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Dynamics and thermodynamics of the Bose-Hubbard model
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We report results from a systematic analytic strong-coupling expansion of the Bose-Hubbard model in one-
and two-spatial dimensions. We obtain numerically exact results for the dispersion of single-particle and
single-hole excitations in the Mott insulator. The boundary of the Mott phase can be determined with previ-
ously unattainable accuracy in one and two dimensions. In one dimension, we observe the occurrence of
reentrant behavior from the compressible to the insulating phase in a region close to the critical point, which
was conjectured in earlier work. Our calculation can be used as a benchmark for the development of numerical
techniques for strongly correlated systems.@S0163-1829~99!04319-2#
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Quantum phase transitions in strongly correlated syst
have attracted a lot of interest in recent years. In fermio
systems the Mott transition is complicated by the fact tha
unfrustrated systems the antiferromagnetic transition and
calization transition occur at the same point~see, e.g., Ref.
1!. For interacting Bose systems with spin zero, the situa
is much simpler and one can focus on the physics of the M
transition. Strongly interacting bosonic systems are not o
of academic interest. Physical realizations include Joseph
junction arrays, granular and short-correlation-length sup
conductors, flux lattices in type-II superconductors, and p
sibly in the future ultracold atoms in a periodic potential.2–4

To be specific, we investigate the generic model for
Mott transition, the Hubbard model, for bosons~BH model!,

H52t(
^ i , j &

~bi
†bj1bj

†bi !1
1

2
U(

i
n̂i~ n̂i21!2m(

i
n̂i ,

~1!

where thebi
† and bi are bosonic creation and annihilatio

operators,n̂i5bi
†bi is the number of particles on sitei , t the

hopping-matrix element,U.0 the on-site repulsion, andm
the chemical potential. With short-range interactions, o
the model has two phases at zero temperature: a supe
phase and a Mott phase. Much of the physics of the mo
was already understood qualitatively in an early paper
Fisheret al.5 and subsequent papers~see, e.g., Refs. 6–8!.

It is, however, interesting to obtain a quantitative und
standing of the model—for example to compare with expe
ments. To this end, the BH model has been studied num
cally by quantum Monte Carlo simulations9–15 in one- and
two-spatial dimensions. Recently, the one-dimensional c
was also investigated using the density-matrix renormal
tion group ~DMRG!.16 This study found indications for an
unexpected reentrant behavior from the superfluid to
Mott insulator as a function of the hopping amplitudet for
certain values of the chemical potential.

In this paper we report a systematic analytic stron
coupling series to high order for the Bose-Hubbard mod
Previous attempts that were restricted to rather low ord17

showed promising results but were not sufficient to inve
gate the asymptotic behavior of the series. Rece
Gelfand18 proposed a method for a linked cluster expans
PRB 590163-1829/99/59~19!/12184~4!/$15.00
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with degenerate states. We have implemented the series
pansion of the ground state and the first excited state a
linked cluster expansion on a computer. The results sho
spectacular convergence of the Pade approximants for
phase diagram in one and two dimensions. The critical po
can be determined to a previously unattainable accur
~relative errors of'1023). In particular, we are able to con
firm convincingly that in one dimension there is reentra
behavior of the Mott phase. The series calculation can
used as a benchmark for development of numerical te
niques for strongly correlated systems~e.g., DMRG!.

We start by writing down the ground state in the atom
limit ~the hopping-matrix elementt→0). In the atomic limit
the number of bosons per site is fixed to an integer num
for example,n0. Then the ground state of the Mott insulat
with a fixed numbern0 of particles per site is given by

un0&Mott
(0) 5)

i 51

N
1

An0!
~bi

†!n0u0& ~2!

with energy

EMott
(0) /N5 1

2 n0~n021!U2mn0 . ~3!

Perturbation theory for the ground-state energyEMott can be
formulated as a linked cluster expansion, see, e.g., Ref
and the ground-state energy can be obtained in the ther
dynamic limit ‘‘relatively easily.’’

The Mott transition is obtained by studying charge ex
tations on top of the Mott phase. The charge excitations
gapped in the incompressible Mott phase and become
less at the Mott transition. In the atomic limit charge exci
tions are created by adding or removing a particle onto
from a particular sitei

un0 ; i &part
(0) 5

1

An011
bi

†un0&Mott
(0) , ~4!

un0 ; i &hole
(0) 5

1

An0

bi un0&Mott
(0) . ~5!

Their energy relative to the ground state is given by
12 184 ©1999 The American Physical Society
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Epart
(0) 5Un02m, ~6!

Ehole
(0) 52U~n021!1m ~7!

for particles and holes, respectively showing that the cha
excitations are degenerate. This degeneracy is lifted as
as the hopping amplitudet is finite. In the atomic limit the
energy of the excited states vanishes for a chemical pote
mc

(0)5Un0 and the system becomes compressible.
A systematic strong-coupling expansion of the energy

the charge excitations complicated due to the high deg
eracy. The problem how to write down a linked cluster e
pansion for degenerate states was solved only recently
Gelfand.18 The idea is to construct perturbatively an effecti
Hamiltonian Hi , j

eff in the subspace of the degenerate sta
un0 ; i &part/hole

(0) by a similarity transformation

Hi , j
eff~ t !5Si ,n~ t !Hn,lSl, j~ t !

with

Si ,n~ t !5Sn,i
21~ t !, ~8!

where Greek indices run over states in the full Hilbert sp
while Latin indices are restricted to the degenerate mani
of single-particle and single-hole states~4! and ~5!, respec-
tively. Then the linked cluster theorem applies toHi , j

eff(t)
2EMott(t). In the case of a homogeneous systemHi , j

eff de-
pends only on the difference of indicesi 2 j and is easily
diagonalized by a Fourier transform. This way one can
termine the full dispersionE(k;t,m) of the charge excita-
tions. In many ways the linked cluster expansion is simila
a exact diagonalization study of small systems—howeve
the linked cluster expansion it is possible to remove
finite-size effects in each order and one obtains the full d
persion in the thermodynamic limit.

The spectrumE(k;t,m) takes on the form

Epart~k;t,m!5epart~k;t !2m, ~9!

Ehole~k;t,m!52ehole~k;t !1m ~10!

in complete analogy to Eqs.~6! and ~7!. For positive values
of the hopping-matrix elementt the smallest~largest! eigen-
value in the particle~hole! sector is always located at a wav
vector k50. The upper and lower phase boundary of t
Mott phase are thus given bymupper(t)5epart(k50;t) and
m lower(t)5ehole(k50;t), respectively. As a consequence t
single charge gapD(t)5epart(k;t)2ehole(k;t), determines
also the widthmupper(t)2m lower(t) of the insulating region.
With increasing hoppingt the distance between the upp
and lower boundary decreases until finally at some crit
value tc the energy to remove a particle and the energy
add a particle become degenerate and the Mott insulator
ishes altogether.

We will first discuss the BH model, Eq.~1! on a two-
dimensional lattice. We investigated both the square and
angular lattice and calculated the series for occupation n
bers n051 and n052 up to 13th and 10th order
respectively. The dispersion,e(k) of the particle and hole
excitations forn051 on the square lattice is shown in Fig.
The different shape of the two curves reflects the partic
hole asymmetry of the model Hamiltonian~1!. The series
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were found to converge very rapidly. Figure 1 was obtain
by summation of the 13th order series. It turned out to
almost indistinguishable from the result of the 10-term ser
even fort/U50.055, which is not far from the critical end
point tc of the Mott lobe. The particle and hole excitation
both have a pronounced extremum at wave vectork50 and
are separated by a gapD. For values of the chemical poten
tial m in this range all single charge excitations are gapp
and the system is insulating.

The phase diagram shown in Fig. 2 is obtained by a P
analysis of the series for the single particle gap,D. Scaling
theory5 predicts that in the neighborhood of the critical poi
(tc , mc) the single particle gapD(t) as a function of the
hopping-matrix elementt has the general form:D(t)
5A(t)(tc2t)zn, whereA(t) is a regular function oft andzn
is the dynamical critical exponent. We use the following pr

FIG. 1. Dispersion of the single-particle and single-hole sta
of the square lattice Bose-Hubbard model att/U50.055.

FIG. 2. Phase diagram of the square lattice constructed usi
Pade analysis of the series. The Mott phases are denoted byMI and
the superfluid region bySF. The left curve is the lowest order Pad
approximant (4th-order series! the right curve represents all th
higher approximants. The inset shows a resolution of the reg
around the critical point. Note the scale!
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cedure to extrapolate the series.20 We calculate the logarith
mic derivative of the series of the gap with respect tot,
which results in

] ln@D~ t !#

]t
5

zn

t2tc
1

A8~ t !

A~ t !
. ~11!

The right-hand side of Eq.~11! is well approximated by a
Pade approximant. The pole of the Pade approximants
] ln@D(t)#/]t then determines the critical pointtc and the re-
siduum determines the dynamical critical exponentzn. We
then integrate the Pade approximants numerically to ob
the single-particle gapD(t). With the exception of the lowes
approximant all others approximant turn out to be alm
indistinguishable from each other indicating a rapid conv
gence. The results are shown in Fig. 2. To observe
change at all in the higher approximants we have magni
the region around the critical point in the inset. The chemi
potential is a regular function of the hopping-matrix eleme
t. We used Pade analysis to check the scaling prediction
found for the critical pointtc'0.0599 and the critical expo
nentn'0.69. This has to be compared with the known va
for the three-dimensionalxy model,21 n50.669360.0010,
obtained by Borel summation of field theoretical results. T
difference between the two results is of the order of a few
cent. Obviously, the Pade analysis has a tendency to slig
overestimate the value of the critical point, which in tu
induces an error in the value of the critical exponent.

It is also possible to extract the critical hopping-mat
elementt and the chemical potential at the critical pointmc
directly from the series. In each orderk of the expansion the
single-particle gapD(t) vanishes at some effective critica
value tc

(k) with a corresponding effectivemc
(k) . Plotting tc

(k)

and mc
(k) vs 1/k one finds again a rapid convergence

shown in Fig. 3. Extrapolation tok→` allows to determine
accurately the critical point:tc50.0597460.00004 andmc
50.37160.001.

We now turn to the one-dimensional case. From sca
theory5 the critical behavior of the system is expected to
that of a Kosterlitz-Thouless transition22 for which the gap
closes according toD(t)}A(t)exp(2W/AtKT2t) for utKT
2tu!1, where A(t) is a regular function of t. The
asymptotic form of the gap makes it difficult to approxima
D(t) directly. Therefore, we analyze the series for ln@D(t)#2.

FIG. 3. 1/order extrapolation of the critical point (tc).
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The Pade analysis of the series yields spectacular agree
with the recent DMRG study of the phase diagram16 as is
shown in Fig. 4 where we compare results from the se
analysis with numerical data of quantum Monte Ca
~QMC! simulations by Batrouni and Scalettar10 and DMRG
data.16 The agreement between the series and the DM
data is excellent. Both calculations show that for a fix
chemical potential as a function of the hopping matrix e
mentt the Mott phase is reentrant meaning that by increas
the kinetic energy one returns to alocalizedstate! The series
analysis confirms the surprising behavior observed in
DMRG16 calculation.

A simple intuitive way of understanding this phenomen
is the fact that Mott lobe is particle-hole asymmetric for t
lattice problem. Starting from strong coupling (U@t) it is
clear that the effect of the kinetic energy is to delocalize
particles. The delocalization decreases the average numb
particles per site if the chemical potential is held fixed. O
the other hand, in the weak coupling limit (U!t) the bosons
condense at the lower band edge so that for increasing b
width ~t! and fixed chemical potential the average number
particles per site is decreasing. The nonmonotonic beha
of the density can be understood simply as a result of
limiting cases. Thus starting from the Mott phase the num
of particles per site first decreases and then increases lea
to a second Mott transition for a well-defined range of t
chemical potential.

The uncertainties in the precise location of the Kosterli
Thouless transition are still comparatively large. We us
Pade analysis of ln2D(t)}(tKT2t)21. This quantity has a
simple pole at the critical point that can be captured by
tional function. This method turned out to give excellent r
sults. We estimate the point for Kosterlitz-Thouless tran
tion to be located attKT /U50.2660.01 andmKT /U50.16
60.01.

In conclusion, series expansion techniques were app
to investigate the zero-temperature properties of the Bo
Hubbard model in one and two dimensions. We determ
the complete spectrum of single-particle and single-hole

FIG. 4. Comparison of the phase diagram obtained from se
expansion~solid line!, DMRG ~solid circles! and QMC ~solid
squares!. The Mott phase is denoted byMI and the superfluid phas
by SF.
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citations in the Mott phase. The phase diagram in one
two dimensions is obtainedquantitativelyand the critical-
end points of the Mott insulator regions are determined.
two dimensions, this is so far the only quantitative inves
gation of the complete phase diagram of this problem. In
dimensions, the series shows almost perfect agreement
a recent DMRG study and provides a conclusive confirm
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tion for counterintuitive reentrance behavior from the co
pressible to the insulating phase near the Kosterlitz-Thou
point.
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