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Dipole correction for surface supercell calculations
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When performing density-functional calculations of surfaces using a plane-wave pseudopotential code, it is
necessary to embed a slab with two surfaces in a periodic supercell. In many situations, it is desirable to study
an asymmetric slab with a net surface dipole density. The periodic boundary conditions imposed on the
electrostatic potential then give rise to an artificial electric field across the slab. We present a dipole correction
that cancels the artificial field, and show how this correction can be incorporated in the density-functional
theory total-energy expression. The results are supported by total-energy calculations of water-molecule layers.
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I. INTRODUCTION teract them the number of slab layers and the size of the
. . vacuum region must be increased. A better solution was sug-
In recent years, density-functional theofFT) com- gested by Neugebauer and Scheffi@hey introduced a di-

bined with Iocal—_ or semilocal approximati_ons of the pole field that compensated the artificial field in the super-
exchange-correlation energy has become a widely used theg|| gy treating this field as external, they derived an

oretical model for the calculational study of atomic and elecncorrect expression for the electrostatic energy, however.
tronic structure of surfaces. Examples of applications for | this paper, we derive a dipole correction that compen-
which the local-density approximation or the generalizedsates for the artificial dipole field within the context of a
gradient approximatiofGGA) yields results with useful ac- periodic supercell calculation. It consists of two parts: a
curacy include surface reconstructibrinteractions with compensating ramp-shaped potential that cancels the artifi-
adatom¢, and calculation of surface energieMost of these  cial field, and an energy correction term. The proposed cor-
calculations are based on pseudopotentials and a plane-wasextion formulas are supported by test calculations on layers
basis set. The plane-wave basis is well suited for surfacef water molecules. The results show that the dipole correc-
systems for a number of reasons: The basis set is indepetion gives accurate values for both total energy and forces.
dent of ionic positions and gives, thus, an unbiased descrip- The paper is organized as follows: In Sec. Il we derive
tion of the surface, including bulk and vacuum regions. Be-correction formulas for the electrostatic potential and the to-
cause no Pulay corrections are needed, accurate ionic forcéd energy, which compensate for the artificial field in the
can be calculated efficiently. Moreover, it is possible to im-vacuum region. We also show how these corrections can be
prove the quality of the basis set in a systematic manner bificorporated into the DFT total-energy expression in a form
adjusting the plane-wave cutoff energy. With the advent ofhat is easy to implement in existing DFT codes. We present
ultrasoft pseudopotentidlseven traditionally “hard” ele-  results from prototype calculations in Sec. lll and end with a
ments like first-row atoms and transition metals can beconcluding discussion in Sec. IV.
handled efficiently.

The plane-wave basis set assumes a supercell geometry
that is periodic in all three directions. In order to study a Il. THEORY
surface, a slab with two surfaces is embedded with vacuum
regions in a supercell. The number of slab layers is chosen so
that the surface-surface interaction is small, and similarly the BY calculating the electrostatic potential and the total en-
vacuum region should be large enough so that the interactiogrgy for an isolated slab and comparing the results with a
between neighboring slabs is negligible. supercell calculation with periodic boundary conditions, we

In many situations it is desirable to study an asymmetricA’€ now going to derive correction formulas that compensate
slab with a nonvanishing surface-dipole density. An exampldor the artificial field in the vacuum region in the supercell.
is a slab with adatoms on one side. The electrostatic poten- Consider an isolated slab-shaped density distribysion
tials on the two sides of the slab will then be different at thethat is normal to thez axis. We assume that the density is
cell boundary_ However, p|ane-Wave methods impose periperiOdiC in thex andy directions. When Calculating the elec-
odic boundary conditions on the electrostatic potential, so atfostatic potential that is generated pfr), it is convenient
artificial uniform electric field is introduced in the supercell to separate the charge density into a laterally averaged quan-
in order to cancel the potential jump at the boundary. Ondity and a remainder:
way to circumvent this problem when studying surface-
adatom systems is to put adatoms on both sides of the slab,
so that the net dipole moment is zero. Unfortunately, this , ,
procedure introducl?es undesirable adatom interactionyeffects p(r)=pal2)*p'(r) where f f p'(dxdy=0 vz.
across the slab and across the vacuum region, and to coun- 1)

A. Dipole correction
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The decomposition allows us to write down the following The potential termVy, corresponds to an electric fiel,

expressions for the electrostatic potentidls,(z) and =-—4wm/z,. The field has internal origin, because it is pro-
V'(z,G)) that are generated byy,, andp’, respectively: portional to the surface-dipole density of the slab. Note that
the energy shift caused by an applied external field is twice
__ ” N o [ the amount in Eq(9). The potential correction in E¢47) was
Val?) wa palz')|z=2'|dz @ first proposed by Neugebauer and Scheffletowever, be-

cause they assumed that the applied field was external, they

and did not provide a correct expression for the Hartree energy.
2m (= 1ot —|z=2'|Gj|4 5
V' (2,Gy) = m ﬂcP (z',Gpe I'dz’, G;#0 B. Total energy within DFT
- 0 G=0 In the previous section we derived correction formulas for

) the electrostatic potential and the Hartree energy. We will
now proceed with deriving expressions for the DFT total
Here,G, is a lattice vector of the two-dimensional reciprocal energy and effective potential that include the dipole correc-
lattice that is parallel to the slab. Outside the slab &). tion terms.
simplifies toV,,=27m (above or —27m (below), where Within DFT the electronic density is constructed from
occupied one-particle stat¢g;}:

m= f pal2)2'dZ (@

n<r>=2i [N, (10

is the surface dipole density of the slab. The other potential

V'’ decays exponentially for larde| and the decay constant

is given by 1Gjmi,. For a square lattice, ®f min where we for simplicity omit thé-point index and assume

=L/(27), whereL XL is the dimension of the periodic cell that all bands are filled. The ground-state energy of the sys-

in the xy plane. tem is then obtained by minimizing the following energy

Now assume that the slab is put in a box of hehtvith ~ functional with respect to the one-particle stafés}:

periodic boundary conditions also in thedirection. Let

Vv perandV ., be periodic solutions of Poisson’s equation in

the Fi)Jox, Witrk)l source terms,, andp’, respectively. Because E[{yit R} = Z (il Tl + Ent+Exc. (12)

V'(r) decays exponentially away from the surface, the error

made when imposing periodic boundary conditions\6n  The terms appearing in E¢l1) are kinetic energy, Hartree

should be small, s&/)(r)~V’'(r). On the other hand, a energy and exchange-correlation energy, respectively. The

linear term has emerged in the laterally averaged part of theotal charge density(r) is the sum of the electronic part

potential: p®(r)=—en(r) and the ionic partp'(r)=eSZ;5(r—R;),
whereZ; is the atomic number of atomandR; is its posi-

(5) tion. It follows that the Hartree energy of the isolated slab
can be written as

z 1
Vav,peﬁz) =Val2) - 477m( 7 2
m

in order to satistyV 5y e 0) = Vay pek Zm) - An approximation

for the H ial of the isol lab is th (.5
or the Hartree potential of the isolated slab is thus EH:EJ (p'+ p®) (Vpert Vi) d°r
V(r)~Vpelr) + Vip(2), (6)
whereVe=Vay pet Vper 2nd the dipole correction is =Egipct f pe(N[V! e(r)+vd,p(r)]d3r+Ee o+ Ei_i,
z 1
Vip(2) =4mm ———), 0<z<zy,. (7) (12)
Zn 2

The dipole correction introduces a jump in the potentialWhere the "dipole correction energy

V(r). The discontinuity should of course be placed within 1
the vacuum region of the supercell. E. :_f (Y= () V. (1) d3r 13
The added potentia¥ g, affects the energy of the super- dipe 2 Q[p (= PO Vap(nd, 13
cell Q). Because the Hartree energy is given by
and

1
Eu=y | oV, ®) -
ff p(NpAT) d3r’ ddr. (14

it follows that the energy associated with the dipole-potential [r—r’]

correction is
1 The last ternE; _; in Eq. (12) is the Madelung energy of the
Edip:_j p(r)Vdip(z)d3r. (9) ions. We arrive at the following dipole-corrected expression
2 for the total energy:
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%%) { Fl=s f (V! Vo™ f (p'+ p%) Vi Vaipdr
2 | I 2 o al
T WY & dpap
— | PPV Vped®r = VRE; | 17
O - ] e ,
and simplifying the first two terms using
(tj) %)H-g@’x@ @ ® f (VRlpi)Vdider:_er 5,(r_RI)Vdipd3r

FIG. 1. Orientation of the water molecules within the two-

dimensional layer. The extent of the supercell is drawn with dashed =eZV\Vgp(R)=2 47Tme2 (18)
lines. The distance between neighboring molecue3 A and the Zm
spacing between different layers 6 A . and (A is the area of the supercell in thxg plane
z 1
E[{lﬁi},{Rj}]:Z (il Tl) Ve Vap=4m 2.2 Vg m, (19
. 1 . 1 ~ eZ.
+JQ[V',)E,U)+Vdip(r)]pe(r)d3r Vle=KVR|f (p'+p®)z d3r=KVR|; erRj.zzrz,
(20)
+Ee-etEi—i+Exct Egipc- (15

we get the following expression for the ionic force:
The corresponding one-electron Hamiltonian operatois 4
the functional derivative of the total energy with respect to I Tme. f e i 3

. : Fl=-—Z — v —VREi_
the electronic densitp(r): N (DVRVpe AT =V B

(21)

H=T+Voert Vpert Vaipt Vxc, (16)  The first term is the force from the dipole correction field

) ) . exerted on iorl, and the last two terms comprise the usual
whereVyc= 6Exc/on is the exchange-correlation potential. peT expression for the force.

The modifications necessary to include the dipole correc-
tion in a DFT code is thus very straightforwaidy;, should
be added to the ionic potential and the total energy should
include the extra ternf .. BecauseVy, is present in the In order to demonstrate the accuracy of the proposed
one-electron Hamiltonian, it affects the one-electron statedipole-correction formula, we present results from a DFT-
and thus also the electronic density. It is therefore necessa@GA calculation on a two-dimensional layer of water mol-
to determine the surface dipole dengityin a self-consistent ecules(see Fig. 1. This system was chosen because the wa-
way. The fact thaky, defined in Eq(9) differs fromEg,cin  ter molecules have a large internal dipole moment, so the
Eq. (13) is explained by the presence Wf;, in the second electrostatic potentials on either side of the molecule layer
term of Eq.(15). differ by several volts. It follows that the dipole correction
field in a supercell calculation for this system will be large
(~1 V/IA) and may affect the total energies if no dipole
. corrections are included.

Because both the ionic charge densityand the dipole The plane-wave pseudopotential canlecaPo was used
momentm depends on the ionic positions, a careful deriva-for the total-energy calculatiofsThe interactions between
tion of the ionic forces is needed. According to the Hellman-the valence electrons and the ions were represented with ul-
Feynman theorem the ionic forces may be calculated as if thg 501t pseudopotentiafs Although the hydrogen 4 and
ions were embedded in a classical charge distribytifn).  oxygen 2 orbitals are highly localized around the ion cores,
More specifically, the forcé=' on atoml at positionR, is  these potentials give accurate total energies with a plane-
given by F'= —VgrEn, whereEy is the Hartree energy \ave cutoff energy of only 25 Ry.
from Eq. (12). ExpressingF' as We performed calculations both with and without dipole

IIl. RESULTS

C. Corrected Hellman-Feynman forces

TABLE |. Calculated total energies for a water molecule within a two-dimensional layer, using various
dipole corrections. The double-cell result for the total energy is used as reference.

Total energy(eV) AE (eV)
No correction —467.0192 —-0.10
Correction from Eq(13) —466.8994 0.02
Correction from Ref. 1 —466.8142 0.10

Double cell, per layer —466.9191 0.00




12 304 BRIEF REPORTS PRB 59

5.0 T T r T r not included, because then the vacuum levels cannot
be identified.

IV. CONCLUSION

o
=}

By adding dipole corrections to the electrostatic potential
and the total energy, it is possible to embed a slab with an
intrinsic dipole moment in a periodic supercell without forc-
ing the electrostatic potential to be periodic as well. For ex-
ample, this possibility is important for surface-adatom calcu-
lations and when calculating work functions. The energy
associated with the dipole correction field differs from the
) ) energy shift caused by an external applied electric field by a

0 1 2 3 factor of 2, which is explained by the fact that the dipole
z(A) correction field has internal origin. The proposed formula is
supported by DFT-GGA calculations on layers of water mol-
‘ecules. The results show that the dipole-corrected total en-
ergy from a supercell containing only one layer agrees with
the energy for a larger symmetric supercell containing two
oppositely directed layers.

Although we have focused on slabs with intrinsic dipole

|
o
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FIG. 2. Laterally averaged electrostatic potential for the elec
trons in the supercell, wittsolid-curvg and without(dashed-curve
dipole correction.

corrections, and in order to verify the energy-correction for-

mula in Eq. (13_) we also made a calculation for a larger moments, we should mention that the dipole correction may
S“pefce” contammg two molecule layers orlente_d so that th%e useful also for other surface systems that are embedded in
?et dipole mo(rjn%nt_:_r;]the cellltwas Zero andt né) fj'p_?lebforlrecberiodic supercells. One important example is finding the
lon was needed. 1he results are presented in Table 1. ear response of a surface to an external electric field. Be-

ShOWF‘ |rt\hTathte II, omntmgftf(\)eldl;i/olle clorrelcn?n rtisults '? 8Ncause the external field induces a dipole moment in the slab,
mr In the tola gnelrgé/c()j h evimo ecutla or 2'3 f/ys_l_er:n'dipole corrections are needed in order to obtain the proper
ith corrections included the error is only 0.02 eV. €induced electric field outside the slab.

correction formula suggested by Neugebauer and Scheffler
overcorrects the energy by a factor of 2, so its applicability is

guestionable. Dipole-corrected forces differ from the ones

calculated in the larger supercell by at most 0.04 eV/A. The author wishes to thank B. Hammer and L. Hansen for

Without correction the error is approximately 0.2 eV/A. In their efforts in developing the computer coblecaro and C.

Fig. 2 we present the laterally averaged electrostatic potentiduberto and M. Persson for reviewing the manuscript. This

—eV(z) across the molecule layer. The applied dipole layerpaper was supported by the Swedish Research Council for
visible as a potential jump in the graph, exactly cancels th&ngineering Sciences, the Swedish Foundation for Strategic
artificial field in the vacuum region. The figure also showsResearch via Materials consortium #9, and the Swedish
that work functions are ill defined if the dipole correction is Natural Science Research Council.
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