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Coulomb interactions and generalized pairing in condensed matter
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Proceeding from a coherent-state functional-integral approach we give a first-principles theory of general-
ized pairing phases in a dense neutral system of electrons and protons. Apart from a standard stationary phase
approximation the approach is general, it requires no adiabatic separation of time scales, and it can be applied
for arbitrary temperatures. For the resulting mean-field theory, we show that pairing ofboth electronsand
protons is possible at low temperatures, and especially so when an appropriately defined electron-proton order
parameter becomes sufficiently large. As a preliminary to the experimentally important case where the protons
order in a crystalline phase, the case of continuous symmetry is first presented. Among generic results is the
prediction, through a stability analysis, of a charge-density wave~and repairing!, and the location of a critical
point, both discussed in light of recent experiments on the high-pressure states of hydrogen.
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I. INTRODUCTION

It is clear experimentally, and also well understood sin
the initiating paper of Heitler and London1 that in the four-
particle problem represented by two electrons and two p
tons, the ground state is one in which the protons
strongly paired by the electrons. This pairing is known
persist in the condensed crystalline state of hydrogen to v
high densities, approaching 11-fold compression over
self-stabilized density. Given the simplicity and symmetry
the many-body Hamiltonian governing such a system,
question of pairing in a more general sense naturally ari
Put in its simplest form the question could be posed this w
in a dense dual Fermion system ofN electrons andN pro-
tons, can the protons themselves lead to pairing of elec
states? In the context of ordinary superconductivity in sim
metals, the answer can be considered well known. Here
will focus specifically on the notion of mutual pairing o
electrons and protons, but go one step further and inquire
the many-particle context about collective quantum sta
that also involve electron-proton pairing.

Though the system to be discussed is an ensemble of
trons~charge2e) and protons~charge1e), the problem can
be generalized still further to two distinct sets of Fermions
opposite charges and with different masses, examples b
electrons and positrons, electrons andm1 mesons, etc. The
changes required for positive particles of charge1Ze are
quite straightforward, provided conditions on density a
chosen appropriately. We choose to start with the fundam
tal Hamiltonian without formally breaking the translation
symmetry; this way our results rigorously apply to contin
ous single-particle states. We then provide the modificati
necessary to describe the important class of experime
PRB 590163-1829/99/59~19!/12309~17!/$15.00
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states where one class of Fermions exhibits crystalline or
The formal changes required to embrace crystalline phy
are actually not extensive and can be handled within
same method, but the results are now richer, presenting
nificant band-mode structure for both components. Althou
we point to some important changes, expected from the
responding physical modifications, we argue that some of
general mean-field conclusions are not qualitatively affect

In approaching the problem of collective quantum state
powerful method is the functional-integral technique,2,3

where the partition function for the many-body system~in a
grand-canonical ensemble at finite temperatures! is written as
a coherent-state functional integral.4 In the case of Fermions
this integral is recast in terms of Grassmann variab
$C* ,C% rather than complex variables, thereby defining
actionS@C* ,C# that is generally not expected to be calc
lable for an arbitrary many-body system. Then the usual p
cedure is to perform, for the interaction term, an appropri
Hubbard-Stratonovich~HS! transformation5,6 as dictated by
the physics that is being pursued. In this way new collect
fields $D* ,D% are introduced as well as a new actio
S̃@C* ,C;D* ,D# the latter now being quadratic in theC’s.
By carrying out a Gaussian integration the final acti
S̄@D* ,D# is obtained in terms of the new fieldsD and up to
this point the procedure is exact. From this point on appro
mation is necessary, one path being to follow a station
phase approximation~SPA! to the new partition function,
i.e., by imposing an extremization ofS̄ with respect to the
D’s. The extremization ofS̄ gives the mean-field equation
that the new fieldD is obliged to satisfy. As noted, the choic
of the HS transformation is dictated by the collective ch
acteristics of the physics considered, while the stationa
12 309 ©1999 The American Physical Society
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12 310 PRB 59K. MOULOPOULOS AND N. W. ASHCROFT
phase approximation is merely equivalent to an assump
that the collective character of the physics was indeed
rectly chosen and the fluctuations around the mean-field
lution for theD’s are therefore small~and can be ignored a
a first step!.

The above scheme is directly applicable to a sing
component Fermion system with pairing correlations. T
appropriate HS transformation for this problem is w
known,2,7 and in this case the new collective fieldD is the
corresponding BCS gap parameter. The final equation foD

resulting from the extremization ofS̄ is then the BCS gap
equation. As background to the electron-proton problem
follows, it is useful to review this continuous phase on
component procedure~Sec. II! since the formal changes re
quired for crystalline phases are not substantially differe
In Sec. III we then give a complete generalization to a tw
component system of oppositely charged Fermions with
ferent masses~electrons and protons being an exampl!,
which leads, not unexpectedly, to four gap equations. Th
correspond to electron-electron, proton-proton, and elect
proton pairings. Depending on density range these equat
have interesting limiting behavior, a matter that is discus
in Sec. IV; by way of application we also consider in Sec.
the modifications required for the standard experimental s
ation where the proton states possess crystalline symm
and we discuss the ensuing results in relation to dense
drogen. Finally, in Sec. VI we discuss possible generali
tions of the method to other physical systems.

II. FUNCTIONAL INTEGRAL APPROACH FOR A
ONE-COMPONENT SYSTEM

We start from the grand-partition functionZ for a one-
component system of identical Fermions in volumeV, at
temperatureT and chemical potentialm ~for notational con-
venience we set\51 in everything that follows!. In terms of
a coherent-state functional integral the partition functionZ is
generally written as4

Z5E
C~x,b!52C~x,0!

D@C* ~xt!#D@C~xt!#

3exp~2S@C* ,C#! ~1!

whereS is the action

S5E
0

b

dtH E dxC* ~xt!S ]

]t
2m DC~xt!

1H@C* ~t!,C~t!#J ~2!

In Eq. ~2! we choose a notation that includes spin, nam
x5$r ,s% in terms of which*dx5(s*d3r . Generally, the
paths in the partition function are constrained by the stand
periodic- or antiperiodic-boundary conditions correspond
to Bosons or Fermions, respectively. In our case of Fermi
antiperiodic boundary conditions have been used in Eq.~1!
as constraints in the selection of paths. The HamiltonianH in
Eq. ~2! is assumed to be in normal order~i.e., all C* ’s ap-
pear to the left of allC’s!, and for a one-component syste
with static pairwise interactions it is given by
n
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H@C* ,C#5E dxC* ~xt!e~2 i¹!C~xt!

1
1

2 E dx dyC* ~xt!C* ~yt!v~x2y!

3C~yt!C~xt!. ~3!

A combination of Eqs.~2! and ~3! then leads to the separa
tion

S@C* ,C#5E
0

b

dtE dx dyH C* ~xt!d~x2y!

3F ]

]t
1e~2 i¹!2mGC~yt!

1
1

2
C* ~xt!C* ~yt!v~x2y!C~yt!C~xt!J

[S01Sint ~4!

In Eq. ~4! the e(k) are single-Fermion energies~for a trans-
lationally invariant systeme(k)5k2/2m, for localized states
see below!, v is the effective pairwise interaction betwee
the identical Fermions~and not necessarily attractive at th
level!, the C’s are the Grassmann variables parametriz
the Fermion coherent states for this system, and finallyS0
denotes the term not containingv. We next use a Gaussia
integration, which is generally valid for Grassmann numbe
namely

expF E d1 d2 f * ~1!C21~1,2! f ~2!G
5~detC!21E D@D* #D@D#

3expX2E d1̄d2̄$D* ~ 1̄!C~ 1̄,2̄!D~ 2̄!1d~ 1̄22̄!

3@ f * ~ 1̄!D~ 1̄!1 f ~ 1̄!D* ~ 1̄!#%C. ~5!

In order to apply Eq.~5! we use variables 1[xyt,2
[x8y8t8 etc. and make the identifications

f ~1![C~xt!C~yt! ~6!

and

C21~1,2!52
ṽ~xyt,x8y8t8!

2
~7!

~the reciprocal being understood in the functional sense! with

ṽ~xyt,x8y8t8!5v~x2y!d~x2x8!d~y2y8!d~t2t8!.
~8!

Then because of Eq.~5! we may invoke a Hubbard
Stratonovich transformation, namely

exp@2Sint#5~const!E D@D* #D@D#exp@2S8#, ~9!

with
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S85E d1 d2D* ~1!C~12!D~2!

2E d1@ f * ~1!D~1!1 f ~1!D* ~1!#. ~10!

Finally, if we rescaleD→2D/2 we obtain in detailed form

Z@C* ,C;D* ,D#5~const!E D@C* #D@C#D@D* #D@D#

3exp$S̃@C* ,C;D* ,D#%, ~11!

with

S̃@C* ,C;D* ,D#5E
0

b

dtE dx dyH C* ~xt!d~x2y!

3F2
]

]t
2e~2 i¹!1mGC~yt!

2
1

2
D* ~xyt!C* ~xt!C* ~yt!
b
-

2
1

2
D~xyt!C~yt!C~xt!

1
1

2

1

v~x2y!
uD~xyt!u2J . ~12!

The quite crucial point for the two-component case
follow is that Eq. ~12! can be recast in a compactmatrix
form, namely

S̃@C* ,C;D* ,D#5E d1 d2H 1

2
F* ~1!@2Â~12!#F~2!

1
1

2
D* ~12!

1

v~122!
D~12!J ~13!

where now we have changed notation to local variab
1[xt and we have also defined a vector

F~1![F C~1!

C* ~1!G ~14!

and a matrix
Â~12![H d~122!F ]

]t
1e~2 i¹!2mG D~12!

D* ~12! d~122!F ]

]t
2e~2 i¹!1m GJ . ~15!

As a consequence the partition function~11! can be written, equally compactly, as

Z5~const!E D@D* #D@D#E D@F* #D@F#expH E d1 d2F2
1

2
F* ~1!.Â~12!.F~2!G J

3expF E d1 d2
1

2
D* ~12!

1

v~122!
D~12!G ~16!
in
m
ity

d:
and this presents a form where we can once again use
Gaussian integration~5! to eliminate the old fieldsC. In this
case the functional integral overF in Eq. ~16! simply gives
det(Â/2), which can also be written2 as exp@tr ln(Â/2)#. The
final result is, therefore,

Z5~const!E D@D* #D@D#exp~S̄@D* ,D#!, ~17!

with

S̄@D* ,D#5tr lnS Â

2
D 1

1

2 E d1 d2
uD~12!u2

v~122!
. ~18!

This result forZ is exact2 but written in terms of a fieldD,
which is unknown. To elucidate the physical meaning to
attached toD we proceed with the usual SPA which is em
bodied in the statements

dS̄

dD*
5

dS̄

dD
50. ~19!
the

e

This approximation is well known to be very accurate
standard BCS-type theories involving pairing in momentu
space, and a physical discussion of its more general valid8

is given in the next section. If a solution to Eq.~19! exists, it
will provide the mean-field result forD, and the resultingD
is the usual BCS gap parameter, as is now demonstrate

First, extremization of Eq.~18! with respect to theD’s
yields

dS̄

dD* ~12!
5

D~12!

v~12!
1trF Â21~12!S 0 0

1 0D G50,

or

D~12!52v~12!trF Â21~12!S 0 0

1 0D G . ~20!

Next, imposition of the condition

dS̄

dD~12!
50



ha

-
s

oles

12 312 PRB 59K. MOULOPOULOS AND N. W. ASHCROFT
gives

D* ~12!52v~12!trF Â21~12!S 0 1

0 0D G . ~21!

Now Â21 is the Green’s-function matrixĜ for the funda-
mental particles moving in the pairing field in the sense t

E d3Â~13!Ĝ~32!5d~12!1̂. ~22!

We next Fourier transform tok-space and Matsubara fre
quenciesvn ~which account for the antiperiodicity propertie
of the Grassmann fields as functions oft with periodb!, i.e.,
we write
e

m

r,

r
ti
s

nt
a
te

ion
de
t

Ĝ~32!5
1

b (
vn

e2 ivnt32E d3k

~2p!3 eikr 32Ĝ~k,vn!, ~23!

where the Matsubara frequencies for Fermions are the p
of the Fermi function, namely

ivn5 i ~2n11!
p

b
. ~24!

Then, Eq.~22! reads
1

b (
vn

E d3k

~2p!3 eikr 12e2 ivnt12F2 ivn1e~k!2m D~k!

D* ~k! 2 ivn2e~k!1mGĜ~k,vn!5d~12!1̂, ~25!

and this shows that

Ĝ~k,vn!5
1

vn
21@e~k!2m#21uD~k!u2 S ivn1e~k!2m D~k!

D* ~k! ivn2e~k!1m D . ~26!
the
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Using this in the Fourier transform of Eq.~20! we obtain

D~k!52
1

b (
k8

(
vn

v~k2k8!
D~k8!

vn
21@e~k8!2m#21uD~k8!u2

~27!

and in a similar way Eq.~21! gives the complex conjugat
equation.

Finally, we are required to carry out the frequency su
over the Matsubara frequenciesvn in Eq. ~27!. These are
found in Appendix A and the final result is very familia
namely

D~k!52(
k8

v~k2k8!
D~k8!

2E~k8!
tanh

bE~k8!

2
, ~28!

where

E~k!5A@e~k!2m#21uD~k!u2. ~29!

This is the usual BCS gap equation for the gap parameteD
at temperatureT, together with the standard BCS quasipar
cle spectrum~29!. It describes Cooper pairs at high densitie
and even tightly bound pairs~‘‘Schafroth pairs’’! in the low-
density limit9 ~where it simply gives the Schro¨dinger equa-
tion for the pair wave function ink space!. Accordingly, this
procedure, which we shall next extend to two compone
demonstrates the manner in which the results of stand
pairing theories can be derived for a one-component sys
with some effective static pairing interactionv proceeding
from a very compact and general approach within a stat
ary phase argument. The physical possibility of pairing
pends of course on whether the physical nature ofv is such
that Eq.~28! possesses nonzero solutions forD ~an attractive
interaction, for example, is more likely to yield a solution!;
s

-
,

s,
rd
m

-
-

and even if this is true, it certainly depends on whether
pairs constitute a stable phase, which in turn requires a p

tive determinant for the second derivative matrix ofS̄ with
respect toD’s. This latter point is also of importance in th
stability of pairing phases in the two component context~see
below!.

III. FUNCTIONAL INTEGRAL APPROACH
FOR A TWO-COMPONENT SYSTEM

Motivated by the physical example of hydrogen, a du
Fermion system, we now discuss in detail the simplest g
eralization of the above procedure to the simultaneous
mation of all possible pairs (f af a , f af b , f bf b) arising in a
neutral and thermodynamic mixture of two different class
of Fermions, but now with the fundamental Coulomb inte
actions included in all such pairings. As will be seen, t
structure of the development closely parallels the o
component case, although the presence of two compon
and the symmetry of the Hamiltonian leads to a generali
matrix description that has no analog in the one-compon
case ~see below!. Once again we start from the grand
partition functionZ for this two-component system in vol
ume V, at temperatureT and chemical potentialm5me

1mp . The definitions of the chemical potentials in this ca
involve number variations, which are constrained to neu
fluctuations; this is nontrivial and it results10 in interesting
relations betweenme ,mp and linear-response functions. I
terms of a coherent-state functional integral the partit
function Z is now written as the straightforward parallel o
Eq. ~1!, namely
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Z5E D@Ce* ~xt!#D@Ce~xt!#E D@Cp* ~xt!#D@Cp~xt!#

3exp~2S@Ce* ,Ce ,Cp* ,Cp# !, ~30!

whereS is the action

S5E
0

b

dtH E dxFCe* ~xt!S ]

]t
2meDCe~xt!

1Cp* ~xt!S ]

]t
2mpDCp~xt!G

1H@Ce* ~t!,Ce~t!,Cp* ~t!,Cp~t!#J ~31!

again with the notation*dx[Ss*d3r . The standard antipe
riodic boundary conditions corresponding to Fermions
 e

once again used in Eq.~30!, appearing again as constraints
the selection of paths, but now separately for each com
nent, namely

Ce~x,b!52Ce~x,0!,

and

Cp~x,b!52Cp~x,0!.

~In the case of deuterium the latter must be replaced
periodic-boundary conditions.! As before, the HamiltonianH
is assumed to be in normal order, and in the case of a t
component system with static pairwise interactions of
Coulomb type it is given by
H@Ce* ,Ce ,Cp* ,Cp#5E dxCe* ~xt!ee~2 i¹!Ce~xt!1E dxCp* ~xt!ep~2 i¹!Cp~xt!

1
1

2 E dx dyCe* ~xt!Ce* ~yt!vc~x2y!Ce~yt!Ce~xt!

1
1

2 E dx dyCp* ~xt!Cp* ~yt!vc~x2y!Cp~yt!Cp~xt!

2E dx dyCe* ~xt!Cp* ~yt!vc~x2y!Cp~yt!Ce~xt!, ~32!

vc(x2y) being the bare-Coulomb interaction

vc~x2y!5
e2

ux2yu
. ~33!

As a consequence of the form of Eq.~32! the action Eq.~31! again takes the separable form

S@Ce* ,Ce ,Cp* ,Cp#5E
0

b

dtE dx dyH Ce* ~xt!d~x2y!F ]

]t
1ee~2 i¹!2meGCe~yt!1Cp* ~xt!d~x2y!

3F ]

]t
1ep~2 i¹!2mpGCp~yt!1

1

2
Ce* ~xt!Ce* ~yt!vc~x2y!Ce~yt!Ce~xt!

1
1

2
Cp* ~xt!Cp* ~yt!vc~x2y!Cp~yt!Cp~xt!2

1

2
Ce* ~xt!Cp* ~yt!vc~x2y!Cp~yt!Ce~xt!

2
1

2
Cp* ~xt!Ce* ~yt!vc~x2y!Ce~yt!Cp~xt!J

[S01Sint , ~34!
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whereS0 denotes the terms not containingvc . For a trans-
lationally invariant system we again haveea(k)5k2/2ma ,
with a5$e,p%. Note that in what follows we take these e
ergy dispersions to be quite general@ee(k) for example,
could correspond to a band structure, with protons being
an extreme tight-binding or Hubbard limit, see Sec. V#.

Next, it is important to observe thatSint can be written in
a matrix form ~as noted this has no analog in the on
component case!, namely

Sint@C* ,C#5
1

2 E dx dyE
0

b

dtC* ~xyt!V̂̃~xy!C~xyt!,

~35!

with

C~xyt![S Ce* ~xt!Ce* ~yt!

Cp* ~xt!Cp* ~yt!

Ce* ~xt!Cp* ~yt!

Cp* ~xt!Ce* ~yt!

D , ~36!

and

V̂̃~xy![vc~x2y!S 1 0 0 0

0 1 0 0

0 0 21 0

0 0 0 21

D . ~37!

The structure of Eq.~35! arises entirely because of thesym-
metry of the Hamiltonian~32! with respect to the Coulomb
interactions and is ideally suited to yet another HS trans
mation of the type~5!. Indeed, if we use the notation
[xyt, 2[x8y8t8, etc., and make the identifications@see
Eqs.~6! and ~7!#

f ~1![C~xyt!, ~38!
’s
n

in

-

r-

and

C21~1,2!52
V̂̃~xy!

2
d~x2x8!d~y2y8!d~t2t8!, ~39!

then Eq.~5! leads to the result@the companion of Eqs.~9!
and ~10!# that

exp@2Sint#5~const!E D@D* #D@D#exp@2S8#, ~40!

with

S85E d1 d2D* ~1!Ĉ~12!D~2!

2E d1$C* ~1!D~1!1C~1!D* ~1!%. ~41!

Here the ‘‘natural form’’ forD ~again with no analogy to the
one-component case! is

D~1![S Dee* ~xyt!

Dpp* ~xyt!

Dep* ~xyt!

Dpe* ~xyt!

D , ~42!

and it immediately introduces the four-order parameters
will be essential in the discussion that follows. If as earl
we subsequently rescaleD→2D/2 the partition function
then reads

Z5~const!E D@C* #D@C#D@D* #D@D#

3exp$S̃@C* ,C;D* ,D#%, ~43!

with
S̃@C* ,C;D* ,D#5E
0

b

dtE dx dy5 Ce* ~xt!d~x2y!F2
]

]t
2ee~2 i¹!1meGCe~yt!

1Cp* ~xt!d~x2y!F2
]

]t
2ep~2 i¹!1mpGCp~yt!2

1

2
D* ~xyt!C~xyt!

2
1

2
D~xyt!C* ~xyt!1

1

2

1

vc~x2y!
D* ~xyt!S 1 0 0 0

0 1 0 0

0 0 21 0

0 0 0 21

D D~xyt!6 , ~44!
which is now the analog of Eq.~12!.
Once again, Eq.~44! can be recast into anewmatrix form

@which is essentially a generalization of Nambu
procedure,11 as in Eq.~13!#. Indeed, if we change notatio
once again to 1[xt, etc.~so that*d1[*0

bdt*dx, etc.! and
if we define@see Eq.~14!#
F~1![S Ce~1!

Ce* ~1!

Cp~1!

Cp* ~1!

D ~45!

and
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D~12![S Dee* ~12!

Dpp* ~12!

Dep* ~12!

Dpe* ~12!

D , ~46!

then Eq.~44! can be written as@see Eq.~13!#

S̃@C* ,C;D* ,D#5E d1 d2H 1

2
F* ~1!@2Â~12!#F~2!

1
1

2
D* ~12!V̂̃21~12!D~12!J . ~47!
In Eq. ~47! we have the definitions

V̂̃21~12![
1

vc~122! S 1 0 0 0

0 1 0 0

0 0 21 0

0 0 0 21

D , ~48!

and
q.
Â~12![S d~12!S ]

]t
1jeD Dee~12! 0 Dep~12!

Dee* ~12! d~12!S ]

]t
2jeD Dep* ~12! 0

0 Dpe~12! d~12!S ]

]t
1jpD Dpp~12!

Dpe* ~12! 0 Dpp* ~12! d~12!S ]

]t
2jpD

D , ~49!

where we have used the notationja5ea(2 i¹)2ma . Equation~49! is now clearly the two-component generalization of E
~15! that takes into account the symmetry of the two-component Hamiltonian.

The partition function can, therefore, finally be written as

Z5~const!3E D@D* #D@D#E D@F* #D@F#expH E d1 d2F2
1

2
F* ~1!Â~12!F~2!G J

3expH E d1 d2
1

2
D* ~12!V̂̃21~12!D~12!J , ~50!
ive
be

be-
and this may be compared directly with Eq.~16!. Using a
Gaussian integration over Grassmann variables, namely

E D@F* #D@F#expH E d1 d2F* ~1!F2
Â~12!

2
GF~2!J

5detS Â

2
D 5expF tr lnS Â

2
D G ~51!

to integrate out theF field we then obtain

Z5~const!E D@D* #D@D#exp~S̃@D* ,D# !, ~52!

with

S̄@D* ,D#5tr lnS Â

2
D 1

1

2 E d1 d2D* ~12!V̂̃21~2!D~12!,

~53!
and this can be seen as the parallel of Eq.~18!.
After a sequence of exact manipulations we again arr

at a point where the stationary-phase approximation can
implemented@comparison can again be made with steps
ginning with Eq.~19!#:

dS̄

dDee* ~12!
5

Dee~12!

vc~12!
1trF Â21~12!S 0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

D G50,

~54!

dS̄

dDpp* ~12!
5

Dpp~12!

vc~12!
1trF Â21~12!S 0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

D G50,

~55!
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dS̄

dDep* ~12!
5

2Dep~12!

vc~12!
1trF Â21~12!S 0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

D G50,

~56!

and

dS̄

dDpe* ~12!
5

2Dpe~12!

vc~12!
1trF Â21~12!.S 0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

D G50.

~57!

It is evident thatdS̄/dDee(12)50 will yield an equation that
is conjugate to Eq.~54!, and thatdS̄/dDpp(12)50 will also
yield an equation conjugate to Eq.~55!. On the other hand, if
we impose the condition that equationsdS̄/dDep(12)50 and
dS̄/dDpe(12)50 must yield equations completely conjuga
to Eqs.~56! and ~57!, respectively, we then obtain the co
straint that

DepDpe* 5DpeDep* , ~58!

and that they both must be real. This will have simplifyin
consequences in the calculations that follow~see Appendix
C!.
t

ier
As mentioned earlier, the SPA is generally justified f
k-space pairing, and on general physical grounds it would
expected to be accurate forDee. In addition, we shall see tha
the results that follow show considerable evidence that
approximation is satisfactory forDpp and Dep as well,8 as
they approximately reproduce the low-density real-sp
pairing @see Eq.~82!#.

To proceed from this point we are again required to Fo
rier transform Eqs.~54!–~57! to k-space and to Matsubar
frequenciesvn , i.e., we write again@as in Eq.~23!#,

Ĝ~32!5
1

b (
vn

e2 ivnt32E d3k

~2p!3 eikr 32Ĝ~k,vn!,

where the Matsubara frequencies for Fermions are given
Eq. ~24!. We can now find the Green’s-function matrixÂ21

appropriate to fundamental particles moving in the ‘‘mul
pairing’’ field. Beginning again with@see Eq.~22!#

E d3Â~13!Ĝ~32!5d~12!1̂ ~59!

and using Eqs.~49! and ~23!, we obtain

1

b (
vn

E d3k

~2p!3 eikr 12e2 ivnt12Ẫ~k,vn!Ĝ~k,vn!5d~12!1̂.

This clearly is the analog of Eq.~25!, but now with
Ẫ~k,vn!5S 2 ivn1je~k! Dee~k! 0 Dep~k!

Dee* ~k! 2 ivn2je~k! Dep* ~k! 0

0 Dpe~k! 2 ivn1jp~k! Dpp~k!

Dpe* ~k! 0 Dpp* ~k! 2 ivn2jp~k!

D ~60!
e
ey

ms.

s
ults

a-
whereja(k)[ea(k)2ma . @As will be seen below, the form
of jp(k) depends heavily on the choice of conditions~i.e.,
density! and the mass of the proton#. This result shows tha

Ĝ(k,vn) is the inverse of the matrixẪ(k,vn) @see also Eq.
~26!#, and it can be found easily. If we use it in the Four
transform of Eqs.~54!–~57!, we obtain four ‘‘gap equa-
tions,’’ as follows:

Dee~k!52
1

b (
k8

(
vn

vc~k2k8!@Ĝ~k8,vn!#12, ~61!

Dpp~k!52
1

b (
k8

(
vn

vc~k2k8!@Ĝ~k8,vn!#34, ~62!

Dep~k!5
1

b (
k8

(
vn

vc~k2k8!@Ĝ~k8,vn!#32, ~63!

and
Dpe~k!5
1

b (
k8

(
vn

vc~k2k8!@Ĝ~k8,vn!#14, ~64!

where

@Ĝ~k8,vn!# i j [
Xi j ~k8,vn!

det~k8,vn!
. ~65!

The definitions of quantitiesXi j and the determinant det ar
quite straightforward, but they are also quite lengthy; th
are given in Appendix B. Equations~61!–~65! are now seen
to be the direct generalizations of Eq.~27!.

The final step consists in carrying out the frequency su
These are also found in detail in Appendix C@and are aided
by the constraint~58!#; the gap structure resulting from thi
procedure is quite rich, as we shall see. Applying the res
of Appendices B and C to Eqs.~61!–~64! we can determine
the ‘‘gap equations,’’ which are also the direct generaliz
tions of Eqs.~28! and ~29!. They have the following final
forms, namely:
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Dee~k!52(
k8

vc~k2k8!Dee~k8!

2@r 1
2~k8!2r 3

2~k8!#

3H F r 1~k8!tanh
br 1~k8!

2
2r 3~k8!tanh

br 3~k8!

2 G

1Dee~k8!F tanh
br 3~k8!

2

r 3~k8!
2

tanh
br 1~k8!

2

r 1~k8!
G J ,

~66!

Dpp~k!52(
k8

vc~k2k8!Dpp~k8!

2@r 1
2~k8!2r 3

2~k8!#

3H F r 1~k8!tanh
br 1~k8!

2
2r 3~k8!tanh

br 3~k8!

2 G

1Dpp~k8!F tanh
br 3~k8!

2

r 3~k8!
2

tanh
br 1~k8!

2

r 1~k8!
G J ,

~67!

Dep~k!51(
k8

vc~k2k8!Dpe~k8!

2@r 1
2~k8!2r 3

2~k8!#

3H F r 1~k8!tanh
br 1~k8!

2
2r 3~k8!tanh

br 3~k8!

2 G

1Dep~k8!F tanh
br 3~k8!

2

r 3~k8!
2

tanh
br 1~k8!

2

r 1~k8!
G J ~68!

and

Dpe~k!51(
k8

vc~k2k8!Dep~k8!

2@r 1
2~k8!2r 3

2~k8!#

3H F r 1~k8!tanh
br 1~k8!

2
2r 3~k8!tanh

br 3~k8!

2 G

1Dpe~k8!F tanh
br 3~k8!

2

r 3~k8!
2

tanh
br 1~k8!

2

r 1~k8!
G J .

~69!

Here,

Dee~k8!5jp
2~k8!1uDpp~k8!u22Dpp* ~k8!

Dep~k8!Dpe~k8!

Dee~k8!
,

~70!

Dpp~k8!5je
2~k8!1uDee~k8!u22Dee* ~k8!

Dep~k8!Dpe~k8!

Dpp~k8!
,

~71!
Dep~k8!5je~k8!jp~k8!1Dep~k8!Dpe* ~k8!

2Dee~k8!Dpp~k8!
Dpe* ~k8!

Dpe~k8!
, ~72!

and

Dpe~k8!5je~k8!jp~k8!1Dpe~k8!Dep* ~k8!

2Dee~k8!Dpp~k8!
Dep* ~k8!

Dep~k8!
. ~73!

In the above we also have

r 1~k8!5AD̃2~k8!1
D2~k8!

2
~74!

and

r 3~k8!5AD̃2~k8!2
D2~k8!

2
, ~75!

where

D̃25
1

2
$uDee~k8!u21uDpp~k8!u212 Re@Dep~k8!Dpe* ~k8!#

1@ee~k8!2me#
21@ep~k8!2mp#2% ~76!

and

D2~k8!5@r 1
2~k8!2r 3

2~k8!#5„@ uDee~k8!u22uDpp~k8!u2

1je
2~k8!2jp

2~k8!#214Dep~k8!Dpe* ~k8!$uDee~k8!u2

1uDpp~k8!u21@je~k8!2jp~k8!#2%

18 Re@Dee~k8!Dpp~k8!Dep* ~k8!Dpe* ~k8!#…1/2. ~77!

The above system of simultaneous nonlinear integ
equations displays an obvious complexity, but it also clea
demonstrates the expected physics, namely that the pres
of the various order parameters determines effective inte
tions, and these in turn lead to the pairings in a complet
self-consistentway. In particular, it is crucial to note that th
quantities~70! and ~71!, if assumed real, can takenegative
values if DepDpe is sufficiently large. An important conse
quence is that in such a case it is possible to have effec
attractionsbetween identical particles, and therefore real
lutions of the system of integral Eqs.~66!–~69! as we will
show below.~The four-particle problem of a Heitler-Londo
H2 molecule introduced earlier is but the simplest manif
tation of this and will be discussed in the next section.!

IV. PHYSICAL INTERPRETATIONS

Before we discuss possible solutions and proceed to c
talline order, we offer a brief comment about the gene
behavior of Eqs.~66!–~69!. These equations have some qu
intuitive limits: for example, in the special caseDep→0 and
Dpe→0 we have

r 1~k!→AuDee~k!u21je
2~k!

and
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r 3~k!→AuDpp~k!u21jp
2~k!,

and as a result the first two equations decouple into a pa
BCS-like gap equations, namely

D ii~k!52(
k8

vc~k2k8!D ii~k8!

2AuD ii~k8!u21j i
2~k8!

3tanhFbAuD ii~k8!u21j i
2~k8!

2 G ,

with i 5$e,p%. These, of course, have no solution for ba
Coulomb repulsions, and this suggests that in the phys
caseDep cannotbe identically zero. It is also straightforwar
although tedious to show12 that by introducing thee2p cou-
pling ~i.e., DepDpeÞ0) to the next nontrivial order@i.e.,
0(Dep

2 )# we obtain an interaction which isless repulsivethan
the bare Coulomb interactionvc .

In the complementary~and more interesting! special case
of Dee→0 and Dpp→0 Eqs. ~68! and ~69! lead to a gap
equation of the ‘‘excitonic insulator’’ type,13 namely

Dep~k!51(
k8

vc~k2k8!Dpe~k8!

2@r 1~k8!1r 3~k8!#

3F tanh
br 1~k8!

2
1tanh

br 3~k8!

2 G , ~78!

where

r 1,3~k8!5U12 A4Dep~k8!Dpe* ~k8!1@je~k8!1jp~k8!#2

6
1

2
uje~k8!2jp~k8!uU. ~79!

From these it follows that

@r 1~k8!1r 3~k8!#

5HA4Dep~k8!Dpe* ~k8!1@je~k8!1jp~k8!#2,
uje~k8!2jp~k8!u,

~80!

the first being true in case thatDep(k8)Dpe* (k8)
1je(k8)jp(k8)>0, and the second forDep(k8)Dpe* (k8)
1je(k8)jp(k8)<0. The separate cases of weak and stro
Dep will be discussed in more detail below, but here we m
simply note that forDepDpe* !je

2 or jp
2 we once more obtain

for Dee or Dpp the uncoupled BCS gap equations, except t
there is now aneffective interaction, which to the first order
of correction is

veff~k2k8!5
vc~k2k8!

A11
4Dep~k8!Dpe* ~k8!

@je~k8!1jp~k8!#2

. ~81!

Observe that this islessrepulsive thanvc(k2k8), so that in
each of these special cases the presence of nonvanishinDep
has anattractive effect.

In general theD’s are complex quantities. There are tw
general cases that respect the constraint~58!: If Eq. ~68!
of

al

g
y

t

coincides with Eq.~69!, then we haveDep5Dpe ~for which
DepDpe* 5uDepu2 is indeed real!. If on the other hand Eq.~68!
is the complex conjugate of Eq.~69!, then we obtainDpe

5Dep* and Eq.~58! then leads to the conclusion thatDep,
Dpe, and DeeDpp must be real quantities. For the sake
simplicity let us adopt the second case, with allD’s being
real, and examine whether solutions of Eqs.~66!–~69! can
actually exist.@The assumption of realD’s is especially rel-
evant if we restrict ourselves tos-wave pairing; accordingly
we will later assume that theD’s are isotropic, i.e.,D i j (k)
5D i j (k) It should be noted, however, that the more gene
case of complex order parameters raises further physica
sues such as the manner in which phase coherence ca
velop in a single component when pairing leads to an ove
superconducting state. Another is the general question
phase dynamics when we proceed beyond the SPA. Note
because of the way in which we have defined our order
rameters~as elements of a matrix! the separate phases do n
necessarily incorporate the notion of correspondingly se
rate phase coherence as arises in the concept of a Jose
weak link.14 This is obvious from the fact that the cross
pairing is not merely a linear combination of electro
electron and proton-proton pairings but in fact coexists w
them as part of a higher strongly coupled complex. For t
reason, the limiting cases of simple pairing and excito
pairing coexist rather than compete#. As expected intuitively
it can be shown12 that in the high-temperature limit no solu
tions of the first two equations@Eqs.~66! and~67!# exist. But
as temperature is lowered solutions subsequently emerge
pecially when the cross-order parameterDep assumes suffi-
ciently large values. This occurs because of the correspo
ing development of effectiveattractionsin certain regions of
k-space for thee2e and p2p channels as we will discus
below @case~b!#.

In more detail, let us focus on the physically expect
caseDee/Dep and Dpp/Dep→0; then two general classes o
solutions develop, depending on whetheruDepu2 is small or
large compared to the productjajb , with $a,b%5any of the
$e,p%. To examine whether solutions to Eqs.~66!–~68! actu-
ally do exist in principle we may take allDab to be real and
isotropic ~corresponding tos-wave singlet states!. The fol-
lowing results then emerge:

~a! Solutions corresponding touDepu2!jajb for anyk are
possible but only for sufficiently low densities, particular
whenme andmp are both negative~for which jajb is then
positive for anyk!. At low density and low temperature th
solution to Eq.~78! has the form

Dep~k!5~const!
@je~k!1jp~k!#

~11k2a2!2 , ~82!

with a5\2/m* e2 andm* 5memp /me1mp . From a canoni-
cal analysis9 of the same problem in terms of the wave fun
tion fk of a single pair it can be shown that the relatio
betweenD(k) andfk is

uD~k!u25
4j~k!2ufku2

~12ufku2!2 . ~83!

In the low-density limitfk→0 @and noting that the Fourie
transform of e2r /a, a 1s state, is proportional to (1
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1k2a2)22# a comparison with Eq.~82! shows that this solu-
tion corresponds to anatomic e2p form. The scale ofDep is,
therefore, of the order of eV@see also case~b! below#. An
important result is that from thestructureof Eqs. ~68! and
~72! we can rigorously show12 that the low-temperature form
of Eq. ~68! remains unaltered even for small but nonvanis
ing values ofDee andDpp when they are included to the ne
nontrivial order. As a consequence, the solution~82! also
applies at low temperatures and densities to the case of
zero e2e and p2p pairings. This is consistent with th
Heitler-London form for theH2 wave function in the limit
me /mp→0. We therefore recover in this limit the expecte
phase of weakly interactinghydrogen molecules.14 An inde-
pendent stability analysis of these four-particle units~and
one that imposes a positive sign for the determinant of
second derivative matrix of the action with respect to
pairing fields! shows that this solution can only be stable
sufficiently low densities. The same stability analysis ca
also locate the temperature at which the corresponding
lecular bond ruptures. This is of the order of a few eV t
precise value requiring a knowledge of the temperature
pendence ofme andmp .

~b! The second class of solutions corresponds touDepu2

@jajb , at least for somek,k0 . In this case Eq.~78! has a
low-temperature solution, which can be approximated by

Dep~k!.
e2

p
k0F~k/k0!, ~84!

where

F~x!5
1

2
1

12x2

4x
lnU11x

12xU
is recognized as the Lindhard function, andk0 is determined
by

2Dep~k0!.uje~k0!1jp~k0!u. ~85!
tw
or
d

d
u-

s

-

n-

e
e
t

o-

e-

The scale ofDep can easily be estimated from Eq.~84! ~by
taking k0;kF) as 2/3r sRy. The form~84! is entirely differ-
ent from Eq.~82! and is valid only at sufficientlyhigh den-
sities@down to the point that Eq.~85! fails to give a real and
positive solution fork0#. We therefore deduce the existen
of a transition from the low-density molecular phase to
high-density phase described by Eq.~84!. This transition was
anticipated earlier9 but through a different procedure. Th
high-density phase is readily associated with a delocaliza
of the electronic component~which, however, may still be
paired!, i.e., a given electronic pair no longer belongs to
particularH2 molecule. As a result the two components c
now be discussed separately in terms of effective o
component problems. Thus, by comparing Eq.~66! ~or the
corresponding equation forDpp) with Eq. ~28! we can easily
determine theeffectivepairing interaction associated wit
each component. As a physical criterion for stability of t
paired phases we may invoke the requirement that there
at least some regions ink space where the effective intera
tions become negative. It is nowcrucial to observe that for
strongDep, the quantityDee @Eq. ~70!# and the correspond
ing quantityDpp @Eq. ~71!#, if taken as real, can both assum
negativevalues if the productDepDpe is sufficiently large.
From the form of Eqs.~66! and~67! this immediately reveals
the existence of effectiveattractionsbetween identical par-
ticles and correspondingly self-consistently stable soluti
within each component. The point can also be establis
from the fact that the system possesses a critical point~see
below! near which Eq.~66! takes the form

Dee~k!52(
k8

vc~k2k8!Dee

2~r 11r 3!

@jp~je1jp!2~a21!Dep
2 #

uDep
2 1jejpu

,

~86!

wherea is the ratioDpp/Dee, (r 11r 3) is given by Eq.~80!,
and the quantities on the right-hand side of Eq.~86! are all
evaluated atk8. Comparison with the low-temperature a
proximation of Eq.~28! then shows that, for example
veff~k,k8!5
vc~k2k8!uje~k8!u
@r 1~k8!1r 3~k8!#

$jp~k8!@je~k8!1jp~k8!#2@a~k8!21#Dep
2 ~k8!%

uDep
2 ~k8!1je~k8!jp~k8!u

~87!
t
to

or

ro-

he
en-
n

indeed plays the role of an effective interaction between
electrons~a corresponding identification being possible f
the p2p channel!, which under conditions to be discusse
below, can also be attractive.

The major results for this case can now be summarize
follows: ~i! In the high-temperature limit there are no sol
tions to Eq.~66!, as physically expected.~ii ! When tempera-
ture is lowered, solutions to Eq.~66! emerge, especially, a
noted, when the cross-order parameterDep is sufficiently
large. An accurate low-temperature approximation forDep,
which solves Eq.~78!, is Eq.~84!. We note that solutions to
Eq. ~66! and to the corresponding equation forDpp then
emerge because of the development of effectiveattractions
in certain regions ofk space for thee2e andp2p channels.
o

as

The attractive regions ink space are actually always differen
for the two channels, and for each component they tend
occur at values ofk where the order parameter of theother
component dominates.~iii ! A critical point Tc exists where
the order parametersDee and Dpp both vanish ~as T→Tc

from below!. At the same time the regions of attraction f

e2e andp2p channels intersect at a valuek̄ of k, where the
sum of the single-particle energies of an electron and a p

ton equals the total chemical potentialme1mp @i.e., je( k̄)

1jp( k̄)50#. ~iv! The self-consistent solution is such thatTc
is required to besmall compared to the energy scales of t
problem~in agreement, as it happens, with recent experim
tal results15–17 on hydrogen!, its actual value depending o
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the model chosen to describe the protonic phase~oscillator
states being the simplest model to address experiments
the next section!. A simple approximation forTc for strong
Dep turns out to be

kBTc.
uje2jpu

2 F 2Dep

uje2jpu
21

lnS 2Dep

uje2jpu
a11

ua21u D G , ~88!

where the ratioa[Dpp/Dee is close to unity, as can be ver
fied by using the structure of the full equations at low te
perature and L’Hospital’s rule in the limit that bothD’s van-
ish. This expression forTc is a consequence of th
requirement that the effective attraction between two e
trons vanishes asT→Tc . ~v! An inverse isotope effect is
expected from Eq.~88! for the dependence ofTc on the mass
of the heavier component. This is controlled by the prefac
in Eq. ~88! and it is generally expected forje.jp and for
jp.0 ~as is actually the case for localized proton states
cussed in the next section, wherejp;v;1/Amp, so that
uje2jpu increases withmp resulting in an inverse isotop
effect!. This general behavior is, therefore, preserved in
coarse-graining manner even for dramatic changes in s
metry ~the case of a crystal! and it happens to be in agree
ment with recent data17 ~the issue of the different symmetr
in deuterium is briefly discussed in Sec. VI!.

V. APPLICATIONS TO DENSE HYDROGEN

By way of practical application of case~b! two distinct
models can be used according to the choice of average
sity: one for a diffusive state, and another for protons be
in localized oscillator states, and vibrating within preform
p2p pairs ~the remnants of the low-density Heitler-Londo
fields!. The electrons are assumed to be fully degenerat
all cases and the partial chemical potentials necessary
these applications are taken from our earlier paper.10 The
first model is a satisfactory description of possible gene
ized pairing in systems with continuous symmetry, and
primary result is that pairing of identical particles willnot
occur if the masses of the two species are equal; only sim
e2p pairing of the excitonic type is possible. The predicti
is, therefore, that no pairing between identical particles w
occur in, for example, a dense electron-positron syst
However, asmp /me is increased from unity, an increasin
region in k-space develops around the Fermi surface wh
effective attractions between identical particles result, an
molecular clusters of electrons and positrons may form.

The second model is necessary for cases withmp@me ,
where the protons are in localized states to begin with. In
physically realizable case our formulation addresses the
eral issue of pairing in an initially monatomic crystal~a
simple example being paired crystal phases discus
recently18!.

In order to take account of the symmetry of a putat
crystalline phase we now write

Cp~r ,s!5(
m,k

Fmk~r !bmks ~89!
see

-

-

r

-

a
-

n-
g
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or

l-
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re
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ed

for the proton field operators, with

Fmk~r !5
1

AN
(

n
eikRnf m~r2Rn! ~90!

where N is the number of protons andf m(r2Rn) can be
approximated by themth excited-state eigenfunction of
three-dimensional harmonic oscillator potential centered
Rn @m denotes triplets of quantum numbers, i.
(mx ,my ,mz)#.

Correspondingly, the electron-field operators are writ
as

Ce~r ,s!5(
n,k

fnk~r !cnks , ~91!

with fnk(r ) being Bloch states corresponding to the bandn.
In Eqs.~89! and~91! b andc arek-space proton and electro
annihilation operators. Substitution of Eq.~90! into Eq. ~89!
yields

Cp~r ,s!5(
m,n

f m~r2Rn!dms~Rn!, ~92!

with the localized operatordms(Rn) ~annihilating a proton of
spin s at site Rn , which is found in themth excited state!
defined by

dms~Rn!5
1

AN
(

k
eikRnbmks . ~93!

For reasons of formal symmetry Eq.~91! is also brought into
a similar form with the use of electronic Wannier functio
Wn ; by writing the Bloch states as

fnk~r !5
1

AN
(

n
Wn~r2Rn!eikRn ~94!

then Eq.~91! is transformed into

Ce~r ,s!5(
n,n

Wn~r2Rn!d̃ns~Rn!, ~95!

with the electron operatord̃ns defined by

d̃ns~Rn!5
1

AN
(

k
eikRncnks . ~96!

With these transformations the two-component Ham
tonian ~32! takes the form
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H5(
n

(
m1m2s

tm1m2
dm1s

† ~Rn!dm2s~Rn!1(
n

(
n1n2s

t̃ n1n2
d̃n1s

† ~Rn!d̃n2s~Rn!

1
1

2 (
nÞm

(
ss8

(
m3m4m5m6

vm3m4m5m6

nm dm3s
† ~Rn!dm4s8

†
~Rm!dm5s8~Rm!dm6s~Rn!

1
1

2 (
nÞm

(
ss8

(
n3n4n5n6

ṽn3n4n5n6

nm d̃n3s
† ~Rn!d̃n4s8

†
~Rm!d̃n5s8~Rm!d̃n6s~Rn!

2(
nm

(
ss8

(
n3m4m5n6

v̄n3m4m5n6

nm d̃n3s
† ~Rn!dm4s8

†
~Rm!dm5s8~Rm!d̃n6s~Rn!. ~97!
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In Eq. ~97! the kinetic~hopping! elementst and t̃ are defined
by

tm1m2
[E d3k

\2k2

2mp
f̂ m1

~k! f̂ m2
* ~k!, ~98!

and

t̃ n1n2
[E d3k

\2k2

2me
Ŵn1

~k!Ŵn2
* ~k!, ~99!

@with f̂ m(k) andŴn(k) the Fourier transforms off m(r ) and
Wn(r )#; the potential elementsv are defined by

vm3m4m5m6

nm [(
q

4pe2

Vq2 eiq~Rn2Rm!E E d3kd3k8 f̂ m3
~k! f̂ m4

3~k8! f̂ m5
* ~k81q! f̂ m6

* ~k2q!, ~100!

and the elementsṽ and v̄ are given in a similar way by
appropriate substitutions off̂ ’s with Ŵ’s.

The new Hamiltonian~97! is formally quite similar to the
continuous one@Eq. ~32!#, but with some important change
now the space appears asdiscrete, the corresponding field
operators are physically richer~containing labelsm and n!,
and the kinetic and potential elements are significantly ren
malized from the continuous case. The entire physics
phonons and electron-hole transitions is included in Eq.~97!;
phonons, in this localized description, are associated w
‘‘proton-hole pairs’’ described by combinations of the typ
dm1

† (Rn)dm2
(Rm) for neighboring sites~nm!, and similar

combinations ofd̃’s contain all the physics of electron-ho
pairs. At this point the simplest route is to retain just t
oscillator ground states (m50) and the lowest electroni
bands (n50). Though not a completely general descripti
this choice at least permits a first assessment of the solu
structure for the discrete~crystalline! case.

With this reduced description our real-space analysis
tually goes through completely as before but in discr
space, and the HS transformation will now pair the new
eratorsd and d̃ in all four possible combinations. When w
again proceed to Fourier transforms, the sums overk will
r-
f

th

on

c-
e
-

now be restricted to sums over reciprocal lattice vecto
~These can alternatively be written as sums overk within the
first Brillouin zone!. In this formulation,je(k) is simply sub-
stituted by the electronic band energies, whilejp(k) will
now lack dispersion and in fact equaljp(k)
53a0*

2/2s2Ry* , with s the half width of the ground-state
Gaussian (s5A\/mpv, which is self-consistently depen
dent on density and temperature.! Here the proton mass ha
been used in the definition ofa0* and Ry* . Finally, the Cou-
lomb interaction between protons is now changed
e2/uRi j uerf(uRi j u/&s), which in turn renormalizesvc(q) to

vc(q)e2q2s2/2. ~We see here the familiar Debye-Waller fa
tor modifying the interaction!. Similar modifications occur
for the electron-electron and electron-proton interactions.
though the general conclusions drawn earlier for the simp
possible generalized pairing are not expected to change
above modifications may have some further nontrivial co
sequences and an ongoing investigation is currently dev
to them. A preliminary result is that the lack of symmetry
the character of the states of the two Fermionic compone
may actually change the character of the correspondingTc .
Because the problem is richer, further solutions can also
ist in principle forT,Tc ~whereDee→0 while Dpp remains
finite!, especially if we permit the possibility thatDpp can
vanish on a surface ink space. These solutions physical
correspond to persistent proton-proton pairing in the pr
ence of normal~unpaired! electrons.

The above model is a simplified but reasonable desc
tion for dense molecular hydrogen, when the electronic co
ponent is in semimetallic or metallic form. Here, as noted
transition is expected to occur forT,Tc as we move from
higher to lower densities, especially to densities beyond
point where the electronic partial chemical potential becom
negative. From this point on we have to deal with case~a! of
Sec. IV.

A final point that deserves special mention concerns
stability of the generalized paired phases discussed so
from the point of view of the SPA. A simple stability analy
sis, already mentioned earlier, and based on the sec
derivative matrix of the action with respect to the pairin
fields, leads to expressions similar to those found befor3,2

for the collective excitations of the paired phase, but n
corresponding to the limitv→0, namely a static distortion
If we take the particular casesDee/Dep→0, Dpp/Dep→0, and
approximateDep by a constant, we obtain the expression
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which can be used to establish a criterion ofinstability of the
generalized paired phase. In Eq.~101! E is approximately
given by Eq. ~29! with D5Dep, m5me1mp , and j(p)
5je(p)1jp(p). Whenever Eq.~101! has a real solution for
the wave vectorK0 , this can be interpreted as a modulati
of the paired phase that leads to a competing charge-de
wave state~CDW! with the corresponding periodicity. To
solve Eq.~101! for K0 is difficult in general, but we can
nevertheless estimate the result with an expansion of
~101! up to order 0(K0

4), namely

S 11
pF

2K0
2

9m2D22
pF

4K0
4

100m4D4 1••••• D
56S 12

pF
2K0

2

18m2D2 1
pF

4K0
4

150m4D4 1••••• D , ~102!

with m[m* , D[Dep, and pF the Fermi momentum. The
smallest solution of Eq.~102! is

~K0!2.
10m2D2

pF
2 , ~103!

which, if combined with the earlier estimateD;2/3r sRy,
leads to K0;1.6/a0 . The physical picture is actually
straightforward one; the instability appears as a perio
modulation and is, therefore, consistent with intense infra
activity observed in experiments,19 which has been assoc
ated with a new symmetry breaking20 in dense hydrogen of a
CDW type. This is an additional charge ordering that m
formally be described as repairing of the original fields~a
pairing of the generalized paired fields!. A complete descrip-
tion of such a phase can only be made through a more
eral HS transformation than the one given here.

VI. CONCLUSION

We have given a natural generalization of the stand
pairing theory for simple pairs to a problem of a tw
component system withall possible kinds of pairings, bu
starting from fundamental Coulomb interactions. This the
constitutes a quite general treatment of a two-compon
system with Coulomb interactions and in ranges of den
and temperature where generalized pairing structures ca
formed. The theory is, therefore, a first-principles treatm
of a fundamental many-body system in condensed-ma
theory, but it also has an actual physical realization, nam
hydrogen. For this system it gives a general account of
ity

q.

ic
d

y

n-

rd

y
nt
y
be
t

er
ly
e

existence of a low-temperature critical point, and an inve
isotope effect observed in ultra-high-pressure experiment
also leads to a prediction of a competing phase, name
CDW, a result also consistent with recent experimental e
dence of a symmetry broken phase leading to asymme
charge ordering.

It is clear that the symmetry and the lack of spin depe
dence of the fundamental Coulomb interaction has resu
in highly symmetric equations for the two components, a
this has led to a description of spatial characteristics of
order parameters, which are decoupled from the correspo
ing spin states. Here we have restricted ourselves toisotropic
order parameters, which should correspond naturally to s
singlet states. However, it is also possible to address
issue of magnetic ordering at low densities with the sa
method~although this will require a different HS transforma
tion to account for the additional spin ordering!. Further,
exactly the same method can be applied to systems of di
ent symmetry, for instance a Fermion-Boson mixture~e.g.,
deuterium!. The only differences for this case are that t
original fields for the Boson system will be complex va
ables~rather than Grassmann!, and the final frequency sum
are over Bose~i.e., even! Matsubara frequencies. Howeve
the resulting physics is hardly expected to be very differ
because of the large mass of the nuclei compared with e
tronic masses. It may also be noted that for either mass,
Hamiltonian~32! describing the two-component system po
sesses very considerable symmetry leading to important s
ing relations for the primary thermodynamic functions21

These can be generalized to the case where an external
is imposed;22 the latter can be chosen as a probe for
existence of macroscopic currents, and hence for the ons
an insulator to metal transition when a control parame
~such as density! is varied. The transition can also be linke
to the appearance of a geometric~Berry’s! phase associate
with the adiabatic parallel transport of the center of mass
the electron system22 and in this way the insulator-meta
transition in dense hydrogen can be put on a quite gen
footing.

Finally, we should also mention possible generalizatio
of the method to other systems. A quite straightforward
justment is all that is necessary to describe generalized p
ing in a two-component system with different~i.e., non-
Coulombic! interactions (vee, vpp, andvep5vpe), with some
of them possibly retaining a Coulombic part but others re
resentingpseudopotentialsappropriate for the system unde
consideration. It then transpires that Eqs.~66!–~69! retain
their forms with the corresponding interaction appearing
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each channel in place ofvc . In principle, this method could
therefore, address issues of pairing in highTc or other com-
plex materials, if, of course, the appropriate use of pseu
potentials is made from the start. Note, in particular, that
local approximations to pseudopotentials, the quantityvep(k)
may be expected to vary in sign reflecting a length sc
associated with the electronic condensation leading to
formation of ions. In some regions, therefore, the pseudo
tential can be considered repulsive, yet it is important to n
that self-consistent solutions to Eq.~66! may still exist in
principle for particular choices of density~or kF), and that as
a consequence pairing of ions and electrons can still
exist.23
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APPENDIX A

We carry out the frequency sums that appear in Eq.~27!.
For this we first evaluate the frequency sum

J~x!5(
vn

1

ivn2x
, ~A1!

and then use this result to evaluate Eq.~27!, but after resolv-
ing it into partial fractions. To evaluateJ(x) we first con-
sider

I ~x!5E
C

dv

v2x

1

ebv11
~A2!
o-
r

le
e

o-
te

o

e

along a circular contourC in the complexv plane that con-
tainsx and also certain Matsubara frequencies. The deno
nator (11ebv)21 has simple poles at theivn’s with residues

lim
v→ ivn

~v2 ivn!

ebv11
52

1

b
, ~A3!

so that with the residue of the integrand in Eq.~A2! at v
5x we have

I ~x!52p i F(
vn

1

~ ivn2x! S 2
1

b D1
1

ebx11G . ~A4!

If we take the radiusR(C) of a circular contour to infinity
~so that (vn

contains the entire infinite set of Matsuba
frequencies!, we must have

lim
R~C!→`

I ~x!50, ~A5!

and then Eq.~107! gives

(
vn

1

ivn2x
5

b

ebx11
~A6!

for the frequency sumJ(x). By analyzing Eq.~27! into par-
tial fractions and using Eq.~A6! for each term we obtain

(
vn

1

vn
21E2 5

b

2iE
tan

ibE

2
5

b

2E
tanh

bE

2
, ~A7!

which in turn yields Eqs.~28! and ~29! of the text.

APPENDIX B

We give below the definitions of theXi j ’s and det that
appear in Eqs.~61!–~65! of the text; they are
X12~k8,vn!5Dee~k8!$~vn!21@ep~k8!2mp#21uDpp~k8!u2%2Dpp* ~k8!Dep~k8!Dpe~k8!, ~B1!

X34~k8,vn!5Dpp~k8!$~vn!21@ee~k8!2me#
21uDee~k8!u2%2Dee* ~k8!Dep~k8!Dpe~k8!, ~B2!

X32~k8,vn!5Dpe~k8!$~vn!21@ee~k8!2me#@ep~k8!2mp#%1 iDpe~k8!vn$@ee~k8!2me#2@ep~k8!2mp#%

1Dep~k8!uDpe~k8!u22Dpe* ~k8!Dee~k8!Dpp~k8!, ~B3!

X14~k8,vn!5Dep~k8!$~vn!21@ee~k8!2me#@ep~k8!2mp#%2 iDep~k8!vn$@ee~k8!2me#2@ep~k8!2mp#%

1Dpe~k8!uDep~k8!u22Dep* ~k8!Dee~k8!Dpp~k8!, ~B4!

and

det~k8,vn!5~vn!41~vn!2$uDee~k8!u21uDpp~k8!u21@ee~k8!2me#
21@ep~k8!2me#

21Dep~k8!Dpe* ~k8!1Dpe~k8!Dep* ~k8!%

1uDep~k8!u2uDpe~k8!u21uDee~k8!u2uDpp~k8!u222 Re@Dee* ~k8!Dpp* ~k8!Dep~k8!Dpe~k8!#1@ee~k8!2me#
2@ep~k8!

2mp#21@ee~k8!2me#
2uDpp~k8!u21@ep~k8!2mp#2uDee~k8!u212 Re@Dep~k8!Dpe* ~k8!#@ee~k8!2me#@ep~k8!

2mp#2vn„$@ep~k8!2mp#2@ee~k8!2me#%2 Im@Dep~k8!Dpe* ~k8!#…. ~B5!
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APPENDIX C

We carry out below the frequency sums that appear in Eqs.~61!–~64!, combining them at the same time with the definitio
of Appendix B. Using the constraint~58! we find that the last term of Eq.~B5! vanishes and as a consequence the freque
sums can be carried out relatively easily. For example, the imaginary terms in Eqs.~B3! and ~B4! also vanish when we sum
over vn , and therefore we only need sums of the form

(
vn

vn
21a

vn
41bvn

21c
. ~C1!

For their calculation we resort to contour integrals of the form

I 5E
C

dv~2v21a!

~v42bv21c!~11ebv!
. ~C2!

Note that the signs are appropriately chosen so that the residues at the Matsubara frequencies will give sums of the
form ~C1!. Carrying out the contour integration and then taking the contour to infinity~so thatI→0) we finally obtain the
result

(
vn

vn
21a

vn
41bv4

21c
5bF ~2r 1

21a!

~r 12r 2!~r 12r 3!~r 12r 4!

1

11ebr 1
1

~2r 2
21a!

~r 22r 1!~r 22r 3!~r 22r 4!

1

11ebr 2

1
~2r 3

21a!

~r 32r 1!~r 32r 2!~r 32r 4!

1

11ebr 3
1

~2r 4
21a!

~r 42r 1!~r 42r 2!~r 42r 3!

1

11ebr 4G , ~C3!

wherer 1 , r 2 , r 3 , andr 4 are the roots ofv42bv21c, i.e.,

v42bv21c[~v2r 1!~v2r 2!~v2r 3!~v2r 4!. ~C4!

Applying the above results to Eqs.~61!–~64! ~once again in combination with the definitions of Appendix B! we obtain

r 1,2,3,456AD̃26AD̃42F4, ~C5!

where it is understood that the four roots can be obtained by taking all four possible combinations of signs in Eq.~120!. Here
we have defined

D̃25
1

2
$uDee~k8!u21uDpp~k8!u212 Re@Dep~k8!Dpe* ~k8!#1@ee~k8!2me#

21@ep~k8!2mp#2%, ~C6!

and

F45uDee~k8!u2uDpp~k8!u21uDep~k8!u2uDpe~k8!u222 Re@Dee~k8!Dpp~k8!Dep* ~k8!Dpe* ~k8!#1@ee~k8!2me#
2uDpp~k8!u2

1@ep~k8!2mp#2uDee~k8!u21@ee~k8!2me#
2@ep~k8!2mp#212 Re@Dep~k8!Dpe* ~k8!#@ee~k8!2me#@ep~k8!2mp#.

~C7!

The final application of all the above to Eqs.~61!–~65! yields Eqs.~66!–~77! given in the text.
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