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Polarization splitting of the gain band in quantum wire and quantum dot arrays
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We theoretically predict and experimentally confirm that arrays of resonantly amplifying quantum wires and
guantum dotg§QD’s) exhibit splitting of the gain band into separate bandsBHeand H-polarized field. This
effect originates from the diffraction at single anisotropically shaped QD’s and the collective effect of the
anisotropy of the QD array both described by an effective medium approach. Experimental results for multiple
sheets of ZpCd, _,Se QD’s in a ZnSe matrix confirm the theoretical predictions and signal the discovery of a
new class of “active” composite§S0163-182809)01120-0

Transparent and dissipative heterogeneous media witbently demonstrated for QD-based lasérs.
electrically small inclusiong(of dimension much smaller The active medium of such a laser consists of a three-
than the wavelengjhof one material in another material, dimensional ensemble of resonantly amplifying nanostruc-
conventionally referred to as composite materials, haveéures forming under certain growth conditions a quasiregular
found numerous applications in solid-state physics, devicdattice in the growth plane, which can be periodically stacked
physics, and optics. Artificial  dielectrics and perpendicularly to this plarf® The characteristic geometri-
metalo-dielectric$;? chiral composite$,nonlinear composite cal size of a QD is much smaller than the emission wave-
films,® and nanotube filnfsare well-known examples of such length in the host material. Thus, a system of QD’s can be
structures. Composites exhibit, in general, mechanical, eleconsidered as a composite. The idea of the present letter is to
tronic as well as optical properties that are not inherent textend the effective-medium approach to arrays of reso-
each individual component. Electromagnetic properties ohantly amplifying semiconductor QD’s astive composites
composites are usually modeled in the framework of the Previous theoretical treatments of QD arrays were based
effective-medium approaCrhWhiCh Implles that the electro- on Simp|e Summing over the microscopic ga‘}(w):

magnetic field averages over material inhomogeneities_ (,/c)im{\e(w)! of individual QD's. Here, &(w)
Thus, a homogeneous medium with effective constitutive pa= . /() +ie"(w) is the complex permittivity of the QD, an

rameters instead a composite is being considered. The eﬁe@S(p(—iwt) time dependence of the fields is implicit and
tive parameters are expressed in terms of the generic and tge(w)<0 for active media. The imaginary part of the reso-

geometrical parameters of the inclusions and the host M&sant dielectric response of an individual QD is found on the

dium. i . o basis of a charge-carrier level-structure being calculated ac-
Recent development in semiconductor epitaxial grOWthcounting for the size quantization in two or three

techn_ique% has made possible fabrication of dense arrays ofjimension&'°and realistic geometry, strain distribution, and
low-dimensional nanosized structures such as quantum Wirgsaterial properties of the QDﬂé_AS a result. in this conven-

and quantum dotdQD’s). Because of the exceptionally (iona| approach the macroscopic gaig,, of an ensemble of
strong modification of the electronic spectrum and optlcaIQD,S is introduced &%l0

properties due to the two- or three-dimensional confinement

of the charge carriers, respectively, these structures are pres- Geor(®) =) )
ently in the center of numerous fundamental research activi- con '

ties. Ultrahigh material gain, drastically reduced threshold _

current density, improved temperature stability of the threshwhereg(w) = —we"(w)/2c ey, fis the volume fraction of
old current, and improved dynamic characteristics were reQD’s and g, is the permittivity of the host medium. This
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simple relation appears as a result of averaging of the local
electromagnetic field over material inhomogeneities under
the assumption that the field inside and outside the QD'’s is
the same. It presents a first approximation of the QD array
gain spectrum. Owing to the ultrahigh gain of QD’s, the
imaginary part of the permittivity of a QD throughout the
gain band can be as large as the real part. It results in a
strong frequency dependencesdf{ w). Thus, inside the gain
band the difference between dielectric constants of the QD’s
and the host becomes significant, resulting in a strong depo-
larizing field? This field is neglected deriving Eql).
Moreover, the interaction between QD’s contributes to the
depolarization field.

For modeling the electromagnetic response of a QD en-
semble, we make use of the Maxwell-Garnett model with the
Clausius-Mossotti correction as it is based on a rigorous so-
lution of Maxwell equations under the assumption of a small

inclusion density?. The effective permittivity tensoe ¢ of a
composite can be expressed in terms of a Cartesian basis
diadics by;:eff(w) =gp(w)(Xx+yy) + ee(w) zz (see, for ex-
ample, Ref. 4 where

(@

(b)

/
- -
« | 8
o= (E,H) refers to light polarized alongH polarization or

normal H polarization to the z axis, a,(w) is the polariz- . H -
ability of a single QD ino-polarized field, andL, is a

frequency-independent coefficient being defined by the ge- Y
ometry of the array. On the basis of the considerations given FIG. 1. (a) Array of infinitely long cylindrical QD’s arranged on

fa,(w)

1+ 1+fL,am(w)

, )

gq(w)=enp

X

in Ref. 12 the polarizability of a QD can be written as a guadratic lattice andb) array of vertically stacked disc QD’s
. -1 arranged on a tetragonal lattice.
h
a(w)=|———+N,| , 3 - . . .
(@) e(w)—ep ® finitely long parallel cylinderdFig. 1(a)]; (ii) a tetragonal

whereN,, is the depolarization coefficient of a single QD. lattice composed of ellipsoidig. 1(b)]. '_I'he first geometry
represents an ensemble of quantum wires or closely stacked

Note that the denominator in the second term of @yis the coupled QD’s while the second one can serve as a model for
Clausius-Mossotti correction responsible for the electromag: b

nec neracton of QD Using Eqi@) and(3) allws s 0 e 1e Of SeParlec QD s veral stacked wib e
define the anisotropic macroscopic gain P ' o . 't approach,

the depolarization factor; and lattice geometrical coeffi-
we!(w) cientsL , for model (i) are as follows:

Voo (o) ol @ Ne=Le=0, Ny=Ly=1. ®)
which is obviously different from that given by Eql).  For model(ii) in accordance with Ref. 12
Here,e,=¢, +igl.

Now, let us estimate how the difference between Etjs.
and (4) manifests itself physically. For that aim, as a first
step, we choose a single-resonance Lorentz model for thgheree= \/aZ/b2—1 is the ellipsoid eccentricityg andb are

go(w)=

e?+1 )
Ne=—5—(e—arctare), Nu=3(1-Ng), (7
e

microscopic permittivity of one QD the ellipsoid semiaxes in thedy plane and the direction,
9o respectively. These formulas hold true for both disclike (
e(w)=gpt p——y (5 >b) and cigarlike ellipsoids g<b). Infinite stretching of

h 0 is th defined th . ) fthe ellipsoids &/b—0) results inNg— 0, Ny,—1/2 and Eq.
wherego>0 Is the parameter deiined the maximum gain o (7) reproduce the polarizabilities of the cylinders given by

the QD, 7 is the QD exciton dephasing time, ang is the Eq. (6). The geometrical coefficients, for a tetragonal lat-

resonance frequency. The gain of an individual QD can bg.e 136 heen derived in Ref. 13 and have the following
isotropic or anisotropic depending on the wave functions o orm:

the electronic states involved and the particular QD geom-
etry. We assume first the gain of QD to be isotropic. The 1
dielectric constant, of the host medium is assumed to be a Le=7-
real, isotropic and frequency-independent guantity.

Further, we restrict the analysis to two different geometri-

cal models of arraysi) a quadratic lattice composed of in- X

10 Q 1— 2
18- E arctaﬁig—2 + 30—,3 2

1+Q)
2arcta|tD—In1_Q , (8
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As one can see, the resonance energy of the macroscopic
gain is shifted with respect to the microscopic resonance en-
ergyf wg and the shift is different foE andH polarizations.
Equation(4) incorporates two different mechanisms respon-
sible for this shift and splitting. The first mechanism is re-
lated to diffraction at individual QD’s of anisotropic shape.
Although QD'’s are assumed to be electrically small and, by
this reason, the diffraction can be described within the dipole
approximation, its role turns out to be essential owing to the
0 . . o
Energy (meV) resonant nature of the gain. The diffraction induces a depo-

FIG. 2. Gain bands of a cylindric QD array fde- and  larizing field that shifts the resonance @f with respect to
H-polarized fields, dephasing time=0.1 ps(a); 1 ps(b), volume the resonance of the dielectric functie(w) of an individual
fractionf:0.0S’ host dielectric COﬂStaBB: 1225’ Wave|ength QD It iS ObViOUS that the diffraction induced Sh|ft doeS not
=1um. Also shown by dotted curves are gain bands of a QDdepend on the dephasing timeand the volume fractiof of

Gain (cm™!)

20 -10

ensemble defined by E€L). the QD’s. In the low-concentration limit this shift can be
found from Eqgs.(2) and(3) for a Lorenzian gain band
20 30 1-8%2 1+ g
Ly=-—|| 18+ — ——|arctanQ+ 15—'6)In—Q , Aw,= —N,,—O. (10
4 B> B p* 1-Q €h
9

For the cylindrical structures the shift of the resonance is
where 8=d,/d is the ratio of lattice periods iz direction absent for anE-polarized field and equal tAAwy=
and inx or y direction, Q= 8/\/2+ 2. The above expres- —go/2ey, for an H-polarized field. ForE polarization, the
sions are not valid fog<1 or 8>1. Therefore, close stack- ensemble of infinitely long cylinders indirection produces
ing of QD’s is considered here in the framework of modelthe same average field as the incident field with no depolar-
(i). For a cubic lattice8=1 and the depolarizing field in- izing field and no shift of the gain band. Similarly, in the
duced by QD interaction becomes isotrodig=_L=3. case of the disclike QD’s the gain band for Hrpolarized
Substitution of Egs(5)—(9) into Eq. (2) allows us to field directed towards the long axis of the disc possesses the
evaluate the macroscopic gafd) for QD arrays for both smaller shift if the gain of the single QD is not polarization
polarizations. The maximum gain of an individual QD is dependent. Note that this diffraction induced shift is analo-
found using the data in Refs. 9,10, and 14. For example, igous to that which occurs in ferromagnetic resonance where
accounts to 19 cm™* for a spherical GaAs QD of diameter the resonance frequencies of small-sized grains and infinite
5 nm and homogeneous broadening of about 7 meV (continuous media are different because of the effect of
=0.1 ps). Figure 2 demonstrates the results for médlet ~ demagnetizatiof®-®

different dephasing times while Fig. 3 corresponds to model The second mechanism inducing a frequency shift is a
(ii) for cubic and tetragonal lattice. collective effect and is defined by interaction between QD’s

in the ensemble. It results, as was stated above, from the
Clausius-Mossotti contribution to the permittivity tensor

5x10%

100 components defined by E¢). This contribution shifts the
£ resonance frequency for both field polarizations. The shift,
g however, depends on lattice type as one can see in Hgs. 3
0 ;g 10 and 3b) and becomes significant at large concentrations of
7 15x10%4 QD's in the host mediungFig. 3, insel.

The polarization dependence of the shift results in an ap-
preciable polarization splitting of the gain bands fbandH
polarizations, which become completely resolved for suffi-
ciently large dephasing timégigs. 2 and 3 Due to fluctua-
tions of the QD sizes, shapes, and lattice period, typically an
y inhomogeneous broadening of the gain bandwidth occurs.
10*4 A AN 4 : T However, this effect becomes significant only if the inhomo-
A ey, geneous broadening approaches values comparable to the

value of the polarization splitting. Thus, radiation from an

FIG. 3. Macroscopic gain bands fé and H-polarized fields active composite must be linearly polarized if spontaneous
for an array of disc QD’s wittb/a=0.33,a/d=0.25 arranged on a . P S yp P
emission does not play a significant role.

cubic lattice withg=1 (a) and a tetragonal lattice with vertical . .
stacking period3=0.3 (b), f=0.02 (a), 0.07 (b), 7=0.1 ps, &}, In general, also the anysotropic shape of QD causes dif-

=12.25 \=1um. (c) Gain bands as ifb) but for QD peak gain ferent oscillator strengths for transitions involvirtgy and
two times smaller folE polarization, 10 times larger fad polar-  H-polarized field® To estimate the influence of the different

ization and7=0.5 ps. Also shown by dotted curves are the g,amgain for the different polarizations we considered the case
bands of QD ensembles defined by ER. Inset, polarization split- ~ When the gain foE polarization is lower and foH polariza-

ting of an array of disc QD’s versus fractiérior decreasing verti- tion is higher[Fig. 3(c)] as compared to the case of equal
cal stacking period of the tetragonal lattia@d=0.25, b/a=0.3  gain in Figs. 3a) and 3b) [parametem, in Eq. (5) is the
(curve 1, 0.1 (2). The dashed lines are given by EG0). diagonal tensdr To make the effect more clear we select

Gain (cm

0
5x10°

10°
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! o-hh @ interest. With increase in excitation density gain develops

and causes a strong superlinear growth of the PL intensity.
Spectra of theH and E components of stimulated emission
are shown in Fig. é). The predominantl{H-polarized com-

> ponent is shifted from the QD resonance revealed in the PL
/ONH excitation and optical reflectance spedtfig. 4(a)]. The de-
/ > gree of polarization of this component strongly increases

0.5

PL Intensity (arb. units)
- o
L T

014 with excitation density. At the same time, we distinctly ob-
0.01 Lz . NN o LR served an appearance ofsacondseparate peak in the
27 2.72 2.74 2.76 278 component at energies closer to the QD resonance. The in-

Photon Energy (eV) : : . .
_ _ _ tensity of theE-polarized peak is much smaller pointing to a
_ FIG. 4. Photoluminescend®L) and photolumlnescenc_e excita- gmaller gain coefficient as compared to that for the
tlon (FfLE).spectra(a) andE- andH-polarized spectra of stimulated H-polarized peak at lower photon energy. Therefore, the
emission in edge geometfp) for the observation temperature 7 K, neak |ocation of thé component corresponds to the predic-
excitation density 1 MW/c) energy of exciting photorEe, tions of the calculations for the case of different gain coeffi-
=2.88 ev. cients forE andH polarizationgFig. 3(c)]. As the photolu-
minescence excitatioPLE) spectrum was recorded in the
also a longer exciton dephasing time. The remarkable resuttirection perpendicular to the surface, and there exists no
is that the gain peak dE polarization locates closer to the strong anysotropy for the in-plane arrangement of the is-
QD resonance energy, since in accordance with(E@.the  lands, also no pronounced polarization of the signal or po-
decrease in the gain peak dominates over the correspondifgyization splitting effect has been observed in this case.
depolarization coefficient and results in smaller shift. To conclude, in the present letter we have theoretically
To verify the predicted effects experimentally we fabri- Predicted an effect of a polarization-dependent frequency
cated a structure with twelve stacks of dense arrays o/t Of the macroscopic gain band of QD-based active com-
Zn,Cd, ,Se disclike QD's with~10'2 cm~2 surface den- posites with respect to the microscopic gain. We have shown
sit; ~46 A lateral size, and-12 A height in a ZnSe that this effect results from the diffraction of the electromag-
mafrix separated with ’50 A ZnSe spadksAt low- netic wave on an array of anisotropically shaped QD’s and

excitation density in edge geometry the QD photolumines—the interaction between QD’s arranged on an anisotropic lat-

Co ; ..~ tice. The theoretical predictions are confirmed by the experi-
cence(PL) is linearly polarized throughout the PL band with mentally observed polarization splitting of the gain band of a

a degree of polarization of 50% of th& componentalign- : .

ment as in Fig. L This effect is related to the anisotropy in multiple sheet of ZgCd, - Se QD's.

optical transition matrix elements fét and E polarizations This research was partially supported through INTAS
originated from the disclike shape of the QD’s and theunder Project No. 96-0467, BMBF under Project No. WEI-
heavy-holelike nature of the QD exciton. The light-hole-like 001-98, and the Volkswagen Foundation. V.P.K. and N.N.L.
exciton QD state is also seen in the PL excitation spectrungratefully acknowledge support from the Alexander von
and is shifted significantly away from the spectral range ofHumboldt Foundation.
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