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We consider a simple model for itinerant antiferromagnetism consisting of an electron pocket and a hole
pocket separated by a wave vedf@arThe nesting of the Fermi surfaces leads to a spin-density wave instability
for repulsive Hubbard coupling and to charge-density waves for an attractive interaction. The order can
gradually be suppressed by mismatching the nesting and a quantum critical point is obtdiped @sln the
disordered phase perturbative corrections are logarithmic in the external frequency or the temperature. We
investigate the renormalization-group flow of the model in leading and next-to-leading logarithmic order. The
linear-response correlation functions for spin-density and charge-density waves are calculated. The specific-
heat y coefficient and the uniform magnetic-field susceptibility increase on a logarithmic scale when the
temperature is lowered. The Wilson ratio is temperature dependent and nonuniversal. The Fermi-liquid picture
breaks down at the ordering temperatdrg or at a quantum critical point. Our results are valid in the
disordered phase for weak and intermediate coupling, but not in the critical region. The results are discussed in
the context of non-Fermi-liquid behavior found in some heavy fermion compofthelswo pockets are then
part of the Fermi surface of the heavy electron band0163-182@09)01319-3

[. INTRODUCTION =0. This hypothesis was first proposed by Andraka and
Tsvelik? The original idea was followed by a phenomeno-
Recently non-Fermi-liquid behavior has been discoveredogical scaling theoryf and renormalization-group treat-
in several heavy fermion compounds and alléigs experi- ~ments of the quantum critical poift;'?yielding a rich phase
mental reviews see Refs. 1 andl Zhe materials that re- diagram with several crossovers. More recently the self-
ceived most attention are oY o Pds,>* UCus_,Pd, for x consistent renormalization theory of spin fluctuations was
=1, 155" and CeCyAu, .>° These systems show devia- 2PPlied to these systems.

tions from Landau’s Fermi-liquid theory in the specific heat,. " this paper we consider a band of heavy electrons hav-
. - T . ing two parabolic pockets, one electronlike and the other
magnetic susceptibility, and the resistivity, typically as a

logarithmic or power-law dependence with the temperatur holelike, separated by a wave vec@:r” The wave vectoQ
9 P =P P %oes not have to be commensurate with the reciprocal lattice.
over a large temperature interval. The breakdown of th

liquid b d by allovin@hemical general repulsive interaction between the electrons induces
Fermi liquid can be tuned by alloyinghemical pressui®dr  iinerant antiferromagnetism as a conseguence of the nesting

hydrostatic pressure. In all cases these systems appear to €ihe Fermi surfaces of the two pockétsA nesting mis-
close_ to the onset of antiferromagnetic ordering or spin-glasgatch is introduced by varying the chemical potentel a
freezing. uniform magnetic fielg but the temperature and chemical
There are numerous theoretical attempts to explain thesgisorder would lead to similar resultdue to a smearing of
unusual properties. Three scenarios are usually invoked ithe Fermi surface With increasing mismatch the Metem-
this context:(i) The vicinity of a zero-temperature quantum perature is reduced and the long-range order can be sup-
phase transitidh'®~*3caused by frustrated spin bonds due topressed. A quantum critical point is obtained as a limiting
competitions between the Kondo screening of the magneticase wherly—0.
moments of thé electrons and the Ruderman-Kittel-Kasuya- The interaction is the remaining interaction between
Yosida interaction between these magnetic momdii)sA  heavy quasiparticles after the heavy particles have been
disorder inducedby alloying other elementdistribution of  formed(in the sense of a Fermi liquidThe interaction con-
Kondo temperaturés” with a sufficiently broad width, so sists of three scattering amplitudes and is assumed to be
that a logarithmicT dependence in the susceptibility and theweak. The vertex corrections are logarithmic in the external
specific heat appeardiii) A variant of the quadrupolar energy parametefor the temperatujeand are summed to
Kondo effect® in which the interaction of the rare-eartac-  leading and next-to-leading logarithmic order using the mul-
tinide) internal degrees of freedom with the conduction statesiplicative  renormalization group. We study the
is reduced to the overcompensated multichannel Kondeenormalization-group flow, the linear-response functions for
model**~*8The two-channel Kondo lattice has recently beenantiferromagnetism, charge-density waves and a uniform
studied in the infinite-dimension limit with Monte Carlo magnetic field. The low-temperature specific-heat coefficient
methods:® A fourth possible scenario, proposed to explainand the critical fluctuations of the order parameter are also
the logarithmic dependences in CqCuAu,,® are two-  obtained.
dimensional critical ferromagnetic fluctuations coupling to  Our main results are the following. For a repulsive inter-
the conduction electrons. action the system always renormalizes into a strong-coupling
Here we adopt the point of view of a quantum critical fixed point. In the disordered phase the specific heat can be
point arising from antiferromagnetic correlations willy ~ expressed in terms of an effective mas$s which increases
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on a logarithmic scale as the temperature is lowered. Thenagnetic susceptibility to a uniform field. We also briefly
effective mass diverges at the critical point signaling theaddress the consequences of a finite stable strong coupling
breakdown of the Fermi liquid. The magnetic susceptibilityfixed point on the properties of the system. At this point the
can be expressed in terms of the effective mass and a secop@nnection with critical phenomena, in particular a quantum
Fermi-liquid parameter. Both lead to a divergence on a |ogaCI’itica| point, is made. The critical fluctuations of the order
rithmic scale of the susceptibility when the critical point is Parameter in the normal phase are discussed in Sec. VIL.
approached. The results are valid in the disordered phase froncluding remarks follow in Sec. VIII.

the weak- and intermediate-coupling regime, but not in the

strong-coupling or critical region where the perturbative Il. MODEL

renormalization breaks down. Power laws rather than a loga- The model under consideration consists of one electron

rithmic dependence are expected in the critical region. The 4 one hole pocket separated by a wave veGoBoth

results hold for finiteTy, for a quantum critical pointTy  pockets are assumed to be isotropic with effective masses
=0) or if the order is completely suppressed. andm,, respectively:

There are several previous applications of the renormal-
ization group to fermionic systems in two and three dimen-
sions. Within Hertz approaéhthe fermionic degrees of free- Ho= kE ea(K)Cl,Crot kE en(K+Q)Cl s 9y Cics Qo
dom are integrated out and an effective bosonic field theory 7 7
is obtained. Renormalization-group equations for the flow 12 _E _ 2
close to the critical point are then derived. This approach, celk)=kV2me, en(k+Q)=Eo=(k+Q)%/2my. (1)
which has been reexamined by Miflfsin the context of HereEy is the energy difference between the bottom of the
itinerant fermion systems, considers the critical fluctuationslectron band and the top of the hole band. The chemical
about a quantum phase transition. Popown the other potentialy partially fills both bands, i.e., @ u<E,.
hand, considered the functional integral method for boson The electrons interact with each other via a repulsive po-
and fermion systems. The variables are divided into “fast” tential of the form
and “slow” ones and by eliminating the fast ones a renor-
malized field theory is obtained. This approach has been ap- — T T .

Slied_ to seve(;al Iphenos/r:z:enall sugh a; sxperfluidity,_supe(;con- i kk%}m' V@) ChoChcr aoCirga Chro @
uctivity, and plasmagCoulomb ga systematic an . . S
thorougyh diagrgmmatic analysis cgan be foyund in Shankar’¥\'h(:“re the sum over momenta is over the entire Brillouin
review?* The approach here is to integrate out those inter<o"¢: We are mterestgd in the stateg of the two above-

mediate states which have an enegomentum in a small mentioned pockets, V\frh'Ch we denote witfy,, for the elec-
interval at the ultraviolet cutoftfast variables This again FON Pocket and witlty,, for the hole pocket. Here now
leads to an effective action and a fixed-point analysis is madg 0 refers to the center of the pockets gklis assumed to

for spherical, nonspherical, and nested Fermi surfaces. K& Small compared to the dimension of the Brillouin zone.
perturbative renormalization-group approach for Fermi lig-1he interactions in Hamiltonia2) can then be separated
uids was also developed by HewsdnSchulZ® used the into interactions among electrons within the same pocket and
multiplicative renormalization to study the two-dimensional intéractions between the pockets. The former are of the type

Hubbard model with small deviations from half filling. Mul-

tiplicative renormalization is also the method used in this Hyw=W, 2 C;Ir_ka-clkJrq(rCIk'+qg-’Clk’(r’

paper. On the one hand, it has the disadvantage that Feyn- Kk’ qoo’

man diagrams have actually to be calculated, while on the

other hand, it has the advantage that it provides the resum- +W, E cgk002k+qgczk,+qg,c2k,a, , ®)
mation of certain classes of diagrams. All the above ap- kk'qoo’

proaches have in common that the results for a dimensiofyile the interaction between the two pockets is of the gen-
higher than one are very different from those for Luttingerg | form

liquids (one dimensioh

The rest of the paper is organized as follows. In Sec. Il we + +
introduce the model with the three interactions, one small Hip=V Z . Cik+aoC1koCoxr - gor C2k’ o7
momentum transfer coupling and two with momentum trans- Kk'doo
fer Q for spin-flip and no spin-flip, respectively. In Sec. IlI 1 "
we apply a mean-field factorization for itinerant antiferro- +U 2 Cikr +qoC2k—qoCikaCak’ o
magnetism and charge-density waves to the model and ob- kk'qo
tain the basic conditions for such instabilities. In Sec. IV we t "
study the renormalization-group flow of the model within the +U, E Cik’ +qoC2k—q-oC1k—oC2kro-  (4)
leading logarithmic approximation. This investigation is ex- kk'qo
tended in Sec. V to the next-to-leading logarithmic approxi-HereV represents the interaction strength for small momen-
mation. For repulsive coupling the flow diagram is nottum transfer between the pockets, whide andU, corre-
changed dramatically by increasing the order of the renorspond to a momentum transfer @ without and with spin
malization. In Sec. VI the correlation functions for the linear flip, respectively. There is no need to distinguish betwégn
response to spin-density and charge-density waves are calcandV, , since the additional amplitude can be absorbed into
lated, as well as the low-temperature specific heat and thihe present form by rearranging the operators. This notation
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is essentially the same as for Luttinger liqufd$® although 1 1

as seen below the physics of this three-dimensional model is w.=5 (et €) 5V (e— €2)2+4A7, (11)
very different from a Luttinger liquid. The limit of the Hub-

bard model(on-site repulsion for electrons with opposite e;=(m/m,)e ande,=Ey— (m/m,)e. Heremis the mass of
spin is obtained by choosingV,=W,=V=U;=U,=U. free electrons ang the density of states for free electrons.

The kinetic energy in this notation is For T=0 Eq.(10) can be reduced to
2¢g O(p—w,)—0(u—w_
Ho= > &(k)clCike (5) bg=ZJ gm0 gy,
=1,2ko 2Jo /(6_ 6d)2+,y2
wheree; (k) = e.(k) and e;(k) = en(k). where
The model, Egs(4) and (5), for repulsive interaction
leads to itinerant antiferromagnetism with wave ve&oras A, pr =
a consequence of the nesting of the two Fermi surfaces. This Y= Zm, S I a— (13
model is similar to that frequently invoked to describe the —+ — —+ —
antiferromagnetism of Cr. In the present context the bands my M my My
correspond to heavy electrons and holes. and @ is the step function. Here, is the energy at which the
states of the two pockets have the same energy ei.& g,.
IIl. MEAN-FIELD APPROXIMATION The integral in Eq(12) yields*®
In this section we show the existence of antiferromagnetic y
long-range order for repulsive interaction and charge-density b,=>{arcsintiX. /|y|) +arcsinttX_/[y])}
wave order for attractive interaction in the mean-field ap-
proximation. The long-range order arises from the nesting of —yarcsintieg/|y]), (14

the Fermi surfaces of the two pockets. Hence the interaction ) ]
leading to the instabilities is contained#ify,. In this section WhereX, =e, —eq if [u—(m/m;)eq|>7y and 0 otherwise,
we consider the HamiltoniaH =H o+ H,, and neglect,,. ~ and X_=eq—e_ if [u—(m/m;)eg|>y and O otherwise.

The order parameter for spin- and charge-density wavélere e~ correspond to the Fermi surface, i.e., to the two
long-range order 3 solutions ofu=w_(€) if u lies below the gap or to the two

solutions of u=w(€) if the upper band is intersected by
the Fermi energy.
_ t _ T ; . .
bo—; <C2kaclka>_; (C1koCoka)- (6) Assume first the Fermi level lies in the gap; thén=0
and for|y|<eq we have
The two pockets contribute to the number of electrons with

. : . mom
spin o at siteR with S b, = — 24, pein(eq/|y]). (15)
1 2
Ne(R)= % (ClkoCiko) T2 cOEQ-R)b, . (7)  This equation only has a solution for antiferromagnetic order

if (V+U, —U|)>0 and a charge-density wave solution for
Hence antiferromagnetic order is obtained whén, (V=U, —U))>0. If both inequalities are satisfied, the order

=—b_, and a charge-density wave occurs lpr=b_ . associated with the larger interaction parameter has the lower
Factorizing the interaction Hamiltoniald ;, in terms of  ground-state energy and prevails. In the limit of a Hubbard
b, we have interactionV=U =U, =U the system is an itinerant anti-

ferromagnet ifU>0 and exhibits a charge-density wave if
U<0. The critical(Neel) temperature is proportional to the

MF _ T _
H12 _% A()'[(:lkzr(:Zk()'_|—H'C'] ; A(rb(r’ gap 2’}/ and is given by
1
A,=—Vb,+Ub,+U b_, (8) _ _(mn.m
I L Te edexp{ <m1+m2 2Upe| (16

and the off-diagonal one-electron Green’s function becomes

If the Fermi level intersects one of the quasiparticle
bands, the terms witK.. in Eq. (14) also contribute, reduc-
ing the effect of the logarithm in Eq15) and hence lower-
ing the critical temperature. The criteria for the formation of
For simplicity we assume a constant density of states foantiferromagnetism and charge-density waves remains un-
electron and hole states. The self-consistency equation f@hanged. By varying: the critical temperature can be re-
the order parameter is then duced to zero. The condition op for a quantum critical

oint is
Hw)— o) o P 2
V(ei—er)2+4A2’ m, m_ - €
(€1— €) p m1+m2 (V=U, —UppexIn e
where (17)

AT _ A‘T
<<ClkavC2ku>>z_[Z_ e:(0TZ— e(K)]—AZ" ©)

bU=AUpFJ de
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N R electrons(or only holes is given by
k o' K o'
/\ i dsk,de,G K',0")G1(K' +k, o' +
SR TN V) @) 2w Gk )G o'+ ).
S (18
_ >k - _',\' This integral is sensitive to the order in whikland  tend
e N d RN to zero, but fortunately it is independent of the cutoff and
<\\ LS -, hence not relevant to the renormalizationk # O its contri-
k-0~ Ko-o bution vanishes, while ifo=0 the k—0 limit yields pr.

The corresponding Cooper channel diagrgrarallel lines,
see Fig. 1a)] has a logarithmic dependence:

FIG. 1. Diagrams yielding a logarithmic dependence on the en- R do’
ergy. (@) Cooper channelparallel lineg with both particles in the _ij @ Gi(K.w )G —K. — o'+
same pockets antb) zero-sound diagrantantiparallel linep with (271')’os 2w 1(k,@)Gy(—k, ~0'+w)
one particle in each pocket. The solid lines refer to the electron B
pocket and the dashed lines to the hole pocket. =—peIn[(|o|+2|u])/(2€9)]. (19

Similarly, the zero-sound bubble with one electron and

The * sign refers to the antiferromagnetic and charge-jne hole lingsee Fig. ()] is logarithmic, namely,

density wave instability, respectively. Note that and e_

depend onu. Close to the quantum critical poihé. — eg4| _ d3k ( do’

can be approximated blyu—(m/m;)ey|. This parameter is =i f Wf 5 Gik,0)Gy(k o' —w)

the mismatch in the nesting of the Fermi surfaces, which has

the same effect as the smearing of the Fermi surface due to a =peIn[(|w|+2|u])/(2€4)], (20

temperature or a finite mean-free path due to disorder. Below |

we keep the chemical potential as the mismatch parametef’hile for the Cooper channel loop we have

with the understanding that it can be replaced by a fifite Bk do’

disorder. —i —sf ——Gy(k',0")Gy(—k'—k,— 0 + o).
The results depend on the ratio of the effective massges (27) 2m

andm,, but this dependence is not essential. Below we con- (21)

siderm;=m,=m and measurg. from ey, which simplifies  This diagram is formally similar to Eq18), but there is a
the calculation. significant difference: As a consequence of the mismatch be-
tween the Fermi surfaces the limit—0 andk—0 is not
sensitive to the order of the limits and yieldspg. This
contribution has no cutoff dependence and is irrelevant to the
renormalization.

As seen from Eq(15) the antiferromagnetic and charge- A Luttinger liquid has forward and backward moving
density wave instabilities arise from the logarithmic depen-lectrons, the backward moving particles playing a similar
dence consequence of the integration over the off-diagondple as the holes in the present motfelFor a one-
Green’s function, Eq(9). In this section we first investigate dimensional gas of electrons all of the four bubbles are loga-
which diagrams contribute logarithmically to the interaction fithmically divergent. The cancellations among the diagrams
vertex and then we study the leading logarithmic renormalleads to the renormalization of the group velocities and
ization of the model. hence to the well-known charge and spin separation. This is

The first-order corrections to the vertex are given by thenot the case for the present model, since it is three-
“bubble” diagrams. Although the physics of this three- dimensional.
dimensional model is different from a Luttinger liquid, it is ~ Within the leading logarithmic approximation we only
useful to adopt the notation and terminology of one-need to sum up consistently the divergent diagrams. For the
dimensional conductors:? To first order the bubbles can be interaction W, =W,=W this corresponds to a summation
classified into the zero-sound and Cooper channels, consigver the ladder diagrams of the typ@9). Denoting &
ing of antiparallel and parallel propagator linege Fig. L =In[2¢4/(|w|+2|u|)] the renormalized interactioWV be-

The propagators correspond either to electr@mdid lineg comes

or to holes(dashed lines As usual for one-dimensional sys-

tems we consider only one external energy variabland ~ Wpe
project all others onto the Fermi level, whenever this is al- W= m;
lowed. This is generally not valid in three dimensions, but it _

is for heavy fermions where the energy dependence is muchence the interaction strengi is reduced with respect to
more important than the dependence on the momentum. Th&p, for repulsiveW, but enhanced for attractiv&. This is
energy w is assumed to be small compared to the cutoffnot surprising, since the vertd22) exhibits the BCS-pole
energyeq, and the density of states for electrons and holes imnd Cooper-pair bound states are only formed W6« 0.
assumed to be a constapt; . This interaction decouples from the interactions between

The zero-sound bubbl@ntiparallel lineg involving only  electrons and holes\ U, andU,), and, since we are

IV. RENORMALIZATION TO LEADING LOGARITHMIC
ORDER

(22
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FIG. 2. The four first-order diagrams contributing logarithmi- 04 02 00 02 04
cally to the renormalization of the vertex to leading order. The \Y,
wavy line represents one of the three interactionsl,JH , andU, .
All diagrams are of the zero-sound type. FIG. 3. Leading logarithmic order renormalization-group flow

for the vertex amplitude¥ andU=U, =U. There are two stable

interested in repulsive interactions, it will be neglectedfixed points, one weak-coupling fixed poibt=U=0, and the
throughout the rest of the paper. strong-coupling fixed pointthe couplings flow to infinity.

The four logarithmic diagrams contributing to the renor-yqyarg a strong-coupling fixed point it cannot be brought
malization of the interactions of E@4) are shown in Fig. 2. pack by higher-order renormalization. In other words, the

They lead to the following renormalization-group equations:second-order corrections to the vertex functions have to be
- computed. Three types of contributions ari§e:terms pro-

dV—VZ portional to &2, (ii) terms proportional ta, and (iii) cutoff
de independent terms. The latter are neglected in the renormal-
ization. The terms of typéi) are part of the leading-order
dUH o . diagrams and are obtained by inserting zero-sound diagrams
qE - Uﬁ— Uf +2U)V, into zero-sound diagrams. They are already generated by the
§ leading-order renormalization-group equations, &89).

There are three kinds of corrections proportional é&to
[class(ii)] contributing to the vertex for the interaction be-
tween the electron pocket and the hole pocket. Two kinds are
of the type of parquet diagrams and the third kind of vertex
contribution is known as the “third channel” in diagram-
matic approaches to the Kondo problem and to Luttinger

U,
dé

The integration of these equations is straightforward:

=-20,(0)-V). (23)

V= ﬁ, liquids2/?8:3% Although the classification of diagrams is the
1-Vpeé same as in one dimension, the outcome is very different. The
(U2 U, —V) parquet diagrams correspond to inserting a first-order zero-
‘U — oo
00, —V= =YL PF (24) sound vertex correction into a Cooper channel bubble and

1+(Up=U, —V)peé’ vice versa, inserting a first-order Cooper channel vertex cor-
) ) rection into the zero-sound bubble. The evaluation of these
The system is then strongly coupled \f>0 and/or {, diagrams involves an eightfold integration, but we are actu-
+U, —V)<0, because at least one of the vertices will beg|ly only interested in the cutoff dependence in the limit
divergent. In the Hubbard limitJ=U, =V the model is \yhere all external variables tend to zero. In order to evaluate
always strongly coupled unles$=0. the contributions proportional t& we assume a nesting mis-
Ofinterest is also the renormalization-group flow diagrammatch and we approximate the vertex insertion by assuming
arising from Eq.(23). For simplicity we assume spin- that it depends only on one external variatleis approxi-
rotational invariance, i.elJy=U, =U. There are then tWo mation is known to be exact in one dimension
independent couplings, namel, the small momentum-  The “third channel” contributions are related to the self-
transfer parameter, arid, the large momentum transfer in- energy via the Ward identities for the conservation of charge
teraction. The flow diagram is shown in Fig. 3. As arguedin each pocket and the total spin. Their cutoff dependence
above, the fixed points correspond either to strong couplingan pe obtained by differentiating self-energy diagrams
(the flow goes to infinity or weak coupling(the flow goes  (shown in Fig. 4 with respect to the external energy. The

into the origin. We stress the fact that fof>0 orV—2U jfferentiation is equivalent to an insertion of a bare vertex

>0 the system is always strongly coupled. which transforms a self-energy diagram into a vertex dia-
gram.
V. RENORMALIZATION TO NEXT-TO-LEADING We limit ourselves to summarize the final perturbative
LOGARITHMIC ORDER result to next-to-leading order for the verticEs

It is important to analyze if the renormalization-group  §(VI'y)=[4V3+6VU? —4UjU? |pZ¢
flow changes dramatically if next-to-leading logarithmic or- s ) s 9l o
der diagrams are included, although once the system flows +[2Ve=2VeU+V(Ui+UT) - U UT]pé,
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FIG. 4. The four lowest-order logarithmic self-energy diagrams.

'|||||||||| ||||||||||||'
03
S(U T =[6V2U;+V(Uf-U?) 03 02 01 00 01 02 03

\

FIG. 5. Next-to-leading logarithmic order renormalization-
group flow for the invariant couplingg andU;=0, =U. In addi-
) ) ) tion to the two stable fixed points, one weak coupling fixed point
o(U,I')=[6VU, —6VUU, +UjU, Jpeé (V=U=0) and the strong-coupling fixed poifthe couplings flow
2 2 to infinity), there are two unstable fixed points in the attractive
+[2V7U, —2VUU pE¢, (29 coupling region of the diagram.
where the first brackets correspond to the “parquet” correc- ) )
tions and the second brackets to the “third channel.” nel, given by the second brackets in Eg5)] and the self-
In order to obtain the invariant couplinds UH’ andU, energy, Eq(28). The resulting renormalization-group equa-

we need in addition the self-energy corrections. The :seconoti—OnS are

order self-energy diagrams are shown in Fig. 4. They involve -

integrations' over'two 'nested energy and momentum loops. d_\/:\~/2+[4§/3+6\705_50“0ﬂ'

The three dimensionality of the phase space makes the evalu- dé

ation of these integrals rather difficult. Since we are only

interested in the logarithmic dependence on the cutoff, we dU‘ o ey o ey s

may place the external momentum at the Fermi surface of Fri Uf—U?+2U)V+[12v2U;—8VUT - 4VUf],

the corresponding pocket and average over the Fermi sphere

(all possible directions Furthermore, one of the propagators Iy

carries an energy(k +0), i.e., g =~ 20.(0,- V) + (1A 10, D 0210,
k2 92 1 (29

6(k+q):ﬁ+ﬁ+mk.q; (26)

—3V(Uf+UD)+Ujut]pie
+[2V2U - 2VUP+ Uy (UF - U?)]pE¢,

The last two equations become identical in the Iirﬁiﬁ
averaging the propagat@(k+q,w) over the relative orien- = . Hence the renormalization-group equations preserve
tation of the vectork andq we obtain that the logarithmic the spin rotational invariance. On the other hand, the Hub-
cutoff dependence is recovered if we replaegk+q)  bard limit is not a solution of these equations, i.e., starting
~e(k)+€(q), i.e., neglecting the scalar productq. The  with V=U =U, the system renormalizes away so that in
same approximation has been used for the evaluation of tr@eneralvgﬁo_

“third channel” vertex diagrams. Keeping only the external o . ~ o~
energy variabldvalid only for heavy fermions, where the jhe renormalization-group flow diagram fdg;=U,
dependence can be negleotétk self-energy corrections are =U is shown in Fig. 5. In this limit the Eq$29) reduce to
then ~

L - %/:V2+4V3+6V02—502,
S(0)=—Fo[U+U2-20V+2V2]p2e. (27

: dU
The self-energy is the same for the electron pocket as for the e 2(U=-NU(1+6V 30
hole pocket. Perturbatively to next leading order the multi- dé ( I ) 80

plicative renormalization of a propagator is then given by The fixed points are given by the zeros of the right-hand side
1 of Eqg. (30). Besides the stable weak-coupling fixed point
d(w)=1— E[Uﬁ+ Uf—2UV+2V2pEe.  (28)  (origin) and the stable strong-coupling fixed poiat infin-
ity), there are two unstable fixed points at

The “invariant couplings” of the model are obtained . ~
from the product of a vertex times two Green’s functions, V*=-1/6, U*=0.0814,
i.e., T'(w)d(w)? This product gives rise to several Ward _ _
identity cancellations between the vertex pdttird chan- V*=-0.2, U*=-0.2. (31
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/*\L,J&,L\J}/*\ ceptibility of the x-ray threshold problem and to the corre-
v v, U N sponding response function for a Luttinger liquid. An auxil-
-2-k @) iary quantitity is introducedys(w)=—(2pg)  Y(dxs/I€),

which is normalized to unity at the cutoff energy. This quan-
tity satisfies the scaling hypothesis and gives rise to the fol-

i i\ lowing renormalization-group equation:
l)
7/
Vig -
J |n Xs ~ ~ ~

FIG. 6. (a) Leading logarithmic order diagrams for the spin- The integration of this equation yields
density and charge-density wave response functionVertex in-
sertion for the uniform magnetic-field susceptibility. 1

XSTTI=(V=U;+U,)peél?’

The flow is not substantially modified by the next-to-leading
contributions for repulsive coupling, i.e., within the first 2pc€
quadrant. There is no new fixed point and the system still Xs= = 1-v_U.+U ,
renormalizes toward the strong-coupling fixed point. There ( ItUL)pee
are, however, considerable changes in the attractive region.thich reproduces the perturbation expansion, B¢). The
is not clear from this calculation if the unstable fixed pointsdivergence at=1/pg(V—U;+U,)] signals the antiferro-
and the concommitant changes in the flow diagram, conseamagnetic instability affy=2e4exp{—1/[pe(V—U;+U,)]}
quence of the next-to-leading order renormalization, are-2|u|. Note thatu represents the mismatch between the
physically meaningfuli.e., are caused by a new instability two Fermi surfaces and is measured frem. This result
or would be changed again within a higher-order renormalagrees with the mean-field result of Sec. Ill. The condition
ization. for a quantum critical point i§y=0, and if Ty<O0 the re-

In summary, from these results no physical changes argponse function is always finite signaling that the system has
expected in the regiofthe first, fourth, and lower part of the not developed antiferromagnetic long-range order. We return

third quadrants where itinerant antiferromagnetism and to this issue in the next section when we discuss the critical
charge-density waves are stable. Hence for the rest of th@ctuations.

paper we restrict ourselves to calculate response functions
within the leading logarithmic approximation, which already
yields qualitatively correct results.

(36)

B. Charge-density wave response
The linear response of the system to a charge-density
VI. CORRELATION EUNCTIONS AND SPECIFIC HEAT wave is given by a correlation function similar to H§2),

' but with

In this section we first calculate the linear response of the
system to itinerant antiferromagnetism and to charge-density
waves. Then we consider the low-temperature specific heat
and the response to a uniform magnetic field.

O(Q)=; [CIk1Caks +Clx Coky ]- 37

Again, the perturbation expansion of this susceptibility in
leading logarithmic approximation is given by the diagrams
shown in Fig. 6a):

The linear response of the system to a staggered field of
periodicity Q is given by Xc(Q )= —=2ppé[1+(V-U—U )peé+---]. (38

Again, this susceptibility does not satisfy multiplicative
XS(Q,w)z—if dt(T{O(Q,t)OT(Q,O)}>, (32 Enormalization, so that we introduce the auxiliary quantitity,

xe(®)=—(2pg) "Y(dx/9€), which has the correct scaling

A. Antiferromagnetic response

where properties’! The renormalization-group equation
_ t o . aNxe  ~ ~ -~
O(Q)=2 [Cli;Cau ~ Cik Caw; (33 ; §X°=2<v—u”—ug (39

(---) denotes expectation value arid stands for time-
ordered product.

The perturbation expansion of this correlation function in
terms ofV, U, andU, in leading logarithmic approxima-
tion is [the first-order diagrams are displayed in Figg)

Xs(Quw)=—2ppé[ 1+ (V—=U+U )pé+---1. (34 = i"FfU — (40)
- — VT Y1LIPF

is straightforwardly integrated yielding

_ 1
X [1=(V=U;= U )peél?’

Due to the fact that the zeroth-order term has a logarithmic
dependence, this susceptibility does not satisfy the criteriohe divergence a¢=1/[pe(V—U;—U,)] signals the insta-
of multiplicative renormalizatiori* This is analogous to sus- bility to a charge-density wave af.=_2esexp{—1[pg(V
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—U;—U,)]}—2|u|, whereu again represents the mismatch D. Uniform field susceptibility

between the two Fermi surfaces. This result agrees with the The magnetic Suscep“bmty can be calculated either as a

mean-field result of Sec. Ill. For initial conditions corre- response function or through Ferm|-||qu|d relations. The cor-
Sponding to the Hubbard mOdéV,:UH:UJ_:U>O, the responding Operator is

model is not unstable to charge-density waves, but will ex-

hibit antiferromagnetism if the mismatch between the Fermi N N

surfaces is not too large. OB:% 01 C1keCakot CokoCokel: (46)

Through Fermi-liquid relations the susceptibility is ex-

pressed in terms of the field derivative of the self-energy of a
At low temperatures the specific heat is proportional'to  particle with sping:323435

The y coefficient is determined by the derivative of the self-

C. Low-temperature specific heat

energy with respect to the external eneigy i.e.3?33 1 02 4(0=0)
Xo=Haoe| 1-5 2 oo’ —T0——|, (47
24 9B
4772 92 (w)
Y= T3 PR i, : (41) whereB,,, is the field acting on a propagator of spiri and

®=0 the energy is fixed at the Fermi level. The external momen-
m in the self-energy is averaged over the Fermi surface.
jsor heavy fermions the momentum dependence can be ne-
averaged over the Fermi surface. In the remainder of thigleCted' For mstange, the derivative of the sglf—gnergy (.)f an
electron of spino- with respect to the magnetic field carried

section we use the finite temperature formalism, so that b tor f iicle in the hol ket with Spl
—iw is the analytic continuation of the Matsubara pofés. 33/3%Propaga orfora particie in the hole pocket with spin

The renormalized quantityl — ¢3/diw] is just the inverse
of d(w), Eq. (28), which satisfies the renormalization-group 931, (0=0)
equation(we have neglected tHedependence ai, which is 1o

where the factor 4 arises from the spin degeneracy and t
two bands. Here the external momentum of the self-energy

do’ ’ ' ’
:_prZJ‘ de XFlavzgr(0,0;e , W )

a valid approximation only for heavy fermions 9By
X[GZ(r’(elv(‘),)]z' (48)
dind(w) 1) ~p oo on dfo 1o ) )
ST E[UH +UT—2U V+2V7]= daz V- EU” : Here we replaced the momentum integration by one ever
(42) The derivative of3,(w) with respect toiw has similar
terms, and in addition there is another term. This additional
so that term arises from the discontinuity of the propagator
G,,/(€',0") along the real axis, i.e., when the derivative
Ui+ U, —V)2p2 crosses from thg uppér’ half plane to the lower one,
In d(w):_l U+, = V) o which is proportional tos(w')8(e’ — n). Hence, the field
4 1+ (Ut UL —V)peé derivative of the self-energy is related to the frequency de-
1 (Uj—U, —V)?p2¢ 1 (Vpe)2£ rivative via®
41+(U—U.=V)peé 2 1-Vpeé 3 9%, _y (9%, (0=0)
43) = G| =77 B,

The specific-heat coefficient can then be written as
+2, 00 pelyor 415(0,0;0,0.  (49)

y 1 m¥(T)

o dm. m (44)  This corresponds to the Ward identity for the conservation of
0

the total spir*3® As a consequence of the form of the op-
eratorOg the only possible interaction vertices contributing

wherey, is the value for the noninteracting system aid) to Eq.(49) arel'yy andFU”. Hence the susceptibility is given

is expressioni43) with é=In[e;/(T+|u|)]. Hence the specific
heaty coefficient increases as the temperature is lowered oRY
a logarithmic scale. For an interaction of the Hubbard-type

i a2,
(U>0), we obtain X8=uape| 1— (9_w+pFWFW+ peUly,
m*(T) 3 (Upp)*¢ _ 2 -1 ~2r /4 T
D _ F{z—l—ung (45) = ppe{[d(T)] 1+ [d(T)] W+ 0y )
,  m*(T) m*(T) - -
with m* (T) being the temperature-dependent effective ther- = WBPF I+ — —(W+U) . (50

mal mass. Note thay diverges at the N& temperature, but
remains finite if the system does not order. At the quantunThe first part of the renormalization gfg corresponds to
critical point y diverges signaling the breakdown of the self-energy insertions, which give rise to the effective mass.
Fermi-liquid theory. The second part represents the vertex insertion as shown in
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Fig. 6(b). Note thaté=In[ey/(T+|u|)] in the vertices. Here energy is logarithmic{ is the natural variable for the order

W renormalizes to zero for repulsive interactions and can b@arameter. The integral equation satisfiedA() is
neglected. As the critical point is approached, bath and

-~ . . . . ge . 50 Up': UpF go ! !
U, diverge, signaling the breakdown of the Fermi liquid. ~ A(&)= JO d&'—l U g,A(f")*—L dg'A(g")
—UPF

The Wilson ratio takes a simple form, 1=Upeé
xs/Xxso m* (7).~ +f§d ILA '
=1+ Uy, 51 ¢ AL,
vy TTm Y G 0~ 1-Upgé

which is nonuniversal and temperature dependent. Note that (52
at the quantum critical poing, yg, and the Wilson ratio all where &' =In(eg/|w']), &' =In(ey/|o+w'|) and &, is a cutoff
diverge. These expressions are also valid if no long-ranggf the order of 1/Upg). The second step in Eq452) in-
order takes placésuppressed antiferromagnet volves the logarithmic approximation. The integral equation
is conveniently simplified by differentiation with respect to
E. Finite fixed point ¢,

The present approach is perturbative, i.e., valid only as dA Upe \2 (%
( ) f d&'A(g). (53

long as the coupling constants are sufficiently small. Other- GE \1T-Uosce

wise loops to all order have to be included. In other words, ¢ prél Je

with this method we cannot reach into the critical regime.The solution of this equation is of the form

The renormalization-group flow to strong coupling cannot be

reversed by higher-order diagrams, but we are unable to de- A(§)=A(1-Upgé)?, (54)

cide if the flow ends in a finite fixed point or if this fixed . . -

point is at infinity. where A is an arbitrary complex constan, satisfiesa(a
In this subsection we briefly speculate on the conse-” 1) 1=0,andUpg&=1. The two roots fora are com-

quences of a strong-coupling fixed point at a finite couplingP'€X conjugateda. = —1/2xi V3/2. The solution of Eg.
i.e., when the renormalization-group flow merges to a finite®>3 réquires two integration copstants, which can be ab-
point rather than infinity. The critical behavior for the spin- SOrbed into a complex amplitud¥’, so that
density and charge-density wave correlation functions is then U 12
given by the fixed point, i.e., in Eq§35) and(39) the right- A(§)=AI(L
hand side is given by a constafthe values of, U, and 1=Upeé
U, at the fixed point The integration leads then to a power- This result does not changé (is replaced byv+U, —U))
law dependence of these correlation functior-{Ty) %, if the more general interaction is considered. A similar result
with the critical exponents determined by the couplings ais obtained for fluctuations of the charge-density wave order
the fixed point. parameter, only that instead ofwe haveV—U, —U;. The
Similarly d(T) follows a power-law rather than a loga- fluctuations of the order parameter diverge at the critical
rithmic dependence, and hence the temperature dependerig@int. The amplitudeA’ is proportional to the gap, i.e.,
of the effective mass would be increasing with a power ofnonanalytic in the coupling. To derive E(5) we used the
T—Ty asT—Ty. The same is true for the magnetic re- vertex function obtained via perturbative renormalization.
sponse to a uniform field. Hence this expression only includes precritical fluctuations.
Hence there is a crucial difference between a strong couAs the system approaches the fixed pdig., a finite cou-
pling fixed at infinity, for which a temperature dependencepling fixed poin} there will be a crossover to a power-law
remains on a logarithmic scale, and a fixed point at finitedependencécritical behavioy.
coupling, where the dependence is logarithmic in the pre- The order parameter enters the free energyg)|?,
critical region and gradually crosses over to a power law inwhich has the samé dependence as the vertex. These con-
the critical region. This latter seems to correspond more tdributions have already been taken into account perturba-
the experimental situation for whichy=0. tively in the previous section and should not be incorporated
again(double counting
The result, Eq(55), is different from similar approaches
for the Kondo problen{Yosida’s ansatz for the ground-state
In this section we briefly consider the ener@y tempera- wave functiori’) and one dimensional conductdfsin the
ture) dependence of the antiferromagnetic order parameter ikondo case the spin dependence of the interaction leads to
the precritical region. For simplicity we assume the condi-two different real values fow, which are both needed to get
tions of the Hubbard interaction. The procedure is similar toa complete solution. Moreover, in the Kondo problem and
the one employed previously to superconducting fluctuationfor Luttinger liquids there are additional cancellations be-
in Luttinger liquids® and for the ground state of the Kondo tween the zero-sound and Cooper channels, which are absent
problem?®’ To stress this analogfthe physics is different, in the present case. This interference leads to a smaller ex-
but in all cases the variation is on a logarithmic stale  ponent(1/4 instead of 1/Rfor the superconducting fluctua-
denote the order parameter here witf¢), but foré=0 itis  tions in Luttinger liquids®
equal tob, defined in Sec. Il. In Sec. IV, Eq.(24), we obtained three combinations of
Since the dependence of the correlation functions on thevariant couplings. Two of them, namelyy=U, —V, were

(59

VIl. PRECRITICAL FLUCTUATIONS
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identified with itinerant antiferromagnetism and charge-described within the Fermi-liquid picture. The effective ther-
density waves, respectively. The ordered magnetic momemhal mass characterizing the low-temperature specific heat is
in this case is parallel to the axis of spin quantization. Thisnow temperature dependent on a logarithmic scale. The ef-
leads to the question, what is the order parameter associatéettive mass increases dsis reduced and diverges at the
with the third invariant coupling? By inspection of the critical point, i.e.,Ty. The Neel temperature can be tuned to
Hamiltonian we see that the interaction leads to an anomaeero, so that a quantum critical point arises. The divergence
lous coupling of the forrrEk<cJ{ch2kl>, which also corre- of the specific heaty coefficient signals the breakdown of
sponds to itinerant antiferromagnetism but with orderedhe Fermi-liquid theory. Similarly the susceptibility to a uni-
magnetic moment in the plane perpendicular to the axis oform magnetic field has the usual form expected from Lan-
spin quantization. Note that in the case of spin isotropydau’s Fermi-liquid theory. The susceptibility is renormalized
(Uj=U,) the two singularities coincide and hence, as ex-by two factors:(i) the effective mass, an@) a factor that is
pected, the Nel temperature is the same for both cases. determined by the interaction vertex between the particles in
the two pockets. Both factors diverge at the critical point. In
VIIl. CONCLUDING REMARKS the case of a quantum critical point this divergence occurs at
T=0. The dependence ¢fg on T at low temperatures is
We considered a Simple model for itinerant antiferromag-decreasing on a |ogarithmic scale.
netism consisting of a Fermi surface with one electron e used a perturbative renormalization approach, which
pocket and a hole pocket separated by a wave veQtor s limited to the weak-coupling region. As the coupling con-
These pockets are assumed to be part of the heavy electr@fants are renormalized to larger values, loops to all orders
band of a heavy fermion compound. The electrons of botfyyould have to be considered in the renormalization-group
pockets interact with each other via a weak repulsive forcegquation. The present approach is then unable to describe the
which is the remainder of strong correlations after the heavy;riticm regime' in which we expect power laws rather than
particles are formedin the sense of a Fermi liquidThe  dependences on a logarithmic scale. There is a crossover
nesting of the two Fermi surfaces gives rise to instabilities okegime between the weak-coupling and strong-coupling
the spin-density and charge-density wave type. For perfegproperties of the fixed pointregimes. This may explain
nesting(electron-hole symmet)yan arbitrarily small interac- Why in some experiments a power lagaritical regime,
tion is sufficient for a ground state with long-range order.while in others a logarithmic dependenégrecritical re-
The degree of nesting can be controlled by a mismatch pagime), is observed.
rameter, which here was chosen to be the chemical potential, As the critical point is approached, collective modsgsin
but a magnetic field or disorder in the system have the samgaves are formed. These spin wavésosonic degrees of
effect. In this way the ordering temperature can be tuned treedom are not adequately treated within a perturbative
zero, leading to a quantum critical point. renormalization-group  approach. In the weak- and
In general there are three independent interaction amplintermediate-coupling regime the collective modes have a
tudes between the electrons and the holes. One correspongi®ad linewidth and are not relevant. This is, however, not
to small momentum transfer, whidwithout loss of gener-  the case in the critical region, where the spin waves are well-
ality) we chose to be isotropic in spin space. The other twajefined and play the crucial role. For the critical regime the
interactions represent the momentum tran§fdsetween the  Hertz-Millis approacH!?2 which integrates out the fermi-
pockets with and without spin exchange, respectively. Peronic degrees of freedom and obtains an effective bosonic
turbation theory with respect to these interactions gives ris@ction, is more adequate. Within our approach this would
to dominant logarithmic contributions. We studied the correspond to a finite coupling fixed point, which then yields
renormalization-group flow of the system in leading andpower-law dependences. We also would like to emphasize
next-to-leading logarithmic order. For repulsive coupling thethat the present approadhlthough there are some formal
model renormalizes into the strong-coupling fixed point.  analogie¥ yields results that are physically very different
The three interaction amplitudes can in principle causérom those of the Kondo problem and Luttinger liquids. This
three types of instabilities, namely charge-density wadf@s s the consequence of the three dimensionality of the model.
attractive interactionand antiferromagnetism parallel and  Of great interest is also the low temperature and fre-
perpendicular to the axis of spin quantization. Rjr=U,  quency dependence of the electrical resistivity. The resistiv-
the latter two cannot be distinguishézbft antiferromagngt  ity, however, strongly depends on the disorder in the system
Charge-density and spin-density waves exclude each otheihd will be discussed in a forthcoming paper.
and can only coexist if in addition there is a ferromagnetic
component® We also calculated the linear-response func- ACKNOWLEDGMENTS
tion for the system to antiferromagnetic and charge-density
wave order, as well as the precritical fluctuations of the order Support by the Department of Energy under Grant No.
parameter. DE-FG02-98ER45707 and the National Science Foundation
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