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Dipole correction for surface supercell calculations

Lennart Bengtsson
Department of Applied Physics, Chalmers University of Technology and Go¨teborg University, S-412 96 Go¨teborg, Sweden

~Received 10 November 1998!

When performing density-functional calculations of surfaces using a plane-wave pseudopotential code, it is
necessary to embed a slab with two surfaces in a periodic supercell. In many situations, it is desirable to study
an asymmetric slab with a net surface dipole density. The periodic boundary conditions imposed on the
electrostatic potential then give rise to an artificial electric field across the slab. We present a dipole correction
that cancels the artificial field, and show how this correction can be incorporated in the density-functional
theory total-energy expression. The results are supported by total-energy calculations of water-molecule layers.
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I. INTRODUCTION

In recent years, density-functional theory~DFT! com-
bined with local- or semilocal approximations of th
exchange-correlation energy has become a widely used
oretical model for the calculational study of atomic and el
tronic structure of surfaces. Examples of applications
which the local-density approximation or the generalize
gradient approximation~GGA! yields results with useful ac
curacy include surface reconstruction,1 interactions with
adatoms,2 and calculation of surface energies.3 Most of these
calculations are based on pseudopotentials and a plane-
basis set. The plane-wave basis is well suited for surf
systems for a number of reasons: The basis set is inde
dent of ionic positions and gives, thus, an unbiased desc
tion of the surface, including bulk and vacuum regions. B
cause no Pulay corrections are needed, accurate ionic fo
can be calculated efficiently. Moreover, it is possible to i
prove the quality of the basis set in a systematic manne
adjusting the plane-wave cutoff energy. With the advent
ultrasoft pseudopotentials4 even traditionally ‘‘hard’’ ele-
ments like first-row atoms and transition metals can
handled efficiently.

The plane-wave basis set assumes a supercell geom
that is periodic in all three directions. In order to study
surface, a slab with two surfaces is embedded with vacu
regions in a supercell. The number of slab layers is chose
that the surface-surface interaction is small, and similarly
vacuum region should be large enough so that the interac
between neighboring slabs is negligible.

In many situations it is desirable to study an asymme
slab with a nonvanishing surface-dipole density. An exam
is a slab with adatoms on one side. The electrostatic po
tials on the two sides of the slab will then be different at t
cell boundary. However, plane-wave methods impose p
odic boundary conditions on the electrostatic potential, so
artificial uniform electric field is introduced in the superce
in order to cancel the potential jump at the boundary. O
way to circumvent this problem when studying surfac
adatom systems is to put adatoms on both sides of the
so that the net dipole moment is zero. Unfortunately, t
procedure introduces undesirable adatom interaction eff
across the slab and across the vacuum region, and to c
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teract them the number of slab layers and the size of
vacuum region must be increased. A better solution was s
gested by Neugebauer and Scheffler.5 They introduced a di-
pole field that compensated the artificial field in the sup
cell. By treating this field as external, they derived
incorrect expression for the electrostatic energy, howeve

In this paper, we derive a dipole correction that compe
sates for the artificial dipole field within the context of
periodic supercell calculation. It consists of two parts:
compensating ramp-shaped potential that cancels the a
cial field, and an energy correction term. The proposed c
rection formulas are supported by test calculations on lay
of water molecules. The results show that the dipole corr
tion gives accurate values for both total energy and force

The paper is organized as follows: In Sec. II we deri
correction formulas for the electrostatic potential and the
tal energy, which compensate for the artificial field in t
vacuum region. We also show how these corrections can
incorporated into the DFT total-energy expression in a fo
that is easy to implement in existing DFT codes. We pres
results from prototype calculations in Sec. III and end with
concluding discussion in Sec. IV.

II. THEORY

A. Dipole correction

By calculating the electrostatic potential and the total e
ergy for an isolated slab and comparing the results wit
supercell calculation with periodic boundary conditions, w
are now going to derive correction formulas that compens
for the artificial field in the vacuum region in the superce

Consider an isolated slab-shaped density distributionr(r)
that is normal to thez axis. We assume that the density
periodic in thex andy directions. When calculating the elec
trostatic potential that is generated byr(r), it is convenient
to separate the charge density into a laterally averaged q
tity and a remainder:

r~r!5rav~z!1r8~r! where E E r8~r! dx dy50 ;z.

~1!
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The decomposition allows us to write down the followin
expressions for the electrostatic potentialsVav(z) and
V8(z,Gi) that are generated byrav andr8, respectively:

Vav~z!522pE
2`

`

rav~z8!uz2z8udz8 ~2!

and

V8~z,Gi!5H 2p

uGiu
E

2`

`

r8~z8,Gi!e
2uz2z8uuGiudz8, GiÞ0

0, Gi50
~3!

Here,Gi is a lattice vector of the two-dimensional reciproc
lattice that is parallel to the slab. Outside the slab Eq.~2!
simplifies toVav52pm ~above! or 22pm ~below!, where

m5E
2`

`

rav~z8!z8dz8 ~4!

is the surface dipole density of the slab. The other poten
V8 decays exponentially for largeuzu and the decay constan
is given by 1/Gi ,min . For a square lattice, 1/Gi ,min
5L/(2p), whereL3L is the dimension of the periodic ce
in the xy plane.

Now assume that the slab is put in a box of heightzm with
periodic boundary conditions also in thez direction. Let
Vav,perandVper8 be periodic solutions of Poisson’s equation
the box, with source termsrav andr8, respectively. Becaus
V8(r) decays exponentially away from the surface, the er
made when imposing periodic boundary conditions onV8
should be small, soVper8 (r)'V8(r). On the other hand, a
linear term has emerged in the laterally averaged part of
potential:

Vav,per~z!5Vav~z!24pmS z

zm
2

1

2D ~5!

in order to satisfyVav,per(0)5Vav,per(zm). An approximation
for the Hartree potential of the isolated slab is thus

V~r!'Vper~r!1Vdip~z!, ~6!

whereVper5Vav,per1Vper8 and the dipole correction is

Vdip~z!54pmS z

zm
2

1

2D , 0,z,zm . ~7!

The dipole correction introduces a jump in the poten
V(r). The discontinuity should of course be placed with
the vacuum region of the supercell.

The added potentialVdip affects the energy of the supe
cell V. Because the Hartree energy is given by

EH5
1

2EV
r~r!V~r!d3r , ~8!

it follows that the energy associated with the dipole-poten
correction is

Edip5
1

2EV
r~r!Vdip~z!d3r . ~9!
l

al

r

e

l

l

The potential termVdip corresponds to an electric fieldEz
524pm/zm . The field has internal origin, because it is pr
portional to the surface-dipole density of the slab. Note t
the energy shift caused by an applied external field is tw
the amount in Eq.~9!. The potential correction in Eq.~7! was
first proposed by Neugebauer and Scheffler.5 However, be-
cause they assumed that the applied field was external,
did not provide a correct expression for the Hartree ener

B. Total energy within DFT

In the previous section we derived correction formulas
the electrostatic potential and the Hartree energy. We
now proceed with deriving expressions for the DFT to
energy and effective potential that include the dipole corr
tion terms.

Within DFT the electronic density is constructed fro
occupied one-particle states$c i%:

n~r!5(
i

uc i~r!u2, ~10!

where we for simplicity omit thek-point index and assume
that all bands are filled. The ground-state energy of the s
tem is then obtained by minimizing the following energ
functional with respect to the one-particle states$c i%:

E@$c i%,$Rj%#5(
i

^c i uTuc i&1EH1EXC . ~11!

The terms appearing in Eq.~11! are kinetic energy, Hartree
energy and exchange-correlation energy, respectively.
total charge densityr(r) is the sum of the electronic par
re(r)52en(r) and the ionic partr i(r)5e(Zjd(r2Rj ),
whereZj is the atomic number of atomj andRj is its posi-
tion. It follows that the Hartree energy of the isolated sl
can be written as

EH5
1

2EV
~r i1re!~Vper1Vdip!d

3r

5Edipc1E
V

re~r!@Vper
i ~r!1Vdip~r!#d3r 1Ee2e1Ei 2 i ,

~12!

where the ‘‘dipole correction energy’’

Edipc5
1

2EV
@r i~r!2re~r!#Vdip~r!d3r , ~13!

and

Ee2e5
1

2EV
E re~r!re~r8!

ur2r8u
d3r 8 d3r . ~14!

The last termEi 2 i in Eq. ~12! is the Madelung energy of the
ions. We arrive at the following dipole-corrected express
for the total energy:
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E@$c i%,$Rj%#5(
i

^c i uTuc i&

1E
V

@Vper
i ~r!1Vdip~r!#re~r!d3r

1Ee2e1Ei 2 i1EXC1Edipc. ~15!

The corresponding one-electron Hamiltonian operatorH is
the functional derivative of the total energy with respect
the electronic densityn(r):

H5T1Vper
e 1Vper

i 1Vdip1VXC , ~16!

whereVXC5dEXC /dn is the exchange-correlation potentia
The modifications necessary to include the dipole corr

tion in a DFT code is thus very straightforward.Vdip should
be added to the ionic potential and the total energy sho
include the extra termEdipc. BecauseVdip is present in the
one-electron Hamiltonian, it affects the one-electron sta
and thus also the electronic density. It is therefore neces
to determine the surface dipole densitym in a self-consistent
way. The fact thatEdip defined in Eq.~9! differs fromEdipc in
Eq. ~13! is explained by the presence ofVdip in the second
term of Eq.~15!.

C. Corrected Hellman-Feynman forces

Because both the ionic charge densityr i and the dipole
momentm depends on the ionic positions, a careful deriv
tion of the ionic forces is needed. According to the Hellma
Feynman theorem the ionic forces may be calculated as if
ions were embedded in a classical charge distributionre(r).
More specifically, the forceFI on atomI at positionRI is
given by FI52¹RI

EH , where EH is the Hartree energy

from Eq. ~12!. ExpressingFI as

FIG. 1. Orientation of the water molecules within the tw
dimensional layer. The extent of the supercell is drawn with das
lines. The distance between neighboring molecules is 3 Å and the
spacing between different layers is 6 Å .
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FI52
1

2E ~¹RI
r i !Vdipd

3r 2
1

2E ~r i1re!¹RI
Vdipd

3r

2E re¹RI
Vper

i d3r 2¹RI
Ei 2 i ~17!

and simplifying the first two terms using

E ~¹RI
r i !Vdipd

3r 52eZIE d8~r2RI !Vdipd
3r

5eZI¹ rVdip~RI !5ZI

4pme

zm
ẑ ~18!

and (A is the area of the supercell in thexy plane!

¹RI
Vdip54pS z

zm
2

1

2D¹RI
m, ~19!

¹RI
m5

1

A
¹RI

E ~r i1re!z d3r 5
1

A
¹RI(j

eZjRj• ẑ5
eZI

A
ẑ,

~20!

we get the following expression for the ionic force:

FI52ZI

4pme

zm
ẑ2E re~r!¹RI

Vper
i ~r!d3r 2¹RI

Ei 2 i .

~21!

The first term is the force from the dipole correction fiel
exerted on ionI, and the last two terms comprise the usu
DFT expression for the force.

III. RESULTS

In order to demonstrate the accuracy of the propos
dipole-correction formula, we present results from a DFT
GGA calculation on a two-dimensional layer of water mo
ecules~see Fig. 1.! This system was chosen because the w
ter molecules have a large internal dipole moment, so t
electrostatic potentials on either side of the molecule lay
differ by several volts. It follows that the dipole correction
field in a supercell calculation for this system will be larg
(;1 V/Å! and may affect the total energies if no dipol
corrections are included.

The plane-wave pseudopotential codeDACAPO was used
for the total-energy calculations.6 The interactions between
the valence electrons and the ions were represented with
trasoft pseudopotentials.4 Although the hydrogen 1s and
oxygen 2p orbitals are highly localized around the ion cores
these potentials give accurate total energies with a pla
wave cutoff energy of only 25 Ry.

We performed calculations both with and without dipol

d

rious
TABLE I. Calculated total energies for a water molecule within a two-dimensional layer, using va
dipole corrections. The double-cell result for the total energy is used as reference.

Total energy~eV! DE ~eV!

No correction 2467.0192 20.10
Correction from Eq.~13! 2466.8994 0.02
Correction from Ref. 1 2466.8142 0.10
Double cell, per layer 2466.9191 0.00
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corrections, and in order to verify the energy-correction f
mula in Eq. ~13! we also made a calculation for a larg
supercell containing two molecule layers oriented so that
net dipole moment in the cell was zero and no dipole corr
tion was needed. The results are presented in Table I
shown in Table I, omitting the dipole correction results in
error in the total energy of 0.1 eV/molecule for this syste
With corrections included the error is only 0.02 eV. T
correction formula suggested by Neugebauer and Sche
overcorrects the energy by a factor of 2, so its applicability
questionable. Dipole-corrected forces differ from the on
calculated in the larger supercell by at most 0.04 eV
Without correction the error is approximately 0.2 eV/Å.
Fig. 2 we present the laterally averaged electrostatic pote
2eV(z) across the molecule layer. The applied dipole lay
visible as a potential jump in the graph, exactly cancels
artificial field in the vacuum region. The figure also sho
that work functions are ill defined if the dipole correction

FIG. 2. Laterally averaged electrostatic potential for the el
trons in the supercell, with~solid-curve! and without~dashed-curve!
dipole correction.
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not included, because then the vacuum levels can
be identified.

IV. CONCLUSION

By adding dipole corrections to the electrostatic poten
and the total energy, it is possible to embed a slab with
intrinsic dipole moment in a periodic supercell without for
ing the electrostatic potential to be periodic as well. For e
ample, this possibility is important for surface-adatom calc
lations and when calculating work functions. The ener
associated with the dipole correction field differs from t
energy shift caused by an external applied electric field b
factor of 1

2 , which is explained by the fact that the dipo
correction field has internal origin. The proposed formula
supported by DFT-GGA calculations on layers of water m
ecules. The results show that the dipole-corrected total
ergy from a supercell containing only one layer agrees w
the energy for a larger symmetric supercell containing t
oppositely directed layers.

Although we have focused on slabs with intrinsic dipo
moments, we should mention that the dipole correction m
be useful also for other surface systems that are embedd
periodic supercells. One important example is finding
linear response of a surface to an external electric field.
cause the external field induces a dipole moment in the s
dipole corrections are needed in order to obtain the pro
induced electric field outside the slab.
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