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We present an approach to solid-state electronic-structure calculations based on the finite-element method.
In this method, the basis functions are strictly local, piecewise polynomials. Because the basis is composed of
polynomials, the method is completely general and its convergence can be controlled systematically. Because
the basis functions are strictly local in real space, the method allows for variable resolution in real space;
produces sparse, structured matrices, enabling the effective use of iterative solution methods; and is well suited
to parallel implementation. The method thus combines the significant advantages of both real-space-grid and
basis-oriented approaches and so promises to be particularly well suited for large, aaburat® calcula-
tions. We develop the theory of our approach in detail, discuss advantages and disadvantages, and report initial
results, including electronic band structures and details of the convergence of the method.
[S0163-182699)03515-9

[. INTRODUCTION achieve these advantages, these methods give up the use of a
basis and work instead by discretizing individual terms of the

Over the course of the last few decades, the density funeequation of interest on a real-space grid. As a result, quanti-
tional theory (DFT) of Hohenberg, Kohn, and Shanhas ties of interest are defined only at a discrete set of points in
proven to be an accurate and reliable basis forahénitio  space, limiting the accuracy of integrations and complicating
calculation of a wide variety of materials properties. But thethe handling of singular functions such as all-electron poten-
solution of the Kohn-Sham equations is a formidable taskfials. And as a further consequence, the methods are not
and this has significantly limited the range of physical sys-variational: the error can be of either sign and convergence is
tems which can be considered. often from below.

Among the most popular methods of solving the equa- Finite-element method% 28 achieve the significant ad-
tions has been the plane-wau®W) method—typically vantages of FD methods without giving up the use of a basis.
coupled with pseudopotentials to eliminate core electfons.Like the PW method, the FE method is an expansion
For all its advantages, however, the PW method has sommethod. In the FE method, however, the basis functions are
notable disadvantages with respect to the solution of largstrictly local, piecewise polynomials. A simple one-
problems. First, because the PW basis functions are not locdimensional(1D) example is shown in Fig. Iwhich we
in real space, they give rise to a dense Hamiltonian matrixliscuss further beloyv Because the basis is composed of
which in turn limits the effectiveness of iterative solution polynomials, it is completely general and the convergence of
methods’ Second, the method requires Fourier transformghe method can be controlled systematically by increasing
which are difficult to implement efficiently on massively par- the number or order of basis functions. Because the basis
allel architectures due to the need for nonlocal communicafunctions are strictly local in real space, the method achieves
tions. Finally, the PW basis has the same resolution athe significant advantages of FD approaches: The method
all points in space, which causes considerable difficultieproduces sparse, structured matrices, which in turn enable
in the treatment of highly localized systems such as firstthe effective use of iterative solution methods. The method
row elements and transition metals. Recent progress orequires no Fourier transforms, as all calculations are per-
this problem has included ultrasoft pseudopotenfials,formed in real space. And the method allows for variable
optimized pseudopotential, and adaptive coordinate resolution in real space—more so than FD approaches—by
transformationg® increasing the number or order of basis functions where

The limitations of the PW approach have inspired the deneeded. The method thus combines the significant advan-
velopment of various ‘“real-space” approaches, includingtages of both real-space-grid and basis-oriented approaches.
finite-difference (FD),°~*° finite-element (FE),>*>~?® and Some disadvantages of FE methods are that the matrices
wavelet® *?methods. Of these, perhaps the most mature angroduced tend to be less sparse, and often less simply struc-
successful to date have been the FD methods. These methadsed, than those produced by FD methods, and that these
produce sparse, structured Hamiltoni@md in some cases, matrices must be stored. In addition, FE methods produce
overlap matrices, require no Fourier transforms, and allowgeneralized rather than standard eigenvalue problems, as pro-
for some degree of variable resolution in real space. But taluced by many FD approaches, and they can be significantly

0163-1829/99/5@.9)/123527)/$15.00 PRB 59 12 352 ©1999 The American Physical Society



PRB 59 REAL-SPACE LOCAL POLYNOMIAL BASIS FQR . .. 12 353

1R N> N Y ; Sec. Il we discuss the details of our approach. We begin in
(@) Sec. Il A with a description of the basis. In Sec. I B we

0 D g™ @ D O D m @) show how the basis can be applied to the solution of the
a4 e %3 4 b Schralinger equation subject to boundary conditions appro-

NG priate to a periodic solid. In Sec. Il we present results for a

(b) model potential and Si pseudopotential, including band

0 structures and details of the convergence of the method. The
conclusions in Sec. IV are followed by an appendix giving

1
© K the details of the particular 3D basis which we employ.
0

IIl. METHOD

(d) A. Basis

Finite-element bases consist of strictly local, piecewise
1 4 polynomials. They are constructed generally as follows. The
(e) domain is partitioned into subdomains calledements
0 Within each element a set of polynomial basis functions is
. o . . . defined. These element polynomials are then pieced together
e e oo o, o 2L Inrelement boundaresto fom the pieceuse palynomil
main [a,b] is partit.ioned into elements{subdomain)s.(1)—(4) basis funptlons of the method. In order to apply the method

’ to periodic problems, we take the additional step here of

within which the basis functions are simple linear polynomials. The . ™. tooeth | | I ial the d .
basis is thus simultaneously polynomial and strictly local in naturegffr']ré%r)%ge er element polynomials across the domain

more difficult to implement than FD or PW approaches. The essential ideas are perhaps best conveyed by a simple
The FE metho¥~2'has had a long history of success in example: a 1D, per|od|c,. p|ecew'|se—llnear basis. F|g.l(a}_ 1
quite diverse applications ranging from civil engineering toShows the complete basis and Figeh)%1(e) show the indi-
quantum mechanics. Applications in engineering go back t¢yidual basis functions. In this case, the dompab] has
the 1950s. Applications to the electronic-structure of isolated?©€n partitioned into four elements. For simplicity, we have
atomic and molecular systems began to appear as early as tfefined a u.n|f.orm partition but this n_eed not be thg case in
1970s% White, Wilkins, and Tetér applied the method to gene_ral. Within each eIe_ment, two linear poly_nomlal basis
full 3D atomic and molecular calculations in 1989 and dem-functions have been defined to make the basis complete to
onstrated the advantageous scaling of the method with thihear ordgﬁ More and higher-order polynomials can be
number of basis functions, afforded by the strict locality anduSed to increase the order of completeness. Figube 1
real-space nature of the basis. shows the basis fl_mctlon which results f'rom piecing together
There have, however, been relatively few applications t¢¢'€ment polynomials across the domain boundary. Figures
solids. Hermansson and Yeviéapplied the FE method to 1(c)—1(e) show the basis functions which result from piecing
full 3D solid-state electronic-structure calculations in 1986,t10gether element polynomials across interelement bound-
but having reached a negative conclusion in the study of''€s. . _ . .
small systems with uniform meshes, discussed their ap- Note t_hat the resulting basis f_unctlons @8 continuous,
proach only generally and, though apparently capable of ar-€- continuous but not nece_s_sarlly srr_lo?ftISmoo_ther base_s
bitrary Brillouin zone sampling, reported onk-point re-  €an be cpnstructed by requiring continuity of hlgher deriva-
sults. More recently, Tsuchida and Tsuk&daave applied tives (which would require higher-order polynomigldut a
the method to full 3D molecular and solid-state electronic-C’ basis offers a unique and potentially significant advan-
structure calculations. They have implemented selffage: an efficient and n_atural representation of _the wave func-
consistency, nonuniform meshes, adaptive coordinate trandon and charge density cusps which occur in all-electron
formations, pseudopotential and all-electron calculationsé@lculations and which cause such difficulty for conven-
and have demonstrated the favorable efficiency of thdional, necessarily smooth bases—and for FD approaches as
method relative to FD approaches. Their solid-state result¢ell. as they also assume some degree of derivative continu-
have, however, also been limited to tRepoint. ity. We havg th_erefore chosenG?. basis for our approach..
Here, we present a full 3D FE approach to solid-state The application qf such_a bass,_howeyer, to thg solution
electronic-structure calculations which allows arbitrary sam©f @ second-order differential equation, with periodic bound-
pling of the Brillouin zone, and report initial results, includ- &y conditions in particular, requires some consideration.
ing electronic band structures and details of the convergendast, the application of the Laplacian to such functions is
of the method. Our development differs from that of Ref. 25¢learly problematic. Second, referring again to Fig. 1, note
in that we have taken a Galerkin approdéiOur develop- that the basis is value periodic, i.e.,
ment is closer to that of Ferraf who developed a Galerkin bi(a")=gi(b) )
approach allowing arbitrary sampling of the Brillouin zone : : '
in the context of 2D super-lattice calculations. As we havebut not derivative periodic, i.e., it isotthe case for all basis
not yet implemented self-consistency, our results here ar&inctions that
restricted to model potentials and empirical pseudopotentials.
The remainder of the paper is organized as follows. In #i(@")=¢{(b7). 2
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Thus, the satisfaction of periodic boundary conditions is non-
trivial. We address these issues in Sec. Il B. l

Referring again to Fig. 1, note also that the basis functions R
take on a value of 1 at their associated nodes and 0 at all

others, i.e.,
&i(X}) = &jj - 3 ] ,

Thus, a FE expansion

FIG. 2. Parallelepiped unit ce(domain Q, boundaryl’, sur-
f(x)=2 ¢ibi(X) (4) facesI';—I'3, and associated lattice vectdRg—R5.

ward unit normal ak. We denote the domain Ky and take
it to be a parallelepiped for definiteness. The problem is thus
f(x)=cj, (5) reduced tg Eqs9)—(11). _ .

To facilitate the use of &° basis, we next derive an
giving the expansion coefficients a direct real-space mearequivalent “variational formulation” of the problem. The
ing. inner product of the differential equatia®) with an arbi-

Finally, and perhaps most significantly, we note that thetrary “test function” v gives
basis functions are strictly local in real space, i.e., nonzero
over only a(typically smal) fraction of the domain. It is this
property of the basis which allows the method to achieve the
significant advantages of FD approaches.

In our calculations, we have employed a 3@, Sincev is arbitrary, the integral equatiofi2) is equivalent
piecewise-cubic basis. Many other choices are possibld0 the differential equatiort9). To reduce the order of the
Higher-order completeness generally leads to smaller matrRighest derivative and produce a boundary téwhose use-
ces and higher-order convergence, but also to less spardilness will become clear subsequeiithye integrate th&?
ness. The details of the particular basis which we employ arterm by parts®
given in the Appendix.

is such that

f v*[—VZu—2ik-Vu+(V+k®—¢)u]ldQ=0. (12
QO

va*-VudQ—fv*Vu-ﬁdF
B. Discretization Q r

We solve
+f v*[—2ik-Vu+(V+k®—g)uldQ=0.

—V2y+Vy—e =0 6) “
. . . . o . (13
in a unit cell, whereV is an arbitrary periodic potential, as ) i
appropriate for a periodic solid. To incorporate the “natural” boundary conditiofil), we

We begin by reducing the Bloch-periodic problem to aNOW restrictv to
periodic one. Sinc¥ is periodic, we can take to be of the peV={v(\)=v(x+R) Vxel,, 1=123,

form (14)

P(x)=u(x)e'*™, (7) i.e., to satisfy the “essential” boundary conditiofi0).
Then, using the fact that the domain is a parallelepiped, the

whereu is a complex, cell-periodic function satisfying boundary term can be written as

u(x)=u(x+R) (8)

. - . > J 0* (0[Vu(x) -~ Vu(x+R))]-ndr,
for all lattice vectorsR. Substitution of the forn{7) into Eq. T Jr

(6) then gives which vanishes upon the assertion of the natural boundary

—V2u—2ik-Vu+ (V+k2— -0 condit_ion(ll). Thus, with the restrictio_lo_l4), the differgntial
viu-ai u+( s)u=0 © equation and natural boundary condition together imply the
From the periodicity condition(8), we take the boundary integral equation
conditions to be

J'Vv*~VudQ+f v*[—2ik-Vu+(V+k?®—g)u]ldQ=0.
Q Q

ux)=u(x+R)) Vxel,, 1=1,23 (10
and (15
Finally, using again the arbitrariness ©f it can be shown
ﬁ.Vu(x)=ﬁ~Vu(x+ R) Vxel,, 1=123, (11 that the converse also holds, and thus that the differential

formulation (9)—(11) is in fact equivalent to the following
whereT'; and R, are the surfaces of the boundaryand  variational formulation Find the scalarg and functionsu
associated lattice vectors shown in Fig. 2, ani$ the out- eV such that
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20
f Vou*-VudQ -
Q
17.5
+ j v*[—2ik-Vu+(V+k®—¢)u]ldQ=0 VveV. PE—
Q 5
(16)
We have thus reformulated the original problem in such a ”3 12.5 e
way that(1) the highest derivative which occurs is of order 1 3
and (2) only the essential boundary condition remains—the :cj 10
natural boundary condition having been built into the equa-
tion itself. The problem is thus now in a form which is suit-
able for approximate solution in €° FE basis since all 75 i o
terms are well defined for such functions and since such a TR, LC
basis can be readily constructed to satisfy the required value || = FEM
periodicity (e.g., Fig. 1. S o Exact
To find an approximate solution, we now restiicandu ~ |grmmgremmree@e ©
to a finite-dimensional subspabgCV. The problem is then r X
reduced to: Find the scalassand functionsu € V, such that k
FIG. 3. FEM and exact band structures for 3D generalized
f Vo*.VudQ Kronig-Penney potential. FEM results are for & 6X6 uniform
Q mesh ofC° cubic elements. Exact results are from an analytic so-
lution.
+J v*[—2ik-Vu+(V+k?—g)uldQ=0 VYveV,.
o IIl. RESULTS

(17 We have tested our approach in a number of applications

We proceed by constructing a re@P FE basis¢;- - - ¢,,, ranging from the band structure of Si to positron charge dis-

which satisfies the remaining essential boundary conditiofributions in Gg. Here we present results which demonstrate

and so spans a subspag¢gCV (e.g., Fig. 1. We then ex- the accuracy and convergence of the method for a model

pressu as a complex linear combination potential, for which analytic results are available, and for the
more physically interesting case of Si.

Figures 3 and 4 show results for a 3D generalized Kronig-

u=2>, ¢ (18 Penney model potential:
so thatue V,,. Substitution of the expansiofi8), and the
fact that Eq.(17) is satisfiedVv e V,, if it is satisfied forv V=V p(X)+Vip(y)+Vip(2), (22
=¢;, i=1---n, leads finally to a generalized eigenprob-

lem for the coefficients; and eigenvalues determining the
approximate eigenfunctions and eigenvalues of the variawhere
tional formulation, and thus of the original problem:
log4o (Elements in each direction)

Hc=¢eS 19 0.8 0.9 1 11 1.2 1.3
s 19 1073 -3
where K =(2/3,1/2,2/5)n/a
10—4 Vog=6.5 -4
. 2 uniform mesh o
Hij= Q[V¢i'v¢j_2|k'¢iv¢1+(v+k ) ¢i¢;1dQ '-'LU\J 1075 cubic C° elements | _5 W
o 4 [RE
. 1078 Y Es -6~
an s E
1077 -7
Sj=f0¢i¢jdﬂ- (21 6 9 12 15 18 21

Elements in each direction

As in the PW method, given the expansion of the potential, FiG. 4. Convergence of first few FEM eigenvalues for 3D gen-
the above matrix elements can be evaluated exactly, due t&alized Kronig-Penney potential with increasing numbers of ele-
the polynomial nature of the basis. As in the FD method, thenents, at an arbitrarl point. The convergence from above demon-
above matrices are sparse and structured, due to the strigitates the variational nature of the method. The asymptotic slope of
locality of the basis. ~—6 demonstrates the sextic convergence of the method.
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FIG. 7. Three-dimensiond® cubic parent element and associ-
ated nodal position&enoted by open circlgs

K to an error of0(h®), whereh is the mesh spacing, consistent
with FE asymptotic convergence theorems for the cubic-
FIG. 5. FEM and exact band structures for Si pseudqpotentialcommete casd’

FEM results are for ¥3x3, 4x4x4, and 6<6x6 uniform Figures 5 and 6 show results for a Si pseudopotefitial.
meshes ofc® cubic elements. Exact results are from a highly CoN-gince our approach allows for the direct treatment of an ar-
verged plane-wave calculation. The rapid convergence and Variaﬁitrary parallelepiped domain, we show results for a two-
tional nature of the method are again demonstrated, with excellenétom primitive cell. In contras,t, recent FD approaches have
agreement for the 866 mesh. been limited to a small subset of Bravais lattices and have
reported only supercell results for Si. Figure 5 shows the
sequence of band structures obtained foxr 3<3, 4x4
X 4, and 6x 6X 6 uniform meshes vs exact values at selected
k points. (Here “exact values™ are from a highly converged
) ) ) PW calculation, using a 54 Ry cutdffThe variational nature
Figure 3 shows the band structure obtained with>&686  and rapid convergence of the method are again clearly dem-
uniform mesh vs. analytic results at selecteghoints, for  gnstrated. Also apparent in the very coarse®x 3 results,
Vo=6.5 Ry, a=2 a.u., andb=3 a.u. More quantitative gare the inexact degeneracies of certain eigenvalues at high-
information is displayed in Fig. 4 which shows the conver-symmetryk points: for example, the splitting at tHe point
gence of the fractional ermroEgey— Eexacd/ EexactOf the first  of the triply degenerate value at the top of the valence band
few eigenvalues with increasing numbers of elements, at agnd the splitting at the X point of the doubly degenerate
arbitrary k point. The variational nature of the method is |owest value. As noted in Ref. 24, this is due to the fact that
clearly demonstrated: the errors are strictly positive angne basis is not constrained to have the full symmetry of the
monotonically decreasing. The consistent, sextic convergrystal. Thus, to the extent that the eigenvalues are approxi-
gence of the method is also clearly demonstrated: thenate, so are the degeneracies; and as the eigenvalues con-
asymptotic slope of+—6 on the log-log scale corresponds yerge, the degeneracies become exact. By the68 6
mesh, the splittings are no longer apparent. Figure 6 shows
the convergence of the fractional error of the first few eigen-

0, O=sé<a

Vip(§)= Ve, a=é<b (periodically repeated

(23

logyo ( Elements in each direction)

5 08 0.9 1 1.1 12 13 values with increasing numbers of elements, at an arbitcary
10 R = (123, 234, 345)27/a -2 point. The variational nature and consistent, sextic conver-
uniform n;esh’ gence of the method are again clearly demonstrated.
1078 -3
cubic C° elements o
wul ) IV. SUMMARY AND CONCLUSIONS
U\J 10—4 —4 ﬂ . .
< > We have presented an approach to solid-state electronic-
o

8 10
Elements in each direction

12 14 16 18 20

-6

structure calculations based on the finite-element method. In
Sec. Il A we discussed the details of the basis, the most
important being its polynomial composition and strict local-
ity, leading to its generality and suitability for large-scale
calculations. In Sec. 1l B we developed our approach to the
solution of the Schrdinger equation, subject to boundary

FIG. 6. Convergence of first few FEM eigenvalues for Si conditions appropriate to a periodic solid, using &finite-
pseudopotential with increasing numbers of elements, at an arbelement basis: yielding a general method for solid-state
trary k point. The variational nature and consistent, sextic conver€lectronic-structure calculations, allowing arbitrary sampling
gence of the method are again demonstrated.

of the Brillouin zone. In Sec. Il we presented initial results
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illustrating the accuracy and convergence of the method itions per element. As in standard FE references, we list be-
electronic band-structure calculations. The consistent, sextiow the parent basis functiondefined on thgarent element
convergence and variational nature of the method were denfi— 1,1]%. The basis functions associated with any particular
onstrated. element are derived from these by a transformatiofihis

The finite-element method combines the significant adpermits the construction of quite general element meshes,
vantages of both real-space-grid and basis-oriented appermitting the precise concentration of degrees of freedom in
proaches and so promises to be particularly well suited foreal space where needed. For simplicity, we have limited our
large, accuratab initio calculations. The results to date are implementation to affine transformations. These are general
promising, but the application of the finite-element methodenough to permit the direct treatment of an arbitrary paral-
to solid-state electronic-structure calculations is still in itslelepiped domain and thus of any Bravais lattice.
infancy and whether it will ultimately prove superior to other  The parent element and associated nodal positides
approaches will only be known after much further develop-noted by open circlgsare shown in Fig. 7. The 32 parent
ment. Our approach has already proven effective in largéasis functionsp; and associated node§; (7; ,¢;) are listed
(863 atomy non-self-consistent positron distribution and below:
lifetime calculations® Work on the addition of self-
consistency, optimization of humerical methods, and paral-

lelization is underway. (&) ¢
(£15121)  ga(1+ &) (1+ mo) (1+ {HO(E%+ 7P+ %) — 19}
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In this appendix we discuss the details of the 3D FE basis Upon piecing together element basis functions across
used in this work. We have employed standard 3D 32-nod@éterelement and domain boundaries, the resulting periodic
“serendipity” elements'® These affordC® flexibility and  piecewise-cubic basis contains seven basis functions per el-
cubic completeness with a minimum number of basis funcement.
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