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Shape and dielectric mismatch effects in semiconductor quantum dots
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The combined effect of shape and dielectric mismatch between dot and matrix on several electronic prop-
erties of semiconductor quantum dots have been studied. In particular, the electronic properties of spherical and
cubic quantum dots that have been analyzed are the integrated density of states, the polarization self-energy
corrections to single-particle energies, the doping with impurities, excitonic Coulomb energies, and Coulomb
blockade energies. It has been found that, in spite of the highly nonhomogeneous polarized charge density
induced at the boundaries of the cubic quantum dot, the electronic properties are essentially independent on the
dot shape for all the range of dielectric mismat®0163-1829)00119-9

I. INTRODUCTION two- or three-dimensional numerical calculations, even to

solve the single-particle cade.
Semiconductor quantum dotQD) can be characterized A second important issue in the physics of quantum dots
as systems where the carriéedectrons, holesare confined are dielectric mismatch or image charge effects. Most of the

in the three spatial directions. An immediate and clear conI'mg' géjagtym dOt? of 6]} g'\é.eﬁ[' sertnlcom_mctgr Taterlallare
sequence of this confinement is that their electronic structyr§MPeAded in a matrix of a dirferent semiconductor or glass
collapses to a series of discrete levels, contrary to the Corp_watenal, whose dielectric properties are usually quite differ-

tinuous density of states associated to bulk semiconductorgnt as compared' with the dot .materlal. This dielectric mis-
or to their higher dimensional relatives, such as quc";lnturr[;ﬁ‘"‘tch at the QD interface has important consequences, as in

wells and quantum wires. Besides, this discrete level struct—he presence of charged particles inside the (@ctrons,

ture can only be filled by a finite number of particles, while holes, impurities, etg.they induce superficial charges at the

in quantum wells and wires, because of the incomplete confoundaries. These induced charges interact in turn with the

finement, it is still possible to have a macroscopic occupatiorpart'des’ and as these interactions are of the same magnitude

of the samples. Given these features, semiconductor quantu thl?j gotjlokmb_ lrgteractlon tt;etwet(;n Lhe .real pa\r/U(r:ll_le's:{hthey
dots are also termed as artificial atoms or zero-dimensiondl o-'0 P€ 1aKen INto account from the beginning. e there
systemg3 already exists in the literature a vast number of theoretical

One issue whose importance increases as dimensions drapers devoted to this issue, in the_ specific case of quantum
reduced is the shape of these artificial structures: with only goltst'all of thebm a(ljssume .tthe sphlenc?l getometlryt,'c\éva:le're cal-
few exceptions, most of the dot calculations assume a sphe hu ations (]fatrr: € done thI etgssl{y’ atmo? gnily : b.ty'sd
cal shape, because the high symmetry allows analytical rdn€ aim of the present contribution to study ine

sults in many cases. This is one issue that motivated thgffe_:ct of both shape and dielectric confinement ehfects,
which as far as we know has not been addressed previously.

present work: To what extent are the QD properties depen- : :
dent of the assumed shape for the QD? As a test we compaﬁge All the calculations to be presented below are made using
I

several properties, such as one-electron energies throu Eﬁ sp-calleq strong confmement approxmaﬁmhosg va-

their integrated density of statd$DOS) and polarization |t_y is restricted tp dot sizes _s;maller t_han the effe_ct|ve Bohr
self-energy corrections, binding energy of arbitrarily Iocatedra(ij'uésh.Of th.ﬁ ts)em(;gonductgr_m(?ute_sltlgni In p_;achcal tfm:S’
impurities, excitonic Coulomb interactions, and two-electrondNd IS will be discussed in detail bejow, 1t amounts 1o
properties, of equal volume spherical and cubic quanturﬁreat'ng electron-hole, electron-electron, and hole-hole Cou-
dots(SCD’,s and CQD’s, respectivelyWhile neither of the lomb interactions as perturbations from the single-particle

two shapes can be taken too seriously, approximately SQD,gmetlc-energy contrlbutlo_ns. . ) .
are believed to form when grown from a colloidal The rest of the paper is organized as follows: We give in

suspensioft:on the other side, other growth procedures suchsec' Il all the necessary theoretical results and general back-

as self-ordering mechanisms during epitaxy of lattice-9round which will be used in the following sections; Sec. lli

mismatched materialstypically, InGaAs/GaAs seem to is devoted to the results for one-particle energies, polariza-
give rise to QD’s of pyramidal shageEinally, the twofold tion self-energy corrections, impurity properties, and exciton

cleaved edge overgrowth technique of Wegscheteal® and two-electron features, while in Sec. IV we give the con-
should form QD’s close to a cubic shape at the interséctior‘flusmns‘ All the detailed derivation of the results presented
in the main body of the papémainly Sec. I) are given in

of three quantum wells. One additional reason to adopt th di
cubic geometry as an alternative to the spherical geometry i € appendix.
that calculations can be carried out rather easily, although Il THEORY

not so easily as in the spherical geometry. Any other shape '

choice, besides these two, almost inevitably leads to non- The aim of this work is focused on the study of the de-
separable wave functions and accordingly to complicateghendence of several electronic properties of quantum dots on
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the geometry and dielectric mismatch between dot and ma- eé

trix. Within the envelope wave-function approach to the V (ro,r))=——7 E P,(cosvy)
effective-mass approximatidfithe relevant Hamiltonian for 21R =0

an electron-hole pair confined by infinite barriers inside a
QD with dielectric constant; embedded in a matrix with
dielectric constant, is given by

x| O ”( o (e, +D)l+1 ==

>

r (ar—l)(l-l-l)j—r)

(6)

_
H(re.rn) =Ha(re) +Hy(r) +Ve(reur), (D) +<r_h_1)( e(214+1) re)

(e +DI+1TH

where
and

#2 S (e=D)(I+1)
o(re), vl V(= 28 2 TESTET R @

e

In Egs.(6) and(7), P,(cosy) are the Legendre polynomi-
and als of orderl, y the angle between electron and haheea-

sured from the origin at the dot cen):,e?<(r_>) the smallest

B (greatest betweenr, andry,, ®(x) the step function, and
Vii+Vs(rn). () &,=¢,/e, the dielectric contrast. All distances are measured

in units of the dot radiu®, that isr =r/R. While the second
term in the right-hand side of E@6), corresponding to the

In He (Hy) the first term corresponds to the electron hole outside the QD, never contributes in our infinite barrier
(hole) kinetic energy, the second one to the self-energyapproximation for the exciton problem, it gives a nonzero
which arises as result of the interaction between the electrooontribution even in this limit for the impurity problem, in
(hole) and the surface charge density induced by itself at thevhich case the hole coordinate is assimilated to the impurity
boundary. Besidesn; (my) denotes the electrothole) ef-  coordinate, which can be located outside the QD.
fective mass of the semiconductor well-acting material. The On the other side, the corresponding expressions for a
last termV, is the generalized Coulomb interactiinclud- ~ cubic quantum dotCQD) of side 2Q, which are derived in
ing the interaction with the induced charges, see belssy ~ detail in the appendix, can be approximated by
tween the electron and hole. The Hamiltonian given by Eq. o2
(1) may also be used to study the problem of doping quan- _ 0
tum dots: taking the limimj; —, the hole becomes a clas- Velle:Tn)=— Q{ \/—J N
sical particle and it can be assimilated to a static donor im-

Hi(r) =
h

purity which can be located inside or outside the quantum - -
dOt X¢(y91yh!t)¢(zeazh1t)+f(rearh) ’ (8)
The expressions fov(re,r,), Vs(re), andVg(ry,) can be
obtained from basic electrostatics-as and
e2 1 e o (rl r ) V( ) 0 fxdt¢/ ¢r ¢/ +f
0 0 pol yIh N= —| — - A — __ A
Vo(ra,r :__—__f drr————, 4 s 2¢ xx0P(yy, ) F(z,z) T (1)
c( e h) £ |re_rh| g1 |re—r’| ( ) 1Q \/; 0 \/E
€)
and where we have defined thg functions as ¢=x,y,2),
- - = (= - | - 79* |—(— 0,12
e? Too(r',1) ¢<9e'9hvt>_<1—eh>|_2m gllg=tlee=21—(=1'ep]
Vy(r=5—| dr'———, 5 -
2g4 [r—r'| -

2g,

T P lla—tlee—(—1)(21+ep)?
G)(glrl)(@r"']-)I=0g ©

where — g is the electron charge andg,, is the polarized
charge density at the dot boundaries induced by the hole. The (10)
energy potentiaV/(re,ry) is invariant under the exchange of
electron and hole coordinates. When there is not dielectriwvith |0e|<1 and ¢=(e,—1)/(s;+1). In the equations
mismatch in the systeme¢=¢,), V. is reduced to the bare above all the distances are measured in units of the half edge
Coulomb interactionV(r¢,r) = —eé/sllre—rh| andVy(r)  of the dotQ, that is,0 =p/Q. f(r.,r}) is a correction func-
=0. The expressiongt) and (5) are dependent of the QD’s tion which guarantees that Eg8) and(9) are equal to Egs.
geometry, and explicit expressions for them are given belowm4) and (5). In most of the case$(r.,r,) is essentially a

For spherical quantum dotSQD) of radiusR, we will constant (i.e., independent of coordinajesipproximately
use the corresponding expressions given in Ref. 12: equal tof(re,r,)=C=0.8%,(g,—1). Only when the impu-
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FIG. 1. Absolute value of the potential energyV.(r,0) as a function of the distance from the dot cefkgg. (4)]. Full line, spherical
geometry; dashed line, cubic geometry withunning along th€100) directions; dashed-dotted line, cubic geometry wittunning along
the (110 directions; dotted line, cubic geometry wittrunning along thé111) directions. The lower isolated curve corresponds to the bare
Coulomb interaction, equal tor2in units of Ry*. The inset shows the contribution to the potential energy due to polarized charges at the
dot boundary.

rity is outside the dotf(r.,ry) is dependent of,, because Sults obtained fol/; in cubic and spherical environments, it
in this case the potential energy has to tend towards ité tempting to conclude also quite similar results for the elec-

asymptotic expressioeﬁ/szrh. In Eq. (9) the real charge tronic properties. The detailed calculations of the following
contribution must be excludetthis is the meaning of the Sections are devoted to the quantitative confirmation of this

primes in theg functions. qualitative expectation. _ _
In Fig. 1 we plot the absolute value of the potential energy  The electronic properties that we are interested in analyz-
V(re,ry) for the particular case,=0 andr.=r taking val-  ing are:(i) the single-particle energies and their associated

ues inside and outside the dot. The lower curve correspondiensity of state¢DOS), (i) the polarization self-energy cor-

to the absence of dielectric mismatch at the dot boundary, ifections,(iii) the Coulomb energy between an electron and a

which case only the first term in Ed4) contributes and ~ donor impurity arbitrarily located inside or outside the dot,

—V(r,0) reduces to 2/(in effective units. The upper set of as well as the dependence with the dielectric constant ratio
C\'» .

curves correspond to a typical dielectric mismatck 3, the 1 (iv) the exciton Coulomb energy between an electron-

difference between both sets of curves being the polarizatioﬂOIe pair, andy) the Coulomb blockade energy. !
contribution given by the second term in He). The inset Furthermore, we adopt the so-called strong-confinement

displays precisely only this contribution to the potential en_a_pproxmatlon(SCA) in solving the exciton Hamiltonian

ergy. As far as we know, this is the first time that the poten—g'ven by Eq.(1). This approximation is based in the simple

tial energy of a cubic dot with dielectric contrast is pre- fact that as the dot size decreases, the kinetic energy of both

=2 -2
sented. The first thing to note is the close similarity betwee@%f}rwhﬁgdsgﬁ lgns;glfzrﬁ Cnggmb[;?graEgtiso(rg)sig?e as
th Its fi herical i ts. While just a simpl ' A X .
e results for spherical and cubic dots 'e Just a SImple, -1 or Q! [see Eqs(6)—(9)]. This means that in the small

curve is enough for the spherical dot, corresponding to dot size limit (the lenath | ding to th i
moving along an arbitrary radial direction, for the cubic case ot size limit(the length scale corresponding to the exciton

in principle each radial direction gives a different result. In Bohr radius the latter becomes smaller than the former, and

consequence, for the cubic dot we have plotted the potentia‘ff"‘n be treated by perturbation theory. Accordingly, in this

along three representative directions. The cusp in the poter§,_trong-com‘mement limit, the zero-order exciton Hamiltonian

tial energy as the coordinate moves alord @0) direction is is reduced to the kinetic-energy terins
easily explained as in this case the particle is moving to-

wards the center of one of the cube faces, which is the sur- 52 52
face closest point to the dot center, and consequently where HO(rg,ry)=— Vio — V2, (12)
the maximum of the induced charge lies. This effect is absent 2m* ¢ 2m¥

when the particle is moving along @10 or (111) direc-

tions, as the cube edge and vertex are places with small

values for the induced charge. Indeet}, (r,0) takes its Consistently with this perturbative approach, the zero-
minimum value atr=(Q,Q,Q) (and equivalents Taken order wave functions oH© can be expressed as a simple
that all dot properties in which we are interested are esserproduct of functions for the electron and hole, respectively,
tially integrals of V(re,ry,) weighted with the electron by W(re,ry)=(rg)e(ry). In this way, the resolution of
and/or hole wave functions, and from the quite similar re-H(© is decoupled in two equivalent problems:
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2 100 . — T y T y T
V20(re)=EQy(r,), (12)

*
m
€ 80

and

o
o

2

Vie(rn)=E@e(ry), (13

IDOSE) [ &, °]
]

*
2mg

with the hard-wall boundary condition that botf(r,) and 20
¢(ry) should vanish on the boundaries of the QD.
Within this strong-confinement limit, the calculation of

cpulomb!c attraction and the self-polarization energies asso 05 s 12 60 200

ciated withV (rg,rp), Vg(re), andV(ry,), respectively, is E[Ry"]

performed evaluating the corresponding average values us-

ing as wave functions theero-order one-particle functions FIG. 2. Integrated density of states per unit volume for spherical

P(re) ando(ry). quantum dotgdotted ling and cubic quantum dots of increasing
size (full lines), as a function of energy. The top full line corre-
sponds to the free-electron gas, which can be thought of as a quan-

EEJ dry* (r)Ve(r)(r), (14) tum dot of infinite size.
T S(Wkge ) S(kaye )
kk k(Te)=—2€08 —— —a,|CO0§ —— —«
Eimp(mf‘f dre* (re)Vel(Te. 1) ¢(re), (15 e Qe 2 2
K, Z,
xcos( 22 e—az), (18)
ECouIE_J dredrhlpzcre)ﬁozkrh)vc(re,rh)lﬂ(re)‘P(rh)- (16)
with k,,ky k,=1,2,..., anda;=m/2(0) whenk; is even
(odd), j being any of the three Cartesian componeqtsz.
Il. RESULTS The corresponding energies are
As a general rule, for the comparison of properties of . %2 2 s o o
SQD’s and CQD’s we will assume equal volume quantum Bk, = o | 20 (ki +ky+kz). (19
e

dots, that is, (2)3=(4=/3)R®. Besides, for the graphical
presentation of the results we will use the electron effective The degeneracy of each eigenvalue in this case is given
rydberg as unit of energy (Ry=m;eg/2i?y) and the size by the number of all possible combinationskgfk, ,k, such

dot R as unit of length. thatk?+kZ+ki= same integer number.
We give in Fig. 2 the integrated density of statd30S)
A. One-particle energies per unit volume for SQD’dotted line,\=R/a}=1) and

The analysis of the one-particle energies could be percQD'’s (full lines; from bottom to topA =1,2,5,10¢); they

formed either with Eqs(12) or (13). For simplicity, we &re defined as
choose the electron case. 5

For a SQD, the solutions that satisfy the hard-wall bound- IDOSSQY(E)=— >, (21+1)@(E—E?), (20)
ary conditon (r)=0 are given by ym(r) Vo ’
=Npj (KN Y \m(6,¢), wherej,(kr) are the spherical Bessel
functions of the first kind of orddr, Y,,(6,¢) are the spheri-

cal harmonics, andll,, are the normalization constants. The 2
single-particle energies are just the eigenvalues of the kinetic IDOSCRP(E)= v > O(E-EQ ), (22)
energy, given by Ky kg o
V being the volume dofassumed to be equaind the factor
72 K2 of two comes from spin degeneracy. Physically, the IDOS
E)=—— —”ZI (17)  gives the total number of states below a given endggy
2mg R Basically, the IDOS of equal size SQD’s and CQD'’s have a

similar behavior, with small differences due to the different
where k,, (n=1,2,3,...) are theascending roots of the symmetry of the two QD’s: the IDOS for SQD is almost
Bessel functions of orddr For a given value of, the inde- always above the IDOS for CQD, as a consequence of the
pendence of equation above on the azimuthal quantum nungreater degeneracy of the SQD eigenvalues, compared with
berm implies a degeneracy ofl 2 1 for each eigenvalue.  the CQD ones. On the other side, the smaller degeneracy of
For CQD’s, the normalized zero-order wave functions arehe latter implies that the IDOS jumps more frequently than
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T remainingl # 0 contributions. Wher;+&,>1, §2 may be
approximated &
Ecoul
2
—T5 + 63 (R)=0.470 1) (23
> T T T gR (e, 1)
Eex i i
Ecou, -t On the other side, according to EEA11), the ground-
/ 2% state polarization self-energy corrections for CQD’s are
. X given by
FIG. 3. Schematic view of the shift of the lowest conduction e2 1 (dt
level due to the injection of one glec_troEX or two electrons ¥ 3CQb(Q)= 5 0 _f —[1(O)B+Ct, (29
+Ecoul)-Eex represents the excitonic correction to the energy e1Q | JmrJo \/f
needed to create an electron-hole pair inside the quantum dot.
with
the IDOS for SQD. When calculated for a large enough num-
ber of eigenvalues, however, both effects compensate each o )
other and the IDOS of SQD and CQD show no appreciable I ()= 2 §|||j d;e—t{[l—(—1)'];—2I}ZCOS'Z(W_;)
differences. The strong resemblance between both IDOS can == -1

be considered as a validation of our assumption of taking (25
equal volume quantum dots as a criterion for their compari-

son. An interesting question to study is how the IDOSIn Eq. (24) a single term corresponding to the real charge
evolves when one moves to larger dot sizes. We provide theontribution must be excluded.

answer in the same Fig. 2, where we show the IDOS for We display in Fig. %) a comparison of the self-energy
CQD of increasing sizéhe IDOS of SQD’s shows a similar corrections for SQD’s and CQD's, corresponding to a dot
behavioy. The top full line corresponds to the IDOS per unit size of\ = 1. The corrections are negativesif<1, and posi-
volume of the free electron gas, given by ID@&J( tive if &,>1 (both being exactly zero in the absence of di-
=(1/37%) (2m*E/42)%2 as expected, the IDOS for finite electric mismatch This is due to the fact that the self-
size QD’s evolves towards the free-electron gas expressioimduced dot boundary charge is of the safopposite sign

as the dot size increases. Note, however, that ever\for as the real charge i£,>1 (¢,<1). In most of the dots
=10 there are appreciable differences between both IDOS. fabricated to date,>1. It should be pointed out the impor-
should be pointed out that we are allowed to move to largeance of self-energy corrections as for a physically realizable
dot sizes\>1 where the SCA is not valid, as we are study-dielectric ratioe, =10, 3, can reach values up to 10 Ry

ing single-particle energies. which is quite comparable with the Coulomb enefy,,, .
On the other side, it is quite remarkable that in spite that the
B. Polarization self-energy corrections sharp boundaries of the cubic geometry induce a highly non-

i ) i , homogeneous polarization charge density, the self-energy
The single-particle energies studied above correspond t0 & rections are essentially shape independent.
situation where the particléelectron or holg is inside a

guantum dot whose dielectric properties are the same as that _
of the surrounding media. However, in the real situation, the C. Doping of a quantum dot

surroundings of the quantum dot is a material media that can Tpe study of the electronic properties of a donor impurity

bg polarized by the presence pf the electric_: charge. Thigyqfined in a QD can be performed taking the limif
simple fact leads to a single-particle energy shifue to the | in Eq. (1). In this limit the hole plays the role of a

Coulomb interaction between the real and induced Charge?iositive donor impurity, and its coordinate becomes a param-

an electron induces a bound surface charge density which Bter that can be treated as a classical variable. The relevant

turn generates an electrostatic potential at the electron’s PRamiltonian includes only the first and third terms of E5.
§itio_n. A schematic diagram. of this self-energy _Shiﬁ_ is ShownDefining as usual the impurity binding energy as the differ-
in Fig. 3. The ground-state image charge; contrlbutlons to th‘3nce of the electron energy in the absence or presence of the
electron self-energy were first determined in Ref. 8 for e jon, this magnitude becomes precisely given by Eq.
SQD’s, and given as (15); according to this definition, a positive valueBf(r)
) means that the configuration electran impurity is more
5590(R) = & < (&= D+D) fldXXZISinz('n'X) stable than the configuration with only the electron inside the
e R=0 (e, +D)I+1 Jo QD. On-center binding energies of impurities in SQD’s with
dielectric mismatch were already studied by variational tech-
niques in Ref. 14.

The corresponding analytical expressionsEgf(r;) for
SQD'’s using the strong-confinement approximation were ob-
where the first term on the right-hand side of the last equatained in Ref. 12. For instance, for the ground state- (|
tion is thel=0 contribution, whiles3 corresponds to the =m=0), this energy is

281R(sr—1)+52(R), (22
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10—

) _ _
€5 - sin(2r;) i
Eilrg%(ri):_ O(1-r)) Sr_——I+C|n(27T) Ground state
SlR 27Tri \
B B B s ——saD i
—Cin(2r;) +(~)(ri—1)g,/ri], (26) RIS

-------- CQD <111> 1
wherer,=r;/R is the impurity position insider{1<) or
outside ¢;=1) the QD and Cin is the cosine integral
function!® The superscripts denote the value of the quantum
numbersn, |, andm of the zero-order spherical wave func-
tions, respectively. Further analytical expressions for the
p-like states (=1,m=0,=1) and numerical results for the
ten zero-order lowest states are also provided in Ref. 12.
On the other hand, in the appendix the general expres-
sions for this impurity binding energy in CQD’s are derived.
The zero-order ground state in a cubic box occurs when the
three quantum numbeks are equal to 1, and then the first-
order electron-impurity Coulomb energy is given[lsge Eq. .
(A14)] 0.0 05 1.0 15 2.0

Impurity position (r,/R )

E,, [Ry]

O L 1 n 1 " 1

11 e [ 1 [=dt —
Eimp(ri) - al_Q \/_;fo ﬁ‘]ﬂ(xi 1) FIG. 4. Ground-state binding energy of impurities as a function
of impurity position. Full lines correspond to spherical quantum
o o dots, all the remaining lines correspond to cubic quantum dots. Dot
X J14(Y; 1) J11(Z; ,t)+C(ri)> , (27) sizex=R/a}=1.

curves converge asymptotically to the expressigfe,r;,
corresponding to the Coulomb interaction between two non-
o 1 o L overlapping charge distributions in the media: the point
J11(X ,t)zf dX.COZ(TXe/2) p(Xe X ,1). (29 impurity and the spherically symmetric electronic density.
-1 The fact that this value is also reached for the cubic geom-
Equations(26) and (27) are explicit expressions for the gﬁgulr? d?s%;)t%d l():iu?j(i:r‘fgor;:;?g?/cigrraéég’gusrhcc?\/lfsu'ﬁgozzblz?
groypd-;tate bin(_jing energies. of arbitrarily Ioc_ated donor i.m'dence on the direction in which the impurity is displaced, the
gllarétées dilglescgrri]snr%aiﬂsrzg(tjcr? ukg ?egtztsétriﬁge%txelgaulsr](étzrigs'resuIts for the three _anglyzed directions essentially falling on
Clearly, the spherical geometry results in a much Simple}he same curve. This is related to the fact that the electron
. . . . ~ground-state wave function is the product of three identical
expression, as compared with the cubic symmetry. It is M2 ctors along thex,y, andz directions[see Eq.(18)]. Ac-
gortant to regllze,_ h_owe\_/er, tha_t all the size Qlependence IE:]ordingly, the total wave function results in an approximate
oth expre;smn? is |de|;1t|cal, being contained in the prefaCtosfphericaI symmetry, which gives rise to a quite weak direc-
that goes I|keR1000r Q. 11 _ — tional dependence. The remaining curves in Fig. 4 are the
A plot of Ejnp(ri) and Ejy(ri) as a function offi is  same as the four in the lower set but with a dielectric mis-
given in Fig. 4 for SQD and CQD, respectively. Without l0Ss jatch ¢, = 3. The results for SQD’s, already discussed in
of generality, we have chosen tizeaxis for the impurity  Ref, 12, show that the binding energy is an increasing func-
displacements in SQD's. For the CQD case, three differenfion of the dielectric mismatche(>1), resulting in an en-
representative directiong00), (110), and(111)) were se-  hancement of about 100% for this particular case=(3).
lected for the displacement of the impurity. The lower set ofte physics behind this dielectric enhancement is quite
curves correspond te, =1 (no dielectric mismatch between gimple: The electron interackwthwith the positive impurity
dot and matrix, which could apply to GaAs/AGa_xAS  and its induced charge. #.>1 the impurity induced charge
quantum dots, while the upper set of curves correspond iy aiso positive, resulting in an increased binding energy.
er=3, which could apply to S#-Si0; quantum dots®  simjlar results are obtained for CQD, although a discernible
Concentrating first in the results far,=1, we obtain gifference can be observed as the impurity moves along dif-
small differences between SQD's and CQD's, which de<erent directions. The slope discontinuity in the curves with
crease as the impurity moves tC)Wfide the dgt.boundary. FQf =3 is due to the boundary dielectric mismatch, which re-
instance, when the impurity is at the origin, the ratiofiects in turn in a slope discontinuity of the corresponding
Eimp(0)/Eimp(0) is approximately 1.06, being the small dif- potentials of Fig. 1. The kink occurs when the impurity
ferences mainly due to the fact that the cubic ground-statg, v es out of the dot, that isr;=1 for SQD butr,

function is more concentrated around of the origin than th(’;o_gl 1.14, and 1.40 for CQD and impurity displacements
spherical one. For;=0.5 binding energies for both geom- ajong the(100), (110), and(111) directions, respectively.
etries become essentially indistinguishable. Ferl all the  This difference in the distance from the dot center to dot

where & ,y;,2z)=(x;,yi,z)/Q, and
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boundary along the three directions breaks also the quasid@tegral functiont®> and 83 (R) is given by Eq.(23). In the
generacy of the associated CQD binding energies, as the dabsence of dielectric mismatch,& 1,63 5°P=0) we obtain
cay with impurity position is faster when the impurity moves the well-known result

out of the dot. It is also interesting that the binding energy
depends strongly on the impurity position: for example,
moving the impurity from center to boundary, the decrease R

in binding energy amounts to approximately 35%.

We have also analyzed the binding energy of the first- an
second-excited states of CQD(sot shown. One important

2

e
ESQO(R)=— 1.78681—0, (33)

dirst obtained by Brus.

Similarly, the ground-state exciton wave function for a

difference with respect to the ground-state results is that it @D as given in the SCA is

this case the binding energy displays a nonmonotonic depen-

dence on the impurity coordinate. As in the SQD’s case,

this is due to the fact that these excited states have a node in
its charge distribution at the dot center, where consequently
the binding energy attains a low value, and then presents a
maximum value at same distance from the dot center. The

1 T— T— T
\IISSD(re h)= ECO{ Exe) COE{ Eye) COE( Eze)

T m— T—
X co Exh co Eyh cos(EZh . (39

dielectric enhancement effects are similar as to the groundraking again the expectation value of the exciton Hamil-

State case.

D. Exciton Coulomb energy

We will analyze in this section the shape and dielectric
mismatch effects on the exciton Coulomb energy. This en-

tonian without the kinetic-energy contributions, but using
this time WSRP(r,ry,) we obtain for the size dependent ex-
citon energy

ESQP(Q)=23°°%(Q)-ES0(Q), (35)

ergy is defined as the correction to the size dependent bangihere 3 €QP(Q) is given by Eq.(24) and EEQD(Q) is de-

Coul

gap energy needed to create an electron-hole pair inside th@ed in Eq.(A21) of the appendix. Contrary to the case with
quantum dot. Then, this excitonic energy should include, bespherical geometry, no obvious cancellation exists between
sides the generalized Coulomb interaction between the negghese two terms. In the absence of dielectric mismatch
tive and positive charges, the corresponding polarizatiory,cQb(Qy=0, and only the =0 contribution from the sum

self-energies of the electron and the h@ee Fig. 3. Within

in Eq. (A22) survives; in this limit, the size dependent exci-

the strong-confinement approximation, the normalizedgn energy reduces to
ground-state exciton wave function for a SQD confined by

infinite barriers is given by

T sin(rrr_9) Sin(ﬂ'l'_h)
W?SD(re,rh>=dfloo(remodrh):E PR
(29)

2 2
e €
ES(Q=-1525=-189 1, (39

a result first obtained by Fishman, Romestain, and Vial.
The similarity of ES?(R) and ES®P(Q) in absence of di-
electric mismatch is quite remarkable, the difference being

Taking the expectation value of the exciton Hamiltonianaround 5%. Moreover, the comparison of dielectric mis-

given by Eq.(1) without the kinetic energy terméwvhich
together with the semiconductor bulk band dgpresults in
the size-dependent single particle band )gapith
w3Q%r,,r,) we obtain

ESQP(R)=2359%(R)—EZ(R), (30)

where3 SQP(R) is given by Eq.(22) and EZSD is obtained
from Eq.(16) as
_

EZD(R) = (8,-1-1

Si(27) Si(4w)
81R B '

T * 27
It is interesting to note that allbetween 0 aneb contributes
to 3SQB(R), while only the terml =0 of V(r,,r},) gives a
non-zero contribution tES3(R). Replacing Eqs(22) and
(312) in Eq. (30) we obtain

e
ESeO(R) = )

(31

Si(2m) N

Si(477))

252(R)—(2— 5

(32

match effects on excitonic properties of SQD’s and CQD’s
in Fig. 5b), shows that this similarity remains for all the
range of dielectric mismatch ratio. Open circles correspond
to Eq. (32), open squares to E435), and the full line cor-
responds to replace the analytical approximation &
given by Eq.(23) in Eq. (22). We can observe that this
simple analytical expression agrees fairly well with the cal-
culation, showing the smooth dependence of the excitonic
energy withe, .

The exciton Coulomb energy provides us with an addi-
tional check about the consistency of our calculational ap-
proach. Noting that the correction factrincluded in3 ©*P
and ESSD cancels exactly in E(35), the excitonic energy
should be the same if calculated with E¢&3) or (A7) for
the potential® (r4,r,). We have performed the comparison
and found that the difference between both calculations is
indistinguishable on the scale of Fig(b}.

E. Coulomb blockade
The last property that we will consider is the energy nec-

where 62 (R) is what remains after an almost complete can-essary to put a second electron inside the QD, when already
cellation of polarization effects included both in the self-there is one, both in the same spatial st@e instance, the

energy andEZ3D(R). In equations above, ) is the sine

ground state but with opposite spif® The injection of a
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o 5 4 6 8 10 including only one feature and not the other.
r— A first step for the study of the dot electronic properties
20 o sa@D @ within the framework of the strong-confinement approxima-
o CaD ] tion is the calculation of the generalized Coulomb potential,
(&1 + 0.94 x (e WD) including the contribution of polarized charges at the dot
boundaries. While this generalized Coulomb potential is well
known in the spherical geometry, it is an important problem
by itself in the cubic geometry. While we have found and
presented the exact solution for this difficult problem, for the
calculation of the electronic properties we have used a quite
3.57-1.88 x (e-1)/(e+1) ] accurate approximation to the exact potential. The direct cal-
0r T culation with the exact potential is in principle feasible, but
= ==S SO , ] numerically quite demanding. Besides this technical differ-
or b ence, the generalized Coulomb potentials are quite similar
——t——t—+—+ for both geometries.

From a comparison of the results presented in Fig. 5, it is
evident that the polarization self-energy correcttband the
Coulomb energyE,, are strong(linean functions of the
dielectric contrasts,, while the excitonic energy shows a
much weaker dependence. For the spherical geometry, this is
oy due to an explicit partial cancellation between self-energy
0 2 4 6 8 10 and Coulomb energieévhich are of opposite signs i,
>1); on the light of the results presented in Figb)5 the
same cancellation exists for the cubic symmetry, although in

FIG. 5. Spherical quantum dépen circlegand cubic quantum this case is far from being evident from the explicit analyti-
dot (open squargs (a) polarization self-energy correctiongb) cal expressions. Physically, the weak dependance of the ex-
electron-hole excitonic Coulomb energies; dadCoulomb block-  citonic energy with the dielectric contrast reflects the charge
ade energies as a function of the dielectric mismatch between defeutrality of the exciton.
and matrix. Dot size.=R/ag =1. We have found that even in presence of dielectric mis-

match, most of the electronic properties of quantum dots are
second electron leads to an additional upwards ghiith ~ weakly shape dependent, the important parameter being in
respect to the injection of the first electdogiven by the this case the sizévolume of the dot. Typically, the differ-
average repulsion with the other electron and its “imageence between results for spherical or cubic quantum dots
charge.” Accordingly, this energy is given by the magnitudeamounts to five percent or less. Accordingly, it seems rea-
Ecou Of Eq. (16). Explicit expressions for this energy in sonable to conclude that it will be quite difficult to obtain
spherical and cubic quantum dots are provided by E2. experimental information about the shape of quantum dots
and(A21), respectively. In the context of electronic transportfrom measurements of excitonic properties. On the positive
through quantum dots, this energy gives rise to the Coulombide, our work gives a solid base to the modeling of quantum
blockade phenomena, as the QD conductance shown oscilldots as spherical particles, as far as excitonic properties are
tions as a function of the applied gate voltage whose periodoncerned.
is related to this energ¥.

Z[Ry*]

ex

-E, [Ry*]

ECoul [ Ry* ]
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IV. CONCLUSIONS
APPENDIX: GENERAL EXPRESSIONS FOR THE

In this work we have studied the dependence of severaPOLARIZATION SELF-ENERGY, ELECTRON-IMPURITY
electronic properties of semiconductor quantum dots on size, POTENTIAL, AND EXCITONIC COULOMB ENERGY
shape, and dielectric mismatch at the dot boundary. The IN A CUBIC QUANTUM DOT
properties studied included the one-particle energies, the po-
larization self-energy correction, the binding energy of im-
purities in quantum dots, excitonic Coulomb energies, and In this appendix we give details on the derivation of the
the so-called Coulomb blockade energies. As a model for thpolarization contributions to the electron/hole polarization
shape dependence, we have assumed two types of dotelf-energy, the electron-donor impurity potential, and the
spherical and cubic. The issue of the dependence of quantuatectron-hole excitonic Coulomb interaction, for the case of a
dot properties on shape and dielectric mismatch at the datubic quantum dot with dielectric mismatch at the bound-
boundary has already been studied in previous works, budries.

1. Electrostatic potential
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We assume that the origin of the coordinate system COi”81(¢9/t9X1)q><(f1,fz)|x1:Q=82(8/5X1)¢>(f1,fz)|xlzq are
cides with the center of the cube and the boundaries argisiled  if B (X1,%0)] = 7 (Xq,%0)] and
located atk= *Q, y=*Q, andz= = Q. Following Ref. 20, Ao b 172l =Q oy L7
the electrostatic potentidh(r,,r,) can be obtained using the e1(d/9x1) ¢ (Xl’X2)|X1_:_Q = & ?(1)¢ (Xl'x2)|x;:Q'
image charge method. Thus, the potential at (x,,y,,z,)  But the last two conditions are precisely the equations from
inside the cubic dot when a charge of magnitugidthe ~ Where the one dimensional potentials are derived. The details
sourcg is in the same regiofi.e., [x,|<Q, |y,|<Q, and of the calculation of these one-dimensiottguantum wel
|2,]<Q, beingr,=(X,,y2,2,) the coordinate of the source potentials can be obtained in Ref. 21. It should be empha-

chargd is given by sized that although the boundary conditions are satisfied
separately for each of the three spacial directions, the poten-

q * tial is not a product of three one-dimensional potentials. In

d<(ry,ry)= el mnz ; g1+ fml+n| other words, the three spatial coordinates are mixed by the

potential, as can be directly appreciated from &B).
1 However, we must note that, unfortunately, the calcula-
G — _ tion of ®<(r,,r,) directly from Eq.(A3) is hampered by the
[(X1=X)2+ (Y1 = Ym) 2+ (21— 27)]Y2 following problem: we have found that in the casg/e,
(A1) >1 (metallic dot limi), the potential increases quadratically
with g4, instead of approaching a limiting value, as one
wherer,=r,/Q and the parametef is defined by¢= (e, should expect from physical grounds. On the other side, the
—1)/(e,+1), beinge, =€, /e, the relation between the di- opposite limite, /e,<1 (metallic matrix limiy is given cor-
electric constant inside the dat{) and the surrounding me- rectly by the potential as defined by E@3). Basically, in
dia (¢,). The coordinates of the infinite image charges arethis limit the potential is a decreasing functionrgf (for r,
related with the coordinate of the source coordinage (?o(t))bzﬂcrj]dr:s/Chggs?dX:sCtlgn% ntﬂ:lsVizlt:qii\tltvah%:;%?tc;netsfé?eour
— _ | m, . 1
through - 1imn=(x ’er"Z“)_[Zl +(.—1)-x2,2r.n+(—1) Y2 calculation approach, also the spacial distribution of polar-
2n+(—1)"2,]. By using the following identity ization g(iyarges at the dot boundaries are given correctly.
Definin

1

_ 1 jwdt
r=r'| Nwlok
Eq. (Al) can be written as an integral whose integrand is the

product of three functions, each one of them for the three —(e,—1)VD<(ry,r,)]-n, (AB)
spacial directions. Namely,

e—t\r—r'\z’ (AZ) 1
Opoi(l1,M2)=— E[(82_1)V®>(r11r2)

wheren is a unit vector normal to the surface separating
D=(ryry) = iij“ﬂ¢<(; Xot) media 1 from media 2 and pointing from 1 to 2, we have
1727760 NE G 1:72» checked thato,,(ry,r,) is given correctly. Qualitatively,
L o taking for exampler,=0, 0,4(r,,0) presents a maximum
X p=(Y1,Y2.1)dp~(21,25,1), (A3) forr;=(*Q,0,0) and equivalently alongandx directions,
] because these are the closest points to the source charge at
where we have defined the origin. From this maximumr,(r;,0) decreases mono-
" tonically whenr; moves towards the cube edges and reach
- _ et or—21—(—1) 0412 its minimum values at the cube vertices. Also the metallic
¢ (Ql’Qz’t)_|Zm glletles ced (Ad) dot limit is correctly given byo,q(rq1,r;): we have found
. that in the range ¥, /e,<10,0p4(r1,r,) evolves continu-
with 0=x,y,z, and|g,|<1. ous from the smooth distribution with a maximum at the face
It could be checked thab=(ry,r,) defined by EqQ(A3)  cube center, to an essentially position independent constant
[or Eq. (A1)] satisfies the electrostatic boundary conditionsygjue fore,/e,= 10, as one should expect for a metalliclike
of our problem(the continuity of the electrostatic potential particle. The definitive proof, however, about the correctness
and the normal component of the displacement veé@bthe  of ¢ (ry,r,) is that its integrated value on the six cube
dot boundary. For example, the boundary conditions at the;ceg gives exactly(e,/e,—1)/e,, as it should be accord-
face x; = Q(lys|<Qand|z;|<Q) are satisfied if we define jng to properties of the polarization vector.

the potentiakb~(ry,r,) for x;>Q(|ys|<Qand|z;|<Q) by Thus an alternative way of calculating the electrostatic
replacing only thep=(x4,X,,t) function in Eq.(A3) by the  potential starting from the source chargend the induced
following ¢~ (x;,X,,t) function: superficial charge density, is
— — - 2¢ = 12 q 1 1 0'p0|(l",r2)
Z(Xq, %o, 1) = 2, ———— glllgthxa+ 2= (=1)xa] D(ry,ry)=— +—| dr'——=. (A7
7 (2 xz. 1) |=20(8r+1)g (r.r2) e1|ri=ra ey lry—r’| (A7)
(A5)

The electrostatic potential calculated from E47) is shown
Proceeding in this way, it is easy to see that the boundarin Fig. 1 for the case of the source charge at the origin, as a
conditions D(ry,r2)lx=0=P7(r1,r2)lx=0 and function ofr.
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o

We attribute the differences between EG53) and (A7) 1 .
to the fact that the type of electrostatic boundary conditions U (r)= —cos(—kxx— ax)
of our problem(Neumann-lik¢ does not determine univo- o Q¥

cally the solution for the potentiat.From this point of view, -

the calculation of the potential from the polarization charges XCOE(EkyV— ay

2
ar J—
cos( =k,z— az) ,
can be though as a way of determinate the physically correct 2
solution. (A10)
The full calculation of the exact electrostatic potential can
now be accomplished using EGA7). While this is in prin- ~ wherek, k, ,k,=1,2, ..., andy;=7/2(0) whenk; is even
ciple possible, it is extremely demanding from the numericakodd (j=x,y,z) we obtain the associated polarization self-
point of view, as for the calculation of the quantum dot elec-energy corrections
tronic properties we need to perform integrations of the po-
tential with respect to one or two three-dimensional argu- cob €5
ments. On the other side, E6A3) looks ideally suited for ZER2(Q) =(kukyky| Vs(r)[Kykyk,) = 26,0
numerical calculations, as the three spatial directions are fac-

2

torized in the integrand and then the integrals with the elec- 1 [edt

tronic wave functiongwhich in the strong-confinement ap- X \/——f lex(t)lky(t)lkz(tHC :
proximation are also factorizégdcan be performed quite AL

efficiently. (Al

In consequence, we have adopted the following strateg ]
for the numerical calculations: to use the potential as giveAn the equation above,
by Eqg.(A3), but correcting it by a function which is just the .
difference between Eq9A3) and (A7). Fortunately, this 1 T2 Ky —
function turned out to be almost independent on the sourcékx(t)zlzfx g“‘fﬁldxe o COSZ(TX_C“X)’
or test coordinates; for instance, fé<(r,,r,), the correc- (A12)
tion factor is accurately given by 0.89¢,—1).

In summary, instead of using Eq&A3), we will use its  and equivalent expressions fqg(t) andly (t). The ground-

corrected version: state self-energy correction is particularly simple kas k

=k,=lay=ay=a,=0, and then I, (t)=I (t)=1 (1)
w(r1r - | =[G A
(f1|f2)—81—Q NE oﬁ(ﬁ (X1,%2,t)
£°9(Q)=

=14(t) and
3 (ifﬂ[. ®]3+C
X =(y1,Y2, ) $™ (21,25, 1) +F(ry,r2) |, 26:Q\ ymJo it

We notice again that in EqgA9), (All), and (A13) the

€

. (A13)

(A8) contribution of the real charge must be excluded.
where the¢ functions are defined by EgA4) andf(rq,r»)
is the correction function which bringd=(r,,r;) equal to 3. Electron-donor impurity binding energy

the exact value from EqA7). As we indicate above, the ) . _ )
correction function for coordinate values inside the dot is just 1 1€ €lectron-donor impurity interaction pgtentlal can be
a constanf (r,,r,)=C, that nicely helps with the numerical OPtained from Eqs(A8) and (A4) by takingry=re, ro=r;

calculations. (the impurity coordinate andq=¢,; accordingly,
2
narti S : € [ 1 (=dt _ — —
2. One-particle polarization self-energy V(e fi)=— 0 (\/__f T¢<(Xeaxi 1)
This contribution can be obtained from Eq#8) and 1 mJo A\t

(Ad) by taking ri=r,=r, q=—¢y, excluding the real

charge contributionl=m=n=0) from the sums which de- X ¢<(Ve ] ,t)¢<(?e ,Z,t)+C
fine the integrating functiong =, and dividing by 2 as cor-

responds to a self-energy. Accordingly,

. (Al4)

For the study of the electron-donor impurity binding energy

2 " the following matrix elements should be calculated:
V(D=5 (1f N prxt
N=-——=—=| —=¢~(xX,
) 281Q \/; 0 \ﬁ <kxkykz|_Vc(re,ri)lk;(k;/kD
x¢<<ﬁt)¢<<ﬁt>+C). (A9) e [ 1 th _ _ _
=——|—=| =X DIk Yi I (z,t)+C],
| | | 50| Uado ek X DI (Vi D i (201
Taking the expectation value of E¢A9) with the one- (A15)

electron wave functions in the strong-confinement approxi-
mation where
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_ 1 T o is the normalized ground-state exciton wave function of a
kak)’((xi ,t)ZJ dXeCOS(gkxXe— ax) CQD in the strong-confinement approximation. Replacing
-1 Eqg. (A19) in Eg. (A18), we obtain

xcog(fk'?e— ) ¢~ (Xe X 1), (A16)
2 o2

dt Xe
and equivalent expressions f o andJ;. Ed. (A14) is Econ(Q)= 1QI \/—f [f dxef dXhC0§( )

valid if the impurity is located |n5|de the dot If the impurity
is outside the dot, the one-dimensional potentiafs must X o
be replaced by the one-dimensional potentials corresponding XCOSZ(T) &= (Xe,Xp,t)
to the case where the impurity coordinate component takes

values outside the dét. Besides,C becomes a function of

the impurity coordinatdbut not of the electron coordinate

which we have determined numerically; this is the only case Defining fwo new integration variables= ;e ;h and

in our calculations where the correction function cannot be —
considered as a constant U =Xt Xy, thev integral can be performed analytlcally and

after some algebra the final expression oul P(Q) is re-
duced to a twofold integral:

3
+c] . (A20)

4. Electron-hole Coulomb energy

The electron-hole Coulomb potential is given by Egs.

(A8) and (A4) with ry=r,, r,=r,, andq=ey, < dt
Eé%?(Q)— Q \m f —[KM®P+C|, (A21)
_ ot
VelFeurn) = ( J_f (e X D)
L o with
><¢<(ye,yh,t)¢<(ze,zh,t)+C). (A17)
The electron-hole Coulomb energy for the ground-state ex- _ - MJ'l Ctr2(u—1)2
citon in a CQD is defined as K(t) |:2w ¢ 0 due
3
ECSn(Q) =~ fdref drp| WERP(re,rn)[?Ve(re,rh), x| (1-wl2+cog2mu) ]+ 5_sin2mu) |.
(A18) (A22)
where
cap 1 m— T — ) ) )
W (re,fp)=—C0 5%e|COY 5Ye|COY 5Ze In the absence of dielectric mismateh 0 and then only the
Q term =0 from Eq. (A22) gives a finite nonzero
— - —_ contribution®’ It is interesting to note that our procedure for
xcos(EXh)cos<§yh s(Ezh) the calculation ofEEQD reduces the original ninefold inte-

gration of Eqs(A18) and (A7) to the twofold integration of
(A19) Egs.(A21) and (A22).
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