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Real-space local polynomial basis for solid-state electronic-structure calculations:
A finite-element approach
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We present an approach to solid-state electronic-structure calculations based on the finite-element method.
In this method, the basis functions are strictly local, piecewise polynomials. Because the basis is composed of
polynomials, the method is completely general and its convergence can be controlled systematically. Because
the basis functions are strictly local in real space, the method allows for variable resolution in real space;
produces sparse, structured matrices, enabling the effective use of iterative solution methods; and is well suited
to parallel implementation. The method thus combines the significant advantages of both real-space-grid and
basis-oriented approaches and so promises to be particularly well suited for large, accurateab initio calcula-
tions. We develop the theory of our approach in detail, discuss advantages and disadvantages, and report initial
results, including electronic band structures and details of the convergence of the method.
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I. INTRODUCTION

Over the course of the last few decades, the density fu
tional theory ~DFT! of Hohenberg, Kohn, and Sham1 has
proven to be an accurate and reliable basis for theab initio
calculation of a wide variety of materials properties. But t
solution of the Kohn-Sham equations is a formidable ta
and this has significantly limited the range of physical s
tems which can be considered.

Among the most popular methods of solving the eq
tions has been the plane-wave~PW! method—typically
coupled with pseudopotentials to eliminate core electro2

For all its advantages, however, the PW method has s
notable disadvantages with respect to the solution of la
problems. First, because the PW basis functions are not l
in real space, they give rise to a dense Hamiltonian ma
which in turn limits the effectiveness of iterative solutio
methods.3 Second, the method requires Fourier transfor
which are difficult to implement efficiently on massively pa
allel architectures due to the need for nonlocal commun
tions. Finally, the PW basis has the same resolution
all points in space, which causes considerable difficul
in the treatment of highly localized systems such as fi
row elements and transition metals. Recent progress
this problem has included ultrasoft pseudopotentia4

optimized pseudopotentials,5,6 and adaptive coordinat
transformations.7–9

The limitations of the PW approach have inspired the
velopment of various ‘‘real-space’’ approaches, includi
finite-difference ~FD!,10–15 finite-element ~FE!,23–26 and
wavelet29–32methods. Of these, perhaps the most mature
successful to date have been the FD methods. These me
produce sparse, structured Hamiltonian~and in some cases
overlap! matrices, require no Fourier transforms, and all
for some degree of variable resolution in real space. Bu
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achieve these advantages, these methods give up the us
basis and work instead by discretizing individual terms of
equation of interest on a real-space grid. As a result, qua
ties of interest are defined only at a discrete set of point
space, limiting the accuracy of integrations and complicat
the handling of singular functions such as all-electron pot
tials. And as a further consequence, the methods are
variational: the error can be of either sign and convergenc
often from below.

Finite-element methods16–28 achieve the significant ad
vantages of FD methods without giving up the use of a ba
Like the PW method, the FE method is an expans
method. In the FE method, however, the basis functions
strictly local, piecewise polynomials. A simple one
dimensional~1D! example is shown in Fig. 1~which we
discuss further below!. Because the basis is composed
polynomials, it is completely general and the convergence
the method can be controlled systematically by increas
the number or order of basis functions. Because the b
functions are strictly local in real space, the method achie
the significant advantages of FD approaches: The met
produces sparse, structured matrices, which in turn en
the effective use of iterative solution methods. The meth
requires no Fourier transforms, as all calculations are p
formed in real space. And the method allows for variab
resolution in real space—more so than FD approaches—
increasing the number or order of basis functions wh
needed. The method thus combines the significant adv
tages of both real-space-grid and basis-oriented approac

Some disadvantages of FE methods are that the mat
produced tend to be less sparse, and often less simply s
tured, than those produced by FD methods, and that th
matrices must be stored. In addition, FE methods prod
generalized rather than standard eigenvalue problems, as
duced by many FD approaches, and they can be significa
12 352 ©1999 The American Physical Society
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more difficult to implement than FD or PW approaches.
The FE method16–21 has had a long history of success

quite diverse applications ranging from civil engineering
quantum mechanics. Applications in engineering go back
the 1950s. Applications to the electronic-structure of isola
atomic and molecular systems began to appear as early a
1970s.22 White, Wilkins, and Teter23 applied the method to
full 3D atomic and molecular calculations in 1989 and de
onstrated the advantageous scaling of the method with
number of basis functions, afforded by the strict locality a
real-space nature of the basis.

There have, however, been relatively few applications
solids. Hermansson and Yevick24 applied the FE method to
full 3D solid-state electronic-structure calculations in 198
but having reached a negative conclusion in the study
small systems with uniform meshes, discussed their
proach only generally and, though apparently capable of
bitrary Brillouin zone sampling, reported onlyG-point re-
sults. More recently, Tsuchida and Tsukada25 have applied
the method to full 3D molecular and solid-state electron
structure calculations. They have implemented s
consistency, nonuniform meshes, adaptive coordinate tr
formations, pseudopotential and all-electron calculatio
and have demonstrated the favorable efficiency of
method relative to FD approaches. Their solid-state res
have, however, also been limited to theG point.

Here, we present a full 3D FE approach to solid-st
electronic-structure calculations which allows arbitrary sa
pling of the Brillouin zone, and report initial results, includ
ing electronic band structures and details of the converge
of the method. Our development differs from that of Ref.
in that we have taken a Galerkin approach.27 Our develop-
ment is closer to that of Ferrari,28 who developed a Galerkin
approach allowing arbitrary sampling of the Brillouin zon
in the context of 2D super-lattice calculations. As we ha
not yet implemented self-consistency, our results here
restricted to model potentials and empirical pseudopotent

The remainder of the paper is organized as follows.

FIG. 1. Simple periodic finite-element basis: 1D, piecewis
linear case.~a! Basis. ~b!–~e! Individual basis functions. The do
main @a,b# is partitioned into elements~subdomains! ~1!–~4!
within which the basis functions are simple linear polynomials. T
basis is thus simultaneously polynomial and strictly local in natu
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Sec. II we discuss the details of our approach. We begin
Sec. II A with a description of the basis. In Sec. II B w
show how the basis can be applied to the solution of
Schrödinger equation subject to boundary conditions app
priate to a periodic solid. In Sec. III we present results fo
model potential and Si pseudopotential, including ba
structures and details of the convergence of the method.
conclusions in Sec. IV are followed by an appendix givi
the details of the particular 3D basis which we employ.

II. METHOD

A. Basis

Finite-element bases consist of strictly local, piecew
polynomials. They are constructed generally as follows. T
domain is partitioned into subdomains calledelements.
Within each element a set of polynomial basis functions
defined. These element polynomials are then pieced toge
at interelement boundaries to form the piecewise polynom
basis functions of the method. In order to apply the meth
to periodic problems, we take the additional step here
piecing together element polynomials across the dom
boundary.33

The essential ideas are perhaps best conveyed by a si
example: a 1D, periodic, piecewise-linear basis. Figure 1~a!
shows the complete basis and Figs. 1~b!–1~e! show the indi-
vidual basis functions. In this case, the domain@a,b# has
been partitioned into four elements. For simplicity, we ha
defined a uniform partition but this need not be the case
general. Within each element, two linear polynomial ba
functions have been defined to make the basis complet
linear order.34 More and higher-order polynomials can b
used to increase the order of completeness. Figure~b!
shows the basis function which results from piecing toget
element polynomials across the domain boundary. Figu
1~c!–1~e! show the basis functions which result from piecin
together element polynomials across interelement bou
aries.

Note that the resulting basis functions areC0 continuous,
i.e., continuous but not necessarily smooth.35 Smoother bases
can be constructed by requiring continuity of higher deriv
tives ~which would require higher-order polynomials!, but a
C0 basis offers a unique and potentially significant adva
tage: an efficient and natural representation of the wave fu
tion and charge density cusps which occur in all-elect
calculations and which cause such difficulty for conve
tional, necessarily smooth bases—and for FD approache
well, as they also assume some degree of derivative cont
ity. We have therefore chosen aC0 basis for our approach.

The application of such a basis, however, to the solut
of a second-order differential equation, with periodic boun
ary conditions in particular, requires some considerati
First, the application of the Laplacian to such functions
clearly problematic. Second, referring again to Fig. 1, n
that the basis is value periodic, i.e.,

f i~a1!5f i~b2!, ~1!

but not derivative periodic, i.e., it isnot the case for all basis
functions that

f i8~a1!5f i8~b2!. ~2!

-

e
.
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Thus, the satisfaction of periodic boundary conditions is n
trivial. We address these issues in Sec. II B.

Referring again to Fig. 1, note also that the basis functi
take on a value of 1 at their associated nodes and 0 a
others, i.e.,

f i~xj !5d i j . ~3!

Thus, a FE expansion

f ~x!5( cif i~x! ~4!

is such that

f ~xi !5ci , ~5!

giving the expansion coefficients a direct real-space me
ing.

Finally, and perhaps most significantly, we note that
basis functions are strictly local in real space, i.e., nonz
over only a~typically small! fraction of the domain. It is this
property of the basis which allows the method to achieve
significant advantages of FD approaches.

In our calculations, we have employed a 3D,C0,
piecewise-cubic basis. Many other choices are poss
Higher-order completeness generally leads to smaller m
ces and higher-order convergence, but also to less sp
ness. The details of the particular basis which we employ
given in the Appendix.

B. Discretization

We solve

2¹2c1Vc2«c50 ~6!

in a unit cell, whereV is an arbitrary periodic potential, a
appropriate for a periodic solid.

We begin by reducing the Bloch-periodic problem to
periodic one. SinceV is periodic, we can takec to be of the
form

c~x!5u~x!eik–x, ~7!

whereu is a complex, cell-periodic function satisfying

u~x!5u~x1R! ~8!

for all lattice vectorsR. Substitution of the form~7! into Eq.
~6! then gives

2¹2u22ik•¹u1~V1k22«!u50. ~9!

From the periodicity condition~8!, we take the boundary
conditions to be

u~x!5u~x1Rl ! ;xPG l , l 51,2,3 ~10!

and

n̂•¹u~x!5n̂•¹u~x1Rl ! ;xPG l , l 51,2,3, ~11!

where G l and Rl are the surfaces of the boundaryG and
associated lattice vectors shown in Fig. 2, andn̂ is the out-
-

s
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e
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e
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ward unit normal atx. We denote the domain byV and take
it to be a parallelepiped for definiteness. The problem is t
reduced to Eqs.~9!–~11!.

To facilitate the use of aC0 basis, we next derive an
equivalent ‘‘variational formulation’’ of the problem. The
inner product of the differential equation~9! with an arbi-
trary ‘‘test function’’ v gives

E
V

v* @2¹2u22ik•¹u1~V1k22«!u#dV50. ~12!

Sincev is arbitrary, the integral equation~12! is equivalent
to the differential equation~9!. To reduce the order of the
highest derivative and produce a boundary term~whose use-
fulness will become clear subsequently!, we integrate the¹2

term by parts:36

E
V

¹v* •¹udV2E
G
v* ¹u•n̂dG

1E
V

v* @22ik•¹u1~V1k22«!u#dV50.

~13!

To incorporate the ‘‘natural’’ boundary condition~11!, we
now restrictv to

vPV5$v:v~x!5v~x1Rl ! ;xPG l , l 51,2,3%,
~14!

i.e., to satisfy the ‘‘essential’’ boundary condition~10!.
Then, using the fact that the domain is a parallelepiped,
boundary term can be written as

(
l
E

G l

v* ~x!@¹u~x!2¹u~x1Rl !#•n̂dG,

which vanishes upon the assertion of the natural bound
condition~11!. Thus, with the restriction~14!, the differential
equation and natural boundary condition together imply
integral equation

E
V

¹v* •¹udV1E
V

v* @22ik•¹u1~V1k22«!u#dV50.

~15!

Finally, using again the arbitrariness ofv, it can be shown
that the converse also holds, and thus that the differen
formulation ~9!–~11! is in fact equivalent to the following
variational formulation: Find the scalars« and functionsu
PV such that

FIG. 2. Parallelepiped unit cell~domain! V, boundaryG, sur-
facesG1–G3 , and associated lattice vectorsR1–R3 .
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E
V

¹v* •¹udV

1E
V

v* @22ik•¹u1~V1k22«!u#dV50 ;vPV.

~16!

We have thus reformulated the original problem in such
way that~1! the highest derivative which occurs is of order
and ~2! only the essential boundary condition remains—
natural boundary condition having been built into the eq
tion itself. The problem is thus now in a form which is su
able for approximate solution in aC0 FE basis since al
terms are well defined for such functions and since suc
basis can be readily constructed to satisfy the required v
periodicity ~e.g., Fig. 1!.

To find an approximate solution, we now restrictv andu
to a finite-dimensional subspaceVn,V. The problem is then
reduced to: Find the scalars« and functionsuPVn such that

E
V

¹v* •¹udV

1E
V

v* @22ik•¹u1~V1k22«!u#dV50 ;vPVn.

~17!

We proceed by constructing a realC0 FE basisf1•••fn ,
which satisfies the remaining essential boundary condi
and so spans a subspaceVn,V ~e.g., Fig. 1!. We then ex-
pressu as a complex linear combination

u5( cjf j , ~18!

so thatuPVn . Substitution of the expansion~18!, and the
fact that Eq.~17! is satisfied;vPVn if it is satisfied forv
5f i , i 51•••n, leads finally to a generalized eigenpro
lem for the coefficientscj and eigenvalues« determining the
approximate eigenfunctions and eigenvalues of the va
tional formulation, and thus of the original problem:

Hc5«Sc, ~19!

where

Hi j 5E
V

@¹f i•¹f j22ik•f i¹f j1~V1k2!f if j #dV

~20!

and

Si j 5E
V

f if jdV. ~21!

As in the PW method, given the expansion of the potent
the above matrix elements can be evaluated exactly, du
the polynomial nature of the basis. As in the FD method,
above matrices are sparse and structured, due to the
locality of the basis.
a
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III. RESULTS

We have tested our approach in a number of applicati
ranging from the band structure of Si to positron charge d
tributions in C60. Here we present results which demonstra
the accuracy and convergence of the method for a mo
potential, for which analytic results are available, and for
more physically interesting case of Si.

Figures 3 and 4 show results for a 3D generalized Kron
Penney model potential:

V5V1D~x!1V1D~y!1V1D~z!, ~22!

where

FIG. 3. FEM and exact band structures for 3D generaliz
Kronig-Penney potential. FEM results are for a 63636 uniform
mesh ofC0 cubic elements. Exact results are from an analytic
lution.

FIG. 4. Convergence of first few FEM eigenvalues for 3D ge
eralized Kronig-Penney potential with increasing numbers of e
ments, at an arbitraryk point. The convergence from above demo
strates the variational nature of the method. The asymptotic slop
'26 demonstrates the sextic convergence of the method.
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V1D~j!5H 0, 0<j,a

V0 , a<j,b
~periodically repeated!.

~23!

Figure 3 shows the band structure obtained with a 63636
uniform mesh vs. analytic results at selectedk points, for
V056.5 Ry, a52 a.u., andb53 a.u. More quantitative
information is displayed in Fig. 4 which shows the conve
gence of the fractional error (EFEM2Eexact)/Eexactof the first
few eigenvalues with increasing numbers of elements, a
arbitrary k point. The variational nature of the method
clearly demonstrated: the errors are strictly positive a
monotonically decreasing. The consistent, sextic conv
gence of the method is also clearly demonstrated:
asymptotic slope of'26 on the log-log scale correspond

FIG. 5. FEM and exact band structures for Si pseudopoten
FEM results are for 33333, 43434, and 63636 uniform
meshes ofC0 cubic elements. Exact results are from a highly co
verged plane-wave calculation. The rapid convergence and v
tional nature of the method are again demonstrated, with exce
agreement for the 63636 mesh.

FIG. 6. Convergence of first few FEM eigenvalues for
pseudopotential with increasing numbers of elements, at an a
trary k point. The variational nature and consistent, sextic conv
gence of the method are again demonstrated.
-

n

d
r-
e

to an error ofO(h6), whereh is the mesh spacing, consiste
with FE asymptotic convergence theorems for the cub
complete case.37

Figures 5 and 6 show results for a Si pseudopotentia38

Since our approach allows for the direct treatment of an
bitrary parallelepiped domain, we show results for a tw
atom primitive cell. In contrast, recent FD approaches h
been limited to a small subset of Bravais lattices and h
reported only supercell results for Si. Figure 5 shows
sequence of band structures obtained for 33333, 434
34, and 63636 uniform meshes vs exact values at selec
k points.~Here ‘‘exact values’’ are from a highly converge
PW calculation, using a 54 Ry cutoff.! The variational nature
and rapid convergence of the method are again clearly d
onstrated. Also apparent in the very coarse 33333 results,
are the inexact degeneracies of certain eigenvalues at h
symmetryk points: for example, the splitting at theG point
of the triply degenerate value at the top of the valence b
and the splitting at the X point of the doubly degenera
lowest value. As noted in Ref. 24, this is due to the fact t
the basis is not constrained to have the full symmetry of
crystal. Thus, to the extent that the eigenvalues are appr
mate, so are the degeneracies; and as the eigenvalues
verge, the degeneracies become exact. By the 63636
mesh, the splittings are no longer apparent. Figure 6 sh
the convergence of the fractional error of the first few eige
values with increasing numbers of elements, at an arbitrak
point. The variational nature and consistent, sextic conv
gence of the method are again clearly demonstrated.

IV. SUMMARY AND CONCLUSIONS

We have presented an approach to solid-state electro
structure calculations based on the finite-element method
Sec. II A we discussed the details of the basis, the m
important being its polynomial composition and strict loca
ity, leading to its generality and suitability for large-sca
calculations. In Sec. II B we developed our approach to
solution of the Schro¨dinger equation, subject to bounda
conditions appropriate to a periodic solid, using aC0 finite-
element basis: yielding a general method for solid-st
electronic-structure calculations, allowing arbitrary sampli
of the Brillouin zone. In Sec. III we presented initial resu

l.

-
ia-
nt

i
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FIG. 7. Three-dimensionalC0 cubic parent element and assoc
ated nodal positions~denoted by open circles!.
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illustrating the accuracy and convergence of the method
electronic band-structure calculations. The consistent, se
convergence and variational nature of the method were d
onstrated.

The finite-element method combines the significant
vantages of both real-space-grid and basis-oriented
proaches and so promises to be particularly well suited
large, accurateab initio calculations. The results to date a
promising, but the application of the finite-element meth
to solid-state electronic-structure calculations is still in
infancy and whether it will ultimately prove superior to oth
approaches will only be known after much further develo
ment. Our approach has already proven effective in la
~863 atoms!, non-self-consistent positron distribution an
lifetime calculations.39 Work on the addition of self-
consistency, optimization of numerical methods, and pa
lelization is underway.
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APPENDIX

In this appendix we discuss the details of the 3D FE ba
used in this work. We have employed standard 3D 32-n
‘‘serendipity’’ elements.40 These affordC0 flexibility and
cubic completeness with a minimum number of basis fu
lu-
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tions per element. As in standard FE references, we list
low theparent basis functionsdefined on theparent element:
@21,1#3. The basis functions associated with any particu
element are derived from these by a transformation.41 This
permits the construction of quite general element mesh
permitting the precise concentration of degrees of freedom
real space where needed. For simplicity, we have limited
implementation to affine transformations. These are gen
enough to permit the direct treatment of an arbitrary pa
lelepiped domain and thus of any Bravais lattice.

The parent element and associated nodal positions~de-
noted by open circles! are shown in Fig. 7. The 32 paren
basis functionsf i and associated nodes (j i ,h i ,z i) are listed
below:

(j i ,h i ,z i) f i

(61,61,61) 1
64(11j0)(11h0)(11z0)$9(j21h21z2)219%

(6
1
3 ,61,61) 9

64(12j2)(119j0)(11h0)(11z0)
(61,6 1

3 ,61) 9
64(12h2)(119h0)(11j0)(11z0)

(61,61,6 1
3 ) 9

64(12z2)(119z0)(11j0)(11h0)

where

j05j ij, h05h ih, z05z iz.

Thus, for example, the parent basis function associated
the node (2 1

3 ,1,1) is 9
64 (12j2)(123j)(11h)(11z); the

one associated with the node (21,1
3 ,1) is 9

64 (12h2)(1
13h)(12j)(11z), etc. Each takes on a value of 1 at i
associated node and 0 at all others.

Upon piecing together element basis functions acr
interelement and domain boundaries, the resulting perio
piecewise-cubic basis contains seven basis functions pe
ement.
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