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Polarization splitting of the gain band in quantum wire and quantum dot arrays
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We theoretically predict and experimentally confirm that arrays of resonantly amplifying quantum wires and
quantum dots~QD’s! exhibit splitting of the gain band into separate bands forE- andH-polarized field. This
effect originates from the diffraction at single anisotropically shaped QD’s and the collective effect of the
anisotropy of the QD array both described by an effective medium approach. Experimental results for multiple
sheets of ZnxCd12xSe QD’s in a ZnSe matrix confirm the theoretical predictions and signal the discovery of a
new class of ‘‘active’’ composites.@S0163-1829~99!01120-0#
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Transparent and dissipative heterogeneous media
electrically small inclusions~of dimension much smalle
than the wavelength! of one material in another materia
conventionally referred to as composite materials, h
found numerous applications in solid-state physics, dev
physics, and optics. Artificial dielectrics an
metalo-dielectrics,1,2 chiral composites,2 nonlinear composite
films,3 and nanotube films4 are well-known examples of suc
structures. Composites exhibit, in general, mechanical, e
tronic as well as optical properties that are not inheren
each individual component. Electromagnetic properties
composites are usually modeled in the framework of
effective-medium approach,5 which implies that the electro
magnetic field averages over material inhomogeneit
Thus, a homogeneous medium with effective constitutive
rameters instead a composite is being considered. The e
tive parameters are expressed in terms of the generic an
geometrical parameters of the inclusions and the host
dium.

Recent development in semiconductor epitaxial grow
techniques6 has made possible fabrication of dense arrays
low-dimensional nanosized structures such as quantum w
and quantum dots~QD’s!. Because of the exceptionall
strong modification of the electronic spectrum and opti
properties due to the two- or three-dimensional confinem
of the charge carriers, respectively, these structures are
ently in the center of numerous fundamental research ac
ties. Ultrahigh material gain, drastically reduced thresh
current density, improved temperature stability of the thre
old current, and improved dynamic characteristics were
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cently demonstrated for QD-based lasers.7

The active medium of such a laser consists of a thr
dimensional ensemble of resonantly amplifying nanostr
tures forming under certain growth conditions a quasiregu
lattice in the growth plane, which can be periodically stack
perpendicularly to this plane.6,8 The characteristic geometri
cal size of a QD is much smaller than the emission wa
length in the host material. Thus, a system of QD’s can
considered as a composite. The idea of the present letter
extend the effective-medium approach to arrays of re
nantly amplifying semiconductor QD’s asactive composites.

Previous theoretical treatments of QD arrays were ba
on simple summing over the microscopic gaing̃(v)5
2(v/c)Im$A«(v)% of individual QD’s. Here, «(v)
5«8(v)1 i«9(v) is the complex permittivity of the QD, an
exp(2ivt) time dependence of the fields is implicit an
«9(v),0 for active media. The imaginary part of the res
nant dielectric response of an individual QD is found on t
basis of a charge-carrier level-structure being calculated
counting for the size quantization in two or thre
dimensions9,10 and realistic geometry, strain distribution, an
material properties of the QD’s.11 As a result, in this conven-
tional approach the macroscopic gaingcon of an ensemble of
QD’s is introduced as9,10

gcon~v!5 f g̃~v!, ~1!

whereg̃(v)52v«9(v)/2cA«h, f is the volume fraction of
QD’s and «h is the permittivity of the host medium. Thi
12 275 ©1999 The American Physical Society
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simple relation appears as a result of averaging of the lo
electromagnetic field over material inhomogeneities un
the assumption that the field inside and outside the QD’
the same. It presents a first approximation of the QD ar
gain spectrum. Owing to the ultrahigh gain of QD’s, t
imaginary part of the permittivity of a QD throughout th
gain band can be as large as the real part. It results
strong frequency dependence of«8(v). Thus, inside the gain
band the difference between dielectric constants of the Q
and the host becomes significant, resulting in a strong de
larizing field.12 This field is neglected deriving Eq.~1!.
Moreover, the interaction between QD’s contributes to
depolarization field.

For modeling the electromagnetic response of a QD
semble, we make use of the Maxwell-Garnett model with
Clausius-Mossotti correction as it is based on a rigorous
lution of Maxwell equations under the assumption of a sm
inclusion density.2 The effective permittivity tensor«̂e f f of a
composite can be expressed in terms of a Cartesian b
diadics by«̂e f f(v)5«H(v)(xx1yy)1«E(v)zz ~see, for ex-
ample, Ref. 4!, where

«s~v!5«hF11
f as~v!

11 f Lsas~v!G , ~2!

s5(E,H) refers to light polarized along (E polarization! or
normal (H polarization! to thez axis, as(v) is the polariz-
ability of a single QD ins-polarized field, andLs is a
frequency-independent coefficient being defined by the
ometry of the array. On the basis of the considerations gi
in Ref. 12 the polarizability of a QD can be written as

as~v!5F «h

«~v!2«h
1NsG21

, ~3!

whereNs is the depolarization coefficient of a single QD
Note that the denominator in the second term of Eq.~2! is the
Clausius-Mossotti correction responsible for the electrom
netic interaction of QD’s. Using Eqs.~2! and~3! allows us to
define the anisotropic macroscopic gain

gs~v!52
v«s9 ~v!

cA2@«s8 ~v!1u«s~v!u#
, ~4!

which is obviously different from that given by Eq.~1!.
Here,«s5«s81 i«s9 .

Now, let us estimate how the difference between Eqs.~1!
and ~4! manifests itself physically. For that aim, as a fir
step, we choose a single-resonance Lorentz model for
microscopic permittivity of one QD

«~v!5«h1
g0

v2v01 i /t
, ~5!

whereg0.0 is the parameter defined the maximum gain
the QD,t is the QD exciton dephasing time, andv0 is the
resonance frequency. The gain of an individual QD can
isotropic or anisotropic depending on the wave functions
the electronic states involved and the particular QD geo
etry. We assume first the gain of QD to be isotropic. T
dielectric constant«h of the host medium is assumed to be
real, isotropic and frequency-independent quantity.

Further, we restrict the analysis to two different geome
cal models of arrays:~i! a quadratic lattice composed of in
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finitely long parallel cylinders@Fig. 1~a!#; ~ii ! a tetragonal
lattice composed of ellipsoids@Fig. 1~b!#. The first geometry
represents an ensemble of quantum wires or closely sta
coupled QD’s while the second one can serve as a mode
an ensemble of separated QD’s vertically stacked with fin
period.6 In the framework of the Maxwell-Garnett approac
the depolarization factorsNs and lattice geometrical coeffi
cientsLs for model ~i! are as follows:

NE5LE50, NH5LH5 1
2 . ~6!

For model~ii ! in accordance with Ref. 12

NE5
e211

e3
~e2arctane!, NH5 1

2 ~12NE!, ~7!

wheree5Aa2/b221 is the ellipsoid eccentricity,a andb are
the ellipsoid semiaxes in thex0y plane and thez direction,
respectively. These formulas hold true for both disclikea
.b) and cigarlike ellipsoids (a,b). Infinite stretching of
the ellipsoids (a/b→0) results inNE→0, NH→1/2 and Eq.
~7! reproduce the polarizabilities of the cylinders given
Eq. ~6!. The geometrical coefficientsLs for a tetragonal lat-
tice have been derived in Ref. 13 and have the follow
form:

LE5
1

4p F S 182
10

b2D arctan
Q

b2
130

12b2

b4

3S 2arctanQ2 ln
11QD G , ~8!

FIG. 1. ~a! Array of infinitely long cylindrical QD’s arranged on
a quadratic lattice and~b! array of vertically stacked disc QD’s
arranged on a tetragonal lattice.
12Q
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LH5
1

4p F S 181
20

b2
2

30

b4D arctanQ115
12b2

b4
ln

11Q

12QG ,

~9!

whereb5dz /d is the ratio of lattice periods inz direction
and in x or y direction, Q5b/A21b2. The above expres
sions are not valid forb!1 or b@1. Therefore, close stack
ing of QD’s is considered here in the framework of mod
~i!. For a cubic latticeb51 and the depolarizing field in
duced by QD interaction becomes isotropic:LE5LH5 1

3 .
Substitution of Eqs.~5!–~9! into Eq. ~2! allows us to

evaluate the macroscopic gain~4! for QD arrays for both
polarizations. The maximum gain of an individual QD
found using the data in Refs. 9,10, and 14. For example
accounts to 106 cm21 for a spherical GaAs QD of diamete
5 nm and homogeneous broadening of about 7 meVt
50.1 ps). Figure 2 demonstrates the results for model~i! at
different dephasing times while Fig. 3 corresponds to mo
~ii ! for cubic and tetragonal lattice.

FIG. 2. Gain bands of a cylindric QD array forE- and
H-polarized fields, dephasing timet50.1 ps~a!; 1 ps ~b!, volume
fraction f 50.05, host dielectric constant«h512.25, wavelengthl
51mm. Also shown by dotted curves are gain bands of a Q
ensemble defined by Eq.~1!.

FIG. 3. Macroscopic gain bands forE- and H-polarized fields
for an array of disc QD’s withb/a50.33, a/d50.25 arranged on a
cubic lattice withb51 ~a! and a tetragonal lattice with vertica
stacking periodb50.3 ~b!, f 50.02 ~a!, 0.07 ~b!, t50.1 ps, «h

512.25, l51mm. ~c! Gain bands as in~b! but for QD peak gain
two times smaller forE polarization, 10 times larger forH polar-
ization andt50.5 ps. Also shown by dotted curves are the g
bands of QD ensembles defined by Eq.~1!. Inset, polarization split-
ting of an array of disc QD’s versus fractionf for decreasing verti-
cal stacking period of the tetragonal lattice,a/d50.25, b/a50.3
~curve 1!, 0.1 ~2!. The dashed lines are given by Eq.~10!.
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As one can see, the resonance energy of the macrosc
gain is shifted with respect to the microscopic resonance
ergy\v0 and the shift is different forE andH polarizations.
Equation~4! incorporates two different mechanisms respo
sible for this shift and splitting. The first mechanism is r
lated to diffraction at individual QD’s of anisotropic shap
Although QD’s are assumed to be electrically small and,
this reason, the diffraction can be described within the dip
approximation, its role turns out to be essential owing to
resonant nature of the gain. The diffraction induces a de
larizing field that shifts the resonance ofas with respect to
the resonance of the dielectric function«(v) of an individual
QD. It is obvious that the diffraction induced shift does n
depend on the dephasing timet and the volume fractionf of
the QD’s. In the low-concentration limit this shift can b
found from Eqs.~2! and ~3! for a Lorenzian gain band

Dvs52Ns

g0

«h
. ~10!

For the cylindrical structures the shift of the resonance
absent for an E-polarized field and equal toDvH5
2g0/2«h for an H-polarized field. ForE polarization, the
ensemble of infinitely long cylinders inz direction produces
the same average field as the incident field with no depo
izing field and no shift of the gain band. Similarly, in th
case of the disclike QD’s the gain band for anH-polarized
field directed towards the long axis of the disc possesses
smaller shift if the gain of the single QD is not polarizatio
dependent. Note that this diffraction induced shift is ana
gous to that which occurs in ferromagnetic resonance wh
the resonance frequencies of small-sized grains and infi
continuous media are different because of the effect
demagnetization.12,15

The second mechanism inducing a frequency shift i
collective effect and is defined by interaction between QD
in the ensemble. It results, as was stated above, from
Clausius-Mossotti contribution to the permittivity tens
components defined by Eq.~2!. This contribution shifts the
resonance frequency for both field polarizations. The sh
however, depends on lattice type as one can see in Figs.~a!
and 3~b! and becomes significant at large concentrations
QD’s in the host medium~Fig. 3, inset!.

The polarization dependence of the shift results in an
preciable polarization splitting of the gain bands forE andH
polarizations, which become completely resolved for su
ciently large dephasing times~Figs. 2 and 3!. Due to fluctua-
tions of the QD sizes, shapes, and lattice period, typically
inhomogeneous broadening of the gain bandwidth occ
However, this effect becomes significant only if the inhom
geneous broadening approaches values comparable to
value of the polarization splitting. Thus, radiation from a
active composite must be linearly polarized if spontane
emission does not play a significant role.

In general, also the anysotropic shape of QD causes
ferent oscillator strengths for transitions involvingE- and
H-polarized field.9 To estimate the influence of the differen
gain for the different polarizations we considered the c
when the gain forE polarization is lower and forH polariza-
tion is higher@Fig. 3~c!# as compared to the case of equ
gain in Figs. 3~a! and 3~b! @parameterg0 in Eq. ~5! is the
diagonal tensor#. To make the effect more clear we sele
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also a longer exciton dephasing time. The remarkable re
is that the gain peak ofE polarization locates closer to th
QD resonance energy, since in accordance with Eq.~10! the
decrease in the gain peak dominates over the correspon
depolarization coefficient and results in smaller shift.

To verify the predicted effects experimentally we fab
cated a structure with twelve stacks of dense arrays
ZnxCd12xSe disclike QD’s with;1012 cm22 surface den-
sity, ;40 Å lateral size, and;12 Å height in a ZnSe
matrix separated with 50 Å ZnSe spaces.16 At low-
excitation density in edge geometry the QD photolumin
cence~PL! is linearly polarized throughout the PL band wi
a degree of polarization of 50% of theH component~align-
ment as in Fig. 1!. This effect is related to the anisotropy
optical transition matrix elements forH andE polarizations
originated from the disclike shape of the QD’s and t
heavy-holelike nature of the QD exciton. The light-hole-li
exciton QD state is also seen in the PL excitation spect
and is shifted significantly away from the spectral range

FIG. 4. Photoluminescence~PL! and photoluminescence excita
tion ~PLE! spectra~a! andE- andH-polarized spectra of stimulate
emission in edge geometry~b! for the observation temperature 7 K
excitation density 1 MW/cm2, energy of exciting photonEex

52.88 eV.
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interest. With increase in excitation density gain develo
and causes a strong superlinear growth of the PL intens
Spectra of theH and E components of stimulated emissio
are shown in Fig. 4~b!. The predominantlyH-polarized com-
ponent is shifted from the QD resonance revealed in the
excitation and optical reflectance spectra@Fig. 4~a!#. The de-
gree of polarization of this component strongly increas
with excitation density. At the same time, we distinctly o
served an appearance of asecondseparate peak in theE
component at energies closer to the QD resonance. The
tensity of theE-polarized peak is much smaller pointing to
smaller gain coefficient as compared to that for t
H-polarized peak at lower photon energy. Therefore,
peak location of theE component corresponds to the pred
tions of the calculations for the case of different gain coe
cients forE andH polarizations@Fig. 3~c!#. As the photolu-
minescence excitation~PLE! spectrum was recorded in th
direction perpendicular to the surface, and there exists
strong anysotropy for the in-plane arrangement of the
lands, also no pronounced polarization of the signal or
larization splitting effect has been observed in this case.

To conclude, in the present letter we have theoretica
predicted an effect of a polarization-dependent freque
shift of the macroscopic gain band of QD-based active co
posites with respect to the microscopic gain. We have sho
that this effect results from the diffraction of the electroma
netic wave on an array of anisotropically shaped QD’s a
the interaction between QD’s arranged on an anisotropic
tice. The theoretical predictions are confirmed by the exp
mentally observed polarization splitting of the gain band o
multiple sheet of ZnxCd12xSe QD’s.
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