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Confinement-deconfinement transition in two coupled chains with umklapp scattering

M. Tsuchiizu and Y. Suzumura
Department of Physics, Nagoya University, Nagoya 464-8602, Japan

~Received 4 November 1998!

A role of umklapp scattering has been examined for two-coupled chains with both forward and backward
scattering by applying the renormalization group method to the bosonized Hamiltonian. It has been found that
a state with relevant interchain hopping changes into a state with irrelevant~confined! one when the magnitude
of umklapp scattering becomes larger than that of interchain hopping. The critical value of umklapp scattering
for such a confinement-deconfinement transition is calculated as the function of interchain hopping and intra-
chain interactions. A crossover from one-dimensional regime into that of coupled chains is also shown with
decreasing temperature.@S0163-1829~99!11019-1#
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I. INTRODUCTION

Quasi-one-dimensional organic conductors, (TMTSF)2X
and (TMTTF)2X salts, exhibit instabilities toward spin
Peierls state, spin density wave~SDW! state and supercon
ducting ~SC! state, where the phase diagram has been
played on the plane of effective pressures and temperatu1,2

The interplay of low dimensionality and repulsive interacti
is important for the SDW state which indicates on
dimensional fluctuations.3,4 There are also some evidenc
for dimensional crossover.5

Crystal structure shows quarter filling for conductio
electrons but the existence of dimerization leads to a h
filled band.6 A crossover from a half-filled band to a quarte
filled one has been found by decreasing dimerization un
effective pressure, i.e., the variation of anions X. Electro
properties, which suggest a role of the dimerization, h
been reported recently at temperatures just above the S
state.7,8 Optical experiments on a series of the above mat
als, which have different values of interchain electro
transfer energy, show a correlation gap due to umklapp s
tering and a crossover from metallic state to insulating s
with increasing the anisotropy. An insulator-to-metal tran
tion followed by the deconfinement of interchain hoppi
has been observed when the interchain transfer energy
ceeds a critical value with a magnitude of the order of
gap.

Theoretical studies of these conductors have been
plored by use of quasi-one-dimensional model consisting
an array of chains coupled by interchain hopping. For rep
sive intrachain interaction and incommensurate band,
transverse hopping is always relevant for the we
interaction,9 but there is a reduction of transverse hopping
one-dimensional fluctuation.10 Two-coupled chains is a basi
model for a quasi-one-dimensional system since both o
dimensional fluctuation and transverse hopping can be s
ied on the same footing. In a Tomonage-Luttinger mo
with only forward scattering, the dominant state remains
same as that of a one-dimensional system, but the de
eracy of in-phase and out-of-phase pairings is removed.11–14

When backward scattering is added, the phase diagram
comes quite different from that of a single chain. In a Hu
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bard model with repulsive interaction and without umkla
scattering, the ground state of two-coupled chains is
d-wave-like SC state,12,15–17although that of a single chain i
the SDW state.18 The effect of interchain hopping is muc
stronger compared with the intrachain interaction since
transverse hopping is relevant except for extremely la
intrachain interaction.12 However, intrachain interaction be
comes important as well as the interchain hopping for
case of the spin anisotropic backward scattering where a
gap induced in a single chain leads to a competition betw
the SDW state and the SC state.19

Recently, confinement, which denotes incoherence
single-particle hopping between Luttinger liquids has be
maintained,20,21 where there is no coherence of hopping a
then no split Fermi surface below a critical value of sing
particle hopping. The confinement has been argued for
metallic state of organic conductor (TMTSF)2X under a
magnetic field, which is close to coherence-incohere
transition.22 The role of umklapp scattering, which leads
the relevance and the irrelevance of the correlation gap,
been examined for organic conductors.23 In terms of a Mott
gap, the irrelevance of single-particle hopping has been
cussed in a quasi-one-dimensional system.24,25 A confine-
ment has been demonstrated in two-coupled chains w
half-filled band26 in order to understand a crossover from t
metallic state to the insulating state, which has been foun
temperatures just above the SDW state of orga
conductors.8 The weakly coupled half-filled chains with in
finite numbers have been also studied by a perturba
renormalization group approach.23,27

In the present paper, such a deconfinement-confinem
transition due to umklapp scattering is studied in detail
two-coupled chains with half-filled band by developing t
previous paper.26 In Sec. II, formulation is given in terms o
bosonized-phase Hamiltonian. Renormalization group eq
tions are derived for coupling constants and response fu
tions. In Sec. III, the critical value for confinement is calc
lated. A crossover at finite temperatures is also shown
Sec. IV, we discuss the validity of our present calculati
and examine an effect of forward scattering within the sa
branch.
12 326 ©1999 The American Physical Society
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II. FORMULATION

We consider two-coupled chains given by

H5 (
k,p,s,i

ek,pak,p,s,i
† ak,p,s,i2t (

k,p,s
@ak,p,s,1

† ak,p,s,21H.c.#

1
g1

2L (
p,s,s8,i

(
k1 ,k2,q

ak1 ,p,s,i
† ak2 ,2p,s8,i

† ak212pkF1q,p,s8,iak122pkF2q,2p,s,i

1
g2

2L (
p,s,s8,i

(
k1 ,k2 ,q

ak1 ,p,s,i
† ak2,2p,s8,i

† ak21q,2p,s8,iak12q,p,s,i

1
g3

2L (
p,s,i

(
k1,k2,q

ak1 ,p,s,i
† ak2 ,p,2s,i

† ak222pkF1q,2p,2s,iak122pkF2q,2p,s,i , ~2.1!

wheret is the interchain hoping energy. The quantityak,p,s,i
† denotes a creation operator for the electron with momentumk,

spins(5↑,↓ or 1,2), and chain indexi (51,2). The symbolp51 (2) represents the right-going~left-going! state. In Eq.
~2.1!, ek,p@5vF(pk2kF)# is the linearized kinetic energy with Fermi velocityvF and Fermi momentumkF . Quantitiesg2 ,
g1, andg3 are coupling constants of intrachain interactions for forward scattering, backward scattering, and umklapp
ing, respectively.

The diagonalization of the first and second terms in Eq.~2.1! is performed by making use of a unitary transformati
ck,p,s,m5(2mak,p,s,11ak,p,s,2)/A2 with m56. After the bosonization of electrons around the new Fermi pointkFm[kF
2mt/vF we define the phase variablesur1 and us1 (uC1 and uS1), which express fluctuations of the total~transverse!
charge density and spin density.14 They are given by

ur6~x!5
1

A2
(
qÞ0

p i

qL
e2auqu/22 iqx (

k,s,m
~ck1q,1,s,m

† ck,1,s,m6ck1q,2,s,m
† ck,2,s,m!, ~2.2!

us6~x!5
1

A2
(
qÞ0

p i

qL
e2auqu/22 iqx (

k,s,m
s~ck1q,1,s,m

† ck,1,s,m6ck1q,2,s,m
† ck,2,s,m!, ~2.3!

uC6~x!5
1

A2
(
qÞ0

p i

qL
e2auqu/22 iqx (

k,s,m
m~ck1q,1,s,m

† ck,1,s,m6ck1q,2,s,m
† ck,2,s,m!, ~2.4!

uS6~x!5
1

A2
(
qÞ0

p i

qL
e2auqu/22 iqx (

k,s,m
sm~ck1q,1,s,m

† ck,1,s,m6ck1q,2,s,m
† ck,2,s,m!. ~2.5!

There is a commutation relation that@un1(x),un82(x8)#5 ipdn,n8sgn(x2x8) where the suffix2 denotes the canonically
conjugate variable. In terms of these phase variables, the field operator is expressed as

cp,s,m~x!5L21/2(
k

eikxck,p,s,m5
1

A2pa
exp~ ipkFmx1 iQp,s,m!exp~ ipJp,s,m!, ~2.6!

Qp,s,m5
1

2A2
@pur11ur21s~pus11us2!1m~puC11uC2!1sm~puS11uS2!#, ~2.7!

wherea is of the order of the lattice constant. The phase factorpJp,s,m in Eq. ~2.6!, which is introduced for the anticom
mutation relation, is taken as

J2n1 j5N̂11•••1N̂2n1
~21! j 11

2
~N̂2n111N̂2n12!, ~2.8!

where j 51,2 andn50,1,2,3. The quantityN̂i denotes number operator, and the suffixi is related to (p,s,m) as, (1,1,
1)51, (1,2,1)52, (1,1,2)53, (1,2,2)54, (2,1,1)55, (2,2,1)56, (2,1,2)57, and (2,2,2)58, re-
spectively. Such a choice ofJp,s,m conserves a sign of interactions, which are represented by phase operators. In te
these operators, Eq.~2.1! is rewritten as~Appendix A!
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H5 (
n5r,s,C,S

vn

4pE dxF 1

Kn
~]un1!21Kn~]un2!2G1

gr

4p2a2E dxFcosSA2uC12
4t

vF
xD1cosA2uC2G~cosA2uS1

2cosA2uS2!1
gs

4p2a2E dxFcosSA2uC12
4t

vF
xD2cosA2uC2G~cosA2uS11cosA2uS2!

1
g1

2p2a2E dx cosA2us1FcosSA2uC12
4t

vF
xD2cosA2uC22cosA2uS12cosA2uS2G

1
g3

2p2a2E dx cosA2ur1FcosSA2uC12
4t

vF
xD1cosA2uC22cosA2uS11cosA2uS2G , ~2.9!
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where vn5vFA12(gn/2pvF)2, Kn5@(12gn/2pvF)/(1
1gn/2pvF)#1/2, gr52g22g1 , gs52g1, andgC5gS50.

We make use of the renormalization group method
response functions,28–30 which are assumed to be invaria
for scalinga→a85aedl. We express the nonlinear terms
Eq. ~2.9! as gnp,n8p8 /(2p2a2)*dx cosA2ūnp cosA2ūn8p8 ,
where A2ūnp5A2unp24tx/vF for n5C and p51 and
A2ūnp5A2unp otherwise. Then the coupling constants a
given by gC1 ,S152gC2,S25(gr1gs)/2, gC1 ,S25
2gC2 ,S15(gr2gs)/2, gs1 ,C152gs1,C252gs1 ,S15
2gs1,S25g1, and gr1 ,C15gr1 ,C252gr1,S15gr1 ,S2

5g3. Response functions defined byRA(x12x2 ,t12t2)
[^TtOA(x1,t1)OA

†(x2 ,t2)& are evaluated for SDW and S
states wheret j is the imaginary time andOA denotes the
order parameter. Then renormalization group equations
expressed as26 ~Appendix B!

d

dl
Kn52

1

2ṽn
2

Kn
2@Gn1,C1

2 J0~4 t̃ !1Gn1,C2
2 1Gn1,S1

2

1Gn1,S2
2 #, ~2.10!

d

dl
KC5

1

2 (
p56

$@2KC
2 J0~4 t̃ !dp,11dp,2#

3~Gr1,Cp
2 1Gs1,Cp

2 1GCp,S1
2 1GCp,S2

2 !%,

~2.11!

d

dl
KS5

1

2 (
p56

$~2KS
2dp,11dp,2!

3@Gr1,Sp
2 1Gs1,Sp

2 1GC1,Sp
2 J0~4 t̃ !1GC2,Sp

2 #%,

~2.12!

d

dl
Gn1,Cp5~22Kn2KC

p !Gn1,Cp2Gn1,S1GCp,S1

2Gn1,S2GCp,S2 , ~2.13!

d

dl
Gn1,Sp5~22Kn2KS

p!Gn1,Sp2Gn1,C1GC1,SpJ0~4 t̃ !

2Gn1,C2GC2,Sp, ~2.14!
r

re

d

dl
GCp,Sp5~22KC

p 2KS
p8!GCp,Sp82

1

ṽr

Gr1,CpGr1,Sp8

2
1

ṽs

Gs1,CpGs1,Sp8 , ~2.15!

d

dl
t̃ 5 t̃ 2

1

4
KC~Gr1,C1

2 1Gs1,C1
2 1GC1,S1

2

1GC1,S2
2 !J1~4 t̃ !, ~2.16!

wheret̃ ( l )5t( l )/eF , eF[vFa21, ṽn5vn /vF , n5r,s, and
p,p856. In these equations, thel dependence is not written
explicitly, andJn(n50,1) is thenth order Bessel function.31

Initial conditions are given byKn(0)5Kn , Gnp,n8p8(0)
5gnp,n8p8/2pvF and t̃ (0)5t/eF .

The second-order renormalization group equations w
respect to all the coupling constants are derived by expa
ing as Kn

61( l )517Gn( l )1•••. In case ofg350,19 these
equations become equal to those of Fabrizio,12 which satisfy
the SU~2! symmetry with respect to spin rotation. Althoug
such a symmetry is satisfied only approximately for E
~2.10!–~2.12!, the difference is very small within the prese
choice of parameters as is shown later. The renormaliza
equations of Eqs.~2.10!–~2.12! determine the fluctuations o
the total charge, total spin, transverse charge, and transv
spin density, respectively. Equation~2.15! corresponds to
forward scattering and backward scattering with para
spins. In the right-hand side of these equations, there
bilinear terms with respect toGnp,n8p8( l ), which appear in
the presence of umklapp scattering and/or backward sca
ing while they are absent for only forward scattering. Equ
tions ~2.13! and ~2.14! with n5r(n5s) correspond to um-
klapp scattering~backward scattering with opposite spins!. It
is found that there is a symmetry between equations of
total charge and those of the total spin, i.e., the renormal
tion equations remain the same for the replacement given
Kr↔Ks , vr↔vs , and

~Gr1,C1 ,Gr1,C2 ,Gr1,S1 ,Gr1,S2!

↔~Gs1,C1 ,Gs1,C2 ,Gs1,S1 ,Gs1,S2!.
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Equation ~2.16! is the scaling equation for the intercha
hopping. It is noted that these equations witht50 is reduced
to those of a single chain.18

We examine order parameters for the possible state
case of repulsive interaction. In terms of phase variab
order parameters are expressed as~Appendix A!

OLSDWi ,out
5(

s
s~c1,s,1

† c2,s,12c1,s,2
† c2,s,2!

5(
s,m

sc1,s,m
† c2,s,2m

→e2 i2kFx(
s

exp@2 i ~ur11sus1!/A2#

3cos@~uC21suS2!/A2#, ~2.17!

OTSDWi ,out
5(

s
~c1,2s,1

† c2,2s,12c1,s,2
† c2,2s,2!

5(
s,m

c1,s,m
† c2,2s,2m

→e2 i2kFx(
s

sexp@2 i ~ur11sus2!/A2#

3sin@~uC21suS1!/A2#, ~2.18!

OSS', in
5(

s
s~c1,s,1c2,2s,21c1,s,2c2,2s,1!

5(
s,m

smc1,s,mc2,2s,m

→(
s

sexp@ i ~ur21sus1!/A2#

3sin@~uC21suS1!/A2#, ~2.19!

where cp,s,i(x)5(1/AL)(ke
ikxak,p,s,i . In Eqs. ~2.17!–

~2.19!, LSDWi ,out(TSDWi ,out) denotes longitudinal~trans-
verse! SDW with intrachain and out-of-phase pairing. Th
suffix SS', in represents the SCd state, i.e., the singlet
state with interchain and in-phase pairing.

The renormalization group technique is also applied to
calculation of response functions for the order paramet
Eqs. ~2.17!–~2.19!. Normalized response functions are d
rived as~Appendix B!

R̄LSDWi ,out
~r !5expS E

0

ln(r /a)

dlH 2
1

2
@Kr~ l !1Ks~ l !

11/KC~ l !11/KS~ l !#2GC2,S2~ l !

2Gs1,C2~ l !2Gs1,S2~ l !J D , ~2.20!
in
s,

C

e
s,
-

R̄TSDWi ,out
~r !5expS E

0

ln(r /a)

dlH 2
1

2
@Kr~ l !11/Ks~ l !

11/KC~ l !1KS~ l !#1GC2,S1~ l !J D ,

~2.21!

R̄SS', in
~r !5expS E

0

ln(r /a)

dlH 2
1

2
@1/Kr~ l !1Ks~ l !11/KC~ l !

1KS~ l !#1GC2,S1~ l !2Gs1,C2~ l !

1Gs1,S1~ l !J D , ~2.22!

where r 5@x21(vFt)2#1/2 and the quantitiesKn( l ) (n
5r, s, C, and S) and Gnp,n8p8( l )(p,p856) are calcu-
lated from Eqs.~2.10!–~2.15!. In these equations, the reno
malization of the velocity28 has been discarded in a wa
similar to the spinless case.30

III. CONFINEMENT VS DECONFINEMENT

We examine confinement-deconfinement transition
calculating the renormalization group equations for inter
tions of both the Hubbard model and the general model w
g1Þg2. The scaling quantityl (5 ln r/a) is related to energy
v and/or temperatureT by the relation thatl 5 ln(eF /v)
5ln(eF /T). Numerical calculation is performed by use
normalized quantitiesg̃ j[gj /(2pvF) for j 51;3.

In Fig. 1~a!, quantitiest̃ ( l ) and 1/KC( l ) as a function ofl
are shown by solid curves and dashed curves, respectiv
with the fixed g̃350.05, g̃3c(50.119) and 0.3 wheret/eF

50.1, andg̃15g̃250.4. Both mutual interactions and um
klapp scattering suppress the increase oft( l ) as is seen from
Eq. ~2.16!. In the case ofg̃350.05, t̃ ( l ) @solid curve~1!#

increases rapidly. Such a behavior oft̃ ( l ) denotes the decon
finement of the transverse hopping. The correspond
1/KC( l ) shown by dashed curve~I! decreases monotonicall
to zero indicating a formation of the transverse charge g
In the present case, some ofGnp,n8p8( l ) diverge at finitel
and then solutions stop due to the second-order renorma
tion group equations. It is expected that the calculation w
third-order equations gives the finite value ofGnp,n8p8( l ) for
all values of l.12 A noticeable difference appears for larg
value of the umklapp scattering as is shown forg̃350.3
@curves ~3! and ~III !#. With increasingl, t̃ ( l ) @curve ~3!#
takes a maximum and reduces to zero and 1/KC( l ) @curve
~III !# remains finite even at the limiting value ofl. Such a
behavior oft̃ ( l ) indicates the absence of interchain hoppin
which leads to confinement of electrons within a sing
chain. There is no transverse charge gap due to finiteKC( l ),
where the oscillatory behavior comes from the Bessel fu
tions in Eqs.~2.10!–~2.15! obtained with use of the shar
cutoff in the formulation of renormalization grou
technique.28 The fact that
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Gr1,C1~ l !/Gr1,C2~ l !

.Gs1,C1~ l !/Gs1,C2~ l !

.GC1,S1~ l !/GC2,S1~ l !

.GC1,S2~ l !/GC2,S2~ l !.1/KC~ l !

for the limiting value is consistent with the irrelevance of t
interchain hopping. At a critical value given byg̃35g̃3c , a
transition from deconfinement to confinement takes pl
where botht̃ ( l ) and 1/KC( l ) reduce to zero at the limiting
value of l @curves~2! and ~II !#. In the inset, the normalized
interchain hopping,t( l )/tel , is shown for g̃350.1 (1),
0.119 ~2!, and 0.3~3!, where tel denotes the value for th
noninteracting one. The limiting behavior of curve~1!,
which remains constant for largel, indicates deconfinemen
In Fig. 1~b!, the g̃3 dependences of 1/KC

asym and tmin are
shown where 1/KC

asym is the limiting value of 1/KC . The

quantity tmin̄ denotes a minimum oft( l )/tel , which is found

FIG. 1. ~a! The l-dependences oft̃ ( l ) ~solid curves! and 1/KC( l )

~dashed curves! for g̃350.05 @(1) and~I!#, g̃35g̃3c(50.119) @~2!

and ~II !#, and g̃350.3 @~3! and ~III !#, respectively, wheret/eF

50.1 andg̃15g̃250.4. In the inset, curves~1!, ~2!, and~3! denote

t( l )/tel for g̃350.05 (1), g̃3c (2), and 0.3~3!. ~b! The

g̃3-dependences oftmin̄ and 1/KC
asym. The quantitytmin̄ denotes a

minimum of t( l )/tel and the quantity 1/KC
asym is the limiting value

of 1/KC( l ). The arrow denotes the critical valueg̃35g̃3c corre-
sponding to a boundary between deconfinement and confinem
e

with increasingl from zero@e.g., curve~1! in the inset of Fig.
1~a!#, and is essentially the same as the limiting value. D
confinement is obtained for finitetmin̄ while confinement is
found for finite 1/KC

asym. Both tmin̄ and 1/KC
asymare reduced to

zero at g̃35g̃3c , which denotes a critical value fo
deconfinement-confinement transition. We note that
Bessel functionJ1@4 t̃ ( l )# in Eq. ~2.16! is crucial to obtain
such a transition. Actually, in the right-hand side of E
~2.16!, the second term becomes negligible for deconfi
ment, but the second term becomes larger than the first t
for confinement.

In Fig. 2, the correspondingl dependences forKr( l ),
Ks( l ), andKS( l ) are shown by solid curves, dotted curve
and dashed curves, respectively, where numerical results
shown foruGnp,n8p8( l )u,10. Curves~1!, ~4!, and~7! are for
g̃350.05, curves~2!, ~5!, and ~8! are for g̃35g̃3c , and
curves~3!, ~6!, and~9! are forg̃350.3. The quantityKr( l ) as
a function ofl decreases to zero. A charge gap is formed
Kr( l ).Kr/2, which gives a result consistent with that of th
Hubbard model.32 The transverse spin fluctuation is also su
pressed by umklapp scattering becauseKS( l ) with the fixedl

is reduced byg̃3. However, theg̃3 dependence ofKs( l ) is
very small, i.e., thel dependence ofKs( l ) is similar to the
one-dimensional case. Therefore, there is no behavior of
gap for the total spin fluctuation except for very low energ
We note that, for single chain,Ks( l ) decreases monotoni
cally to Ks( l→`)→1 and thatKS( l )51 for all l. From
thesel dependences, it is found that a separation of freedo
of charge and spin still exists at energy corresponding to
formation of the charge gap.

In Fig. 3, thet dependence ofg̃3c is shown forg̃15g̃2

[g̃50, 0.2, and 0.4 where confinement~deconfinement! is
obtained forg̃3.g̃3c (g̃3,g̃3c). The g̃3c dependence oft
for g̃50 is expressed as

t/e f>K1 exp~2p/4g̃3!, ~3.1!

whereK1.1.2. The intrachain interaction enhances the c
fined region. The presence ofg̃ leads to a different behavio

t.

FIG. 2. The l-dependences ofKr( l ), KS( l ), and Ks( l ) are

shown by solid curves, dotted curves, and dashed curves fog̃3

50.05 @(1),(4),(7)#, g̃3c @(2),(5),(8)#, and 0.3 @~3!, ~6!, ~9!#, re-
spectively, where parameters are the same as those in Fig. 1~a!.
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for t with small g̃3. From the inset, which is calculated fo
g̃50.2 (1) and 0.3~2!, it turns out that theg̃3c dependence
of t for g̃Þ0 is obtained as

t/eF.K2~ g̃3c /K3!1/2g̃, ~3.2!

whereK2.0.2, K3.0.2, andg̃3c!1. The range ofg̃3c , in
which Eq. ~3.2! is valid, decreases with decreasingg̃, e.g.,
the upper bound ofg̃3c is given by 0.15, 0.04, and 0 forg̃
50.4, 0.2, and 0, respectively. CoefficientsK1 , K2, andK3
have been derived numerically since analytical treatmen
very complicated. We note that the magnitude ofg̃3c is de-
termined mainly by the balance between the charge gap
ated by the umklapp scattering and the energy of interch
hopping as is shown later. Ast goes to zero,g̃3c reduces to
zero and then the interchain hopping becomes always
evant in the absence of umklapp scattering within the pre
choice of intrachain interaction.

Now we examine the boundary between confinement
deconfinement as the function ofg̃1 and g̃2 with the fixedt.
From the calculation with some choices oft/eF50.1, we
find it a good approximation that the boundary with fixedg̃3

depends only on 2g̃22g̃1. Therefore,g̃3c is determined es-
sentially as the function of 2g̃22g̃1, i.e., Kr . Such a result
originates in the fact that theGr1,C1( l ) term gives a domi-
nant contribution and the effect ofgs is negligibly small for
other coupling constants in the right-hand side of Eq.~2.16!.
In Fig. 4, the quantityg̃3c as the function of 2g̃22g̃1 is
shown by the solid curves with choices oft/eF50.1 and
0.01, whereg̃150.2. The region ofg̃3.g̃3c (g̃3,g̃3c) cor-
responds to the confinement~deconfinement!. The dotted
curve is explained in Sec. IV. With increasing 2g̃22g̃1 ~i.e.,
decreasingKr), the region for the confinement is enhance

By use of response functions for order parameters@Eqs.
~2.17!–~2.19!#, we calculate states at finite temperatur
where a crossover is shown on the plane ofg̃3 and normal-
ized temperatureT/eF ~or energy! in Fig. 5. The dotted curve
denotes the temperature corresponding to the gap for th

FIG. 3. The critical valueg̃3c are shown as the function oft/eF

for g̃50, 0.2, and 0.4, where confinement~deconfinement! is ob-

tained forg̃3.g̃3c (g̃3,g̃3c). In the inset, the logt/eF2log g̃3c plot

is shown forg̃50.2 (1) and 0.3~2!.
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tal charge D, where D[eF exp@2lg# and Kr( l g)[Kr/2.
Around the energy corresponding to the charge gap, the t
spin shows a behavior similar to the one-dimensional c
with the gapless excitation. The solid curve, which is o
tained fromeF exp@2lt# with t̃ ( l t)51 denotes the crossove
temperature, below which the state reveals the property
two-coupled chains. Such a temperature becomes lower
the bare interchain hopping energyt/eF50.1 due to the
renormalization by the intrachain interaction.10,30 The dash-
dotted line denotes a boundary where the decrease of
perature leads to confinement~deconfinement! for g̃3

.g̃3c (g̃3,g̃3c). One finds the following four kinds of re
gions (I);(IV), which are separated by these boundari
The dominant state in region~I! is one-dimensional SDW. In
region ~II !, interchain hopping removes the degeneracy
the out-of-phase state and the in-phase state,30 but the energy

FIG. 4. The critical valuesg̃3c as the function of 2g̃22g̃1 for

t/eF50.1 and 0.01 with the fixedg̃150.2. The solid curves denot
the boundaries obtained for Eqs.~2.10!–~2.16!, while the dotted
curves are obtained in terms of the expandedKn .

FIG. 5. A crossover is shown on the plane ofg̃3 and temperature

T/eF ~or energy! where t/eF50.1 and g̃15g̃250.4. The dotted
curve and solid curve denoteD([eF exp@2lg#) andeFe2 l t, respec-

tively, where Kr( l g)5Kr/2 and t̃ ( l t)51. The dash-dotted line
separates the region of confinement from that of deconfinemen
the inset, the phase diagram of confinement and deconfineme
shown on the plane oft/eF andD/eF where the dash-dotted~solid!

curve denotes the boundary forg̃50 ~0.4!.
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is still high compared with the gaps for the transverse fl
tuations, which develop just aboveD ~dotted curve!. In this
region, one finds a crossover into the out-of-phase SD
state. The present calculation indicates a short-range cor
tion for the SCd state in a certain domain with smallg̃3
(,0.001) and finite temperatures just above the dot
curve. This could retain a trace that the ground state forg̃3
50 is given by the SC state.12,16,17In region~III !, the gap of
the total charge fluctuation develops. At very low tempe
tures, all the fluctuations become gapful due to relevant
terchain hopping. In this case, the correlation of the S
state as well as the SDW state decays exponentially. We
that such a state in the limit of low energy corresponds to
‘‘C0S0’’ phase, which has been obtained at half-filled ba
by Balents and Fisher.17 In region ~IV !, the gap of the total
charge is so large that the interchain hopping becomes i
evant leading to the isolated chains24 and then the absence o
other gaps. The state in this region has a resemblance to
of the half-filled one-dimensional chain.18 In the inset, we
show a phase diagram of confinement and deconfinemen
the plane oft/eF and D/eF in the limit of absolute zero
temperature, where the dash-dotted curve~solid curve! cor-
responds tog̃50 (0.4) in Fig. 3. The region for confine
ment increases by the increase of intrachain interactiong̃.
The ratio in the interval region of 0.01,t/eF,0.3 is given
by D/t.1.1 (0.7,D/t,0.9) for g̃50 (0.4).31 These re-
sults indicate the fact that the deconfinement-confinem
transition is determined essentially by the competition
tween the charge gap and the interchain hopping energy

IV. DISCUSSION

In the present paper, the effect of umklapp scattering
two-coupled chains has been examined by calculating
boundary for confinement and deconfinement as the func
of umklapp scattering, interchain hopping, and intrachain
teractions. It has been shown that electrons are confined
single chain when interchain hopping becomes smaller t
a critical value of the order of the charge gap or the umkla
scattering exceeds a threshold.

We discuss the validity of our calculation of renormaliz
tion group equations given by Eqs.~2.10!–~2.16!. Here we
calculate these equations by making use of the expans
Kn

61( l )517Gn( l )1•••(n5r, s, C, and S), where the
initial conditions areGn(0)5gn/2pvF . Since such a method
leads to a solution with the SU~2! symmetry, we have done
the following two kinds of evaluations. One of them
shown in Fig. 4 by the dotted curve, which denotesg̃3c as a
function of intrachain interaction with fixedt/eF50.1 and
0.01. A good coincidence between the solid curve and
dotted curve is obtained for 2g̃22g̃1.0. The other is shown
in Fig. 6 by the dotted curve, which denotesg̃3c as a function
of t/eF for g̃15g̃25g̃50.3. There is a small difference be
tween the result without the expansion ofKn ~solid curve!
and that with the expansion ofKn . Thus, such a calculation
may be justified within the present choice of parameters

Instead of treating two-coupled chains with the sp
Fermi surface, Khveshchenko and Rice applied the boson
tion method to two degenerate bands and enlarged the
-
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rameter space of the renormalization group to examine
pair hopping for the case of the relevant intercha
hopping.15 We discuss the effect of the pair-hopping proce
on the present result with the half-filed band. Expressing
pair hopping in terms of Eqs.~2.2!–~2.5!, we obtain non-
linear terms consisting ofur1 ,us1 ,uC1 and uS1 , which
are also found in Eq.~2.9!, except for a new term given by
g8 cos(A2ur1) cos(A2us1).15 When the interchain hopping
is larger than the charge gap, the pair hopping becomes
evant. In such a region,t̃ ( l ) andKr( l ) of the present pape
exhibit trajectories similar to those of Ref. 15 and the diffe
ences in magnitudes are small, although theg8 term gives
rise to a visible enhancement of the spin gap obtained
Ks( l ). It is noted that the interchain hopping is not reno
malized directly by theg8 term since the right-hand side o
Eq. ~2.16! is determined only by terms includinguC1 . When
the interchain hopping is smaller than the charge gap,
pair hopping becomes irrelevant due to confinement, e
g8.0 at the energy of the charge gap. Therefore, it is c
sidered that the effect of the pair hopping is small for t
boundary between confinement and deconfinement.

Now we examine the effect of the forward scattering w
the same branch, where the coupling constant is given byg4.
The Hamiltonian corresponding tog4 is expressed as

Hint
g4[

g4

2L (
p,s,i

(
k1 ,k2 ,q

ak1 ,p,s,i
† ak2 ,p,2s,i

†

3ak21q,p,2s,iak12q,p,s,i , ~4.1!

which has two kinds effects. One of them appears inKr ,
Ks , vr , and vs , which are written asKr5$@12g̃r /(1
1g̃4)#/@11g̃r /(11g̃4)#%1/2, Ks5$@12g̃s /(12g̃4)#/@1
1g̃s /(12g̃4)#%1/2, vr5vF@(11g̃4)22g̃r

2#1/2, and vs

5vF@(12g̃4)22g̃s
2 #1/2 with g̃n5gn/2pvF . Another is the

nonlinear terms given by

FIG. 6. The critical valueg̃3c as the function oft/eF for g̃
50.3. The solid curve corresponds to the calculation in Fig. 3 a
the dotted curve is obtained by use of the expandedKn . The dashed

curve is the results forg̃15g̃25g̃450.3. In the inset, the phas
diagram of confinement and deconfinement is shown on the p

of t/eF andD/eF for g̃15g̃250.3 where the solid~dashed! curve is

calculated forg̃450 (g̃450.3).
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1

2p2a2E dxFgC1,C2 cosSA2uC12
4t

vF
xD

3cosA2uC21gS1,S2 cosA2uS1 cosA2us2G , ~4.2!

wheregC1,C252gS1,S25g4. Equation~4.2! leads to addi-
tional terms to renormalization group equations fort̃ ( l ) and
KC( l ), which are of the order ofo( t̃ 3) and o( t̃ 4), respec-
tively. There is also renormalization forGC1,C2 and
GS1,S2 . However, we found that, in the present calculatio
the latter effect given by Eq.~4.2! is negligibly small. On the
other hand, in the former case, there is a noticeable effec
g4, which comes from the variation ofKr . Note thatKr

(,1) increases with increasingg̃4 since the effect ofg4 is
equivalent to replacingg̃r by g̃r /(11g̃4) in Kr . The in-
crease ofKr(,1) reduces the renormalization of umklap
scatteringGr1,C1 . Then one needs largerg̃3 to obtain the
confinement. An example withg̃50.3 is shown in Fig. 6
whereg̃3c including theg̃4 term ~dashed curve! is compared
with that with g̃450 ~solid curve!. The quantityg̃3c is in-
creased byg4, i.e., the suppression of the region of the co
finement on the plane oft/eF and g̃3. In the inset, a phase
diagram of confinement and deconfinement is shown on
plane of t/eF and D/eF for both g̃450 ~solid curve! and
g̃4Þ0 ~dashed curve!. The fact that the critical value ofD is
reduced byg4 is understood as follows. The magnitude
Kr(0) for g̃4Þ0 is larger than that forg̃450, although the
difference between these two cases is very small as for
right-hand side of Eq.~2.10!. Since largerKr(0) leads to
,

of

-

e

he

slower decrease ofKr( l ), one obtains smaller gapD in the
presence ofg4. Thus, it is found thatg4 reduces the effects
of both intrachain interaction and umklapp scattering.

Based on the present calculation, we comment on e
tronic states for TMTSF and TMTTF salts, both of whic
show the correlation gap above the SDW state. Such a ga
possible for a choice ofT/eF.1022 in Fig. 5 whereeF
.103 K and T.10 K.1 The fact that the plasma edge pe
pendicular to chains is present for TMTSF salt~absent for
TMTTF salt!8 suggests the relevance~irrelevance! of the in-
terchain hopping. These behaviors of interchain hopping
found when the umklapp scattering satisfiesg̃3&g̃3c for
TMTSF salt andg̃3*g̃3c for the TMTTF salt. Thus, the ex
istence of dimerization, which increasesg̃3, is crucial to un-
derstand property of these salts above the SDW state.

For the metallic state, the above organic conductors m
be regarded as a doped system rather half filling since o
particle hopping between chains leads to a small devia
from the commensurate one.24 In this case, the metallic stat
is expected with increasing the doping rate as is shown
one-dimensional case.33 Actually, a crossover from confine
ment to deconfinement has been obtained in the presenc
doping even for two-coupled chains.34 It will be of interest to
study such an effect of doping on many-coupled chains.
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APPENDIX A: PHASE REPRESENTATION OF H AND ORDER PARAMETERS

By making use ofak,p,s,i5@(21)ick,p,s,11ck,p,s,2# ( i 51,2) andcp,s,m(x)5L21/2(ke
ikxck,p,s,m , Eq. ~2.1! is rewritten

in terms ofcp,s,m . The terms for interactions are divided into two parts, which consist of the scattering between electro
samem and the scattering between electrons with oppositem. since the former part is treated in the way similar to the kine
energy, we examine the latter part, which is defined asHint . By defining cp,s,m8 as cp,s,m8 (x)5(1/A2pa)exp(ipkFmx
1iQp,s,m), Hint is written as

Hint5
1

4 (
p,s,m

E dx$g1cp,s,m8† c2p,s,m8† cp,s,2m8 c2p,s,2m8 ei (sm)2pN̂a1g1cp,s,m8† c2p,2s,m8† cp,2s,2m8 c2p,s,2m8 ei (ps)2pN̂d1 ip

1g1cp,s,m8† c2p,s,2m8† cp,s,2m8 c2p,s,m8 ei (psm)2pN̂b1 ip1g1cp,s,m8† c2p,2s,2m8† cp,2s,2m8 c2p,s,m8 ei (ps)2pN̂d

1g1cp,s,m8† c2p,2s,m8† cp,2s,m8 c2p,s,m8 e2 i (ps)2p[ N̂b1mN̂d] 1 ip

1g1cp,s,m8† c2p,2s,2m8† cp,2s,m8 c2p,s,2m8 e2 i (ps)2p[ N̂b1pmN̂c] 1 ip1g2cp,s,m8† c2p,s,2m8† c2p,s,m8 cp,s,2m8 ei (psm)2pN̂b

1g2cp,s,m8† c2p,2s,2m8† c2p,2s,m8 cp,s,2m8 ei (sm)2pN̂a1 ip1g2cp,s,m8† c2p,s,m8† c2p,s,2m8 cp,s,2m8 ei (sm)2pN̂a1 ip

1g2cp,s,m8† c2p,2s,m8† c2p,2s,2m8 cp,s,2m8 ei (psm)2pN̂b1g3eip4kFxcp,s,m8† cp,2s,m8† c2p,2s,m8 c2p,s,m8 eip4p[ N̂a1dm,1N̂b2dm,2N̂d]

1g3eip4kFxcp,s,m8† cp,2s,2m8† c2p,2s,2m8 c2p,s,m8 ei (psm)2pN̂b1 ip1g3eip4kFxcp,s,m8† cp,2s,2m8† c2p,2s,m8 c2p,s,2m8 ei (sm)2pN̂a

1g3eip4kFxcp,s,m8† cp,2s,m8† c2p,2s,2m8 c2p,s,2m8 eip2p@dp,m,1~4N̂a2N̂72N̂8!1dpm,2~N̂31N̂4!#%, ~A1!
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where N̂a5@(N̂11N̂2)1(N̂31N̂4)1(N̂51N̂6)1(N̂71N̂8)#/4, N̂b5@$(N̂11N̂2)1(N̂31N̂4)%2$(N̂51N̂6)1(N̂71N̂8)%#/4,
N̂c5@$(N̂11N̂2)2(N̂31N̂4)%1$(N̂51N̂6)2(N̂71N̂8)%#/4 and N̂d5@$(N̂11N̂2)2(N̂31N̂4)%2$(N̂51N̂6)2(N̂71N̂8)%#/4.
By definingNi as the eigenvalue ofN̂i , it is found that the factor in Eq.~A1! commutes with the Hamiltonian, Eq.~2.1!, when
Na , Nb , Nc , andNd are integers. Such a choice of Hilbert space leads to negative sign for 2, 3, 5, 6, 8, 9, and 12th t
Eq. ~A1!. By expressingcp,s,m8 (x) in terms of the phase variables, we obtain the nonlinear terms in Eq.~2.9!.

Next we examine order parameters. For order parameterOLSDWi ,out
, which is expressed asOLSDWi ,out

52(s,msc1,s,m
† c2,s,2m52(c1

†c71c3
†c5)1(c2

†c81c4
†c6), we evaluate the correlation function given b

^OLSDWi ,out
(x)OLSDWi ,out

† (0)&. By noting that a typical term of this correlation function is rewritten as

^@c1
†~x!c7~x!#@c2

†~0!c8~0!#†&5^c18
†~x!c78~x!c88

†~0!c28~0!e2 i2p[ N̂b1N̂c] 1 ip&

52^@c18
†~x!c78~x!#@c28

†~0!c88~0!#†&, ~A2!

the correlation function is rewritten as,

^@2~c1
†c71c3

†c5!1~c2
†c81c4

†c6!#@2~c1
†c71c3

†c5!1~c2
†c81c4

†c6!#†&

5^@~c18
†c781c38

†c58!1~c28
†c881c48

†c68!#@~c18
†c781c38

†c58!1~c28
†c881c48

†c68!#†&. ~A3!

Therefore,OLSDWi ,out
in the response function can be expressed as

OLSDWi ,out
52(

s,m
sc1,s,m

† c2,s,2m→(
s,m

c1,s,m8† c2,s,2m8 , ~A4!

which leads to Eq.~2.17! with cp,s,m8 (x)5(1/A2pa)exp(ipkFmx1iQp,s,m). The other order parameters are obtained in a sim
way.

APPENDIX B: DERIVATION OF RENORMALIZATION GROUP EQUATIONS

We evaluate response functions by use of the renormalization group method.29,30 By treating the nonlinear terms in Eq
~2.9! as the perturbation, the response function foruS1 field is calculated up to the third order as

^Tt exp@~ i /A2!uS1~x1 ,t1!#exp@2~ i /A2!uS1~x2 ,t2!#&

5e2(KS/2)U(r 1
F

2r 2
F)1 (

n5r,s

1

~4p!2ṽn
2 (

e561
E d2r 3

n

a2

d2r 4
n

a2
e2(KS/2)U(r 1

F
2r 2

F)e22KnU(r 3
n
2r 4

n)

3„Gn1,S1
2 e22KSU(r 3

F
2r 4

F)$eeKS[U(r 1
F

2r 3
F)2U(r 1

F
2r 4

F)2U(r 2
F

2r 3
F)1U(r 2

F
2r 4

F)]21%

1Gn1,S2
2 e2(2/KS)U(r 3

F
2r 4

F)$ei e[U(r 1
F

2r 3
F)2U(r 1

F
2r 4

F)2U(r 2
F

2r 3
F)1U(r 2

F
2r 4

F)]21%…

1
1

~4p!2 (
e561

E d2r 3
F

a2

d2r 4
F

a2 e2(KS/2)U(r 1
F

2r 2
F)
„@GC1,S1

2 e22KCU(r 3
F

2r 4
F) cos 2q0~x32x4!1GC2,S1

2 e2(2/KC)U(r 3
F

2r 4
F)#

3e22KSU(r 3
F

2r 4
F)$eeKS[U(r 1

F
2r 3

F)2U(r 1
F

2r 4
F)2U(r 2

F
2r 3

F)1U(r 2
F

2r 4
F)]21%

1@GC1,S2
2 e22KCU(r 3

F
2r 4

F) cos 2q0~x32x4!1GC2,S2
2 e2(2/KC)U(r 3

F
2r 4

F)#

3e2(2/KS)U(r 3
F

2r 4
F)$ei e[U(r 1

F
2r 3

F)2U(r 1
F

2r 4
F)2U(r 2

F
2r 3

F)1U(r 2
F

2r 4
F)]21%…

2 (
n5r,s

4

~4p!3ṽn
2 (

e561
E d2r 3

F

a2

d2r 4
n

a2

d2r 5
n

a2
e2(KS/2)U(r 1

F
2r 2

F)e22KnU(r 4
n
2r 5

n)

3„@Gn1,C1Gn1,S1GC1,S1e22KCU(r 3
F

2r 5
F) cos 2q0~x32x5!1Gn1,C2Gn1,S1GC2,S1e2(2/KC)U(r 3

F
2r 5

F)#e22KSU(r 3
F

2r 4
F)

3$eeKS[U(r 1
F

2r 3
F)2U(r 1

F
2r 4

F)2U(r 2
F

2r 3
F)1U(r 2

F
2r 4

F)]21%1@Gn1,C1Gn1,S2GC1,S2e22KCU(r 3
F

2r 5
F)cos 2q0(x32x5)

1Gn1,C2Gn1,S2GC2,S2e2(2/KC)U(r 3
F

2r 5
F)#e2(2/KS)U(r 3

F
2r 4

F)$ei e[U(r 1
F

2r 3
F)2U(r 1

F
2r 4

F)2U(r 2
F

2r 3
F)1U(r 2

F
2r 4

F)]21%…1•••, ~B1!

where U(r i
n2r j

n)5 ln@A(xi2xj )
21vn

2(t i2t j )
2/a# for i , j 51,2,3,4, d2r n5vndx dt5vndx dt (n5r,s and F) and q0

[2t/vF . In order to obtain scaling equations of the coupling constants up to the second order, we need to calculate
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functions up to the third order for the nonlinear terms. Note that these terms do not exist in the one-dimensional ca28 By
putting r 55r 41r and r 55r 31r , and expanding nearr 50, we obtain the following renormalization in terms of effectiv
quantities,

KS
eff5KS2

1

2 (
n5r,s

Gn1,S1
2 KS

2E drF

a S r F

a D 322Kn22KS

1
1

2 (
n5r,s

Gn1,S2
2 E drF

a S r F

a D 322Kn22/KS

2
1

2
GC1,S1

2 KS
2E drF

a S r F

a D 322KC22KS

J0~2q0r F!1
1

2
GC1,S2

2 E drF

a S r F

a D 322KC22/KS

J0~2q0r F!

2
1

2
GC2,S1

2 KS
2E drF

a S r F

a D 322/KC22KS

1
1

2
GC2,S2

2 E drF

a S r F

a D 322/KC22/KS

, ~B2!

Gn1,Sp
eff 25Gn1,Sp

2 22GC1,SpGn1,C1Gn1,SpE drF

a S r F

a D 122KC

J0~2q0r F!22GC2,SpGn1,C2Gn1,SpE drF

a S r F

a D 122/KC

,

~B3!

GCp,Sp8
eff 25GCp , Sp8

2
2 (

n5r,s

2

ṽn

GCp , Sp8Gn1,CpGn1,Sp8E drn

a S r n

a D 122Kn

, ~B4!

wherer n5@x21(vnt)2#1/2, ṽn5vn /vF andp,p856. The second and third terms of the right-hand side in Eqs.~B3! and~B4!
are obtained by exponentiating the third-order terms of Eq.~B1!. For the transformation given bya→a85aedl,28 these
quantities are scaled as

KS
eff~K8,G8,q08 ,a8!5KS

eff~K,G,q0 ,a!, ~B5!

Gnp,n8p8
eff

~K8,G8,q08 ,a8!5Gnp,n8p8
eff

~K,G,q0 ,a!~a8/a!gnp,n8p8, ~B6!

whereK8,G8, andq08 denote renormalized quantities. The exponentgnp,n8p8 is given bygnp,n8p8522Kn
p2Kn8

p8 . By applying
this infinitesimal transform to Eqs.~B2!, ~B3!, and~B4!, we obtain renormalization equations given by Eqs.~2.12!, ~2.14!, and
~2.15!, respectively. In a similar way, the renormalization group equation forKn( l ) (n5r, s, andC) is calculated from the
response function given bŷTte

( i /A2)un6(x1 ,t1)e2( i /A2)un6(x2 ,t2)& and the equations forGn1,C6( l ) andGn1,S6( l ) (n5r and
s) are calculated from the response function forun6 field.19 We note that, in case oft50, these equations become equal
the one-dimensional equations.18

The renormalization equation fort̃ ( l ) is derived by evaluating the difference of the density between two bands (m56),
which is given by

Dn[2~kF12kF2!a12
T

LE dx dt^k̃F12 k̃F2&a

522q0a1A2
T

L
aE dx dt^]xuC1~x,t!&

522q0a1 (
n5r,s

4

a
Gn1,C1KC

T

LE dx dt^x sin~A2uC122q0x!cosA2un1&

1 (
p56

4

a
GC1,SpKC

T

LE dx dt^x sin~A2uC122q0x!cosA2uSp&

522q0a1 (
n5r,s

Gn1,C1
2 KCE drF

a S r F

a D 222KC22Kn

J1~2q0r F!

1 (
p56

GC1,Sp
2 KCE drF

a S r F

a D 222KC22KS
p

J1~2q0r F!1 . . . , ~B7!

where 4(k̃F12 k̃F2)/2p[(p,s,mmcp,s,m
† cp,s,m . The assumption of scaling invariance of Eq.~B7! with respect to infinitesi-

mal transformationa85aedl leads to Eq.~2.16!.
The response functions are calculated in terms of the solutions of Eqs.~2.10!–~2.16!. The response function forOSS', in

,

which is defined by RSS', in
(x12x2 ,t12t2)[^TtOSS', in

(x1 ,t1)OSS', in

1 (x2 ,t2)&, is calculated by writingRSS', in
(x,t)
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[RSS', in

(0) (x,t)FSS', in
(x,t), whereRSS', in

(0) (x,t)5(a/Ax21vr
2t2)1/2Kr(a/Ax21vs

2t2)Ks/2(a/Ax21vF
2t2)(1/KC1KS)/2. By assum-

ing the scaling relationFSS', in
@r ,a( l ),Kn( l ),G( l )#5I SS', in

@dl,Kn( l ),G( l )#, FSS', in
@r ,a( l 1dl),Kn( l 1dl),G( l 1dl)#, the

multiplicative factorI SS', in
is written as,

I SS', in
5expX2Gs1,C2dl1Gs1,S1dl1GC2,S1dl1

1

4ṽr
2 $2Gr1,C1

2 J0~2q0a!2Gr1,C2
2 2Gr1,S1

2 2Gr1,S2
2 %U~r 1

r2r 2
r!dl

1
1

4ṽs
2

Ks
2@Gs1,C1

2 J0~2q0a!1Gs1,C2
2 1Gs1,S1

2 1Gs1,S2
2 #U~r 1

s2r 2
s!dl

1
1

4 H (
n5r,s

@2Gn1,C1
2 J0~2q0a!1Gn1,C2

2 /KC
2 1Gn1,S1

2 KS
22Gn1,S2

2 #1GC1,S1
2 ~211KS

2!J0~2q0a!

1GC1,S2
2 ~22!J0~2q0a!1GC2,S1

2 ~1/KC
2 1KS

2!1GC2,S2
2 ~1/KC

2 21!J U~r 1
F2r 2

F!dlC, ~B8!

which leads toFSS', in
expressed as

FSS', in
~r ,K,G!5expX (

l 50

ln(r /a)

ln$I SS', in
@dl,K~ l !,G~ l !#%C. ~B9!

We note that terms including the second order of the coupling constants are rewritten in a simple form. For exam
obtains

1

4E dlH (
n5r,s

@2Gn1,C1
2 J0~2q0a!1Gn1,C2

2 /KC
2 1Gn1,S1

2 KS
22Gn1,S2

2 #1GC1,S1
2 ~211KS

2!J0~2q0a!

1GC1,S2
2 ~22!J0~2q0a!1GC2,S1

2 ~1/KC
2 1KS

2!1GC2,S2
2 ~1/KC

2 21!J lnF r

a~ l !G
5

1

2E dlH 1

KC
2 ~ l !

dKC~ l !

dl
2

dKS~ l !

dl J lnF r

a~ l !G
5

1

2 H 1

KC~0!
1KS~0!J lnS r

a D2E
0

ln(r /a)

dl
1

2 H 1

KC~ l !
1KS~ l !J , ~B10!

wherea( l )5ael . Thus, the normalized response functionR̄SS', in
(x,t)@[RSS', in

(x,t)•2(pa)2#, is expressed as,

R̄SS', in
~x,t!5expF E

0

lnAx21(vrt)2/a
dlS 2

1

2

1

Kr~ l ! D G
3expH E

0

lnAx21(vst)2/a
dlF2

1

2
Ks~ l !2

1

ṽs

Gs1,C2~ l !1
1

ṽs

Gs1,S1~ l !G J
3expXE

0

lnAx21(vFt)2/a
dlH 2

1

2 F 1

KC~ l !
1KS~ l !G1GC2,S1~ l !J C, ~B11!

which leads to Eq.~2.22!. Other response functions are obtained in a similar way. In deriving Eqs.~2.20!–~2.22!, we replaced
vr andvs by vF , which may cause a slight deviation of the numerical factor.
,
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