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Simple model for non-Fermi-liquid behavior induced by antiferromagnetic spin fluctuations

P. Schlottmann
Department of Physics, Florida State University, Tallahassee, Florida 32306

~Received 2 June 1998!

We consider a simple model for itinerant antiferromagnetism consisting of an electron pocket and a hole
pocket separated by a wave vectorQ. The nesting of the Fermi surfaces leads to a spin-density wave instability
for repulsive Hubbard coupling and to charge-density waves for an attractive interaction. The order can
gradually be suppressed by mismatching the nesting and a quantum critical point is obtained asTN→0. In the
disordered phase perturbative corrections are logarithmic in the external frequency or the temperature. We
investigate the renormalization-group flow of the model in leading and next-to-leading logarithmic order. The
linear-response correlation functions for spin-density and charge-density waves are calculated. The specific-
heat g coefficient and the uniform magnetic-field susceptibility increase on a logarithmic scale when the
temperature is lowered. The Wilson ratio is temperature dependent and nonuniversal. The Fermi-liquid picture
breaks down at the ordering temperatureTN or at a quantum critical point. Our results are valid in the
disordered phase for weak and intermediate coupling, but not in the critical region. The results are discussed in
the context of non-Fermi-liquid behavior found in some heavy fermion compounds~the two pockets are then
part of the Fermi surface of the heavy electron bands!. @S0163-1829~99!01319-3#
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I. INTRODUCTION

Recently non-Fermi-liquid behavior has been discove
in several heavy fermion compounds and alloys~for experi-
mental reviews see Refs. 1 and 2!. The materials that re
ceived most attention are U0.2Y0.8Pd3,3,4 UCu52xPdx for x
51, 1.5,5–7 and CeCu5.9Au0.1.

8,9 These systems show devia
tions from Landau’s Fermi-liquid theory in the specific he
magnetic susceptibility, and the resistivity, typically as
logarithmic or power-law dependence with the temperat
over a large temperature interval. The breakdown of
Fermi liquid can be tuned by alloying~chemical pressure! or
hydrostatic pressure. In all cases these systems appear
close to the onset of antiferromagnetic ordering or spin-g
freezing.

There are numerous theoretical attempts to explain th
unusual properties. Three scenarios are usually invoke
this context:~i! The vicinity of a zero-temperature quantu
phase transition4,10–13caused by frustrated spin bonds due
competitions between the Kondo screening of the magn
moments of thef electrons and the Ruderman-Kittel-Kasuy
Yosida interaction between these magnetic moments.~ii ! A
disorder induced~by alloying other elements! distribution of
Kondo temperatures7,14 with a sufficiently broad width, so
that a logarithmicT dependence in the susceptibility and t
specific heat appears.~iii ! A variant of the quadrupola
Kondo effect15 in which the interaction of the rare-earth~ac-
tinide! internal degrees of freedom with the conduction sta
is reduced to the overcompensated multichannel Ko
model.16–18The two-channel Kondo lattice has recently be
studied in the infinite-dimension limit with Monte Carl
methods.19 A fourth possible scenario, proposed to expla
the logarithmic dependences in CeCu62xAux ,9 are two-
dimensional critical ferromagnetic fluctuations coupling
the conduction electrons.

Here we adopt the point of view of a quantum critic
point arising from antiferromagnetic correlations withTN
PRB 590163-1829/99/59~19!/12379~11!/$15.00
d

,

e
e

be
s

se
in

ic

s
o

50. This hypothesis was first proposed by Andraka a
Tsvelik.4 The original idea was followed by a phenomen
logical scaling theory10 and renormalization-group trea
ments of the quantum critical point,11,12yielding a rich phase
diagram with several crossovers. More recently the s
consistent renormalization theory of spin fluctuations w
applied to these systems.13

In this paper we consider a band of heavy electrons h
ing two parabolic pockets, one electronlike and the ot
holelike, separated by a wave vectorQ.20 The wave vectorQ
does not have to be commensurate with the reciprocal lat
A general repulsive interaction between the electrons indu
itinerant antiferromagnetism as a consequence of the nes
of the Fermi surfaces of the two pockets.21 A nesting mis-
match is introduced by varying the chemical potential~or a
uniform magnetic field!, but the temperature and chemic
disorder would lead to similar results~due to a smearing o
the Fermi surface!. With increasing mismatch the Ne´el tem-
perature is reduced and the long-range order can be
pressed. A quantum critical point is obtained as a limiti
case whenTN→0.

The interaction is the remaining interaction betwe
heavy quasiparticles after the heavy particles have b
formed~in the sense of a Fermi liquid!. The interaction con-
sists of three scattering amplitudes and is assumed to
weak. The vertex corrections are logarithmic in the exter
energy parameter~or the temperature! and are summed to
leading and next-to-leading logarithmic order using the m
tiplicative renormalization group. We study th
renormalization-group flow, the linear-response functions
antiferromagnetism, charge-density waves and a unifo
magnetic field. The low-temperature specific-heat coeffici
and the critical fluctuations of the order parameter are a
obtained.

Our main results are the following. For a repulsive inte
action the system always renormalizes into a strong-coup
fixed point. In the disordered phase the specific heat can
expressed in terms of an effective massm* which increases
12 379 ©1999 The American Physical Society
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12 380 PRB 59P. SCHLOTTMANN
on a logarithmic scale as the temperature is lowered.
effective mass diverges at the critical point signaling
breakdown of the Fermi liquid. The magnetic susceptibil
can be expressed in terms of the effective mass and a se
Fermi-liquid parameter. Both lead to a divergence on a lo
rithmic scale of the susceptibility when the critical point
approached. The results are valid in the disordered phas
the weak- and intermediate-coupling regime, but not in
strong-coupling or critical region where the perturbati
renormalization breaks down. Power laws rather than a lo
rithmic dependence are expected in the critical region. T
results hold for finiteTN , for a quantum critical point (TN
50) or if the order is completely suppressed.

There are several previous applications of the renorm
ization group to fermionic systems in two and three dime
sions. Within Hertz approach22 the fermionic degrees of free
dom are integrated out and an effective bosonic field the
is obtained. Renormalization-group equations for the fl
close to the critical point are then derived. This approa
which has been reexamined by Millis11 in the context of
itinerant fermion systems, considers the critical fluctuatio
about a quantum phase transition. Popov,23 on the other
hand, considered the functional integral method for bo
and fermion systems. The variables are divided into ‘‘fas
and ‘‘slow’’ ones and by eliminating the fast ones a ren
malized field theory is obtained. This approach has been
plied to several phenomena such as superfluidity, super
ductivity, and plasmas~Coulomb gas!. A systematic and
thorough diagrammatic analysis can be found in Shank
review.24 The approach here is to integrate out those in
mediate states which have an energy~momentum! in a small
interval at the ultraviolet cutoff~fast variables!. This again
leads to an effective action and a fixed-point analysis is m
for spherical, nonspherical, and nested Fermi surfaces
perturbative renormalization-group approach for Fermi l
uids was also developed by Hewson.25 Schulz26 used the
multiplicative renormalization to study the two-dimension
Hubbard model with small deviations from half filling. Mu
tiplicative renormalization is also the method used in t
paper. On the one hand, it has the disadvantage that F
man diagrams have actually to be calculated, while on
other hand, it has the advantage that it provides the res
mation of certain classes of diagrams. All the above
proaches have in common that the results for a dimen
higher than one are very different from those for Lutting
liquids ~one dimension!.

The rest of the paper is organized as follows. In Sec. II
introduce the model with the three interactions, one sm
momentum transfer coupling and two with momentum tra
fer Q for spin-flip and no spin-flip, respectively. In Sec. I
we apply a mean-field factorization for itinerant antiferr
magnetism and charge-density waves to the model and
tain the basic conditions for such instabilities. In Sec. IV
study the renormalization-group flow of the model within t
leading logarithmic approximation. This investigation is e
tended in Sec. V to the next-to-leading logarithmic appro
mation. For repulsive coupling the flow diagram is n
changed dramatically by increasing the order of the ren
malization. In Sec. VI the correlation functions for the line
response to spin-density and charge-density waves are c
lated, as well as the low-temperature specific heat and
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magnetic susceptibility to a uniform field. We also briefl
address the consequences of a finite stable strong cou
fixed point on the properties of the system. At this point t
connection with critical phenomena, in particular a quant
critical point, is made. The critical fluctuations of the ord
parameter in the normal phase are discussed in Sec.
Concluding remarks follow in Sec. VIII.

II. MODEL

The model under consideration consists of one elect
and one hole pocket separated by a wave vectorQ. Both
pockets are assumed to be isotropic with effective masseme
andmh , respectively:

H05(
ks

ee~k!cks
† cks1(

ks
eh~k1Q!ck1Qs

† ck1Qs ,

ee~k!5k2/2me , eh~k1Q!5E02~k1Q!2/2mh . ~1!

HereE0 is the energy difference between the bottom of t
electron band and the top of the hole band. The chem
potentialm partially fills both bands, i.e., 0,m,E0.

The electrons interact with each other via a repulsive
tential of the form

H15 (
kk8qss8

V~q!cks
† ck1qsck81qs8

† ck8s8 , ~2!

where the sum over momenta is over the entire Brillou
zone. We are interested in the states of the two abo
mentioned pockets, which we denote withc1ks

† for the elec-
tron pocket and withc2ks

† for the hole pocket. Here nowk
'0 refers to the center of the pockets anduku is assumed to
be small compared to the dimension of the Brillouin zon
The interactions in Hamiltonian~2! can then be separate
into interactions among electrons within the same pocket
interactions between the pockets. The former are of the t

HW5W1 (
kk8qss8

c1ks
† c1k1qsc1k81qs8

† c1k8s8

1W2 (
kk8qss8

c2ks
† c2k1qsc2k81qs8

† c2k8s8 , ~3!

while the interaction between the two pockets is of the g
eral form

H125V (
kk8qss8

c1k1qs
† c1ksc2k82qs8

† c2k8s8

1U i (
kk8qs

c1k81qs
† c2k2qs

† c1ksc2k8s

1U' (
kk8qs

c1k81qs
† c2k2q2s

† c1k2sc2k8s . ~4!

HereV represents the interaction strength for small mom
tum transfer between the pockets, whileU i and U' corre-
spond to a momentum transfer ofQ without and with spin
flip, respectively. There is no need to distinguish betweenVi
andV' , since the additional amplitude can be absorbed i
the present form by rearranging the operators. This nota
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is essentially the same as for Luttinger liquids,27,28 although
as seen below the physics of this three-dimensional mod
very different from a Luttinger liquid. The limit of the Hub
bard model~on-site repulsion for electrons with opposi
spin! is obtained by choosingW15W25V5U i5U'5U.
The kinetic energy in this notation is

H05 (
l 51,2ks

e l~k!clks
† clks , ~5!

wheree1(k)5ee(k) ande2(k)5eh(k).
The model, Eqs.~4! and ~5!, for repulsive interaction

leads to itinerant antiferromagnetism with wave vectorQ, as
a consequence of the nesting of the two Fermi surfaces.
model is similar to that frequently invoked to describe t
antiferromagnetism of Cr. In the present context the ba
correspond to heavy electrons and holes.

III. MEAN-FIELD APPROXIMATION

In this section we show the existence of antiferromagn
long-range order for repulsive interaction and charge-den
wave order for attractive interaction in the mean-field a
proximation. The long-range order arises from the nesting
the Fermi surfaces of the two pockets. Hence the interac
leading to the instabilities is contained inH12. In this section
we consider the HamiltonianH5H01H12 and neglectHW .

The order parameter for spin- and charge-density w
long-range order is29

bs5(
k

^c2ks
† c1ks&5(

k
^c1ks

† c2ks&. ~6!

The two pockets contribute to the number of electrons w
spin s at siteR with

ns~R!5(
lk

^clks
† clks&12 cos~Q•R!bs . ~7!

Hence antiferromagnetic order is obtained whenbs

52b2s and a charge-density wave occurs forbs5b2s .
Factorizing the interaction HamiltonianH12 in terms of

bs we have

H12
MF5(

ks
Ds@c1ks

† c2ks1H.c.#2(
s

Dsbs ,

Ds52Vbs1U ibs1U'b2s , ~8!

and the off-diagonal one-electron Green’s function becom

^^c1ks ;c2ks
† &&z5

Ds

@z2e1~k!#@z2e2~k!#2Ds
2 . ~9!

For simplicity we assume a constant density of states
electron and hole states. The self-consistency equation
the order parameter is then

bs5DsrFE de
f ~v1!2 f ~v2!

A~e12e2!214Ds
2

, ~10!

where
is

is

s
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-
f
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e

h

s

r
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v65
1

2
~e11e2!6

1

2
A~e12e2!214Ds

2, ~11!

e15(m/m1)e ande25E02(m/m2)e. Herem is the mass of
free electrons andrF the density of states for free electron

For T50 Eq. ~10! can be reduced to

bs5
g

2
E

0

2ed
de

u~m2v1!2u~m2v2!

A~e2ed!21g2
, ~12!

where

g52
DsrF

m

m1
1

m

m2

, ed5
E0

m

m1
1

m

m2

, ~13!

andu is the step function. Hereed is the energy at which the
states of the two pockets have the same energy, i.e.,e15e2.
The integral in Eq.~12! yields29

bs5
g

2
$arcsinh~X1 /ugu!1arcsinh~X2 /ugu!%

2g arcsinh~ed /ugu!, ~14!

whereX15e12ed if um2(m/m1)edu.g and 0 otherwise,
and X25ed2e2 if um2(m/m1)edu.g and 0 otherwise.
Here e6 correspond to the Fermi surface, i.e., to the tw
solutions ofm5v2(e) if m lies below the gap or to the two
solutions ofm5v1(e) if the upper band is intersected b
the Fermi energy.

Assume first the Fermi level lies in the gap; thenX650
and for ugu!ed we have

S m

m1
1

m

m2
Dbs522DsrFln~ed /ugu!. ~15!

This equation only has a solution for antiferromagnetic or
if ( V1U'2U i).0 and a charge-density wave solution f
(V2U'2U i).0. If both inequalities are satisfied, the ord
associated with the larger interaction parameter has the lo
ground-state energy and prevails. In the limit of a Hubba
interactionV5U i5U'5U the system is an itinerant ant
ferromagnet ifU.0 and exhibits a charge-density wave
U,0. The critical~Néel! temperature is proportional to th
gap 2g and is given by

Tc5ed expF2S m

m1
1

m

m2
D 1

2UrF
G . ~16!

If the Fermi level intersects one of the quasipartic
bands, the terms withX6 in Eq. ~14! also contribute, reduc-
ing the effect of the logarithm in Eq.~15! and hence lower-
ing the critical temperature. The criteria for the formation
antiferromagnetism and charge-density waves remains
changed. By varyingm the critical temperature can be re
duced to zero. The condition onm for a quantum critical
point is

m

m1
1

m

m2
5~V6U'2U i!rF3 lnS ed

2

~e12ed!~ed2e2!
D .

~17!
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12 382 PRB 59P. SCHLOTTMANN
The 6 sign refers to the antiferromagnetic and charg
density wave instability, respectively. Note thate1 and e2

depend onm. Close to the quantum critical pointue62edu
can be approximated byum2(m/m1)edu. This parameter is
the mismatch in the nesting of the Fermi surfaces, which
the same effect as the smearing of the Fermi surface due
temperature or a finite mean-free path due to disorder. Be
we keep the chemical potential as the mismatch param
with the understanding that it can be replaced by a finiteT or
disorder.

The results depend on the ratio of the effective massesm1
andm2, but this dependence is not essential. Below we c
siderm15m25m and measurem from ed , which simplifies
the calculation.

IV. RENORMALIZATION TO LEADING LOGARITHMIC
ORDER

As seen from Eq.~15! the antiferromagnetic and charg
density wave instabilities arise from the logarithmic depe
dence consequence of the integration over the off-diago
Green’s function, Eq.~9!. In this section we first investigat
which diagrams contribute logarithmically to the interacti
vertex and then we study the leading logarithmic renorm
ization of the model.

The first-order corrections to the vertex are given by
‘‘bubble’’ diagrams. Although the physics of this three
dimensional model is different from a Luttinger liquid, it
useful to adopt the notation and terminology of on
dimensional conductors.27,28To first order the bubbles can b
classified into the zero-sound and Cooper channels, con
ing of antiparallel and parallel propagator lines~see Fig. 1!.
The propagators correspond either to electrons~solid lines!
or to holes~dashed lines!. As usual for one-dimensional sys
tems we consider only one external energy variablev and
project all others onto the Fermi level, whenever this is
lowed. This is generally not valid in three dimensions, bu
is for heavy fermions where the energy dependence is m
more important than the dependence on the momentum.
energy v is assumed to be small compared to the cut
energyed , and the density of states for electrons and hole
assumed to be a constant,rF .

The zero-sound bubble~antiparallel lines! involving only

FIG. 1. Diagrams yielding a logarithmic dependence on the
ergy. ~a! Cooper channel~parallel lines! with both particles in the
same pockets and~b! zero-sound diagram~antiparallel lines! with
one particle in each pocket. The solid lines refer to the elec
pocket and the dashed lines to the hole pocket.
-

s
o a
w
er,

-

-
al

l-

e

-

st-

l-
t
ch
he
f
is

electrons~or only holes! is given by

2 i E d3k8

~2p!3E dv8

2p
G1~k8,v8!G1~k81k,v81v!.

~18!

This integral is sensitive to the order in whichk andv tend
to zero, but fortunately it is independent of the cutoff a
hence not relevant to the renormalization. Ifk50 its contri-
bution vanishes, while ifv50 the k→0 limit yields rF .
The corresponding Cooper channel diagram@parallel lines,
see Fig. 1~a!# has a logarithmic dependence:

2 i E d3k

~2p!3E dv8

2p
G1~k,v8!G1~2k,2v81v!

52rF ln@~ uvu12umu!/~2ed!#. ~19!

Similarly, the zero-sound bubble with one electron a
one hole line@see Fig. 1~b!# is logarithmic, namely,

2 i E d3k

~2p!3E dv8

2p
G1~k,v8!G2~k,v82v!

5rF ln@~ uvu12umu!/~2ed!#, ~20!

while for the Cooper channel loop we have

2 i E d3k8

~2p!3E dv8

2p
G1~k8,v8!G2~2k82k,2v81v!.

~21!

This diagram is formally similar to Eq.~18!, but there is a
significant difference: As a consequence of the mismatch
tween the Fermi surfaces the limitv→0 and k→0 is not
sensitive to the order of the limits and yields2rF . This
contribution has no cutoff dependence and is irrelevant to
renormalization.

A Luttinger liquid has forward and backward movin
electrons, the backward moving particles playing a sim
role as the holes in the present model.28 For a one-
dimensional gas of electrons all of the four bubbles are lo
rithmically divergent. The cancellations among the diagra
leads to the renormalization of the group velocities a
hence to the well-known charge and spin separation. Th
not the case for the present model, since it is thr
dimensional.

Within the leading logarithmic approximation we on
need to sum up consistently the divergent diagrams. For
interaction W15W25W this corresponds to a summatio
over the ladder diagrams of the type~19!. Denoting j

5 ln@2ed /(uvu12umu)# the renormalized interactionW̃ be-
comes

W̃5
WrF

11WrFj
; ~22!

hence the interaction strengthW̃ is reduced with respect to
WrF for repulsiveW, but enhanced for attractiveW. This is
not surprising, since the vertex~22! exhibits the BCS-pole
and Cooper-pair bound states are only formed forW,0.
This interaction decouples from the interactions betwe
electrons and holes (V, U i , and U'), and, since we are

-

n
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interested in repulsive interactions, it will be neglect
throughout the rest of the paper.

The four logarithmic diagrams contributing to the reno
malization of the interactions of Eq.~4! are shown in Fig. 2.
They lead to the following renormalization-group equatio

dṼ

dj
5Ṽ2,

dŨi

dj
52Ũ i

22Ũ'
2 12Ũ iṼ,

dŨ'

dj
522Ũ'~Ũ i2Ṽ!. ~23!

The integration of these equations is straightforward:

Ṽ5
VrF

12VrFj
,

Ũ i6Ũ'2Ṽ5
~U i6U'2V!rF

11~U i6U'2V!rFj
. ~24!

The system is then strongly coupled ifV.0 and/or (U i
6U'2V),0, because at least one of the vertices will
divergent. In the Hubbard limitU i5U'5V the model is
always strongly coupled unlessU50.

Of interest is also the renormalization-group flow diagra
arising from Eq. ~23!. For simplicity we assume spin
rotational invariance, i.e.,U i5U'5U. There are then two
independent couplings, namelyV, the small momentum-
transfer parameter, andU, the large momentum transfer in
teraction. The flow diagram is shown in Fig. 3. As argu
above, the fixed points correspond either to strong coup
~the flow goes to infinity! or weak coupling~the flow goes
into the origin!. We stress the fact that forV.0 or V22U
.0 the system is always strongly coupled.

V. RENORMALIZATION TO NEXT-TO-LEADING
LOGARITHMIC ORDER

It is important to analyze if the renormalization-grou
flow changes dramatically if next-to-leading logarithmic o
der diagrams are included, although once the system fl

FIG. 2. The four first-order diagrams contributing logarithm
cally to the renormalization of the vertex to leading order. T
wavy line represents one of the three interactions,V, U i , andU' .
All diagrams are of the zero-sound type.
:

g

s

toward a strong-coupling fixed point it cannot be broug
back by higher-order renormalization. In other words, t
second-order corrections to the vertex functions have to
computed. Three types of contributions arise:~i! terms pro-
portional toj2, ~ii ! terms proportional toj, and ~iii ! cutoff
independent terms. The latter are neglected in the renorm
ization. The terms of type~i! are part of the leading-orde
diagrams and are obtained by inserting zero-sound diagr
into zero-sound diagrams. They are already generated by
leading-order renormalization-group equations, Eq.~23!.

There are three kinds of corrections proportional toj
@class~ii !# contributing to the vertex for the interaction be
tween the electron pocket and the hole pocket. Two kinds
of the type of parquet diagrams and the third kind of ver
contribution is known as the ‘‘third channel’’ in diagram
matic approaches to the Kondo problem and to Luttin
liquids.27,28,30Although the classification of diagrams is th
same as in one dimension, the outcome is very different.
parquet diagrams correspond to inserting a first-order z
sound vertex correction into a Cooper channel bubble
vice versa, inserting a first-order Cooper channel vertex c
rection into the zero-sound bubble. The evaluation of th
diagrams involves an eightfold integration, but we are ac
ally only interested in the cutoff dependence in the lim
where all external variables tend to zero. In order to evalu
the contributions proportional toj we assume a nesting mis
match and we approximate the vertex insertion by assum
that it depends only on one external variable~this approxi-
mation is known to be exact in one dimension!.

The ‘‘third channel’’ contributions are related to the se
energy via the Ward identities for the conservation of cha
in each pocket and the total spin. Their cutoff depende
can be obtained by differentiating self-energy diagra
~shown in Fig. 4! with respect to the external energy. Th
differentiation is equivalent to an insertion of a bare vert
which transforms a self-energy diagram into a vertex d
gram.

We limit ourselves to summarize the final perturbati
result to next-to-leading order for the verticesG:

d~VGV!5@4V316VU'
2 24U iU'

2 #rF
2j

1@2V322V2U i1V~U i
21U'

2 !2U iU'
2 #rF

2j,

FIG. 3. Leading logarithmic order renormalization-group flo
for the vertex amplitudesV andU i5U'5U. There are two stable
fixed points, one weak-coupling fixed pointV5U50, and the
strong-coupling fixed point~the couplings flow to infinity!.
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12 384 PRB 59P. SCHLOTTMANN
d~U iG i!5@6V2U i1V~U i
22U'

2 !

23V~U i
21U'

2 !1U iU'
2 #rF

2j

1@2V2U i22VUi
21U i~U i

22U'
2 !#rF

2j,

d~U'G'!5@6V2U'26VUiU'1U i
2U'#rF

2j

1@2V2U'22VUiU'#rF
2j, ~25!

where the first brackets correspond to the ‘‘parquet’’ corr
tions and the second brackets to the ‘‘third channel.’’

In order to obtain the invariant couplingsṼ, Ũ i , andŨ'

we need in addition the self-energy corrections. The seco
order self-energy diagrams are shown in Fig. 4. They invo
integrations over two nested energy and momentum loo
The three dimensionality of the phase space makes the e
ation of these integrals rather difficult. Since we are o
interested in the logarithmic dependence on the cutoff,
may place the external momentum at the Fermi surface
the corresponding pocket and average over the Fermi sp
~all possible directions!. Furthermore, one of the propagato
carries an energye(k1q), i.e.,

e~k1q!5
k2

2m
1

q2

2m
1

1

m
k•q; ~26!

averaging the propagatorG(k1q,v) over the relative orien-
tation of the vectorsk andq we obtain that the logarithmic
cutoff dependence is recovered if we replacee(k1q)
'e(k)1e(q), i.e., neglecting the scalar productk•q. The
same approximation has been used for the evaluation o
‘‘third channel’’ vertex diagrams. Keeping only the extern
energy variable~valid only for heavy fermions, where thek
dependence can be neglected! the self-energy corrections ar
then

S~v!52
1

2
v@U i

21U'
2 22U iV12V2#rF

2j. ~27!

The self-energy is the same for the electron pocket as for
hole pocket. Perturbatively to next leading order the mu
plicative renormalization of a propagator is then given by

d~v!512
1

2
@U i

21U'
2 22U iV12V2#rF

2j. ~28!

The ‘‘invariant couplings’’ of the model are obtaine
from the product of a vertex times two Green’s function
i.e., G(v)d(v)2. This product gives rise to several Wa
identity cancellations between the vertex parts@third chan-

FIG. 4. The four lowest-order logarithmic self-energy diagram
-
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e
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,

nel, given by the second brackets in Eq.~25!# and the self-
energy, Eq.~28!. The resulting renormalization-group equ
tions are

dṼ

dj
5Ṽ21@4Ṽ316ṼŨ'

2 25Ũ iŨ'
2 #,

dŨi

dj
52Ũ i

22Ũ'
2 12Ũ iṼ1@12Ṽ2Ũ i28ṼŨ'

2 24ṼŨ i
2#,

dŨ'

dj
522Ũ'~Ũ i2Ṽ!1@12Ṽ2212ṼŨ i1Ũ i

22Ũ'
2 #Ũ' .

~29!

The last two equations become identical in the limitŨ i

5Ũ' . Hence the renormalization-group equations prese
the spin rotational invariance. On the other hand, the H
bard limit is not a solution of these equations, i.e., start
with V5U i5U' the system renormalizes away so that
generalṼÞŨ.

The renormalization-group flow diagram forŨ i5Ũ'

5Ũ is shown in Fig. 5. In this limit the Eqs.~29! reduce to

dṼ

dj
5Ṽ214Ṽ316ṼŨ225Ũ2,

dŨ

dj
522~Ũ2Ṽ!Ũ~116Ṽ!. ~30!

The fixed points are given by the zeros of the right-hand s
of Eq. ~30!. Besides the stable weak-coupling fixed po
~origin! and the stable strong-coupling fixed point~at infin-
ity!, there are two unstable fixed points at

Ṽ* 521/6, Ũ* 50.0814,

Ṽ* 520.2, Ũ* 520.2. ~31!

.

FIG. 5. Next-to-leading logarithmic order renormalizatio

group flow for the invariant couplingsṼ andŨ i5Ũ'5Ũ. In addi-
tion to the two stable fixed points, one weak coupling fixed po
(V5U50) and the strong-coupling fixed point~the couplings flow
to infinity!, there are two unstable fixed points in the attracti
coupling region of the diagram.
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The flow is not substantially modified by the next-to-leadi
contributions for repulsive coupling, i.e., within the fir
quadrant. There is no new fixed point and the system
renormalizes toward the strong-coupling fixed point. Th
are, however, considerable changes in the attractive regio
is not clear from this calculation if the unstable fixed poin
and the concommitant changes in the flow diagram, con
quence of the next-to-leading order renormalization,
physically meaningful~i.e., are caused by a new instability!
or would be changed again within a higher-order renorm
ization.

In summary, from these results no physical changes
expected in the region~the first, fourth, and lower part of th
third quadrants! where itinerant antiferromagnetism an
charge-density waves are stable. Hence for the rest of
paper we restrict ourselves to calculate response funct
within the leading logarithmic approximation, which alrea
yields qualitatively correct results.

VI. CORRELATION FUNCTIONS AND SPECIFIC HEAT

In this section we first calculate the linear response of
system to itinerant antiferromagnetism and to charge-den
waves. Then we consider the low-temperature specific h
and the response to a uniform magnetic field.

A. Antiferromagnetic response

The linear response of the system to a staggered fiel
periodicity Q is given by

xS~Q,v!52 i E dt^T$O~Q,t !O†~Q,0!%&, ~32!

where

O~Q!5(
k

@c1k↑
† c2k↑2c1k↓

† c2k↓#; ~33!

^•••& denotes expectation value andT stands for time-
ordered product.

The perturbation expansion of this correlation function
terms ofV, U i , andU' in leading logarithmic approxima
tion is @the first-order diagrams are displayed in Fig. 6~a!#

xS~Q,v!522rFj@11~V2U i1U'!rFj1•••#. ~34!

Due to the fact that the zeroth-order term has a logarith
dependence, this susceptibility does not satisfy the crite
of multiplicative renormalization.31 This is analogous to sus

FIG. 6. ~a! Leading logarithmic order diagrams for the spi
density and charge-density wave response function.~b! Vertex in-
sertion for the uniform magnetic-field susceptibility.
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ceptibility of the x-ray threshold problem and to the corr
sponding response function for a Luttinger liquid. An aux
iary quantitity is introduced,x̄S(v)52(2rF)21(]xS /]j),
which is normalized to unity at the cutoff energy. This qua
tity satisfies the scaling hypothesis and gives rise to the
lowing renormalization-group equation:

] ln x̄S

]j
52~Ṽ2Ũ i1Ũ'!. ~35!

The integration of this equation yields

x̄S5
1

@12~V2U i1U'!rFj#2 ,

xS52
2rFj

12~V2U i1U'!rFj
, ~36!

which reproduces the perturbation expansion, Eq.~34!. The
divergence atj51/@rF(V2U i1U')# signals the antiferro-
magnetic instability atTN52edexp$21/@rF(V2U i1U')#%
22umu. Note thatm represents the mismatch between t
two Fermi surfaces and is measured fromed . This result
agrees with the mean-field result of Sec. III. The conditi
for a quantum critical point isTN50, and if TN,0 the re-
sponse function is always finite signaling that the system
not developed antiferromagnetic long-range order. We ret
to this issue in the next section when we discuss the crit
fluctuations.

B. Charge-density wave response

The linear response of the system to a charge-den
wave is given by a correlation function similar to Eq.~32!,
but with

O~Q!5(
k

@c1k↑
† c2k↑1c1k↓

† c2k↓#. ~37!

Again, the perturbation expansion of this susceptibility
leading logarithmic approximation is given by the diagram
shown in Fig. 6~a!:

xc~Q,v!522rFj@11~V2U i2U'!rFj1•••#. ~38!

Again, this susceptibility does not satisfy multiplicativ
renormalization, so that we introduce the auxiliary quantiti
x̄c(v)52(2rF)21(]xc/]j), which has the correct scalin
properties.31 The renormalization-group equation

] ln x̄c

]j
52~Ṽ2Ũ i2Ũ'! ~39!

is straightforwardly integrated yielding

x̄c5
1

@12~V2U i2U'!rFj#2 ,

xc52
2rFj

12~V2U i2U'!rFj
. ~40!

The divergence atj51/@rF(V2U i2U')# signals the insta-
bility to a charge-density wave atTc52edexp$21/@rF(V
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2U i2U')#%22umu, wherem again represents the mismatc
between the two Fermi surfaces. This result agrees with
mean-field result of Sec. III. For initial conditions corr
sponding to the Hubbard model,V5U i5U'5U.0, the
model is not unstable to charge-density waves, but will
hibit antiferromagnetism if the mismatch between the Fe
surfaces is not too large.

C. Low-temperature specific heat

At low temperatures the specific heat is proportional toT.
Theg coefficient is determined by the derivative of the se
energy with respect to the external energyiv, i.e.,32,33

g5
4p2

3
rFF12

]S~v!

] iv G
v50

, ~41!

where the factor 4 arises from the spin degeneracy and
two bands. Here the external momentum of the self-energ
averaged over the Fermi surface. In the remainder of
section we use the finite temperature formalism, so thav
→ iv is the analytic continuation of the Matsubara poles33

The renormalized quantity@12]S/] iv# is just the inverse
of d(v), Eq. ~28!, which satisfies the renormalization-grou
equation~we have neglected thek dependence of(, which is
a valid approximation only for heavy fermions!

d ln d~v!

dj
52

1

2
@Ũ i

21Ũ'
2 22Ũ iṼ12Ṽ2#5

d

dj S Ṽ2
1

2
Ũ i D ,

~42!

so that

ln d~v!52
1

4

~U i1U'2V!2rF
2j

11~U i1U'2V!rFj

2
1

4

~U i2U'2V!2rF
2j

11~U i2U'2V!rFj
2

1

2

~VrF!2j

12VrFj
.

~43!

The specific-heat coefficient can then be written as

g

g0
5

1

d~T!
5

m* ~T!

m
, ~44!

whereg0 is the value for the noninteracting system andd(T)
is expression~43! with j5 ln@ed /(T1umu)#. Hence the specific
heatg coefficient increases as the temperature is lowered
a logarithmic scale. For an interaction of the Hubbard-ty
(U.0), we obtain

m* ~T!

m
5expF3

4

~UrF!2j

12UrFjG ~45!

with m* (T) being the temperature-dependent effective th
mal mass. Note thatg diverges at the Ne´el temperature, bu
remains finite if the system does not order. At the quant
critical point g diverges signaling the breakdown of th
Fermi-liquid theory.
e

-
i

he
is
is

n
e

r-

D. Uniform field susceptibility

The magnetic susceptibility can be calculated either a
response function or through Fermi-liquid relations. The c
responding operator is

OB5(
ks

s@c1ks
† c1ks1c2ks

† c2ks#. ~46!

Through Fermi-liquid relations the susceptibility is e
pressed in terms of the field derivative of the self-energy o
particle with spins:32,34,35

xB5mB
2rFF12

1

2 (
ss8

ss8
]Ss~v50!

]Bs8
G , ~47!

whereBs8 is the field acting on a propagator of spins8 and
the energy is fixed at the Fermi level. The external mom
tum in the self-energy is averaged over the Fermi surfa
For heavy fermions the momentum dependence can be
glected. For instance, the derivative of the self-energy of
electron of spins with respect to the magnetic field carrie
by a propagator for a particle in the hole pocket with spins8
is33,34

]S1s~v50!

]Bs8
52rFE dv8

2p E de83G1s,2s8~0,0;e8,v8!

3@G2s8~e8,v8!#2. ~48!

Here we replaced the momentum integration by one overe8.
The derivative ofS1s(v) with respect toiv has similar
terms, and in addition there is another term. This additio
term arises from the discontinuity of the propaga
G2s8(e8,v8) along the real axis, i.e., when the derivativ
crosses from the upperiv8 half plane to the lower one
which is proportional tod(v8)d(e82m). Hence, the field
derivative of the self-energy is related to the frequency
rivative via34

(
s

]Ss

] iv U
v50

5(
ss8

ss8
]Ss~v50!

]Bs8

1(
ss8

ss8rFGss8,s8s~0,0;0,0!. ~49!

This corresponds to the Ward identity for the conservation
the total spin.34,35 As a consequence of the form of the o
eratorOB the only possible interaction vertices contributin
to Eq.~49! areGW andGU i

. Hence the susceptibility is given
by

xB5mB
2rFF12

]S

]v
1rFWGW1rFU iGU iG

v50

5mB
2rF$@d~T!#211@d~T!#22@W̃1Ũ i#%

5mB
2rF

m* ~T!

m F11
m* ~T!

m
~W̃1Ũ i!G . ~50!

The first part of the renormalization ofxB corresponds to
self-energy insertions, which give rise to the effective ma
The second part represents the vertex insertion as show
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Fig. 6~b!. Note thatj5 ln@ed /(T1umu)# in the vertices. Here
W̃ renormalizes to zero for repulsive interactions and can
neglected. As the critical point is approached, bothm* and
Ũ i diverge, signaling the breakdown of the Fermi liquid.

The Wilson ratio takes a simple form,

xB /xB0

g/g0
511

m* ~T!

m
Ũ i , ~51!

which is nonuniversal and temperature dependent. Note
at the quantum critical pointg, xB , and the Wilson ratio all
diverge. These expressions are also valid if no long-ra
order takes place~suppressed antiferromagnet!.

E. Finite fixed point

The present approach is perturbative, i.e., valid only
long as the coupling constants are sufficiently small. Oth
wise loops to all order have to be included. In other wor
with this method we cannot reach into the critical regim
The renormalization-group flow to strong coupling cannot
reversed by higher-order diagrams, but we are unable to
cide if the flow ends in a finite fixed point or if this fixe
point is at infinity.

In this subsection we briefly speculate on the con
quences of a strong-coupling fixed point at a finite coupli
i.e., when the renormalization-group flow merges to a fin
point rather than infinity. The critical behavior for the spi
density and charge-density wave correlation functions is t
given by the fixed point, i.e., in Eqs.~35! and~39! the right-
hand side is given by a constant~the values ofṼ, Ũ i , and
Ũ' at the fixed point!. The integration leads then to a powe
law dependence of these correlation functions, (T2TN)2x,
with the critical exponents determined by the couplings
the fixed point.

Similarly d(T) follows a power-law rather than a loga
rithmic dependence, and hence the temperature depend
of the effective mass would be increasing with a power
T2TN as T→TN . The same is true for the magnetic r
sponse to a uniform field.

Hence there is a crucial difference between a strong c
pling fixed at infinity, for which a temperature dependen
remains on a logarithmic scale, and a fixed point at fin
coupling, where the dependence is logarithmic in the p
critical region and gradually crosses over to a power law
the critical region. This latter seems to correspond more
the experimental situation for whichTN.0.

VII. PRECRITICAL FLUCTUATIONS

In this section we briefly consider the energy~or tempera-
ture! dependence of the antiferromagnetic order paramete
the precritical region. For simplicity we assume the con
tions of the Hubbard interaction. The procedure is similar
the one employed previously to superconducting fluctuati
in Luttinger liquids36 and for the ground state of the Kond
problem.37 To stress this analogy~the physics is different,
but in all cases the variation is on a logarithmic scale! we
denote the order parameter here withD(j), but for j50 it is
equal tobs defined in Sec. II.

Since the dependence of the correlation functions on
e
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energy is logarithmic,j is the natural variable for the orde
parameter. The integral equation satisfied byD(j) is

D~j!5E
0

j0
dj8

UrF

12UrFj8
D~j9!'

UrF

12UrFjEj

j0
dj8D~j8!

1E
0

j

dj8
UrF

12UrFj8
D~j8!,

~52!

wherej85 ln(ed /uv8u), j95 ln(ed /uv1v8u) and j0 is a cutoff
of the order of 1/(UrF). The second step in Eq.~52! in-
volves the logarithmic approximation. The integral equati
is conveniently simplified by differentiation with respect
j,

dD

dj
5S UrF

12UrFj D 2E
j

j0
dj8D~j8!. ~53!

The solution of this equation is of the form

D~j!5A~12UrFj!a, ~54!

where A is an arbitrary complex constant,a satisfiesa(a
11)1150, andUrFj051. The two roots fora are com-
plex conjugated,a6521/26 iA3/2. The solution of Eq.
~53! requires two integration constants, which can be
sorbed into a complex amplitudeA8, so that

D~j!5A8S UrF

12UrFj D 1/2

. ~55!

This result does not change (U is replaced byV1U'2U i)
if the more general interaction is considered. A similar res
is obtained for fluctuations of the charge-density wave or
parameter, only that instead ofU we haveV2U'2U i . The
fluctuations of the order parameter diverge at the criti
point. The amplitudeA8 is proportional to the gap, i.e.
nonanalytic in the coupling. To derive Eq.~55! we used the
vertex function obtained via perturbative renormalizatio
Hence this expression only includes precritical fluctuatio
As the system approaches the fixed point~e.g., a finite cou-
pling fixed point! there will be a crossover to a power-la
dependence~critical behavior!.

The order parameter enters the free energy asuD(j)u2,
which has the samej dependence as the vertex. These co
tributions have already been taken into account pertur
tively in the previous section and should not be incorpora
again~double counting!.

The result, Eq.~55!, is different from similar approache
for the Kondo problem~Yosida’s ansatz for the ground-sta
wave function37! and one dimensional conductors.36 In the
Kondo case the spin dependence of the interaction lead
two different real values fora, which are both needed to ge
a complete solution. Moreover, in the Kondo problem a
for Luttinger liquids there are additional cancellations b
tween the zero-sound and Cooper channels, which are ab
in the present case. This interference leads to a smaller
ponent~1/4 instead of 1/2! for the superconducting fluctua
tions in Luttinger liquids.36

In Sec. IV, Eq.~24!, we obtained three combinations o
invariant couplings. Two of them, namelyU i6U'2V, were
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identified with itinerant antiferromagnetism and charg
density waves, respectively. The ordered magnetic mom
in this case is parallel to the axis of spin quantization. T
leads to the question, what is the order parameter assoc
with the third invariant couplingV? By inspection of the
Hamiltonian we see that the interaction leads to an ano
lous coupling of the form(k^c1k↑

† c2k↓&, which also corre-
sponds to itinerant antiferromagnetism but with orde
magnetic moment in the plane perpendicular to the axis
spin quantization. Note that in the case of spin isotro
(U i5U') the two singularities coincide and hence, as e
pected, the Ne´el temperature is the same for both cases.

VIII. CONCLUDING REMARKS

We considered a simple model for itinerant antiferroma
netism consisting of a Fermi surface with one electr
pocket and a hole pocket separated by a wave vectoQ.
These pockets are assumed to be part of the heavy ele
band of a heavy fermion compound. The electrons of b
pockets interact with each other via a weak repulsive for
which is the remainder of strong correlations after the he
particles are formed~in the sense of a Fermi liquid!. The
nesting of the two Fermi surfaces gives rise to instabilities
the spin-density and charge-density wave type. For per
nesting~electron-hole symmetry! an arbitrarily small interac-
tion is sufficient for a ground state with long-range ord
The degree of nesting can be controlled by a mismatch
rameter, which here was chosen to be the chemical poten
but a magnetic field or disorder in the system have the s
effect. In this way the ordering temperature can be tuned
zero, leading to a quantum critical point.

In general there are three independent interaction am
tudes between the electrons and the holes. One corresp
to small momentum transfer, which~without loss of gener-
ality! we chose to be isotropic in spin space. The other t
interactions represent the momentum transferQ between the
pockets with and without spin exchange, respectively. P
turbation theory with respect to these interactions gives
to dominant logarithmic contributions. We studied t
renormalization-group flow of the system in leading a
next-to-leading logarithmic order. For repulsive coupling t
model renormalizes into the strong-coupling fixed point.

The three interaction amplitudes can in principle cau
three types of instabilities, namely charge-density waves~for
attractive interaction! and antiferromagnetism parallel an
perpendicular to the axis of spin quantization. ForU i5U'

the latter two cannot be distinguished~soft antiferromagnet!.
Charge-density and spin-density waves exclude each o
and can only coexist if in addition there is a ferromagne
component.29 We also calculated the linear-response fun
tion for the system to antiferromagnetic and charge-den
wave order, as well as the precritical fluctuations of the or
parameter.

In the disordered phase the heavy fermion system ca
-
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described within the Fermi-liquid picture. The effective the
mal mass characterizing the low-temperature specific he
now temperature dependent on a logarithmic scale. The
fective mass increases asT is reduced and diverges at th
critical point, i.e.,TN . The Néel temperature can be tuned
zero, so that a quantum critical point arises. The diverge
of the specific heatg coefficient signals the breakdown o
the Fermi-liquid theory. Similarly the susceptibility to a un
form magnetic field has the usual form expected from La
dau’s Fermi-liquid theory. The susceptibility is renormaliz
by two factors:~i! the effective mass, and~ii ! a factor that is
determined by the interaction vertex between the particle
the two pockets. Both factors diverge at the critical point.
the case of a quantum critical point this divergence occur
T50. The dependence ofxB on T at low temperatures is
decreasing on a logarithmic scale.

We used a perturbative renormalization approach, wh
is limited to the weak-coupling region. As the coupling co
stants are renormalized to larger values, loops to all ord
would have to be considered in the renormalization-gro
equation. The present approach is then unable to describ
critical regime, in which we expect power laws rather th
dependences on a logarithmic scale. There is a cross
regime between the weak-coupling and strong-coupl
~properties of the fixed point! regimes. This may explain
why in some experiments a power law~critical regime!,
while in others a logarithmic dependence~precritical re-
gime!, is observed.

As the critical point is approached, collective modes~spin
waves! are formed. These spin waves~bosonic degrees o
freedom! are not adequately treated within a perturbat
renormalization-group approach. In the weak- a
intermediate-coupling regime the collective modes hav
broad linewidth and are not relevant. This is, however,
the case in the critical region, where the spin waves are w
defined and play the crucial role. For the critical regime t
Hertz-Millis approach,11,22 which integrates out the fermi
onic degrees of freedom and obtains an effective boso
action, is more adequate. Within our approach this wo
correspond to a finite coupling fixed point, which then yiel
power-law dependences. We also would like to emphas
that the present approach~although there are some forma
analogies! yields results that are physically very differe
from those of the Kondo problem and Luttinger liquids. Th
is the consequence of the three dimensionality of the mo

Of great interest is also the low temperature and f
quency dependence of the electrical resistivity. The resis
ity, however, strongly depends on the disorder in the sys
and will be discussed in a forthcoming paper.
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