which is the
face closest point to the dot center, and consequently w
the maximum of the induced charge lies. This effect is abs
when the particle is moving along â110& or ^111& direc-
tions, as the cube edge and vertex are places with s
values for the induced charge. Indeed,spol(r ,0) takes its
minimum value atr5(Q,Q,Q) ~and equivalents!. Taken
that all dot properties in which we are interested are ess
tially integrals of Vc(re ,rh) weighted with the electron
and/or hole wave functions, and from the quite similar
ts
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sults obtained forVc in cubic and spherical environments,
is tempting to conclude also quite similar results for the el
tronic properties. The detailed calculations of the followi
sections are devoted to the quantitative confirmation of
qualitative expectation.

The electronic properties that we are interested in ana
ing are: ~i! the single-particle energies and their associa
density of states~DOS!, ~ii ! the polarization self-energy cor
rections,~iii ! the Coulomb energy between an electron an
donor impurity arbitrarily located inside or outside the do
as well as the dependence with the dielectric constant r
« r , ~iv! the exciton Coulomb energy between an electro
hole pair, and~v! the Coulomb blockade energy.

Furthermore, we adopt the so-called strong-confinem
approximation~SCA! in solving the exciton Hamiltonian
given by Eq.~1!. This approximation is based in the simp
fact that as the dot size decreases, the kinetic energy of
electron and hole scales asR22 or Q22 @see Eqs.~17! and
~19!#, while self-energy and Coulomb interactions scale
R21 or Q21 @see Eqs.~6!–~9!#. This means that in the sma
dot size limit ~the length scale corresponding to the excit
Bohr radius! the latter becomes smaller than the former, a
can be treated by perturbation theory. Accordingly, in t
strong-confinement limit, the zero-order exciton Hamiltoni
is reduced to the kinetic-energy terms9

H ~0!~re ,rh!52
\2

2me*
¹e

22
\2

2mh*
¹h

2 . ~11!

Consistently with this perturbative approach, the ze
order wave functions ofH (0) can be expressed as a simp
product of functions for the electron and hole, respective
by C(re ,rh)5c(re)w(rh). In this way, the resolution of
H (0) is decoupled in two equivalent problems:
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2
\2

2me*
¹e

2c~re!5E~0!c~re!, ~12!

and

2
\2

2mh*
¹h

2w~rh!5E~0!w~rh!, ~13!

with the hard-wall boundary condition that bothc(re) and
w(rh) should vanish on the boundaries of the QD.

Within this strong-confinement limit, the calculation o
coulombic attraction and the self-polarization energies as
ciated withVc(re ,rh), Vs(re), and Vs(rh), respectively, is
performed evaluating the corresponding average values
ing as wave functions the~zero-order! one-particle functions
c(re) andw(rh).

S[E drc* ~r !Vs~r !c~r !, ~14!

Eimp~r i ![2E drec* ~re!Vc~re ,r i !c~re!, ~15!

ECoul[2E dredrhc~re!
* w~rh!

* Vc~re ,rh!c~re!w~rh! . ~16!

III. RESULTS

As a general rule, for the comparison of properties
SQD’s and CQD’s we will assume equal volume quant
dots, that is, (2Q)35(4p/3)R3. Besides, for the graphica
presentation of the results we will use the electron effec
rydberg as unit of energy (Ry* 5me* e0

4/2\2«1) and the size
dot R as unit of length.

A. One-particle energies

The analysis of the one-particle energies could be p
formed either with Eqs.~12! or ~13!. For simplicity, we
choose the electron case.

For a SQD, the solutions that satisfy the hard-wall bou
ary condition c(r )50 are given by cnlm(r )
5Nnl j l(kr)Ylm(u,w), where j l(kr) are the spherical Besse
functions of the first kind of orderl, Ylm(u,w) are the spheri-
cal harmonics, andNnl are the normalization constants. Th
single-particle energies are just the eigenvalues of the kin
energy, given by

Enl
~0!5

\2

2me*

knl
2

R2
, ~17!

where knl (n51,2,3,. . . ) are theascending roots of the
Bessel functions of orderl. For a given value ofl, the inde-
pendence of equation above on the azimuthal quantum n
ber m implies a degeneracy of 2l 11 for each eigenvalue.

For CQD’s, the normalized zero-order wave functions
o-

s-

f

e

r-

-

tic

m-

e

ckxkykz
~re!5

1

Q3/2
cosS pkxx̄e

2
2axD cosS pkyȳe

2
2ayD

3cosS pkzz̄e

2
2azD , ~18!

with kx ,ky,kz51,2, . . . , anda j5p/2(0) whenkj is even
~odd!, j being any of the three Cartesian componentsx,y,z.
The corresponding energies are

Ekxkykz

~0! 5
\2

2me*
S p

2QD 2

~kx
21ky

21kz
2!. ~19!

The degeneracy of each eigenvalue in this case is g
by the number of all possible combinations ofkx ,ky ,kz such
that kx

21ky
21kz

25 same integer number.
We give in Fig. 2 the integrated density of states~IDOS!

per unit volume for SQD’s~dotted line,l5R/ae* 51) and
CQD’s ~full lines; from bottom to top:l51,2,5,10,̀ ); they
are defined as

IDOSSQD~E!5
2

V (
n,l

~2l 11!Q~E2En,l
~0!!, ~20!

and

IDOSCQD~E!5
2

V (
kx ,ky ,kz

Q~E2Ekxkykz

~0! !, ~21!

V being the volume dot~assumed to be equal! and the factor
of two comes from spin degeneracy. Physically, the IDO
gives the total number of states below a given energyE.
Basically, the IDOS of equal size SQD’s and CQD’s have
similar behavior, with small differences due to the differe
symmetry of the two QD’s: the IDOS for SQD is almo
always above the IDOS for CQD, as a consequence of
greater degeneracy of the SQD eigenvalues, compared
the CQD ones. On the other side, the smaller degenerac
the latter implies that the IDOS jumps more frequently th

FIG. 2. Integrated density of states per unit volume for spher
quantum dots~dotted line! and cubic quantum dots of increasin
size ~full lines!, as a function of energy. The top full line corre
sponds to the free-electron gas, which can be thought of as a q
tum dot of infinite size.
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the IDOS for SQD. When calculated for a large enough nu
ber of eigenvalues, however, both effects compensate
other and the IDOS of SQD and CQD show no apprecia
differences. The strong resemblance between both IDOS
be considered as a validation of our assumption of tak
equal volume quantum dots as a criterion for their comp
son. An interesting question to study is how the IDO
evolves when one moves to larger dot sizes. We provide
answer in the same Fig. 2, where we show the IDOS
CQD of increasing size~the IDOS of SQD’s shows a simila
behavior!. The top full line corresponds to the IDOS per un
volume of the free electron gas, given by IDOS(E)
5(1/3p2)(2me* E/\2)3/2; as expected, the IDOS for finit
size QD’s evolves towards the free-electron gas expres
as the dot size increases. Note, however, that even fol
510 there are appreciable differences between both IDO
should be pointed out that we are allowed to move to la
dot sizesl@1 where the SCA is not valid, as we are stud
ing single-particle energies.

B. Polarization self-energy corrections

The single-particle energies studied above correspond
situation where the particle~electron or hole! is inside a
quantum dot whose dielectric properties are the same as
of the surrounding media. However, in the real situation,
surroundings of the quantum dot is a material media that
be polarized by the presence of the electric charge. T
simple fact leads to a single-particle energy shiftS due to the
Coulomb interaction between the real and induced char
an electron induces a bound surface charge density whic
turn generates an electrostatic potential at the electron’s
sition. A schematic diagram of this self-energy shift is sho
in Fig. 3. The ground-state image charge contributions to
electron self-energy were first determined in Ref. 8
SQD’s, and given as

SSQD~R!5
e0

2

«1R (
l 50

`
~« r21!~ l 11!

~« r11!l 11 E
0

1

dxx2lsin2~px!

5
e0

2

2«1R
~« r21!1dS~R!, ~22!

where the first term on the right-hand side of the last eq
tion is the l 50 contribution, whiledS corresponds to the

FIG. 3. Schematic view of the shift of the lowest conducti
level due to the injection of one electron (S) or two electrons (S
1ECoul).Eex represents the excitonic correction to the ene
needed to create an electron-hole pair inside the quantum dot.
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remaininglÞ0 contributions. When«11«2@1, dS may be
approximated as13

dS~R!>0.47
e0

2

«1R

~« r21!

~« r11!
. ~23!

On the other side, according to Eq.~A11!, the ground-
state polarization self-energy corrections for CQD’s a
given by

SCQD~Q!5
e0

2

2«1Q H 1

Ap
E

0

` dt

At
@ I 1~ t !#31CJ , ~24!

with

I 1~ t !5 (
l 52`

`

j u l u E
21

1

dx̄e2t$[12~21! l ] x̄22l %2
cos2S p x̄

2
D .

~25!

In Eq. ~24! a single term corresponding to the real char
contribution must be excluded.

We display in Fig. 5~a! a comparison of the self-energ
corrections for SQD’s and CQD’s, corresponding to a d
size ofl51. The corrections are negative if« r,1, and posi-
tive if « r.1 ~both being exactly zero in the absence of d
electric mismatch!. This is due to the fact that the sel
induced dot boundary charge is of the same~opposite! sign
as the real charge if« r.1 (« r,1). In most of the dots
fabricated to date« r.1. It should be pointed out the impor
tance of self-energy corrections as for a physically realiza
dielectric ratio« r.10, S can reach values up to 10 Ry*
which is quite comparable with the Coulomb energyECoul .
On the other side, it is quite remarkable that in spite that
sharp boundaries of the cubic geometry induce a highly n
homogeneous polarization charge density, the self-ene
corrections are essentially shape independent.

C. Doping of a quantum dot

The study of the electronic properties of a donor impur
confined in a QD can be performed taking the limitmh*
→` in Eq. ~1!. In this limit the hole plays the role of a
positive donor impurity, and its coordinate becomes a para
eter that can be treated as a classical variable. The rele
Hamiltonian includes only the first and third terms of Eq.~1!.
Defining as usual the impurity binding energy as the diff
ence of the electron energy in the absence or presence o
positive ion, this magnitude becomes precisely given by
~15!; according to this definition, a positive value ofEimp(r i)
means that the configuration electron1 impurity is more
stable than the configuration with only the electron inside
QD. On-center binding energies of impurities in SQD’s wi
dielectric mismatch were already studied by variational te
niques in Ref. 14.

The corresponding analytical expressions ofEimp(r i) for
SQD’s using the strong-confinement approximation were
tained in Ref. 12. For instance, for the ground state (n51,l
5m50), this energy is

y
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Eimp
100~r i !5

e0
2

«1RFQ~12 r̄ i !S « r2
sin~2p r̄ i !

2p r̄ i

1Cin~2p!

2Cin~2p r̄ i !D 1Q~ r̄ i21!« r / r̄ i G , ~26!

where r̄ i[r i /R is the impurity position inside (r̄ i1<) or
outside (r̄ i>1) the QD and Cin is the cosine integr
function.15 The superscripts denote the value of the quant
numbersn, l, andm of the zero-order spherical wave fun
tions, respectively. Further analytical expressions for
p-like states (l 51,m50,61) and numerical results for th
ten zero-order lowest states are also provided in Ref. 12

On the other hand, in the appendix the general exp
sions for this impurity binding energy in CQD’s are derive
The zero-order ground state in a cubic box occurs when
three quantum numberskj are equal to 1, and then the firs
order electron-impurity Coulomb energy is given by@see Eq.
~A14!#

Eimp
111~r i !5

e0
2

«1Q S 1

Ap
E

0

` dt

At
J11~ x̄i ,t !

3J11~ ȳi ,t !J11~ z̄i ,t !1C~r i !D , ~27!

where (x̄i ,ȳi ,z̄i)5(xi ,yi ,zi)/Q, and

J11~ x̄i ,t !5E
21

1

dx̄ecos2~p x̄e/2!f~ x̄e ,x̄i ,t !. ~28!

Equations~26! and ~27! are explicit expressions for th
ground-state binding energies of arbitrarily located donor
purities in spherical and cubic dots, respectively. Both
clude dielectric mismatch effects at the dot boundar
Clearly, the spherical geometry results in a much simp
expression, as compared with the cubic symmetry. It is
portant to realize, however, that all the size dependenc
both expressions is identical, being contained in the prefa
that goes likeR21or Q21.

A plot of Eimp
100(r i) and Eimp

111(r i) as a function ofr̄ i is
given in Fig. 4 for SQD and CQD, respectively. Without lo
of generality, we have chosen thez axis for the impurity
displacements in SQD’s. For the CQD case, three differ
representative directions (^100&, ^110&, and^111&) were se-
lected for the displacement of the impurity. The lower set
curves correspond to« r51 ~no dielectric mismatch betwee
dot and matrix!, which could apply to GaAs/AlxGa12xAs
quantum dots, while the upper set of curves correspon
« r53, which could apply to Si/a-SiO2 quantum dots.16

Concentrating first in the results for« r51, we obtain
small differences between SQD’s and CQD’s, which d
crease as the impurity moves towards the dot boundary.
instance, when the impurity is at the origin, the ra
Eimp

100(0)/Eimp
111(0) is approximately 1.06, being the small di

ferences mainly due to the fact that the cubic ground-s
function is more concentrated around of the origin than
spherical one. Forr̄ i*0.5 binding energies for both geom
etries become essentially indistinguishable. Forr̄ i@1 all the
e

s-
.
e

-
-
s.
r
-
in
or

nt

f

to

-
or

te
e

curves converge asymptotically to the expressione0
2/«2r i ,

corresponding to the Coulomb interaction between two n
overlapping charge distributions in the«2 media: the point
impurity and the spherically symmetric electronic densi
The fact that this value is also reached for the cubic geo
etry is a good check on the accuracy of our calculations. T
ground-state binding energy for CQD’s shows no dep
dence on the direction in which the impurity is displaced, t
results for the three analyzed directions essentially falling
the same curve. This is related to the fact that the elec
ground-state wave function is the product of three identi
factors along thex,y, and z directions@see Eq.~18!#. Ac-
cordingly, the total wave function results in an approxima
spherical symmetry, which gives rise to a quite weak dir
tional dependence. The remaining curves in Fig. 4 are
same as the four in the lower set but with a dielectric m
match « r53. The results for SQD’s, already discussed
Ref. 12, show that the binding energy is an increasing fu
tion of the dielectric mismatch (« r.1), resulting in an en-
hancement of about 100% for this particular case (« r53).
The physics behind this dielectric enhancement is qu
simple: The electron interactsbothwith the positive impurity
and its induced charge. If« r.1 the impurity induced charge
is also positive, resulting in an increased binding ener
Similar results are obtained for CQD, although a discerni
difference can be observed as the impurity moves along
ferent directions. The slope discontinuity in the curves w
« r53 is due to the boundary dielectric mismatch, which
flects in turn in a slope discontinuity of the correspondi
potentials of Fig. 1. The kink occurs when the impuri
moves out of the dot, that is,r̄ i51 for SQD but r̄ i
>0.81,1.14, and 1.40 for CQD and impurity displaceme
along the^100&, ^110&, and ^111& directions, respectively
This difference in the distance from the dot center to d

FIG. 4. Ground-state binding energy of impurities as a funct
of impurity position. Full lines correspond to spherical quantu
dots, all the remaining lines correspond to cubic quantum dots.
sizel5R/ae* 51.



id
d

es
g
le
s

an

t
pe
,
e

n
ts
Th
n

tri
en
an

be
eg
tio

e
b

an

n
lf-

a

il-
ng
x-

th
een
tch

i-

l.

ing
is-
’s

e
nd

s
al-
nic

di-
ap-

n
is

c-
ady

PRB 59 12 493SHAPE AND DIELECTRIC MISMATCH EFFECTS IN . . .
boundary along the three directions breaks also the quas
generacy of the associated CQD binding energies, as the
cay with impurity position is faster when the impurity mov
out of the dot. It is also interesting that the binding ener
depends strongly on the impurity position: for examp
moving the impurity from center to boundary, the decrea
in binding energy amounts to approximately 35%.

We have also analyzed the binding energy of the first-
second-excited states of CQD’s~not shown!. One important
difference with respect to the ground-state results is tha
this case the binding energy displays a nonmonotonic de
dence on the impurity coordinater̄ i . As in the SQD’s case
this is due to the fact that these excited states have a nod
its charge distribution at the dot center, where conseque
the binding energy attains a low value, and then presen
maximum value at same distance from the dot center.
dielectric enhancement effects are similar as to the grou
state case.

D. Exciton Coulomb energy

We will analyze in this section the shape and dielec
mismatch effects on the exciton Coulomb energy. This
ergy is defined as the correction to the size dependent b
gap energy needed to create an electron-hole pair inside
quantum dot. Then, this excitonic energy should include,
sides the generalized Coulomb interaction between the n
tive and positive charges, the corresponding polariza
self-energies of the electron and the hole~see Fig. 3!. Within
the strong-confinement approximation, the normaliz
ground-state exciton wave function for a SQD confined
infinite barriers is given by

Cex
SQD~re ,rh!5c100~re!w100~rh!5

p

2R3

sin~p r̄ e!

~p r̄ e!

sin~p r̄ h!

~p r̄ h!
.

~29!

Taking the expectation value of the exciton Hamiltoni
given by Eq.~1! without the kinetic energy terms~which
together with the semiconductor bulk band gapEg results in
the size-dependent single particle band gap! with
Cex

SQD(re ,rh) we obtain

Eex
SQD~R![2SSQD~R!2ECoul

SQD~R!, ~30!

whereSSQD(R) is given by Eq.~22! andECoul
SQD is obtained

from Eq. ~16! as

ECoul
SQD~R!5

e0
2

«1R S « r112
Si~2p!

p
1

Si~4p!

2p D . ~31!

It is interesting to note that alll between 0 and̀ contributes
to SSQD(R), while only the terml 50 of Vc(re ,rh) gives a
non-zero contribution toECoul

SQD(R). Replacing Eqs.~22! and
~31! in Eq. ~30! we obtain

Eex
SQD~R!5

e0
2

«1R F2dS~R!2S 22
Si~2p!

p
1

Si~4p!

2p D G ,
~32!

wheredS(R) is what remains after an almost complete ca
cellation of polarization effects included both in the se
energy andECoul

SQD(R). In equations above, Si(x) is the sine
e-
e-

y
,
e

d

in
n-

in
tly

a
e

d-

c
-
d-

the
-
a-
n

d
y

-

integral function,15 and dS(R) is given by Eq.~23!. In the
absence of dielectric mismatch (« r51,dSSQD[0) we obtain
the well-known result

Eex
SQD~R!>21.786

e0
2

«1R
, ~33!

first obtained by Brus.8

Similarly, the ground-state exciton wave function for
CQD as given in the SCA is

Cex
CQD~re ,rh!5

1

Q3
cosS p

2
x̄eD cosS p

2
ȳeD cosS p

2
z̄eD

3cosS p

2
x̄hD cosS p

2
ȳhD cosS p

2
z̄hD . ~34!

Taking again the expectation value of the exciton Ham
tonian without the kinetic-energy contributions, but usi
this timeCex

CQD(re ,rh) we obtain for the size dependent e
citon energy

Eex
CQD~Q![2SCQD~Q!2ECoul

CQD~Q!, ~35!

whereSCQD(Q) is given by Eq.~24! and ECoul
CQD(Q) is de-

fined in Eq.~A21! of the appendix. Contrary to the case wi
spherical geometry, no obvious cancellation exists betw
these two terms. In the absence of dielectric misma
SCQD(Q)[0, and only thel 50 contribution from the sum
in Eq. ~A22! survives; in this limit, the size dependent exc
ton energy reduces to

Eex
CQD~Q!>21.52

e0
2

«1Q
>21.89

e0
2

«1R
, ~36!

a result first obtained by Fishman, Romestain, and Via17

The similarity of Eex
SQD(R) and Eex

CQD(Q) in absence of di-
electric mismatch is quite remarkable, the difference be
around 5%. Moreover, the comparison of dielectric m
match effects on excitonic properties of SQD’s and CQD
in Fig. 5~b!, shows that this similarity remains for all th
range of dielectric mismatch ratio. Open circles correspo
to Eq. ~32!, open squares to Eq.~35!, and the full line cor-
responds to replace the analytical approximation fordS
given by Eq. ~23! in Eq. ~22!. We can observe that thi
simple analytical expression agrees fairly well with the c
culation, showing the smooth dependence of the excito
energy with« r .

The exciton Coulomb energy provides us with an ad
tional check about the consistency of our calculational
proach. Noting that the correction factorC included inSCQD

and ECoul
CQD cancels exactly in Eq.~35!, the excitonic energy

should be the same if calculated with Eqs.~A3! or ~A7! for
the potentialF(r1 ,r2). We have performed the compariso
and found that the difference between both calculations
indistinguishable on the scale of Fig. 5~b!.

E. Coulomb blockade

The last property that we will consider is the energy ne
essary to put a second electron inside the QD, when alre
there is one, both in the same spatial state~for instance, the
ground state! but with opposite spin.18 The injection of a
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12 494 PRB 59P. G. BOLCATTO AND C. R. PROETTO
second electron leads to an additional upwards shift~with
respect to the injection of the first electron! given by the
average repulsion with the other electron and its ‘‘ima
charge.’’ Accordingly, this energy is given by the magnitu
ECoul of Eq. ~16!. Explicit expressions for this energy i
spherical and cubic quantum dots are provided by Eqs.~31!
and~A21!, respectively. In the context of electronic transp
through quantum dots, this energy gives rise to the Coulo
blockade phenomena, as the QD conductance shown os
tions as a function of the applied gate voltage whose pe
is related to this energy.19

We present in Fig. 5~c! the dependence of this magnitud
on the dielectric contrast, for both geometries. We ha
found once more a strong similarity betweenECoul for
spherical and cubic geometries, both showing an alm
identical linear increase with« r , as can be seen directl
appreciated from Eq.~31!.

IV. CONCLUSIONS

In this work we have studied the dependence of sev
electronic properties of semiconductor quantum dots on s
shape, and dielectric mismatch at the dot boundary.
properties studied included the one-particle energies, the
larization self-energy correction, the binding energy of i
purities in quantum dots, excitonic Coulomb energies, a
the so-called Coulomb blockade energies. As a model for
shape dependence, we have assumed two types of
spherical and cubic. The issue of the dependence of quan
dot properties on shape and dielectric mismatch at the
boundary has already been studied in previous works,

FIG. 5. Spherical quantum dot~open circles! and cubic quantum
dot ~open squares!: ~a! polarization self-energy corrections;~b!
electron-hole excitonic Coulomb energies; and~c! Coulomb block-
ade energies as a function of the dielectric mismatch between
and matrix. Dot sizel5R/ae* 51.
e

t
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including only one feature and not the other.
A first step for the study of the dot electronic properti

within the framework of the strong-confinement approxim
tion is the calculation of the generalized Coulomb potent
including the contribution of polarized charges at the d
boundaries. While this generalized Coulomb potential is w
known in the spherical geometry, it is an important proble
by itself in the cubic geometry. While we have found a
presented the exact solution for this difficult problem, for t
calculation of the electronic properties we have used a q
accurate approximation to the exact potential. The direct
culation with the exact potential is in principle feasible, b
numerically quite demanding. Besides this technical diff
ence, the generalized Coulomb potentials are quite sim
for both geometries.

From a comparison of the results presented in Fig. 5, i
evident that the polarization self-energy correctionS and the
Coulomb energyECoul are strong~linear! functions of the
dielectric contrast« r , while the excitonic energy shows
much weaker dependence. For the spherical geometry, th
due to an explicit partial cancellation between self-ene
and Coulomb energies~which are of opposite signs if« r
.1); on the light of the results presented in Fig. 5~b!, the
same cancellation exists for the cubic symmetry, although
this case is far from being evident from the explicit analy
cal expressions. Physically, the weak dependance of the
citonic energy with the dielectric contrast reflects the cha
neutrality of the exciton.

We have found that even in presence of dielectric m
match, most of the electronic properties of quantum dots
weakly shape dependent, the important parameter bein
this case the size~volume! of the dot. Typically, the differ-
ence between results for spherical or cubic quantum d
amounts to five percent or less. Accordingly, it seems r
sonable to conclude that it will be quite difficult to obta
experimental information about the shape of quantum d
from measurements of excitonic properties. On the posi
side, our work gives a solid base to the modeling of quant
dots as spherical particles, as far as excitonic properties
concerned.
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APPENDIX: GENERAL EXPRESSIONS FOR THE
POLARIZATION SELF-ENERGY, ELECTRON-IMPURITY

POTENTIAL, AND EXCITONIC COULOMB ENERGY
IN A CUBIC QUANTUM DOT

1. Electrostatic potential

In this appendix we give details on the derivation of t
polarization contributions to the electron/hole polarizati
self-energy, the electron-donor impurity potential, and
electron-hole excitonic Coulomb interaction, for the case o
cubic quantum dot with dielectric mismatch at the boun
aries.
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We assume that the origin of the coordinate system c
cides with the center of the cube and the boundaries
located atx56Q, y56Q, andz56Q. Following Ref. 20,
the electrostatic potentialF(r1 ,r2) can be obtained using th
image charge method. Thus, the potential atr15(x1 ,y1 ,z1)
inside the cubic dot when a charge of magnitudeq ~the
source! is in the same region@i.e., ux2u,Q, uy2u,Q, and
uz2u,Q, being r25(x2 ,y2 ,z2) the coordinate of the sourc
charge# is given by

F,~r1 ,r2!5
q

«1Q (
l ,m,n52`

`

j u l u1umu1unu

3
1

@~ x̄12 x̄l !
21~ ȳ12 ȳm!21~ z̄12 z̄n!2#1/2

,

~A1!

where r̄ i5r i /Q and the parameterj is defined byj5(« r
21)/(« r11), being« r5«1 /«2 the relation between the di
electric constant inside the dot («1) and the surrounding me
dia («2). The coordinates of the infinite image charges
related with the coordinate of the source coordinater̄2

through r̄ lmn[( x̄l ,ȳm ,z̄n)5@2l 1(21)l x̄2,2m1(21)mȳ2,
2n1(21)nz̄2#. By using the following identity

1

ur2r 8u
5

1

Ap
E

0

` dt

At
e2tur2r8u2, ~A2!

Eq. ~A1! can be written as an integral whose integrand is
product of three functions, each one of them for the th
spacial directions. Namely,

F,~r1 ,r2!5
q

«1Q

1

Ap
E

0

` dt

At
f,~ x̄1 ,x̄2 ,t !

3f,~ ȳ1 ,ȳ2 ,t !f,~ z̄1 ,z̄2 ,t !, ~A3!

where we have defined

f,~%1 ,%2 ,t !5 (
l 52`

`

j u l ue2t[%122l 2~21! l%2] 2
~A4!

with %[x,y,z, andu%2u<1.
It could be checked thatF,(r1 ,r2) defined by Eq.~A3!

@or Eq. ~A1!# satisfies the electrostatic boundary conditio
of our problem~the continuity of the electrostatic potenti
and the normal component of the displacement vector! at the
dot boundary. For example, the boundary conditions at
face x15Q(uy1u<Qanduz1u<Q) are satisfied if we define
the potentialF.(r1 ,r2) for x1.Q(uy1u<Qanduz1u<Q) by
replacing only thef,( x̄1 ,x̄2 ,t) function in Eq.~A3! by the
following f.( x̄1 ,x̄2 ,t) function:

f.~ x̄1 ,x̄2 ,t !5(
l 50

`
2« r

~« r11!
j u l ue2t[ x̄112l 2~21! l x̄2] 2

.

~A5!

Proceeding in this way, it is easy to see that the bound
conditions F,(r1 ,r2)ux15Q5F.(r1 ,r2)ux15Q and
-
re

e

e
e

s

e

ry

«1(]/]x1)F,(r1 ,r2)ux15Q5«2(]/]x1)F.(r1 ,r2)ux15Q are

fulfilled if f,(x1 ,x2)ux15Q5f.(x1 ,x2)ux15Q and

«1(]/]x1)f,(x1 ,x2)ux15Q 5 «2(]/]x1)f.(x1 ,x2)ux15Q .
But the last two conditions are precisely the equations fr
where the one dimensional potentials are derived. The de
of the calculation of these one-dimensional~quantum well!
potentials can be obtained in Ref. 21. It should be emp
sized that although the boundary conditions are satis
separately for each of the three spacial directions, the po
tial is not a product of three one-dimensional potentials.
other words, the three spatial coordinates are mixed by
potential, as can be directly appreciated from Eq.~A3!.

However, we must note that, unfortunately, the calcu
tion of F,(r1 ,r2) directly from Eq.~A3! is hampered by the
following problem: we have found that in the case«1 /«2
@1 ~metallic dot limit!, the potential increases quadratical
with «1 , instead of approaching a limiting value, as o
should expect from physical grounds. On the other side,
opposite limit«1 /«2!1 ~metallic matrix limit! is given cor-
rectly by the potential as defined by Eq.~A3!. Basically, in
this limit the potential is a decreasing function ofr1 ~for r2
50) and reaches exactly a null value whenr1 reaches the
dot boundary. Besides, and this is quite important for o
calculation approach, also the spacial distribution of pol
ization charges at the dot boundaries are given correc
Defining11

spol~r1 ,r2!52
1

4p
@~«221!“F.~r1 ,r2!

2~«121!“F,~r1 ,r2!#•n̂, ~A6!

where n̂ is a unit vector normal to the surface separati
media 1 from media 2 and pointing from 1 to 2, we ha
checked thatspol(r1 ,r2) is given correctly. Qualitatively,
taking for exampler250, spol(r1,0) presents a maximum
for r15(6Q,0,0) and equivalently alongy andx directions,
because these are the closest points to the source char
the origin. From this maximum,spol(r1,0) decreases mono
tonically whenr1 moves towards the cube edges and rea
its minimum values at the cube vertices. Also the meta
dot limit is correctly given byspol(r1 ,r2): we have found
that in the range 1<«1 /«2<10,spol(r1 ,r2) evolves continu-
ous from the smooth distribution with a maximum at the fa
cube center, to an essentially position independent cons
value for«1 /«2510, as one should expect for a metalliclik
particle. The definitive proof, however, about the correctn
of spol(r1 ,r2) is that its integrated value on the six cub
faces gives exactlyq(«1 /«221)/«1 , as it should be accord
ing to properties of the polarization vector.

Thus an alternative way of calculating the electrosta
potential starting from the source chargeq and the induced
superficial charge densityspol is

F~r1 ,r2!5
q

«1

1

ur12r2u
1

1

«1
E dr 8

spol~r 8,r2!

ur12r 8u
. ~A7!

The electrostatic potential calculated from Eq.~A7! is shown
in Fig. 1 for the case of the source charge at the origin, a
function of r1 .
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We attribute the differences between Eqs.~A3! and ~A7!
to the fact that the type of electrostatic boundary conditio
of our problem~Neumann-like! does not determine univo
cally the solution for the potential.11 From this point of view,
the calculation of the potential from the polarization charg
can be though as a way of determinate the physically cor
solution.

The full calculation of the exact electrostatic potential c
now be accomplished using Eq.~A7!. While this is in prin-
ciple possible, it is extremely demanding from the numeri
point of view, as for the calculation of the quantum dot ele
tronic properties we need to perform integrations of the
tential with respect to one or two three-dimensional ar
ments. On the other side, Eq.~A3! looks ideally suited for
numerical calculations, as the three spatial directions are
torized in the integrand and then the integrals with the e
tronic wave functions~which in the strong-confinement ap
proximation are also factorized!, can be performed quite
efficiently.

In consequence, we have adopted the following strat
for the numerical calculations: to use the potential as gi
by Eq. ~A3!, but correcting it by a function which is just th
difference between Eqs.~A3! and ~A7!. Fortunately, this
function turned out to be almost independent on the sou
or test coordinates; for instance, forF,(r1 ,r2), the correc-
tion factor is accurately given by 0.89« r(« r21).

In summary, instead of using Eqs.~A3!, we will use its
corrected version:

F,~r1 ,r2!5
q

«1Q S 1

Ap
E

0

` dt

At
f,~ x̄1 ,x̄2 ,t !

3f,~ ȳ1 ,ȳ2 ,t !f,~ z̄1 ,z̄2 ,t !1 f ~r1 ,r2!D ,

~A8!

where thef functions are defined by Eq.~A4! and f (r1 ,r2)
is the correction function which bringsF,(r1 ,r2) equal to
the exact value from Eq.~A7!. As we indicate above, the
correction function for coordinate values inside the dot is j
a constantf (r1 ,r2)[C, that nicely helps with the numerica
calculations.

2. One-particle polarization self-energy

This contribution can be obtained from Eqs.~A8! and
~A4! by taking r15r25r , q52e0 , excluding the real
charge contribution (l 5m5n50) from the sums which de
fine the integrating functionsf,, and dividing by 2 as cor-
responds to a self-energy. Accordingly,

Vs~r !5
e0

2

2«1Q S 1

Ap
E

0

` dt

At
f,~ x̄,x̄,t !

3f,~ ȳ,ȳ,t !f,~ z̄,z̄,t !1CD . ~A9!

Taking the expectation value of Eq.~A9! with the one-
electron wave functions in the strong-confinement appro
mation
s

s
ct

l
-
-
-

c-
-

y
n

ce

t

i-

ckxkykz
~r !5

1

Q3/2
cosS p

2
kxx̄2axD

3cosS p

2
kyȳ2ayD cosS p

2
kzz̄2azD ,

~A10!

wherekx ,ky ,kz51,2, . . . , anda j5p/2(0) whenkj is even
~odd! ( j 5x,y,z) we obtain the associated polarization se
energy corrections

SCQD~Q![^kxkykzuVs~r !ukxkykz&5
e0

2

2«1Q

3S 1

Ap
E

0

` dt

At
I kx

~ t !I ky
~ t !I kz

~ t !1CD .

~A11!

In the equation above,

I kx
~ t !5 (

l 52`

`

j u l u E
21

1

dx̄e2t$[12~21! l ] x̄22l %2
cos2S pkx

2
x̄2axD ,

~A12!

and equivalent expressions forI ky
(t) andI kz

(t). The ground-

state self-energy correction is particularly simple, askx5ky
5kz51,ax5ay5az50, and then I kx

(t)5I ky
(t)5I kz

(t)

5I 1(t) and

SCQD~Q!5
e0

2

2«1Q S 1

Ap
E

0

` dt

At
@ I 1~ t !#31CD . ~A13!

We notice again that in Eqs.~A9!, ~A11!, and ~A13! the
contribution of the real charge must be excluded.

3. Electron-donor impurity binding energy

The electron-donor impurity interaction potential can
obtained from Eqs.~A8! and ~A4! by taking r15re , r25r i
~the impurity coordinate!, andq5e0 ; accordingly,

Vc~re ,r i !52
e0

2

«1Q S 1

Ap
E

0

` dt

At
f,~ x̄e ,x̄i ,t !

3f,~ ȳe ,ȳi ,t !f,~ z̄e ,z̄i ,t !1CD . ~A14!

For the study of the electron-donor impurity binding ener
the following matrix elements should be calculated:

^kxkykzu2Vc~re ,r i !
ukx8ky8kz8&

5
e0

2

«1Q S 1

Ap
E

0

` dt

At
Jkxk

x8
~ x̄i ,t !Jkyk

y8
~ ȳi ,t !Jkzkz8

~ z̄i ,t !1CD ,

~A15!

where



y

di
k

f

s
b

s

e

f a
ing

d

or
-
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Jkxk
x8
~ x̄i ,t !5E

21

1

dx̄ecosS p

2
kxx̄e2axD

3cosS p

2
kx8x̄e2ax8Df,~ x̄e ,x̄i ,t !, ~A16!

and equivalent expressions forJkyk
y8

andJkzkz8
. Eq. ~A14! is

valid if the impurity is located inside the dot. If the impurit
is outside the dot, the one-dimensional potentialsf, must
be replaced by the one-dimensional potentials correspon
to the case where the impurity coordinate component ta
values outside the dot.21 Besides,C becomes a function o
the impurity coordinate~but not of the electron coordinate!
which we have determined numerically; this is the only ca
in our calculations where the correction function cannot
considered as a constant.

4. Electron-hole Coulomb energy

The electron-hole Coulomb potential is given by Eq
~A8! and ~A4! with r15re , r25rh , andq5e0 ,

Vc~re ,rh!52
e0

2

«1Q S 1

Ap
E

0

` dt

At
f,~ x̄e ,x̄h ,t !

3f,~ ȳe ,ȳh ,t !f,~ z̄e ,z̄h ,t !1CD . ~A17!

The electron-hole Coulomb energy for the ground-state
citon in a CQD is defined as

ECoul
CQD~Q!52E dreE drhuCex

CQD~re ,rh!u2Vc~re ,rh!,

~A18!

where

Cex
CQD~re ,rh!5

1

Q3
cosS p

2
x̄eD cosS p

2
ȳeD cosS p

2
z̄eD

3cosS p

2
x̄hD cosS p

2
ȳhD cosS p

2
z̄hD

~A19!
l

s

,

an
ng
es

e
e

.

x-

is the normalized ground-state exciton wave function o
CQD in the strong-confinement approximation. Replac
Eq. ~A19! in Eq. ~A18!, we obtain

ECoul
CQD~Q!5

e0
2

«1Q H 1

Ap
E

0

` dt

At
F E

21

1

dx̄eE
21

1

dx̄hcos2S p x̄e

2
D

3cos2S p x̄h

2
Df,~ x̄e ,x̄h ,t !G 3

1CJ . ~A20!

Defining two new integration variablesu5 x̄e2 x̄h , and

v5 x̄e1 x̄h , thev integral can be performed analytically an
after some algebra the final expression forEcoul

CQD(Q) is re-
duced to a twofold integral:

Ecoul
CQD~Q!5

e0
2

2«1Q S ApE
0

` dt

At
@K~ t !#31CD , ~A21!

with

K~ t !5 (
l 52`

`

j u l u E
0

1

due2tp2~u2 l !2

3S ~12u!@21cos~2pu!#1
3

2p
sin~2pu! D .

~A22!

In the absence of dielectric mismatch,j50 and then only the
term l 50 from Eq. ~A22! gives a finite nonzero
contribution.17 It is interesting to note that our procedure f
the calculation ofECoul

CQD reduces the original ninefold inte
gration of Eqs.~A18! and~A7! to the twofold integration of
Eqs.~A21! and ~A22!.
et-
x,

s.
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