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Confinement-deconfinement transition in two coupled chains with umklapp scattering
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A role of umklapp scattering has been examined for two-coupled chains with both forward and backward
scattering by applying the renormalization group method to the bosonized Hamiltonian. It has been found that
a state with relevant interchain hopping changes into a state with irrelea@fined one when the magnitude
of umklapp scattering becomes larger than that of interchain hopping. The critical value of umklapp scattering
for such a confinement-deconfinement transition is calculated as the function of interchain hopping and intra-
chain interactions. A crossover from one-dimensional regime into that of coupled chains is also shown with
decreasing temperaturg50163-182609)11019-1

[. INTRODUCTION bard model with repulsive interaction and without umklapp
scattering, the ground state of two-coupled chains is the
Quasi-one-dimensional organic conductors, (TMTSF) d-wave-like SC staté>'>~*’although that of a single chain is
and (TMTTF),X salts, exhibit instabilities toward spin the SDW staté® The effect of interchain hopping is much
Peierls state, spin density way8DW) state and supercon- stronger compared with the intrachain interaction since the
ducting (SO state, where the phase diagram has been digransverse hopping is relevant except for extremely large
played on the plane of effective pressures and temperature.intrachain interactioh? However, intrachain interaction be-
The interplay of low dimensionality and repulsive interactioncomes important as well as the interchain hopping for the
is important for the SDW state which indicates one-case of the spin anisotropic backward scattering where a spin
dimensional fluctuation$? There are also some evidences gap induced in a single chain leads to a competition between
for dimensional crossover. the SDW state and the SC stafe.
Crystal structure shows quarter filling for conduction — Recently, confinement, which denotes incoherence of
electrons but the existence of dimerization leads to a half'single-particle hopping between Luttinger liquids has been

filled band? A crossover from a half-filled band to a quarter- maintained®2  where there is no coherence of hopping and

filled one has been found by decreasing dimerization undeg,qp, split Fermi surface below a critical value of single-

effective pressure, i.e., the variation of anions X. Electronic

properties, which suggest a role of the dimerization, havé)artICIe hopping. The confinement has been argued for the

been reported recently at temperatures just above the SD\'/.\')QtaIIIC state of organic conductor (TMTSR) under a

state’® Optical experiments on a series of the above materi'agnetic field, which is close to coherence-incoherence

als, which have different values of interchain eIectron-transmon?2 The role of.umklapp scattering, which leads to
transfer energy, show a correlation gap due to umklapp scathe relevanpe and the wrglevance of the correlation gap, has
tering and a crossover from metallic state to insulating stat?®€n examined for organic condu'cté?sln terms of a Mott
with increasing the anisotropy. An insulator-to-metal transi-9ap, the irrelevance of single-particle hopping has been dis-
tion followed by the deconfinement of interchain hoppingCussed in a quasi-one-dimensional systéfi.A confine-
has been observed when the interchain transfer energy efient has been demonstrated in two-coupled chains with
ceeds a critical value with a magnitude of the order of thehalf-filled band® in order to understand a crossover from the
gap. metallic state to the insulating state, which has been found at
Theoretical studies of these conductors have been exemperatures just above the SDW state of organic
plored by use of quasi-one-dimensional model consisting o€onductor$. The weakly coupled half-filled chains with in-
an array of chains coupled by interchain hopping. For repulfinite numbers have been also studied by a perturbative
sive intrachain interaction and incommensurate band, theenormalization group approaéh?’
transverse hopping is always relevant for the weak In the present paper, such a deconfinement-confinement
interaction® but there is a reduction of transverse hopping bytransition due to umklapp scattering is studied in detail for
one-dimensional fluctuatiol?. Two-coupled chains is a basic two-coupled chains with half-filled band by developing the
model for a quasi-one-dimensional system since both oneprevious papef® In Sec. II, formulation is given in terms of
dimensional fluctuation and transverse hopping can be studosonized-phase Hamiltonian. Renormalization group equa-
ied on the same footing. In a Tomonage-Luttinger modetions are derived for coupling constants and response func-
with only forward scattering, the dominant state remains thdions. In Sec. lll, the critical value for confinement is calcu-
same as that of a one-dimensional system, but the degetated. A crossover at finite temperatures is also shown. In
eracy of in-phase and out-of-phase pairings is remd¥ed.  Sec. IV, we discuss the validity of our present calculation
When backward scattering is added, the phase diagram band examine an effect of forward scattering within the same
comes quite different from that of a single chain. In a Hub-branch.
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Il. FORMULATION
We consider two-coupled chains given by

_ T T
H= >, i fk,pak,p,g,iak,p,a,i_tk% [k p.o18K,p,02t H-C]
y ,P,0

k,p,o
91 t t
+ Z ety h%,q akl,p,o',iakz,7p10—"iak2+2ka+q,p,0",iak172ka7q,7p,(r,i
92 t t
+ —_ . I _ H — i
2L oo kl%,q Ay p.0,i By, —p,a i B+ a,—poo i By —a,p.or
+ 3 > > al .. al a a : (2.2)
2L B kKo ky,p,0,i%s,p, = 0,i %Ky = 2pke +4,—p,— 0,1 Hky — 2pke —q, —p,o,i » .

wheret is the interchain hoping energy. The quaminu&/p'(,’i denotes a creation operator for the electron with momerkum
sping(=1,| or +,—), and chain index(=1,2). The symbop=+ (—) represents the right-goingeft-going state. In Eq.
(2.1), e pl =ve(pk—Kg)] is the linearized kinetic energy with Fermi velocity and Fermi momenturke . Quantitiesg,,
01, andgs are coupling constants of intrachain interactions for forward scattering, backward scattering, and umklapp scatter-
ing, respectively.

The diagonalization of the first and second terms in €ql) is performed by making use of a unitary transformation
Cp,op=(— M p 1T ak’p,,,yz)/\/ﬁ with u==. After the bosonization of electrons around the new Fermi plint= ke

—pt/ve we define the phase variablég, and 6, (6c, and fs,), which express fluctuations of the tot@tansversg
charge density and spin densifyThey are given by

0=00= 5 2, q—Le*a\qlfzfiqu;# (Cl g+ 0 Chot s Chiv g pCk = ) (2.2
0y+(X)= % q;o ;T—Ii_e“q’Zink;M T(C gt o uChit o™ Cht g oo Chom o) (2.3
Oc+(X)= % & ;T_Ieia‘qllziiqugﬂ M(Cl+q,+,o,,uck,+,zr,uiCl+q,—10,,uck,—,<r,u)’ (2.4

fs.(X) = % 2 q—Le—a‘ql’z—‘qxgﬂ TH(Chs g+, Ch ™ Chet g r,uC—ra)- (2.5

There is a commutation relation thg#, . (x),0, _(x")]=i7é, ,,sgnk—x") where the suffix— denotes the canonically
conjugate variable. In terms of these phase variables, the field operator is expressed as

. 1 ) . o
,/,p'mﬂ(x):L—l/zzk: eukxck’pymﬂzﬁexmkaMx+|p,(w)exp(l TE p,ou)s (2.6)
1
®p,0,uzﬁ[p0p++ ep—+o-(p00'++ 00’—)+1u’(p0C++ GC—)+UM(p05++ 68—)]! (27)

where« is of the order of the lattice constant. The phase faetaf, , , in Eq. (2.6), which is introduced for the anticom-
mutation relation, is taken as

. . (it .
52n+j:N1+"'+N2n+T(N2n+1+N2n+2). (2.9

wherej=1,2 andn=0,1,2,3. The quantit)}f\li denotes number operator, and the suffis related to p,o,u) as, (+,+,

+)=1, (+,—,+)=2, (+,+,-)=3, (+,—,—-)=4, (-,+,+)=5, (-,—,+)=6, (—,+,-)=7,and ,—,—)=8, re-
spectively. Such a choice &, , , conserves a sign of interactions, which are represented by phase operators. In terms of
these operators, E¢2.1) is rewritten agAppendix A
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v 1 4t
sz=pgcs477 xK—(30V+)2+K,,(<90,,,)2 492 zf dx cos( \/_0C+——x +c0sy20c_ | (cosy26s.
4t
—c0s/265s_ )+ fdx cos \26c. — X —€05/26¢_ |(cosy26s, +cos\26s_)
+2772 zf dxcosy26,., cos( \/—0C+——x) cOS\20c_ — OS2 05, — COS\2 f5_
4t
+%f dxcosy26,. cos( \/§0C+—;x)+cos\/§0C_—cos\/§6’s++cos\/§03_ , (2.9
|
where v,=veV1—(9,/27vg)?, K,=[(1—g,/27vg)/(1 d , 1
+g,/2mve) Y4, 9,=292—091, 9,= — 91, andgc=9s=0. aGCp,SpZ(Z_KE_Kg )Gep,sp = =Gyt ,cpCp+,sp
We make use of the renormalization group method for Up
response functionr® 3 which are assumed to be invariant 1
for scalinga— o' = ae"'. We express the nonlinear terms in -
=Gyt coGos.sp (2.19
Ed. (2.9 as g,p,p /(27%a?) fdxcos/20,,C08/26,, Vo
where \26,,=26,,—4tx/vg for v=C and p=+ and
\26,,=/26,, otherwise. Then the coupling constants are d. -~ 1 ) ) ’
given by dc: s:=—0dc-s-=(9,79,)/2, Gc+ s-= it =t gKe(Ghrci TG i G
—0c- S+ (gp ﬂ')/27 O+ ,C+:_gzr+,C7:_glr+,S+: 2 ~
—Oo+,s-=091, @and g,y c+=0p+ c-= —Gpt,5+ =0p+ 5 +Ggy s )J1(41), (2.16

=g3. Response functions defined Wa(X1—X,, 71— 75)
=(T,0a(X1,71)OA(Xz,7,)) are evaluated for SDW and SC o i~ 3
states wherer; is the imaginary time an®, denotes the wheret(l) =t(I)/e, e=vea™", v,=v,/vg, v=p,0o, and

order parameter. Then renormalization group equations ar%’p,,:.i' In these equatipns, thaiependence s not V\_/ritten
expressed 48 (Appendix B explicitly, andJ,(n=0,1) is thenth order Bessel functiof-

Initial conditions are given byK,(0)=K,, G,p,p/(0)
d 1 :gvp,y’p'/z’n-vF andt(o):t/EF.
aK =-—=K [GV+ c+d (4t)+G§+ o +GV+ St The second-order renormalization group equations with
ZUV respect to all the coupling constants are derived by expand-
+G2, 1, (210 g as K>1(1)=1FG,(I)+---. In case ofg;=01° these
vt.S- ' equations become equal to those of FabriZiwhich satisfy
the SU2) symmetry with respect to spin rotation. Although
Z {[— KCJO(4t)5p 48, ] such a symmetry _is satisfigd only appro>l<imately for Egs.
(2.10-(2.12), the difference is very small within the present
. ey ey choice of parameters as is shown later. The renormalization
X(Gpi,cpt Gt cpt Copst T Cp,s—)}' equations of Eq92.10—(2.12 determine the fluctuations of
(2.10 the total charge, total spin, transverse charge, and transverse
spin density, respectively. Equatig@.15 corresponds to
d 1 orward scattering and backward scattering with paralle
5 f d i d backward [ ith llel
aks=3 2 {(—K§6p,++6p,-) spins. In the right-hand side of these equations, there are
== bilinear terms with respect t&,, (), which appear in
$[G2. o« +G2 1 G2 4H)+G2 , the presence of umklapp scattering and/or backward scatter-
[Gp+.55% Corv st G spdo(4D) + G splh ing while they are absent for only forward scattering. Equa-
(212 tions(2.13 and(2.14 with v=p(v=0) correspond to um-
klapp scatterindbackward scattering with opposite spink
% 2-K,—KP)G _G G is found that there is a symmetry between equations of the
dl —vhcer =( c)Gy+,cp~ Gy s+ Geps+ total charge and those of the total spin, i.e., the renormaliza-
tion equations remain the same for the replacement given by
—G,+ s-Geps—» (2.13 Ky—=Kg, v,e00,, and

Q.lQ_

p
d ~
giCr+.55= (2K, ~KBIG,. 55~ Gy ¢+ Ges splo(4D) (oot Cprc- Cprsr Gpis)

_Gv+,C—GC—,Sp! (214) H(G(rJr,CJr 1Ga'+,C7 1Go'+,S+ 1Go’+,87)'
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Equation (2.16 is the scaling equation for the interchain
hopping. It is noted that these equations with0 is reduced

to those of a single chaiff.

_ In(r/a) 1
RTSDWLOm(r):eprO dI[—E[Kp(IH—l/KU(I)

We examine order parameters for the possible states in
case of repulsive interaction. In terms of phase variables, +1/Kc(|)+Ks(|)]+Gc—,s+(|)}),

order parameters are expressedAgzpendix A

OLSDWH'om:; o( ¢1,g,1¢—,g,1_ '#1,0,2'//—,0,2)
=UEM LA
—e PO extl (0,1 +00,.)/12]

X co§ (fc_+obs_)2], (2.17

OTSD\M = ; (lﬁjri-,—o-,lw—‘—o-,l_ lﬂi,a,z‘ﬂ—,—g,z)

|,out
= ;L (piri-,a,,uw*f""*/’“
—e 2T gexd —i(6,. + 00, )/\2]

X sin (c_ + o 65, )1/2], (2.18

Oss =2 (Wi p1th g2t Pi o2 —0,1)

0'2;1, O-/qur,a',,ulp*,*a',,u,
- gexfi(8,-+06,.)/2]
Xsin (0e_+a6s.)/\2], (2.19

where ¢, ,i(x)=(1\L)= e ay p ;. In Egs. (2.17)-
(2.19, LSDW, o,{TSDW, o) denotes longitudinaltrans-

(2.21

_ In(r/a) 1
Rss (r)=exp{fo dl{—E[lle(I)+KG(I)+1/KC(I)

TKs(D]+Ge- s+(D=Ggs (D)

+Go+,s+(|)]), (2.22

where r=[x?+(ve7)2]¥? and the quantitiesK,(I) (v
=p, o, C, andS) and G, ,/p(I)(p,p’=*) are calcu-
lated from Eqgs(2.10—(2.15. In these equations, the renor-
malization of the velocit§? has been discarded in a way
similar to the spinless cas@.

Ill. CONFINEMENT VS DECONFINEMENT

We examine confinement-deconfinement transition by
calculating the renormalization group equations for interac-
tions of both the Hubbard model and the general model with
01#0,. The scaling quantity(=Inr/a) is related to energy
o and/or temperaturd by the relation thatl=In(ez/w)
=In(e=/T). Numerical calculation is performed by use of
normalized quantitieﬁjzgj [(27vg) for j=1~3.

In Fig. 1(a), quantitiest (1) and 1K (1) as a function of
are shown by solid curves and dashed curves, respectively,
with the fixedg;=0.05, gs.(=0.119) and 0.3 wheré/ep
=0.1, andg;=g,=0.4. Both mutual interactions and um-
klapp scattering suppress the increas¢(bf as is seen from
Eq. (2.16. In the case ofg3=0.05, t(l) [solid curve(1)]
increases rapidly. Such a behaviort¢f) denotes the decon-
finement of the transverse hopping. The corresponding
1/K (1) shown by dashed cur¢) decreases monotonically
to zero indicating a formation of the transverse charge gap.
In the present case, some @f,;, ,,/(l) diverge at finitel

verse SDW with intrachain and out-of-phase pairing. The and then solutions stop due to the second-order renormaliza-
suffix SS ;, represents the SCd state, i.e., the singlet SGION group equations. It is expected that the calculation with

state with interchain and in-phase pairing.

The renormalization group technique is also applied to théll values of

third-order equations gives the finite value®f,, (1) for
112 A noticeable difference appears for large

calculation of response functions for the order parametersjalue of the umklapp scattering as is shown fy=0.3
Egs. (2.19—(2.19. Normalized response functions are de-[curves(3) and (lll)]. With increasingl, t(1) [curve (3)]

rived as(Appendix B

_ In(r/a) 1
RLSDWyout(r)=ex;{ JO dl[ —5 K, (N +K, (1)

+ 1K (1) + UKg()]~Ge_ s (1)

—Gﬁ,c(I)—Gﬁ,s(I)]), (2.20

takes a maximum and reduces to zero ari:ll) [curve
(111)] remains finite even at the limiting value bf Such a

behavior oft(l) indicates the absence of interchain hopping,
which leads to confinement of electrons within a single
chain. There is no transverse charge gap due to fifitd),
where the oscillatory behavior comes from the Bessel func-
tions in Egs.(2.10—(2.15 obtained with use of the sharp
cutoff in the formulation of renormalization group
technique’® The fact that
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(a) 1 1.5k 1
- -
. =
\
\
\
A 1 ) 1
4 0 2 4
I l
1 T T 1 FIG. 2. Thel-dependences oK (1), Kg(l), and K,(I) are
(b shown by solid curves, dotted curves, and dashed curve§3for
el =0.05[(1),(4).(7), 93¢ [(2),(5).(8)], and 0.3[(3), (6), (9], re-
/’ spectively, where parameters are the same as those in(@jg. 1
/ g
—— / >
£ osl /7 dos L with increasing from zero[e.g., curvgl) in the inset of Fig.
s f— | T X 1(a)], and is essentially the same as the limiting value. De-
I/ confinement is obtained for finite"" while confinement is
! found for finite 1K2Y™. Botht™" and 1KE>™are reduced to
f zero at gz=0s., Which denotes a critical value for
. . 0 deconfinement-confinement transition. We note that the
0 0.11 0.2 Bessel function,[4t(1)] in Eq. (2.16 is crucial to obtain
83 A such a transition. Actually, in the right-hand side of Eq.

(2.16), the second term becomes negligible for deconfine-
FIG. 1. (a) Thel-dependences afl) (solid curveg and 1K (1) ment, but the second term becomes larger than the first term

for confinement.
(dashed curvesfor g;=0.05[(1) and(l)], 9s=0s:(=0.119)[(2) . .
and (1], and g;=0.3 [(3) and (Ill)], respectively, where/eg In Fig. 2, the corresponding dependences oK (1),

K4(1), andKg(l) are shown by solid curves, dotted curves,
=0.1 andg; =g,=0.4. In the inset, curvetl), (2), and(3) denote and dashed curves, respectively, where numerical results are

t(l)/te for 93_0?;5 OF 93;Syr(n2) and 03(:’2'” (b) The  shown for|G,p,,p (1)|<10. Curves(1), (4), and(7) are for
gs-dependences o™ and 1K¢ The quantityt™" denotes a 63—005 curves(2), (5), and (8) are for 63_53(:' and

minimum oft(l)/te' and the quantlty KEYMis the limiting value

of 1/K(l). The arrow denotes the critical valigg=gs. corre- curves(3), (6), and(9) are forgg—O 3. The quantlt)K (1) as

sponding to a boundary between deconfinement and confinement? function ofl decreases to zero. A charge gap is formed for
K,(1)=K /2, which gives a result consistent with that of the
Hubbard mode?"2 The transverse spin fluctuation is also sup-

Gy c+(D/Gps - (1) pressed by umklapp scattering becaligél) with the fixedl
is reduced bygs. However, theg; dependence oK (1) is
=Gosc+(D/Ggy c-(1) very small, i.e., thd dependence ok (l) is similar to the
~Gey 50 (NG i (1) one-dimensional case. Therefore, there is no behavior of spin
’ ' gap for the total spin fluctuation except for very low energy.
=Gcy,s- (/G- s-()=1/K(l) We note that, for single chair,(l) decreases monotoni-

cally to K, (I—-x)—1 and thatKg(l)=1 for all I. From
for the limiting value is consistent with the irrelevance of the thesel dependences, it is found that a separation of freedoms
interchain hopping. At a critical value given lms=gs., @  of charge and spin still exists at energy corresponding to the
transition from deconfinement to confinement takes placdormation of the charge gap.
where botht(l) and 1K(l) reduce to zero at the limiting  In Fig. 3, thet dependence ofiz. is shown forg; =g,
value ofl [CUFVGS(Z) and (”)] In the inset, the normalized Ea:o, 0.2, and 0.4 where confinemeeconfinementis
interchain hopping,t(1)/te', is shown forg;=0.1 (1), obtained forgs>gs. (gs<Usc). The Gs. dependence of
0.119(2), and 0.3(3), wherete' denotes the value for the f0r§=0 is expressed as
noninteracting one. The limiting behavior of curv@d),
which remains constant for lardeindicates deconfinement.
In Fig. 1(b), the g; dependences of KEY™ and t™" are
shown where K™ is the limiting value of 1K.. The  whereK,;=1.2. The intrachain interaction enhances the con-

quantityt™ denotes a minimum df(l)/te', which is found  fined region. The presence gfleads to a different behavior

t/ =K, exp( — m/4gs), (3.0
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FIG. 3. The critical valugs, are shown as the function ofeg FIG. 4. The critical valueg;. as the function of B,—g; for

for g=0, 0.2, and 0.4, where confinemefeconfinementis ob-  t/€z=0.1 anq 0.01 thh the fixed,=0.2. The solid. curves denote
tained forgs>0s. (93<gsc). In the inset, the log/e-—log gs. plot ::Ilivzguz:riags; igg?:gi&:ﬁ; Efqt@hélggéiﬁlgdwmle the dotted
is shown forg=0.2 (1) and 0.32).

for t with small'gs. From the inset, which is calculated for tal charge A, where A= e exF[—Ig] and K, (Ig)=K,/2.
3202 (1 4032 itt t that théi.. d q Around the energy corresponding to the charge gap, the total
9="0 ~( ) a_n '3_)’ it turns out that th@s. dependence spin shows a behavior similar to the one-dimensional case
of t for g#0 is obtained as with the gapless excitation. The solid curve, which is ob-

N~ 1% tained frome exd —I] with T(I;)=1 denotes the crossover

ter=Ky(g3c/K3)™, (32 temperature, below which the state reveals the property of

whereK,=0.2, K3=0.2, andgs.<1. The range 0fjs., in ;\r/]vo—gouplt_adtch?]in_s. iuch_a tempe;}a;ure gelcodmestlovzﬁr than
. . . . ~ e bare interchain hopping energe-=0.1 due to the

which Eq.(3.9) s v~al|d., dgcreases with decreasigge-g.,  onormalization by the intrachain interactitht® The dash-

the upper bound ofs. is given by 0.15, 0.04, and 0 f@  (otted line denotes a boundary where the decrease of tem-

=0.4, 0.2, and 0, respectively. Coefficieits, K, andKs erature leads to confinemerdeconfinement for g
have been derived numerically since analytical treatment i8¢ -~ ~ ] ) ) 93
>0a: (03<0gsc). One finds the following four kinds of re-

very complicated. We note that the magnitudegef is de- . ° . .
termined mainly by the balance between the charge gap cr jions (1)~ (1V), which are separated by these boundaries.

. . .The dominant state in regidih) is one-dimensional SDW. In
ated by the umklapp scattering and the energy of mterChaIPegion (I, interchain hopping removes the degeneracy of

hopping as is shown later. Asgoes to zerog, reduces to o out-of-phase state and the in-phase Stdbef the energy
zero and then the interchain hopping becomes always rel-

evant in the absence of umklapp scattering within the present 0.2
choice of intrachain interaction. 503

Now we examine the boundary between confinement and 5 g COmOemen” ;
deconfinement as the function 9f andg, with the fixedt. s O
From the calculation with some choices G-=0.1, we é" 0.1 D .

~ w econfinement! *
find it a good approximation that the boundary with fixggd ~ otk T 1
depends only on'®,—g;. Thereforegs. is determined es- ' e o
sentially as the function of&—gy, i.e.,K,. Such a result -
originates in the fact that thé ,, . (I) term gives a domi- o av)
nant contribution and the effect gf, is negligibly small for )
other coupling constants in the right-hand side of @16. | .~ |
In Fig. 4, the quantitygs, as the function of B,—g; is 0 0.1f 0.2
shown by the solid curves with choices tfe=0.1 and . 8
83

0.01, whereg;=0.2. The region ofj3>0s. (93<gac) cor-
responds to the conflnemel(tﬂeconflnemet)t~The~ dotted FIG. 5. A crossover is shown on the planeggfand temperature
curve is explained in Sec. IV. With increasing2-g; (i.e.,  T/¢. (or energy wheret/e=0.1 andg;=g,=0.4. The dotted
decreasing ), the region for_ the confinement is enhanced. curve and solid curve denote(=e- exd —Ig)) andece™":, respec-

By use of response functions for order paramel&gs. ey, where K (I;)=K,/2 andT(l)=1. The dash-dotted line
(2.17—(2.19], we calculate states at finite temperaturesseparates the region of confinement from that of deconfinement. In
where a crossover is shown on the planéjgfand normal- the inset, the phase diagram of confinement and deconfinement is
ized temperatur@/ eg (or energy in Fig. 5. The dotted curve shown on the plane df e andA/eg where the dash-dotte@olid)
denotes the temperature corresponding to the gap for the taurve denotes the boundary fgr=0 (0.4).
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is still high compared with the gaps for the transverse fluc- 0.3
tuations, which develop just above (dotted curvé In this

region, one finds a crossover into the out-of-phase SDW

state. The present calculation indicates a short-range correla-

tion for the SCd state in a certain domain with smajl
(<0.001) and finite temperatures just above the dotted

curve. This could retain a trace that the ground stateﬁgor 2} Confinement /%
=0 is given by the SC stafé:'%"In region(lll ), the gap of 0.1
the total charge fluctuation develops. At very low tempera-

tures, all the fluctuations become gapful due to relevant in-

terchain hopping. In this case, the correlation of the SCd 0 0'1,/82‘2 03
state as well as the SDW state decays exponentially. We note 0 0.1 03 0.3

that such a state in the limit of low energy corresponds to the

“C0S0” phase, which has been obtained at half-filled band t/ep

by Balents and Fishé.In region(1V), the gap of the total ~ ~
charge is so large that the interchain hopping becomes irrel- FIG. 6. The critical valuegs. as the function oft/eg for g
evant leading to the isolated chaihand then the absence of =0-3. The solid curve (_:orresponds to the calculation in Fig. 3 and
other gaps. The state in this region has a resemblance to tH&¢ dotted curve is obtained by use of the exparigdThe dashed

of the half-filled one-dimensional chalfi.In the inset, we curve is the results fog;=g,=g,=0.3. In the inset, the phase
show a phase diagram of confinement and deconfinement ¢ggram of confinen~1ent~and deconfinement is shown on the plane
the plane oft/e and A/e in the limit of absolute zero of t/er andA/eg for g;=g,=0.3 where the soliddashedi curve is
temperature, where the dash-dotted cuis@lid curve cor-  calculated forg,=0 (g,=0.3).

responds tog=0 (0.4) in Fig. 3. The region for confine-

ment increases by the increase of intrachain interaagion
The ratio in the interval region of 0.81t/ex<<0.3 is given

by A/t=1.1 (0.<A/t<0.9) for g=0 (0.4)3 These re-

02F

g’Sc

Y74 Deconfinement

rameter space of the renormalization group to examine the
pair hopping for the case of the relevant interchain
hopping®® We discuss the effect of the pair-hopping process

sults indicate the fact that the deconfinement—confinemerﬁn the present result with the half-filed band. Expressing the
transition is determined essentially by the competition be; air hopping in terms of Eqd2.2~(2.5), we obtain non-

X . . linear terms consisting o8, ,0,, ,6c. and s, , which
tween the charge gap and the interchain hopping energy. are also found in Eq(299), g):cep;forca+ new tesr:n given by

Jg COS(/20,.) c0s(/26,.).* When the interchain hopping
IV. DISCUSSION is larger than the charge gap, the pair hopping becomes rel-

evant. In such a regiori(l) and K,(1) of the present paper

In the present_ paper, the effect of_umklapp scatter_ing Oy hibit trajectories similar to those of Ref. 15 and the differ-
two-coupled chains has been examined by calculating thg ..o i magnitudes are small, although gheterm gives

boundary for confinement and deconfinement as the functionSe to a visible enhancement of the spin gap obtained by

of umklapp scattering, interchain hopping, and intrachain in'KU(I). It is noted that the interchain hopping is not renor-

teractions. It has been shown that electrons are confined inrﬁalized directly by thegs term since the right-hand side of
sing_l_e chain when interchain hopping becomes smaller thaEq.(Z.lG) is determined Ez)nly by terms includirtg. , . When
a critical value of the order of the charge gap or the umklap|qhe interchain hopping is smaller than the charge gap, the

scattering exceeds a threshold. pair hopping becomes irrelevant due to confinement, e.g
We discuss the validity of our calculation of renormallza—gsz0 at the energy of the charge gap. Therefore, it is con-

tion group equations given by EqQ.lO)—(Z.lG). Here we ._sidered that the effect of the pair hopping is small for the
calculate these equations by making use of the eXpanS'OBbundary between confinement and deconfinement.

+1 —

K, (N=1+G,()+---(v=p, o, C, and S), where the Now we examine the effect of the forward scattering with
initial conditions areG,(0)=g,/27vg . Since such a method the same branch, where the coupling constant is givegyby
leads to a solution with the SB) symmetry, we have done The Hamiltonian ’corresponding tny is expressed as

the following two kinds of evaluations. One of them is
shown in Fig. 4 by the dotted curve, which denoggs as a
function of intrachain interaction with fixet! e,=0.1 and 945% aj al
0.01. A good coincidence between the solid curve and the 2L 55 kg P 2P

fjott.ed curve is obtained forg@—gl>0. Th~e other is shgwn X8+ qp.— 0,8k ~qp.oi (4.1)
in Fig. 6 by the dotted curve, which denotgg as a function
of t/er for g;=0g,=9=0.3. There is a small difference be- which has two kinds effects. One of them appearKijn
tween the result without the expansion Kf, (solid curve i i 1
and that with the expansion &f,. Thus, such a calculation E‘L )1]1;,[,1 irld ;;((1,+!vr;|§:;/2are v}zrltt_e{n[ 1za_§§p /({1[i~ g;”];ﬁ
may be justified within the present choice of parameters. 94 r9 Vo 9a ' 5 Nzgflz 94
Instead of treating two-coupled chains with the split *9s/(1=9a) 11" v,=vel(1+94)°—g;1™, and v,
Fermi surface, Khveshchenko and Rice applied the bosoniza= ve[ (1—94)?— 9212 with g,=g,/27ve. Another is the
tion method to two degenerate bands and enlarged the paenlinear terms given by
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4t slower decrease df (1), one obtains smaller gap in the
9c+,c-CO V20c.— —X presence ofy,. Thus, it is found thag, reduces the effects
of both intrachain interaction and umklapp scattering.

—HJ dx

Based on the present calculation, we comment on elec-
XC0820c_+0s;,s COS\20s, COS\/E‘%—}' (4.2 tronic states for TMTSF and TMTTF salts, both of which
show the correlation gap above the SDW state. Such a gap is
wheregc c- =~ 9s+ s- =04 Equation(4.2) leads to addi-  possible for a choice off/eg=102 in Fig. 5 whereer
tional terms to renormalization group equations ) and  =10° K and T=10 K.! The fact that the plasma edge per-

KC(') which are of the order 0{)({3) and 0(74) respec- pendicular to chains is present for TMTSF S@bsent for
t|Ve|y There is also renormalization foec+ c and TMTTF Sa")s SUggeStS the relevan(:-mrelevan(:& of the in-
Gs. s . However, we found that, in the present calculation,terchain hopping. These behaviors of interchain hopping are
the latter effect given by Eq4.2) is negligibly small. Onthe found when the umklapp scattering satisfigg<gs. for
other hand, in the former case, there is a noticeable effect of MTSF salt andy;=1g5. for the TMTTF salt. Thus, the ex-

9, which comes from the variation &,. Note thatK, igtence of dimerization, which increasgs is crucial to un-
(<1) increases with increasingy since the effect ofj, is  derstand property of these salts above the SDW state.
equivalent to replacin@p by Z]p/(1+§4) in K,. The in- For the metallic state, the above organic conductors may
crease ofK ,(<1) reduces the renormalization of umklapp be regarded as a doped system rather half filling since one-

scatteringG,, c. . Then one needs largey; to obtain the particle hopping betweenﬁcéhains_ leads to a small _deviation
confinement. An example Wit5=0.3 is shown in Fig. 6 from the commensurate oneln this case, the metallic state

~ } ~ . is expected with increasing the doping rate as is shown in a
whereggs. including theg, term (dashed curveis compared  one_gimensional cas8.Actually, a crossover from confine-
with that with'g,=0 (solid curve. The quantitygs. is in-  ment to deconfinement has been obtained in the presence of
creased by, i.e., the suppression of the region of the con-doping even for two-coupled chaiflt will be of interest to
finement on the plane df e andgs. In the inset, a phase study such an effect of doping on many-coupled chains.

diagram of confinement and deconfinement is shown on the
plane oft/er and A/ep for both g,=0 (solid curvé and ACKNOWLEDGMENTS
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APPENDIX A: PHASE REPRESENTATION OF ‘H AND ORDER PARAMETERS

By making use 08y ,i=[(—1)'Ck .o+ + Ckp.o—] (i=1,2) andy, , ,(x)=L"2e™cy , ., » EQ.(2.D) is rewritten
in terms ofy, , , . The terms for interactions are divided into two parts, which consist of the scattering between electrons with
sameu and the scattering between electrons with oppgsitsince the former part is treated in the way similar to the kinetic
energy, we e>_<amine the latter part, which is definedHgg. By defining %,U’M as lp,’)’U’M(x)=(1/\/27ra)exp0kaMx
+i10p,5.,), Hine is written as

|nt 2 de{gl¢p0# —po’,ulppa' ﬂ¢—po— I(U”)ZWNa_l—g ¢po# i —o',uwp—o— lp—po’ M I(pU)ZWNd+iW

2 N + 1t ’ ’ ; 2 N
+glwp‘7/‘¢ po,—n lpptf— ¢—pU# el (Pow)2mhn |W+g lpptr,u P—U,—M¢p,—o,—M¢—p,U,Mel(pU) TNd

4 =i 2a[Np+ uNg] +i
+gl¢pal’~l’b p*o'll«l//p,*o',#l//—p'a-’#e (po)2m[Np+puNg] +im

+911r/fp o —U’—M'J/é,—u,udf’—p,u,— —i(po)2m[Ny+puNg ]+|7r+g l/fp - /_p’U’_ l//,—p,a,u'vZ’;,J,o,—uei(pUM)ZﬁNb
+92¢pgﬂ¢ p’”*ﬂlﬂlpfﬂv#lpé,m ei(or)2nia "7+ g, ’ﬁptfﬂ‘ﬂ pvuw oo 1o el (om)2mNg+im
Q2o - PﬁGﬁn‘/’é,mwei(pm)zmw9 Py o p,fo,m//Qp'”'ueip4w[l§1a+5ﬂ,+r§1bfa Nyl
+ e PHE Y o u W po gl pom2miytinmy o gptkexyrt l//'—p,_U,Ml,//'_p,(,,_ﬂei("“)zqf’i‘a

+03 e'p4kFX¢p o, ,ulpp -, ,U-lzb, P.*(T,*,ulzb/fp,U,*,ueipzw[&p'”'*(“Na_N7_N8)+ép”’f(N3+N4)]}- (A1)
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Where I\’I\a: [£N1+ Ng) + £N3+ N4)A+ (’\{5"“ Ns)A+ (Nﬁ‘ Ng)1/4, '}lb: [{(’1‘1““ ’1‘2) + ('E's+ ’1‘4)}_{('115"’ ':l6) + ('117+ NB)}]M';
Ne=[{(N1+N2) = (N3+Ng)} +{(Ns+Ng) — (N7+Ng)}]/4 and Ng=[{(N1+ Nz) = (N3+Ng)} —{(N5+Ng) — (N7+Ng) } ]/4.
By definingN; as the eigenvalue &, , it is found that the factor in E§A1) commutes with the Hamiltonian, E¢2.1), when
N., Ny, N., andNy are integers. Such a choice of Hilbert space leads to negative sign for 2, 3, 5, 6, 8, 9, and 12th terms in
Eq. (A1). By expressingy,, , ,(x) in terms of the phase variables, we obtain the nonlinear terms i2E3).

Next we examine order parameters. For order parame’.tlig[,\,\,H which is expressed asO,_SDV\,”ﬁut

=-3, #m/q - sz (zpl¢/;7+ 1//3¢5)+(¢/;2¢8+ ¢4¢//6) we evaluate the correlation function given by
<OLSDW” out(x)OLSDWH (O)} By noting that a typical term of this correlation function is rewritten as

(L0 P00 T 85(0) a0V Ty = (T () 5 s (0) 0y~ 127Nt Nl +imy
=—(Ly1" 0P 00 1[5 (0) (017, (A2)
the correlation function is rewritten as,
(L= (Pl iyt whivs) + (Whe+ vaipe) 1L — (Pl ha+ dhis) + (hibg + i) 17)
= (L "+ 3T wl) + (s g+ T 1L (s T+ s ) + (T 0T 1. (A3)

Therefore,OLSDV\,‘| ot in the response function can be expressed as

OLSD\NH,out: _E O'l,b+ o—,u —,0,— _>Z $+ a',u‘vbf,o:*,u' (A4)

which leads to Eq(2.17) with %,o,#(x) = (127 a)explpke,x+i0,, ). The other order parameters are obtained in a similar
way.

APPENDIX B: DERIVATION OF RENORMALIZATION GROUP EQUATIONS

We evaluate response functions by use of the renormalization group nféfidsly treating the nonlinear terms in Eq.
(2.9 as the perturbation, the response functiondgr field is calculated up to the third order as

(T expl(i/V2) s, (X1, 71) Jex = (1/V2) b5 (X2, 72) 1)

2 2
— e (Kg2U(i-rH) 4 D 1 d r3 d r4e (Kg2U(r] —r5) g =2K,U(rs=r))
v=p,c (477)217,2, e=*1 a2 a?
X (G2, S+e—zKSU(rg—rj){esKs[u(rf—rg)—U(rf—rZ)—U(rg—rEHU(rE—rE)]_1}

+G2, Sief(Z/KS)U(rgfrE){ei qurt —rhy-uaf-rH-ueh - +uab - _ 1)

1 d?rf d?rf;
b 3 SR e P DGR, oo e D cos Ty x,) + G g e ROV
(4m)° S5 a® o« , :

w e—2|<Su(rg—ri){eeKs[U(rf—rg)—U(rf—ri)—U(rg—rg)w(rg—ri)] ~1)

F_.F F_.F
+[GE, 5 & 2eVIs 714 cos App(X3—Xa) + GE_ g @ KAV )]
« e—(z/KS)U(rg—rj){eie[U(rf—rg)—U(rf—ri)—U(rg—rg)w(rg—ri)] -1}

2 2 2, v
r v 14
-3 d’r . d_2bef(KS/Z)U(rEfrZ)efZKVU(rfrs)

v=p,0 (477)3~12, e=*1 f a® @?
F_F F_.F F_F
X([Gys,c+Grs 5+ Ger 518 2KcV375) cos (X3 —X5) + G i 0 -G s 54 G sy 8™ PHOVI7T5) @7 2K U5 7ra)
F_.F F_F F_F F_F F_F
X{esKS[U(rl—r3)—U(rl—r4)—U(r2—r3)+U(r2—r4)]_1}+[GV+ C+Gv+ S—GC+ s_e_ZKCU(r3_r5)COS 2]0()(3_)(5)

+G,. . G,s s Ge_ Sie—(leC)U(rg—rg)]e—(2/KS)U(r§—r§){eie[U(rf—rg)—U(rf—ri)—U(rg—rg)w(rg—rb]_ 1)+---, (BL)

where U(r{—r/)=In[\(xi—x))*+vi(ri— 7)) %/ a] for i,j=1,2,34, d’r"=v,dxdr=v,dxdr (v=p,0c and F) and g
=2t/ve. In order to obtain scaling equations of the coupling constants up to the second order, we need to calculate response
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functions up to the third order for the nonlinear terms. Note that these terms do not exist in the one-dimensidAd@ycase.
putting rs=r,+r andrs=rs+r, and expanding near=0, we obtain the following renormalization in terms of effective

guantities,
drF [rF\3-2K,~2Ks 1 drF 3-2K,—2Kg
Kgﬁ:KS 2 Gv+ s+K IT(_) +_ E Gv+5 f <_)

a vep,o a \a

drF/rF\|3-2Kc—2Kg I drF/rF\|3-2Kc—2Ks i
ZGc+ S+st7 o Jo(2q0r™) + §Gc+,s—f_ — Jo(2q0r™)
J’d

a a

(F [[F\3-2/Kc—2Ks 1 , drF [ rF\ 3 2Kc—2Ks
—\ = +§Gc—,s—f_ — , (B2)

a a a

drF [ rF\1-2Kc drF/rF\1-2Kc
Gv+ Sp G,,+ Sp— ZGC+,SpGV+,c+Gv+,Spj7 E) JO(ZqOrF)_ZGC,Sva+,CGV+,SpJ7(;) ,
(B3)
2 dr v\ 1-2K
eff 2
GCp,Sp’ZIGCp,Sp'_y=zpo_;_chySP'GV+1CPGV+xSP/f7(;) y (84)

14

wherer"=[x?+(v,7)?]Y2 v,=v,/ve andp,p’ = =. The second and third terms of the right-hand side in EBR) and(B4)
are obtained by exponentiating the third-order terms of (B4). For the transformation given by— o’ =ae? ?® these
guantities are scaled as

Kgﬁ(K,yGllq(’)ia,):Kgﬁ(KlG!qOIa)v (BS)

(K',.G’,q4,a')=G""

vp,v'p’ (K,G’qo,a)(a’/a)yvp,u'p', (BG)

vp v'p
whereK’,G’, andg, denote renormalized quantities. The expongpt, - is given byy,, .., =2— KP— Kﬁ: . By applying
this infinitesimal transform to Eq$B2), (B3), and(B4), we obtain renormalization equations given by Egsl2), (2.14), and
(2.15), respectively. In a similar way, the renormalization group equatioik{gt) (v=p, o, andC) is calculated from the
response function given by ,e(/12)0y+(x1.7)g=(11:2)0, (xz. 72)> and the equations fd,, ¢-(I) andG,, s.(I) (v=p and

o) are calculated from the response function fgr. field.X® We note that, in case af=0, these equations become equal to
the one-dimensional equatiotfs.

The renormalization equation fa(!) is derived by evaluating the difference of the density between two banes*(),
which is given by

T ~ ~
AnEZ(kF+_kF*)a+2EJ' dX dT(kF+_kF,>C(
T
=—2qpa+ \/Etaf dx dr(dy0c 1 (X,7))

=—2Qoa+ 2 G,,+ C+KCLde dT<XS'n(\/—9c+ 200X) COS\/—9y+>

v=p,0c &

4 T _
+p§+ ZG“’SFKCEJ dx dr{x sin( \/§0c+—2q0x)cos\/§03p>

drF [rF\2-2Kc—2K,

= 2o+ > G, c+ch (E) J1(2q0rF)
v=p,0

drF [ rF\2-2Kc—2K§

+p2+ G(23+,SpKCf _<—) J1(290rH)+ ..., (B7)

a a

where 4kg, —kg_)/2m= J’ - M,u,z,bp o.ulp.o.u - The assumption of scaling invariance of EB7) with respect to infinitesi-
mal transformatiore’ = a€e® leads to Eq(2.16).
The response functions are calculated in terms of the solutions of(E4§)—(2.16). The response function f()'.bssi o

which is defined byRSSL in(xl—x2,7-1—7-2)E(TTOSSL in(xl,Tl)O§SL in(xz,rz)), is calculated by WritingRSSL in(x,}-)
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<°) (%, 7)Fss  (X,7), whereR(o) (1) =(alVx 2+ 022 V2 (al X+ 02 )l [xP+ v Er?) MK TKI2 By assum-
ing the scaling relatlorFSS A a(l) K.,(), G(I)]—ISSL [dl,K,(H,GH1, FSS [ra(l+dl), K, (I+dl),G(1+dl)], the
multiplicative factorlss s Wr|tten as,

|ssiyin:exl( Gyt c-dl+Gyy 51 dI+Geo s+d|+4~2{ G2, cido(200a)=G2, ¢ —GZ, 5, — G2, s JU(rf—r5)dl

1 2rn2 2 2 2 o o
! A:_ZK‘T[G‘”’C*JO(Z%“)+Ga+,c—+Go+,s++Gg+,s—]U(r1_r2)dl

o

t7],2, [7Ch ci (2000 + Gl ¢ [KE+G), 5 KS= Gl 51+ G 54~ 1+K9o(2000)

+GE, 5 (—2)Jp(20pa) +GE_ g, (KE+KY+GE_ o (LKE- 1)} u(rf— r§)d|), (B8)

which leads toFss . expressed as

In(r/a)
Fssm(r,K,G)=exp( 2)0 In{lSSL'in[dI,K(I),G(I)]}). (B9)

We note that terms including the second order of the coupling constants are rewritten in a simple form. For example, one

obtains
1
L

+Gs s (—2)30(200a) + GE_ s, (VKE+KY +GE_ 5 (LK 1)]ln

> [—G . Jo(2q0a)+ G2, ¢ IKE+GE, o, KE-G2, 5 1+GE, o, (—1+K2JIy(200a)

v=p,0

(U}

1 1 dKe() dKgD) [ r
‘EJ [Kgu) dar dl ]'”au)

1 1 ( I’) |n(f/a)d|1 1 |
K (0)+KS(0) —jo E m'f’Ks( )i, (B].O)

wherea(l)= ae€'. Thus, the normalized response funct@g\sL in(x,a-)[ERSSL in(x,r)~2(7-ra)2], is expressed as,

=y _ In/x +(u 7) /a 1 1
RSSL,in(X’T)_eXF{ fo dl( 2 KP(I))
1 1
KU(I)_;)'_GO'Jr,C(I)+~_G0'+,S+(I)‘H

Inyx2+ 2
xexr)‘f (o7 “dl
0 ag UO'

Iny/x +(v,:'r /a 1 1
Xex;{jo dl[ {KC(|)+KS(I)

which leads to Eq(2.22. Other response functions are obtained in a similar way. In deriving( B0 —(2.22), we replaced
v, andv, by vg, which may cause a slight deviation of the numerical factor.

+Gc,s+(|)]), (B11)
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