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Proceeding from a coherent-state functional-integral approach we give a first-principles theory of general-
ized pairing phases in a dense neutral system of electrons and protons. Apart from a standard stationary phase
approximation the approach is general, it requires no adiabatic separation of time scales, and it can be applied
for arbitrary temperatures. For the resulting mean-field theory, we show that pairingtloglectronsand
protons is possible at low temperatures, and especially so when an appropriately defined electron-proton order
parameter becomes sufficiently large. As a preliminary to the experimentally important case where the protons
order in a crystalline phase, the case of continuous symmetry is first presented. Among generic results is the
prediction, through a stability analysis, of a charge-density wawe repairing, and the location of a critical
point, both discussed in light of recent experiments on the high-pressure states of hydrogen.
[S0163-182699)05219-4

[. INTRODUCTION states where one class of Fermions exhibits crystalline order.
The formal changes required to embrace crystalline physics
It is clear experimentally, and also well understood sinceare actually not extensive and can be handled within the
the initiating paper of Heitler and Londbthat in the four- same method, but the results are now richer, presenting sig-
particle problem represented by two electrons and two pronificant band-mode structure for both components. Although
tons, the ground state is one in which the protons areve point to some important changes, expected from the cor-
strongly paired by the electrons. This pairing is known toresponding physical modifications, we argue that some of the
persist in the condensed crystalline state of hydrogen to vergeneral mean-field conclusions are not qualitatively affected.
high densities, approaching 11-fold compression over the In approaching the problem of collective quantum states a
self-stabilized density. Given the simplicity and symmetry ofpowerful method is the functional-integral technidife,
the many-body Hamiltonian governing such a system, thevhere the partition function for the many-body systéma
guestion of pairing in a more general sense naturally arisegrand-canonical ensemble at finite temperafusegritten as
Put in its simplest form the question could be posed this waya coherent-state functional integfdn the case of Fermions
in a dense dual Fermion system Nfelectrons andN pro-  this integral is recast in terms of Grassmann variables
tons, can the protons themselves lead to pairing of electropy* , ¥ rather than complex variables, thereby defining an
states? In the context of ordinary superconductivity in simpleaction S W* , W] that is generally not expected to be calcu-
metaIS, the answer can be considered well known. Here WRble for an arbitrary many-body System_ Then the usual pro-
will focus specifically on the notion of mutual pairing of cedure is to perform, for the interaction term, an appropriate
electrons and protons, but go one step further and inquire, ipjubbard-StratonovicliHS) transformatiof® as dictated by
the many-particle context about collective quantum stateghe physics that is being pursued. In this way new collective
that also involve electron-proton pairing. fields {A*,A} are introduced as well as a new action
Though the system to be discussed is an ensemble of ele%[\lf*,\P;A*,A] the latter now being quadratic in thie's.
trons(charge— €) _and protone{charg_e—l_— €), the problem_can By carrying out a Gaussian integration the final action
be generalized still further to two distinct sets of Fermions of= . . . :
A*,A] is obtained in terms of the new fieldsand up to

opposite charges and with different masses, examples beintg. , _ . ; .
this point the procedure is exact. From this point on approxi-

electrons and positrons, electrons gad mesons, etc. The S . !
mation is necessary, one path being to follow a stationary

changes required for positive particles of charg&e are h imatiofSP h ition f .
quitestraightforward, provided conditions on density arePNase approximatioiSPA) to the new partition function,

chosen appropriately. We choose to start with the fundameri-€., by imposing an extremization & with respect to the
tal Hamiltonian without formally breaking the translational A’s. The extremization of gives the mean-field equations
symmetry; this way our results rigorously apply to continu-that the new field\ is obliged to satisfy. As noted, the choice
ous single-particle states. We then provide the modificationsf the HS transformation is dictated by the collective char-
necessary to describe the important class of experimentailcteristics of the physics considered, while the stationary-
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phase approximation is merely equivalent to an assumption )
that the collective character of the physics was indeed cor- H[‘I'*,‘I’]:f dx¥* (x7)e(—iV)W(x7)
rectly chosen and the fluctuations around the mean-field so-

lution for the A’s are therefore smalland can be ignored as 1 . .

a first step. + > dx dy¥* (x7)¥* (yr)v(x—y)
The above scheme is directly applicable to a single-

component Fermion system with pairing correlations. The XW(yr)W(X7). 3

appropriate HS transformation for this problem is well
known?7 and in this case the new collective fieMis the
corresponding BCS gap parameter. The final equatio\for

resulting from the extremization & is then the BCS gap B

equation. As background to the electron-proton problem that S¥*. ¥]1= fo de dx dy{q’*(”) S(x—y)
follows, it is useful to review this continuous phase one-

component proceduréec. l) since the formal changes re-

quired for crystalline phases are not substantially different. X
In Sec. Ill we then give a complete generalization to a two-
component system of oppositely charged Fermions with dif-
ferent massegelectrons and protons being an example
which leads, not unexpectedly, to four gap equations. These
correspond to electron-electron, proton-proton, and electron- =S5y + Sint (4)
proton pairings. Depending on density range these equatioq

have interesting limiting behavior, a matter that is discusse Ltionally invariant systene(k) = k2/2m, for localized states

in Sec. IV, by way of application we also consider in Sec. Vsee belowy, v is the effective pairwise interaction between

the modifications required for the standard experimental s,ltut—he identical Fermiongand not necessarily attractive at this

ation where the proton states possess crystalline symmetryével) the ¥'s are the Grassmann variables parametrizing

and we discuss the ensuing results in relation to dense h¥ﬁe Fermion coherent states for this system, and firgjly
Qrogen. Finally, in Sec. VI we discuss possible generalizaaenotes the term not containimg We next usé a Gaussian
tions of the method to other physical systems. integration, which is generally valid for Grassmann numbers,

namely

A combination of Eqs(2) and(3) then leads to the separa-
tion

J
&—T+e<—iV>—u}\P<yT>

1
+ PNy Do (X=y) Py )W (x7)

Eq. (4) the (k) are single-Fermion energié¢for a trans-

II. FUNCTIONAL INTEGRAL APPROACH FOR A

ONE-COMPONENT SYSTEM
exp“ d1d2f*(l)C1(1,2)f(2)}

We start from the grand-partition functian for a one-
component system of identical Fermions in voluive at
temperaturel and chemical potentigk (for notational con- =(detC)‘1f D[A*]D[A]
venience we set=1 in everything that follows In terms of

a coherent-state functional integral the partition functas — = = = -
generally written &% X ex —f d1d2{A*(1)C(1,2)A(2)+5(1-2)
Z= f D[W* (x7)]D[¥ (x7)] X[f*<T>A<T>+f(T>A*<T>]}). (5)
T(x,8)=—¥(x,0)
xexp —Jv*,¥)) (1) In order to apply Eq.(5) we use variables %xyr,2

=x'y'7" etc. and make the identifications
whereS s the action

f(1)=¥(xn) ¥ (y7) ®)
S= fﬁd fdx\lf*(x ) 7 ¥ (x7) and
=/, T T e M T
Ly g BOyTXY'T)
+H[\If*<r)n1f<r>]] @ ¢ 1= 2 @

) ) _ (the reciprocal being understood in the functional sgnsth
In Eq. (2) we choose a notation that includes spin, namely

x={r,s} in terms of which[dx=3.[d%. Generally, the v(xyr, X'y ) =v(x—y)(x—x")S(y—y')S(7—17").
paths in the partition function are constrained by the standard (8
periodic- or antiperiodic-boundary conditions correspondin
to Bosons or Fermions, respectively. In our case of Fermio
antiperiodic boundary conditions have been used in(Ey.
as constraints in the selection of paths. The HamiltoRrlan
Eq. (2) is assumed to be in normal ordge., all ¥*'s ap- exr[—Sim]=(const D[A*]D[A]lexd—S'], (9
pear to the left of allP’s), and for a one-component system

with static pairwise interactions it is given by with

9hen because of Eq(5) we may invoke a Hubbard-
NEtratonovich transformation, namely
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1
=f d1d2A*(1)C(12)A(2) ~ S AYDW(y7) ¥ (x7)
—f d1[f*(1)A(1)+f(1)A*(1)]. (10

1
32 v(X— y)|

The quite crucial point for the two-component case to
follow is that Eqg.(12) can be recast in a compantatrix
Z[\I’*,\P;A*,A]z(consbf D[V*]D[V¥]D[A*]D[A] form, namely

(xy7)| ] (12

Finally, if we rescaleA — — A/2 we obtain in detailed form

Xexp[JW*, W;A* A}, (12) “S[\If*,\lf;A*,A]:f d1i dz[%CD*(l)[—A(lZ)]@(Z)
with

1A* 12
+3 (12

~ B

SU* P A* A= fo drf dx dy{\lf*(xﬂé(x—y)
where now we have changed notation to local variables

1=x7 and we have also defined a vector

x[—i—e(—iV)ﬂL W(yr)
or (1) \I’(l)}
1 * * * (1): q,*(l) (14)
_EA (Xyr) ¥ (xr) ¥ (y 7) and a matrix
J
51— 2) +6(—|V) 4 A(12)
A(12)= 5 (15
A* (12 8(1-2)| = e(=iV)+p
As a consequence the partition functigil) can be written, equally compactly, as
1 ~
Z:(consyj D[A*]D[A]f D[<I>*]D[<I>]exp[fd1 d2 —§<I>*(1).A(12).CI>(2)”
l *
X ex fdleEA (12) o= Z)A(12) (16)

and this presents a form where we can once again use tfhis approximation is well known to be very accurate in
Gaussian integratio(b) to eliminate the old field¥’. In this  standard BCS-type theories involving pairing in momentum
case the functional integral ovdr in Eq. (16) simply gives  space, and a physical discussion of its more general validity
det/2), which can also be writtéras exjtr In(A/2)]. The  is given in the next section. If a solution to H49) exists, it
final result is, therefore, will provide the mean-field result fok, and the resultingh

is the usual BCS gap parameter, as is now demonstrated:

— First, extremization of Eq(18) with respect to the\'s
2~ (cons) [ DIA*IDIATeR(SA A, (A7) yieide i P

0 o2 Fasan(® %]-0
1a(12)? oav (12 w12 A 1A o) |70
* =
SA* A]= trIn fd d2 v1-2) (19 or
This result forZ is exact but written in terms of a field, - 00
which is unknown. To elucidate the physical meaning to be A(19)=—v(1 A" (12) , ]| (20
attached taA we proceed with the usual SPA which is em-
bodied in the statements Next, imposition of the condition
5S 5§_0 1 8S
SA* T SA (19 S5A(12)
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gives
. 0 1
A*(12)=—v(12tr A~ (12 o ol (22)

Now A1 is the Green’s-function matris for the funda-
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1

N ) d*k . .
G(32)=— e_'w"732fme'kr32(3(k,wn)- (23

where the Matsubara frequencies for Fermions are the poles

mental particles moving in the pairing field in the sense thaf)f the Fermi function, namely

f d3A(13)G(32) = §(12)1. (22
We next Fourier transform t&-space and Matsubara fre-
guenciesw, (which account for the antiperiodicity properties
of the Grassmann fields as functionsrafith periodg), i.e.,
we write

3 i _
%2 j (: |§3 eikrlze*iwnfﬁ le—‘:’?(kl;)
on T
and this shows that
A 1
Gk,w,)=

w2+ [e(k)— ul?+]A(K)[2

Using this in the Fourier transform of E¢RO) we obtain

, A(K')
2 2 vk ) - WP AROP

(27)
and in a similar way Eq(21) gives the complex conjugate
equation.

A(k)=

1
B

io,=i(2n+1 il 24
lwy=1(2n )B. (24)
Then, Eq.(22) reads
2 A(k) . )
—iw,—e(K)+u G(k,on)=0(12)1, (25
iwn+ e(k)—u A(K)
A* (K) iw,—e(K) + ) (26)

and even if this is true, it certainly depends on whether the
pairs constitute a stable phase, which in turn requires a posi-

tive determinant for the second derivative matrixSfvith
respect taA’s. This latter point is also of importance in the
stability of pairing phases in the two component contsge
below).

Finally, we are required to carry out the frequency sums

over the Matsubara frequencias, in Eq. (27). These are
found in Appendix A and the final result is very familiar,
namely

Ak BE(K)
A(k)=— k—k’ —tanh , (28
(k) == 2 v(k—k') 5y tanh—; (28)
where
E(k)=\[e(k) — I+ AW, (29

This is the usual BCS gap equation for the gap parameter
at temperaturd, together with the standard BCS quasiparti-
cle spectrum29). It describes Cooper pairs at high densities,
and even tightly bound paif$Schafroth pairs”) in the low-
density limif (where it simply gives the Schdinger equa-
tion for the pair wave function ik space. Accordingly, this

[lI. FUNCTIONAL INTEGRAL APPROACH
FOR A TWO-COMPONENT SYSTEM

Motivated by the physical example of hydrogen, a dual
Fermion system, we now discuss in detail the simplest gen-
eralization of the above procedure to the simultaneous for-
mation of all possible pairsf(f,,f.f,,f,fp) arising in a
neutral and thermodynamic mixture of two different classes
of Fermions, but now with the fundamental Coulomb inter-
actions included in all such pairings. As will be seen, the
structure of the development closely parallels the one-
component case, although the presence of two components
and the symmetry of the Hamiltonian leads to a generalized
matrix description that has no analog in the one-component
case (see below. Once again we start from the grand-

procedure, which we shall next extend to two Componemspartition functionZ for this two-comp_onent syst_em in vol-
demonstrates the manner in which the results of standardme V, at temperaturel and chemical potentiaj= u,
pairing theories can be derived for a one-component systent ., . The definitions of the chemical potentials in this case

with some effective static pairing interactien proceeding

involve number variations, which are constrained to neutral

from a very compact and general approach within a stationfluctuations; this is nontrivial and it resulfsin interesting

ary phase argument. The physical possibility of pairing de
pends of course on whether the physical nature &f such
that Eq.(28) possesses nonzero solutions fofan attractive
interaction, for example, is more likely to yield a solutipn

Telations betweenue,u, and linear-response functions. In

terms of a coherent-state functional integral the partition
function Z is now written as the straightforward parallel of

Eq. (1), namely
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. . once again used in EG30), appearing again as constraints in
Z=J D[‘I’e(XT)]D[‘I’e(XT)]J DLW, (x7) D[V y(x7)] the selection of paths, but now separately for each compo-

nent, namely
Xexp—S(We W, WP, W, ]), (30)
whereSis the action Vo(x,8)=—W(x,0),
B J
SZJ dT[ f dx ‘I’:(XT)((?—T—,LLe)\I’e(XT) and
0

W (X, B)=—W 5(x,0).

0
-i-\lfil.c (XT)(E__ ,u,p) ‘I’p(XT)

(In the case of deuterium the latter must be replaced by
+H[PE(7), Ve r),\If;(r),\pr( T)]) (31 periodic-boundary conditionsAs before, the Hamiltoniahl
is assumed to be in normal order, and in the case of a two-
again with the notatiof dx=3./d% . The standard antipe- component system with static pairwise interactions of the
riodic boundary conditions corresponding to Fermions areCoulomb type it is given by

IR 298 N ,«pr]zf dX‘I’;(XT)Ee(—iV)‘I’e(XT)-l—f dXP % (x7) (=1 V)W (x7)
1
+§f dx dy¥ 3 (xT) W5 (YT)vo(X—Y)Pe(yT)We(XT)
1
+§f dx dy¥ 5 (xn) W (Y1) v(X—Y) W (y7) W p(x7)

—f dx dyW g (X)W (Y1) v (X—Y) W (Y1) W e(X7), (32
v:(X—Yy) being the bare-Coulomb interaction

(33

As a consequence of the form of E§2) the action Eq(31) again takes the separable form

SVE W, ,qu]zfoﬁmf dx dy{‘l’é‘(xﬂé(x—y) (%+ee(—iV)—,ue}\Pe(yr)wL‘P;(XT)cS(x—y)

X

0 1
H—T+ep(—iV>—Mp}\Pp<yr>+ SWEXDWE(Y DX Y)Wy r) We(x7)
1 1
S UE XD WS (YD (XYW (Y)W p(x7) = 5 WE (X)W H (Y D)o e(X=Y) Wy ) W o(x7)

1
— 5 Y (xn)We (yT)vc(X_y)qfe(yT)q,p(XT)]

=So+ Sint (34)
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where S, denotes the terms not containing. For a trans- and
lationally invariant system we again hawg(k) =k?/2m,, & xy)
with a={e,p}. Note that in what follows we take these en- ._; _ ViXy o o .

ergy dispersions to be quite genefal(k) for example, 2= 2 Sx=x")dly=y") (7=, (39
could correspond to a band structure, with protons being in .
an extreme tight-binding or Hubbard limit, see Sed. V ?nedn(lEO()q].(fh)alteads to the resultthe companion of Eqs9)

Next, it is important to observe th&,,, can be written in
a matrix form (as noted this has no analog in the one-

component cagenamely ex;{—&nt]=(constf D[A*]D[Alexd —S'], (40
N 1 B, 2 with
Sl ¥ ,\IF]=§ dxdy| dr¥F*(xyr)V(xy)W(xyr),
0 ~
(35) S’=J' d1d2A*(1)C(12)A(2)
with
W (x7)WE (y7) - f dL{W* (1)A(L)+W(1)A*(1)}. (41
* *
W(xyr)= \I}E(XT)\PE(W) , (36) Here the “natural form” forA (again with no analogy to the
gi (XT)gg (y7) one-component casés
X
p( T) e(yT) A:G(XyT)
and *
Ap(Xy7)
_ pp
10 0 0 A(D)= Af(xyr) | (42)
= 01 O 0 A¥ (X
Vo=uen| g o o | @D o)
- and it immediately introduces the four-order parameters that
0O 0 0 -1 will be essential in the discussion that follows. If as earlier

. . e subsequently rescald— —A/2 the partition function
The structure of Eq(35) arises entirely because of thgm- we subsequently - parti unct

metry of the Hamiltonian(32) with respect to the Coulomb then reads

interactions and is ideally suited to yet another HS transfor-

mation of the type(5). Indeed, if we use the notation 1 ZZ(COHSDJ D[Ww*]D[W]D[A*]D[A]

=xyr, 2=x'y’7’, etc., and make the identificatiorisee

Egs.(6) and(7)] Xexp{JW* , W;A* AT}, (43
f(1)=w(xy7), (389  with

~S[\P*,W;A*,A]=foﬁdrf dx dy: \I’;(XT)ﬁ(X—y)[—%—Ee(—iV)‘f‘Me Wo(yT)

1
Wo(yr)— EA*(xyr)‘I'(xyr)

d
+\If§(xﬂ5(x—y){ — oo ep(TiV)

1 0 O 0
1 1 1 01 O
— * 4 - *
2A(xy7-)\1f (xyT) 5 vc(x—y)A (xyr) 00 -1 0 A(XYT) ¢, (44
00 0 -1
|
which is now the analog of Eq12). V(1)
Once again, Eq44) can be recast into mewmatrix form T* (1)
[which is essentially a generalization of Nambu’'s P(1)= q,e(l) (45)
proceduré! as in Eq.(13)]. Indeed, if we change notation \Iff(l)
p

once again to £xr, etc.(so thatfdlzfgdrfdx, etc) and
if we define[see Eq(14)] and
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A%(12) In Eq. (47) we have the definitions
A*(12)
A(12=| & (46)
Bed 12 10 0 0
AR{(12) . 1
then Eq.(44) can be written afsee Eq(13)] Vv i12= 1=l 0 0 -1 , (48
é[\lf*,\p;A*,A]zf d1d2(%¢*(1)[—A(12)]c1>(2) ©c o 0 -1
+ %A*(lz)f/l(lz)A(lz)]. 47 and
5(12) %+ge A(12) 0 Aed12)
A%(12) 5(12) ( (%— ge) A%(12) 0
A(12)= ; , (49)
0 Ad12) 6(12)| -+ g, Ap(12)
d
ATL(12) 0 AT(12) 5(12)({9—7— §p)

where we have used the notatigg= e,(—iV)— u,. Equation(49) is now clearly the two-component generalization of Eq.
(15) that takes into account the symmetry of the two-component Hamiltonian.
The partition function can, therefore, finally be written as

z=(consy><f D[A*]D[A]J D[@*]D[cb]exp“ dldz[—%@(l)A(lz)q)(z)H

1 -
Xepr di dZEA*(lz)V‘l(lz)A(lz)}, (50

and this may be compared directly with E4.6). Using a  and this can be seen as the parallel of B&).

Gaussian integration over Grassmann variables, namely After a sequence of exact manipulations we again arrive
at a point where the stationary-phase approximation can be
implemented comparison can again be made with steps be-

f D[<I>*]D[<I>]exp{ f d1i d2®*(1){—¥}@(2)] ginning with Eq.(19)]:

A A

=de< 5) =exr{tr In(E) (51 . 0000

S _Aee(lz)th A-1(10 1 0 0O o

to integrate out tha field we then obtain SA%(12)  v(12) ' (12 0 00 Off
0 0 0O

~ (54)

Z=(consbf D[A* |D[A]exp(§ A*,A]), (52
with 0 0 0O
5S A (12) . 0 00O
_ 2o -1 _

. = + =0,

_ Al 1 e 5512 vt A 12l 0 0 of |70
SA*.Al=trin| 5 +§fd1d2A (12V-Y2)A(12), 00 10

(53 (59
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0 0 0 O As mentioned earlier, the SPA is generally justified for
— k-space pairing, and on general physical grounds it would be
0S  —Ag12) +tr| A"1(12) 0010 -0 expected to be accurate fAg.. In addition, we shall see that
SAL(12) (12 0 00O " the results that follow show considerable evidence that the
000 O approximation is satisfactory fok,, and A, as well® as
(56) they approximately reproduce the low-density real-space
pairing [see Eq.(82)].
and To proceed from this point we are again required to Fou-
000 O rier transform Eqs(54)—(57) to k-space and to Matsubara
o 00 0 0 frequenciesw,, i.e., we write agaiffas in Eq.(23)],
S —A,d12) .
+tr| A7Y(12). =0. 3
SAT12)  ud(12) 1215 0 0 o &(32)= Bz o .wmf (2d7r|;3 3G (ko))
1 0 0O @n
(57)

where the Matsubara frequencies for Fermions are given by
It is evident thatdS/ 5A .{12)=0 will yield an equation that Eq. (24). We can now find the Green’s-function matdx *

is conjugate to Eq(54), and thatéS/ 54 ,(12)=0 will also ~ appropriate to fundamental particles moving in the “multi-
yield an equation conjugate to E@5). On the other hand, if pairing” field. Beginning again witfjsee Eq.(22)]

we impose the condition that equatio&‘gl 0A¢(12)=0 and

85/ 5A,((12)=0 must yield equations completely conjugate f d3A(13)G(32)=8(12)1 (59
to Egs.(56) and (57), respectively, we then obtain the con-
straint that and using Eqs(49) and(23), we obtain

AepA ;e: A peA zp, (58 1 d3k

ki wnT
and that they both must be real. This will have simplifying g < | (27)° eikrzemion A (K, w,) G (K, w,) = 8(12)1.

consequences in the calculations that follsee Appendix

O. This clearly is the analog of E@25), but now with
|
—iont&e(K) Acdk) 0 Aegk)
A (koo = AZdK) —iwn—&e(K) | AG(K) 0 60
0 Apd k) —lw,+&y(k) App(k)
ATLk) 0 ATLK) —lw,—&(k)

where¢, (k)=¢€,(k) — u, . [As will be seen below, the form 1
of £,(k) depends heavily on the choice of conditiofe., Apdk)= 52 2 vek—KD[G(K' ,0)1a, (69
density and the mass of the prothrThis result shows that “n

G(k,wn) is the inverse of the matria(k,w,,) [see also Eq. where
(26)], and it can be found easily. If we use it in the Fourier

transform of Egs.(54)—(57), we obtain four “gap equa- )
tions,” as follows: Xij (K", wn)

[é(k',wn)]ijfm-

(65

Aee(k):—EZ > v(k—k)[G(k',0y)]12, (61)  The definitions of quantitieX;; and the determinant det are
BAT on quite straightforward, but they are also quite lengthy; they
are given in Appendix B. Equatior§1)—(65) are now seen
to be the direct generalizations of EQ7).
Apk)= ] 2 > vk—k)D[G(K',01) ]34, (62 The final step consists in carrying out the frequency sums.
k' @n These are also found in detail in AppendiX &hd are aided
by the constrain{58)]; the gap structure resulting from this
procedure is quite rich, as we shall see. Applying the results
Ag k)= = E > ve(k—k)[G(k' w132, (63  of Appendices B and C to Eq#1)—(64) we can determine
B o the “gap equations,” which are also the direct generaliza-
tions of Egs.(28) and (29). They have the following final
and forms, namely:
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vo(k—k")Acdk')

Aee(k)=—§ 2[ri(k")—r5(k")]
K’ ¢
X rl(k')tanhmlT()—rs(k’)tanhﬁr?’T()
K’ "
tanh'BrST() tanhﬁrlT()
+De€(k,) rs(k!) - rl(k’) ,
(66)
_ o Vek=k)Apk")
Apy(k)= % 22k —r2(k)]
| [rakytant® 250 ey annPre)
2 2
tanh'gr3(k ) anhﬁrlz(k )
Ol e k) 1)
(67)
_ ve(k—k")Apdk")
| racktant 0 gt
tanhﬁrsék ) anh'Brlz(k )
+Dep(k,) rs(k/) rl(k') (68)
and
_ ve(k—k")Agd k")
Ape(k)—‘f'% 2[fi(k')_l’§(k')]
| a2 a2
tanh’3r3ék ) anh’Brlék )
+Dpe(k,) rg(k,) rl(k’)
(69
Here,

, , , . Ak ALK")
Ded k') =&5(K") +]Apik") 2= Af(K") :

Aedk’)
(70
Aok )A (K’
Dpp(k,):fg(k/)+|Aee(k')|2—A§e(kl)%’
pp

(71)
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Deg k') =&a(k")ép(K' )+ Aed k") Apdk")
—Aee(k’)App(k’)ik:). (72
Apdk’)
and
Dpd k') =&a(k")ép(k" )+ Apd k") AL K")
A (i , Aglk)
In the above we also have
2 ’
ri(k’)=/D3k")+ b (Zk ) (74)
and
- D?(k’
ra(k’)=y/D(k")- (2 ) (75
where

~. 1
D=5 {18 k)P |Apglk ) [*+2 R A k) ARLK")]

+[€e(k,)_ﬂ“e]2+[5p(k,)_ﬂp]z} (76)
and

D2(k")=[ri(k")—r3(k")]=([|Aedk")[>~[Apsk")[?
+EA(K) — E5(K )P+ A0 d K AS(K )| Acd k)
| Apgk) [+ [£e(k) = £5(K")]?
+8 REA (K )ApK ALK )ANK DY (77)

The above system of simultaneous nonlinear integral
equations displays an obvious complexity, but it also clearly
demonstrates the expected physics, hamely that the presence
of the various order parameters determines effective interac-
tions, and these in turn lead to the pairings in a completely
self-consistentvay. In particular, it is crucial to note that the
guantities(70) and (71), if assumed real, can takeegative
valuesif AgA . is sufficiently large. An important conse-
quence is that in such a case it is possible to have effective
attractionsbetween identical particles, and therefore real so-
lutions of the system of integral Eq&66)—(69) as we will
show below.(The four-particle problem of a Heitler-London
H, molecule introduced earlier is but the simplest manifes-
tation of this and will be discussed in the next section.

IV. PHYSICAL INTERPRETATIONS

Before we discuss possible solutions and proceed to crys-
talline order, we offer a brief comment about the general
behavior of Eqs(66)—(69). These equations have some quite
intuitive limits: for example, in the special cagg,—0 and
Ape—0 we have

ri(k)— V]Aed k) |2+ £2(k)

and
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r3(K)— V| A pe(K) |2+ £5(K),

and as a result the first two equations decouple into a pair qﬁﬁ
BCS-like gap equations, namely

PRB 59

coincides with Eq(69), then we havel o= A (for which

e pe=|Acd? is indeed real If on the other hand Eq(68)

the complex conjugate of Eq69), then we obtaimA ;.
=A’e*p and Eq.(58) then leads to the conclusion that,,

Ape, and AcA,, must be real quantities. For the sake of
simplicity let us adopt the second case, with &l being
real, and examine whether solutions of E¢6)—(69) can
actually exist[The assumption of real’s is especially rel-
evant if we restrict ourselves ®wave pairing; accordingly

we will later assume that tha’s are isotropic, i.e.Aj; (k)
=Aj;(k) It should be noted, however, that the more general
gase of complex order parameters raises further physical is-
%ues such as the manner in which phase coherence can de-
velop in a single component when pairing leads to an overall

Uc(k_k,)Aii(k,)
Aji(k)=—
(k) kz 2| Ai(k[2+ €X(k")
{B%IAn(k’)IZ%?(k’)
Xtan >

with i={e,p}. These, of course, have no solution for bare
Coulomb repulsions, and this suggests that in the physic
caseA, cannotbe identically zero. It is also straightforward

although tedious to shdthat by introducing the— p cou-
pling (i.e., AgAL#0) to the next nontrivial ordefi.e.,
O(Aép)] we obtain an interaction which less repulsivehan
the bare Coulomb interactian. .

In the complementaryand more interestingspecial case
of Aee—0 andA,,—0 Egs.(68) and (69) lead to a gap
equation of the “excitonic insulator” typ& namely

_ vc(k—k')Ape(k’)
Aefk)=+ 2 o G (k]

Bri(k") Bra(k’)
> +tanh 5

X | tanh

} . (78

where

1
rik’)= ‘5 VAA K AFLK ) +[ £a(K) + Ep(K)]?

1
> &e(k) = £p(k]]- (79

From these it follows that
[ri(k")+ra(k’)]

[ VAAHK ) ARLK ) +[£a(k) + Ep(K)T?,
|ge(k’)_§p(k’)|a

(80

the first being true in case thatAep(k’)A;;e(k’)
+&q(k")ép(k")=0, and the second foﬂep(k’)A;e(k’)

+&o(k")€p(k")=<0. The separate cases of weak and stro
ApWill be discussed in more detail below, but here we ma
simply note that forA ;A%< &5 or £ we once more obtain

for Ace0r Ay, the uncoupled BCS gap equations, except that

there is now areffective interactionwhich to the first order
of correction is

ve(k—k")
Vo e
[€e(k)+&p(K")]

Observe that this ifessrepulsive tharv (k—k'), so that in

ver(k—k')=

(81)

each of these special cases the presence of nonvanishing

has anattractive effect

superconducting state. Another is the general question of
phase dynamics when we proceed beyond the SPA. Note that
because of the way in which we have defined our order pa-
rametergas elements of a matpithe separate phases do not
necessarily incorporate the notion of correspondingly sepa-
rate phase coherence as arises in the concept of a Josephson
weak link!* This is obvious from the fact that the cross-
pairing is not merely a linear combination of electron-
electron and proton-proton pairings but in fact coexists with
them as part of a higher strongly coupled complex. For this
reason, the limiting cases of simple pairing and excitonic
pairing coexist rather than compétés expected intuitively

it can be showt? that in the high-temperature limit no solu-
tions of the first two equatiorn$qgs.(66) and(67)] exist. But

as temperature is lowered solutions subsequently emerge, es-
pecially when the cross-order paramelgy, assumes suffi-
ciently large values. This occurs because of the correspond-
ing development of effectivattractionsin certain regions of
k-space for thee—e and p—p channels as we will discuss
below[case(b)].

In more detail, let us focus on the physically expected
caselAge/Agp and A, /Ag;—0; then two general classes of
solutions develop, depending on whettag]? is small or
large compared to the produgtés, with {«, 8} =any of the
{e,p. To examine whether solutions to Eq466)—(68) actu-
ally do exist in principle we may take al,; to be real and
isotropic (corresponding tes-wave singlet states The fol-
lowing results then emerge:

(a) Solutions corresponding fa ) ?<¢,&, for anyk are
possible but only for sufficiently low densities, particularly
when ue and u, are both negativefor which £,&4 is then

3)ositive for anyk). At low density and low temperature the

solution to Eq.(78) has the form

(k) +E&5(k
Acdk)=(cons) —rrr[g(:([_:k é;p() )],

(82
with a=#%2/m*e? andm* =mm,/me+m,. From a canoni-
cal analysi$ of the same problem in terms of the wave func-
tion ¢, of a single pair it can be shown that the relation
betweenA (k) and ¢, is

4€(k)%| il ?

2_
|A(K)] A8 7 (83)

In general theA's are complex quantities. There are two In the low-density limit¢,— 0 [and noting that the Fourier

general cases that respect the constréb®: If Eq. (68)

transform of e™'/3 a 1s state, is proportional to (1
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+k?a?)~2] a comparison with Eq(82) shows that this solu- The scale ofA¢, can easily be estimated from E@4) (by

tion corresponds to aatomic e- p form. The scale o\ oyis,  takingko~Kkg) as 2/3;Ry. The form(84) is entirely differ-
therefore, of the order of eYsee also caséh) below]. An  ent from Eq.(82) and is valid only at sufficienthhigh den-
important result is that from thstructureof Egs. (68) and  sities[down to the point that Eq85) fails to give a real and
(72) we can rigorously sholf that the low-temperature form Ppositive solution forky]. We therefore deduce the existence
of Eq. (68) remains unaltered even for small but nonvanish-0f a transition from the low-density molecular phase to a
ing values ofA ,candA ,, when they are included to the next Nigh-density phase described by E8d). This transition was
nontrivial order. As a consequence, the soluti@2) also a_nt|C|pate(_1 earh@rb_ut thro_ugh a d!fferent_procedure. _Thg
applies at low temperatures and densities to the case of noffigh-density phase is readily associated with a delocalization
zero e—e and p—p pairings. This is consistent with the of the electronic componeritvhich, however, may still be

Heitler-London form for theH, wave function in the limit pair_ed, .e., a given electronic pair no longer belongs to a
m./m,—0. We therefore recover in this limit the expected particularH, molecule. As a result the two components can
e p .

phase of weakly interactingydrogen molecule¥ An inde- now be discusl;ed se_lp_)r?ratellg/ in terms of effectivi one-
o . ; . t . , t
pendent stability analysis of these four-particle ur@sd component probiems us, by comparing E8f) (or the

one that imposes a positive sign for the determinant of th corresponding equation fdr,,) with Eq. (28) we can easily

d derivati trix of th " ith t to th Yetermine theeffective pairing interaction associated with
second derlvative malrix of the action with respect 10 th€g ., component. As a physical criterion for stability of the
pairing fieldg shows that this solution can only be stable at

. L . . aired phases we may invoke the requirement that there are
sufficiently low densities The same stability analysis can b P y q

) . at least some regions kspace where the effective interac-
also locate the temperature at which the corresponding M%ons become negative. It is nogrucial to observe that for

lecular bond ruptures. This is of the order of a few eV theStrongA the quantityD .. [Eq. (70)] and the correspond-

) - S eps
precise value requiring a knowledge of the temperature deIng quantityD,,, [Eq. (71)], if taken as real, can both assume
pendence ofue and up, .

. 2 negativevalues if the productA A is sufficiently large.
S g(béﬁ-rhaet ﬁazz(:r;grcigrsrfkgkimﬂ??r?iss gg;reesépq%ggjﬁtg a From the form of Eqs(66) and(67) this immediately reveals

lovt A \uti hich b imated b the existence of effectivattractionsbetween identical par-
ow-temperature solution, which can be approximated by icjas and correspondingly self-consistently stable solutions

e? within each component. The point can also be established
Acd k)= —KkoF (k/ky), (84  from the fact that the system possesses a critical pseg
m below) near which Eq(66) takes the form

where
) A ék):_z vc(k_k,)Aee[gp(ge—i_gp)_(a'_l)Aép]
F(x)==+ 1-x |nﬂ © k' 2(rytra) |Agp+§e§p| ,
2 4x 1-x (86)
is recognized as the Lindhard function, daglis determined ~Wherea is the ratioAp,/Aee, (r1+15) is given by Eq.(80),
by and the quantities on the right-hand side of E&f) are all
evaluated ak’. Comparison with the low-temperature ap-
2A ¢ ko) =|&e(ko) + &p(Ko)|. (85  proximation of Eq.(28) then shows that, for example
|
k—k’ k' k") k') +&,(k")]—[a(k’)—1]A%(Kk")
ook k') = ve( ) ek {€p(k & Ep(k") 1= [e( JAGLK")} @

[ra(k")+rak’)] [AZ(K' )+ Eo(K") Ep(K)]

indeed plays the role of an effective interaction between twdl'he attractive regions ik space are actually always different
electrons(a corresponding identification being possible forfor the two channels, and for each component they tend to
the p—p channe), which under conditions to be discussed occur at values ok where the order parameter of théher
below, can also be attractive. component dominatesiii) A critical point T, exists where
The major results for this case can now be summarized age order parametera . and A, both vanish (as T—T,
follows: (i) In the high-temperature limit there are no solu- from below). At the same time the regions of attraction for

tions to Eq.(66), as physically expectedii) When tempera- e—e andp—p channels intersect at a vallef k, where the

ture is lowered, solutions to E¢66) emerge, especially, as sum of the single-particle energies of an electron and a pro-
noted, when the cross-order paramefgy, is sufficiently gie-p 9 P

large. An accurate low-temperature approximation4gy, ~ ton equals the total chemical potentjab+ w, [i.e., £o(k)
which solves Eq(78), is Eq.(84). We note that solutions to  + £,(k)=0]. (iv) The self-consistent solution is such tfat

Eq. (66) and to the corresponding equation fag, then is required to besmallcompared to the energy scales of the
emerge because of the development of effecéitteactions  problem(in agreement, as it happens, with recent experimen-
in certain regions ok space for th@e—e andp—p channels. tal resultd®'" on hydroge its actual value depending on
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the model chosen to describe the protonic ph@seillator  for the proton field operators, with
states being the simplest model to address experiments, see
the next section A simple approximation foil ;. for strong

Aep turns out to be q)ﬂk(r)z iz eikR“fﬂ(r— Rn) (90)
JN
2A¢p
KT~ |£e— &l |£e— &l 889) where N is the number of protons anfl,(r—R,) can be
Blc 2 20¢p a1l [’ approximated by theu" excited-state eigenfunction of a
In mm three-dimensional harmonic oscillator potential centered at

R, [m denotes triplets of quantum numbers, i.e.
where the ratiav=A,/Acis close to unity, as can be veri- (xs by s 142) ]

fied by using the structure of the full equations at low tem- Correspondingly, the electron-field operators are written
perature and L'Hospital’s rule in the limit that boftis van-  as

ish. This expression forT. is a consequence of the

requirement that the effective attraction between two elec-

trons vanishes a§—T.. (v) An inverseisotope effect is Wo(r,5)= 2, b(1)Coxs. (91
expected from Eq88) for the dependence df; on the mass v,k

of the heavier component. This is controlled by the prefactor

in Eq. (88) and it is generally expected fa@.>¢&, and for  with ¢, (r) being Bloch states corresponding to the band
£,>0 (as is actually the case for localized proton states disty Eqgs.(89) and(91) b andc arek-space proton and electron
cussed in the next section, wheég~w~1/ym,, so that  annihilation operators. Substitution of E§O) into Eq. (89)
|€e— &p| increases withm, resulting in an inverse isotope yields

effect. This general behavior is, therefore, preserved in a

coarse-graining manner even for dramatic changes in sym-

metry (the case of a crystabnd it happens to be in agree- - —

ment with recent data (the issue of the different symmetry Vplrs) ;1 Fu(r~Ra)dys(Ro). 2

in deuterium is briefly discussed in Sec.)VI

with the localized operatat,4(R,) (annihilating a proton of
V. APPLICATIONS TO DENSE HYDROGEN spin s at siteR,,, which is found in theu'" excited state

By way of practical application of casd) two distinct defined by
models can be used according to the choice of average den-
sity: one for a diffusive state, and another for protons being 1 ,
in localized oscillator states, and vibrating within preformed dys(Ry) = —= >, € R . (93
p—p pairs(the remnants of the low-density Heitler-London N
fields). The electrons are assumed to be fully degenerate in
all cases and the partial chemical potentials necessary f&*or reasons of formal symmetry E@1) is also brought into
these applications are taken from our earlier pdpéihe  a similar form with the use of electronic Wannier functions
first model is a satisfactory description of possible generalw,; by writing the Bloch states as
ized pairing in systems with continuous symmetry, and a
primary result is that pairing of identical particles wilbt L
occur if the masses of the two species are equal; only simple _ kR
e— p pairing of the excitonic type is possible. The prediction budr)= \/_N; Wi (r=Rp)en (94)
is, therefore, that no pairing between identical particles will
occur in, for example, a dense electron-positron system. ) .
However, asm, /m, is increased from unity, an increasing then Eq.(91) is transformed into
region ink-space develops around the Fermi surface where
effective attractions between identical particles result, and _
molecular clusters of electrons and positrons may form. ‘lfe(r,s)zz W, (r—Rp)d,s(Rp), (95
The second model is necessary for cases witk>m,, vn
where the protons are in localized states to begin with. In this
physically realizable case our formulation addresses the geRyiin the electron operat(fl‘
eral issue of pairing in an initially monatomic cryste
simple example being paired crystal phases discussed
recently®). _ 1 ,
In order to take account of the symmetry of a putative d,s(Rp) = \/——E CR (96)
crystalline phase we now write Nk

s defined by

_ With these transformations the two-component Hamil-
v (r,s)=2, ®,(r)b 89 X
(1) gﬁ (D ks 9 tonian (32) takes the form
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H=2 > 0, (Ro)dy,(Ro)+ 2

N pipos

1
+ J—
2 i 7m ss' M3MaMshe

>
n#m

+

N| -

Val VeV,
3V4V5%6
ss’ V3V4VsVe

>

ss'

%

V3M4HM5Ve

In Eq. (97) the kinetic(hopping elementd andt are defined
by

22, .
Uy ,= d3k2—%fﬂl(k)f;2(k), (99
and
%2k?
- _ 3 . A
t,,l,,z—f d k—2me Wvl(k)\/\/’;z(k), (99

[with f,(k) andW,(k) the Fourier transforms of ,(r) and
W, (r)]; the potential elements are defined by

4re?
Vg?

eiq(Rnme>J> J’ dgkdsk”fﬂa(k)’fﬂzl

nm —
v =2
M3y Mg q

x (kO (k' +a)fy (k—a),

and the elements andv are given in a similar way by

appropriate substitutions dfs with W's.

The new Hamiltoniar{97) is formally quite similar to the
continuous on¢Eq. (32)], but with some important changes:
now the space appears discrete the corresponding field
operators are physically richécontaining labelsu and v),

(100
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> 1,00 (R)d,s(Ry)

v1V2S

> 2 2 op Ry (R (R dyo(Ry)

> 2w LAl (R (R, e (Ry)dys(Ry)

1), o (Rn)d s (R, o(Ry). 97

now be restricted to sums over reciprocal lattice vectors.
(These can alternatively be written as sums dwvaiithin the

first Brillouin zone. In this formulation &.(k) is simply sub-
stituted by the electronic band energies, whilgk) will

now lack dispersion and in fact equal§,(k)
=3ag 2/26°Ry* , with o the half width of the ground-state
Gaussian ¢= VAi/myw, which is self-consistently depen-
dent on density and temperatyrelere the proton mass has
been used in the definition af; and Ry . Finally, the Cou-
lomb interaction between protons is now changed to
e2/|Rij|erf(|Rij|/\/§a), which in turn renormalizes.(q) to
v(g)e” 9772 (We see here the familiar Debye-Waller fac-
tor modifying the interaction Similar modifications occur
for the electron-electron and electron-proton interactions. Al-
though the general conclusions drawn earlier for the simplest
possible generalized pairing are not expected to change, the
above modifications may have some further nontrivial con-
sequences and an ongoing investigation is currently devoted
to them. A preliminary result is that the lack of symmetry in
the character of the states of the two Fermionic components
may actually change the character of the corresponding
Because the problem is richer, further solutions can also ex-
ist in principle forT<T. (whereAy—0 while A, remains
finite), especially if we permit the possibility that,, can
vanish on a surface ik space. These solutions physically
correspond to persistent proton-proton pairing in the pres-
ence of normalunpaired electrons.

and the kinetic and potential elements are significantly renor- 1he above model is a simplified but reasonable descrip-
malized from the continuous case. The entire physics ofion for dense molecular hydrogen, when the electronic com-

phonons and electron-hole transitions is included in(Ed);

ponent is in semimetallic or metallic form. Here, as noted, a

phonons, in this localized description, are associated witfffansition is expected to occur f@r<T. as we move from
“proton-hole pairs” described by combinations of the type higher to lower densities, especially to densities beyond the

d;l(Rn)dﬂz(Rm) for neighboring sites(nm), and similar

point where the electronic partial chemical potential becomes
negative. From this point on we have to deal with cagef

combinations ofd’s contain all the physics of electron-hole gec. V.
pairs. At this point the simplest route is to retain just the A final point that deserves special mention concerns the
oscillator ground statesp{=0) and the lowest electronic stability of the generalized paired phases discussed so far,
bands ¢=0). Though not a completely general descriptionfrom the point of view of the SPA. A simple stability analy-
this choice at least permits a first assessment of the solutiog]s, already mentioned earlier, and based on the second-
structure for the discretéerystalling case. derivative matrix of the action with respect to the pairing
With this reduced description our real-space analysis acfields, leads to expressions similar to those found béfore
tually goes through completely as before but in discreteor the collective excitations of the paired phase, but now
space, and the HS transformation will now pair the new opcorresponding to the limitv—0, namely a static distortion.
eratorsd andd in all four possible combinations. When we If we take the particular caséfe/Agy— 0, App/Ag—0, and
again proceed to Fourier transforms, the sums dvaevill approximateA ., by a constant, we obtain the expression
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0 Ko Ko
e S )
k 0 Ko Ko\| E(k)
R .2 R )
= [Aed2> ! (101
T E(k—&)E(HKO) (k—&)+E o) |
2 2 2 2

which can be used to establish a criterionradtability of the  existence of a low-temperature critical point, and an inverse
generalized paired phase. In E401 E is approximately isotope effect observed in ultra-high-pressure experiments. It
given by Eq.(29) with A=Aq,, u=wpct+up, and &(p)  also leads to a prediction of a competing phase, namely a
=&o(p) + &p(p). Whenever Eq(101) has a real solution for CDW, a result also consistent with recent experimental evi-
the wave vectoK, this can be interpreted as a modulationdence of a symmetry broken phase leading to asymmetric
of the paired phase that leads to a competing charge-densitharge ordering.

wave state(CDW) with the corresponding periodicity. To It is clear that the symmetry and the lack of spin depen-
solve Eq.(101) for K, is difficult in general, but we can dence of the fundamental Coulomb interaction has resulted
nevertheless estimate the result with an expansion of Edn highly symmetric equations for the two components, and
(101 up to order 0((3), namely this has led to a description of spatial characteristics of the
order parameters, which are decoupled from the correspond-

2K2 4K4

(1 PEKo PrRo

ing spin states. Here we have restricted ourselvésotioopic
+ Om2A2_ 100mPA? order parameters, which should correspond naturally to spin-
singlet states. However, it is also possible to address the
pEK3 pEK§ issue of magnetic ordering at low densities with the same
=\l Tayazt moacr T . (102 method(although this will require a different HS transforma-
tion to account for the additional spin ordernd-urther,
with m=m*, A=A.,, andpg the Fermi momentum. The exactly the same method can be applied to systems of differ-

smallest solution of Eq(102) is ent symmetry, for instance a Fermion-Boson mixtee.,
deuterium. The only differences for this case are that the
, 10m?A? original fields for the Boson system will be complex vari-
(Ko)*= _PFF (103 ables(rather than Grassmahrand the final frequency sums

are over Bosdi.e., even Matsubara frequencies. However,
which, if combined with the earlier estimate~ 2/3r Ry, the resulting physics is hardly expected to be very different
leads to Ky~1.6/,. The physical picture is actually a because of the large mass of the nuclei compared with elec-
straightforward one; the instability appears as a periodidronic masses. It may also be noted that for either mass, the
modulation and is, therefore, consistent with intense infrarediamiltonian(32) describing the two-component system pos-
activity observed in expenmen{g which has been associ- sesses very considerable symmetry leading to important scal-
ated with a new symmetry break#fgn dense hydrogen of a ing relations for the primary thermodynamic functidnis.
CDW type. This is an additional charge ordering that mayThese can be generalized to the case where an external field
formally be described as repairing of the original fields is imposed? the latter can be chosen as a probe for the
pairing of the generalized paired fieJd& complete descrip- existence of macroscopic currents, and hence for the onset of
tion of such a phase can only be made through a more ge@n insulator to metal transition when a control parameter

eral HS transformation than the one given here. (such as densilyis varied. The transition can also be linked
to the appearance of a geometfigerry’s) phase associated
V1. CONCLUSION with the adiabatic parallel transport of the center of mass of

the electron systefh and in this way the insulator-metal

We have given a natural generalization of the standardransition in dense hydrogen can be put on a quite general
pairing theory for simple pairs to a problem of a two- footing.
component system withll possible kinds of pairings, but Finally, we should also mention possible generalizations
starting from fundamental Coulomb interactions. This theoryof the method to other systems. A quite straightforward ad-
constitutes a quite general treatment of a two-componerjtistment is all that is necessary to describe generalized pair-
system with Coulomb interactions and in ranges of densityng in a two-component system with differefite., non-
and temperature where generalized pairing structures can I@@ulombig interactions ¢ e, v pp, andvep=1uvpe), With some
formed. The theory is, therefore, a first-principles treatmenbdf them possibly retaining a Coulombic part but others rep-
of a fundamental many-body system in condensed-matteresentingpseudopotentialeppropriate for the system under
theory, but it also has an actual physical realization, namelgonsideration. It then transpires that E§66)—(69) retain
hydrogen. For this system it gives a general account of théheir forms with the corresponding interaction appearing in
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each channel in place of;. In principle, this method could, along a circular contou€ in the complexw plane that con-

therefore, address issues of pairing in highor other com-

tainsx and also certain Matsubara frequencies. The denomi-

plex materials, if, of course, the appropriate use of pseudorator (1+e#“)~* has simple poles at the,’s with residues

potentials is made from the start. Note, in particular, that for

local approximations to pseudopotentials, the quantifyk)

may be expected to vary in sign reflecting a length scale

. (w_iwn) 1
lim g = — =

efo+1 B’ (A3)

w—ioy

associated with the electronic condensation leading to thgo that with the residue of the integrand in EA2) at

formation of ions. In some regions, therefore, the pseudopo

=X we have

tential can be considered repulsive, yet it is important to note

that self-consistent solutions to E6) may still exist in

principle for particular choices of densitgr ki), and that as
a consequence pairing of ions and electrons can still also

1

>

L 1
[(X)=27i 2 —(iwn—x)(_ﬁ

. (A4)

+ _
e +1

exist23 If we take the radiudk(C) of a circular contour to infinity
(so thatEwn contains the entire infinite set of Matsubara
ACKNOWLEDGMENT frequencies we must have
This paper was supported in part by the National Science lim 1(x)=0, (AS)
Foundation under Grant No. DMR-9619854. ) R(C)—ee
and then Eq(107) gives
APPENDIX A 1 B
(A6)

We carry out the frequency sums that appear in(2ad).
For this we first evaluate the frequency sum

1

IX)=2, - ,

on Twp—X

(A1)

and then use this result to evaluate E2y), but after resolv-
ing it into partial fractions. To evaluat®(x) we first con-
sider

dw 1
100 = fmm (A2)

X12(k’,wn)=Aee(k’){(wn)z—i—[ep(k’)—,up]2+ |App(k’)|2}—A;p(k’)Aep(k’)Ape(k’),

Xaa(k',@n) = Aok ) {(wn)?+[ee(k') — pel*+[Aed k)7~ Mgk ) Aefk)Apd k"),

s io,—x  eP+1

for the frequency sund(x). By analyzing Eq(27) into par-
tial fractions and using EqA6) for each term we obtain

1 B iBE B BE
2 =St

I g2 tanh (A7)
@n n

2 22
which in turn yields Eqs(28) and(29) of the text.
APPENDIX B

We give below the definitions of thX;;’s and det that
appear in Eqs(61)—(65) of the text; they are

(B1)

(B2)

Xao(K',n) = Apd k) (0n)+ [ee(k') — pell €p(k") = ppl}+iApd k) wpf[ (k") = el ~[ (k') = ppl}

Do K) [ Apd k)] = Ak ) Aed K') Apg(K'),

(B3)

X1a(K' 0n) = Aef k') {(0n)?+[eo(k") = pell p(k") = ppl} —iAef k) on{l €e(k’) — pel — [p(k') = ppl}

+Ape(k’)|Aep(k')|2—Agp(k’)Aee(k’)App(k’),

and

(B4)

detk’, wn) = (wn)*+ (@) *{|Acd k")[>+[A K" )[?+ [ea(k') = pel®+ [ p(K') = pel®+ Aed k' )ATLK) + Apd k") AZ(K')}
+1Aed k)P Apd k) P+ [Aed k)P Aps(k")[2—2 REATK)IAF(K ) Aok ) Ape k') T+ [ €e(k') — pel [ €p(K)
— mpl?Hee(k') = pel?| Apg(k) [P+ [ep(k) = pp]?| Aed k') *+2 RE A k) ATIK ) T €e(k) — eIl €p(k”)

—mpl— on({[ep(k") = ppl =L ee(k’) = pel}2 IM[Agg k) ATLK)]).

(B5)
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APPENDIX C

We carry out below the frequency sums that appear in &4$-(64), combining them at the same time with the definitions
of Appendix B. Using the constrairi68) we find that the last term of E§B5) vanishes and as a consequence the frequency
sums can be carried out relatively easily. For example, the imaginary terms itiEjsnd (B4) also vanish when we sum
over w,, and therefore we only need sums of the form

wﬁ-l—a

A C1
;n wﬁ-i— bwﬁ-i—c (€Y)
For their calculation we resort to contour integrals of the form
|_f do(—w’+a) co
- Je(w*—bw?+c)(1+ef®)” (€2

Note that the signs are appropriately chosen so that the residues at the Matsubara frequencies will give sums of the required
form (C1). Carrying out the contour integration and then taking the contour to infiatythatl —0) we finally obtain the
result

wi+a [ (—ri+a) 1 (—r3+a) 1
+
(r=ra)(ry—rg)(ri—ryg) 1+ef 1 (ry—ry)(ro—r3)(ro—ry) 1+em

>

on wi+bwitc

(-ri+a) 1 (—rita) 1
prs T B | (C3
(rg=ry)(rg—ra)(rg—rq) 1+e”3  (ry—ry)(ra—ra)(rg—rz) 1+e
wherery, r,, r, andr, are the roots ofv*—bw?+c, i.e.,
w*—bw’+c=(w—r)(w—T)(w—r3)(w—Tr,). (C4)

Applying the above results to Eq&1)—(64) (once again in combination with the definitions of Appendixvie obtain

r34*V D2+ JD4—F4 (CH

where it is understood that the four roots can be obtained by taking all four possible combinations of signd #0Eélere
we have defined

52:%{|Aee(k,)|2+|App(k,)|2+2 ReEAef kAT )]+ [€e(k) — pel®+ [ep(k') = upl?}, (Co)
and
FA=[Aed k)?|Apk )2+ ]Aehk)|?|Apd k)| =2 REAd k) A (K VAT K AFLK )+ [€a(K") = pel?|Apy(k")[?
+ep(k) = ppl?Aed k) [P+ [€e(k') = pelTep(k') = ppl?+2 REA K VALK ) L eo(k') — pell €p(K") = ep]-

(C7

The final application of all the above to Eq$1)—(65) yields Eqs.(66)—(77) given in the text.
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