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Dynamics and thermodynamics of the Bose-Hubbard model
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We report results from a systematic analytic strong-coupling expansion of the Bose-Hubbard model in one-
and two-spatial dimensions. We obtain numerically exact results for the dispersion of single-particle and
single-hole excitations in the Mott insulator. The boundary of the Mott phase can be determined with previ-
ously unattainable accuracy in one and two dimensions. In one dimension, we observe the occurrence of
reentrant behavior from the compressible to the insulating phase in a region close to the critical point, which
was conjectured in earlier work. Our calculation can be used as a benchmark for the development of numerical
techniques for strongly correlated systefi§0163-182€09)04319-2

Quantum phase transitions in strongly correlated systemwith degenerate states. We have implemented the series ex-
have attracted a lot of interest in recent years. In fermionigansion of the ground state and the first excited state as a
systems the Mott transition is complicated by the fact that ininked cluster expansion on a computer. The results show a
unfrustrated systems the antiferromagnetic transition and lospectacular convergence of the Pade approximants for the
calization transition occur at the same pofsée, e.g., Ref. phase diagram in one and two dimensions. The critical points
1). For interacting Bose systems with spin zero, the situatiotan be determined to a previously unattainable accuracy
is much simpler and one can focus on the physics of the Mottrelative errors of~10"%). In particular, we are able to con-
transition. Strongly interacting bosonic systems are not onlfirm convincingly that in one dimension there is reentrant
of academic interest. Physical realizations include Josephsdrehavior of the Mott phase. The series calculation can be
junction arrays, granular and short-correlation-length superused as a benchmark for development of numerical tech-
conductors, flux lattices in type-1l superconductors, and posniques for strongly correlated systerfesg., DMRG.
sibly in the future ultracold atoms in a periodic potenfidl. We start by writing down the ground state in the atomic

To be specific, we investigate the generic model for thdimit (the hopping-matrix elemernt-0). In the atomic limit
Mott transition, the Hubbard model, for bosofdH mode),  the number of bosons per site is fixed to an integer number,

for example,ng. Then the ground state of the Mott insulator
1 o i . i X R

g —t% (binj+b]-Tbi)+ §UZ ni(ni—l)—MZi A with a fixed numben, of particles per site is given by
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where theb! andb; are bosonic creation and annihilation =1 V!
operatorsﬁi=bini is the number of particles on site t the  with energy
hopping-matrix element) >0 the on-site repulsion, and
the chemical potential. With short-range interactions, only E(® IN=1ny(ng—1)U— uny. 3
the model has two phases at zero temperature: a superfluid
phase and a Mott phase. Much of the physics of the moddPerturbation theory for the ground-state enefgy,, can be
was already understood qualitatively in an early paper byormulated as a linked cluster expansion, see, e.g., Ref. 19
Fisheret al® and subsequent papdsee, e.g., Refs. 638 and the ground-state energy can be obtained in the thermo-

It is, however, interesting to obtain a quantitative under-dynamic limit “relatively easily.”
standing of the model—for example to compare with experi- The Mott transition is obtained by studying charge exci-
ments. To this end, the BH model has been studied numerfations on top of the Mott phase. The charge excitations are
cally by quantum Monte Carlo simulatiohs® in one- and gapped in the incompressible Mott phase and become gap-
two-spatial dimensions. Recently, the one-dimensional cadess at the Mott transition. In the atomic limit charge excita-
was also investigated using the density-matrix renormalizations are created by adding or removing a particle onto or
tion group (DMRG).'® This study found indications for an from a particular site
unexpected reentrant behavior from the superfluid to the
Mott insulator as a function of the hopping amplitudéor
certain values of the chemical potential.

In this paper we report a systematic analytic strong-
coupling series to high order for the Bose-Hubbard model.
Previous attempts that were restricted to rather low dfder
showed promising results but were not sufficient to investi-
gate the asymptotic behavior of the series. Recently
Gelfand® proposed a method for a linked cluster expansiorTheir energy relative to the ground state is given by
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Efar=Uno— s, (6) L5
Efge= ~U(no—1) +u @) - \
for particles and holes, respectively showing that the charge 1.0 .
excitations are degenerate. This degeneracy is lifted as soon
as the hopping amplitudeis finite. In the atomic limit the particle
energy of the excited states vanishes for a chemical potential — — hole
w®=Uny and the system becomes compressible. & 05 1
A systematic strong-coupling expansion of the energy of I A
the charge excitations complicated due to the high degen- /
eracy. The problem how to write down a linked cluster ex- I
pansion for degenerate states was solved only recently by 0.0 i i
Gelfand!® The idea is to construct perturbatively an effective . _/
Hamiltonian H?f]f in the subspace of the degenerate states
INo:i)neiebY @ similarity transformation 05
(m,0) (0,0) (n,m) (n,0)
HEI() =S ,(OH, xS, (1) k
with FIG. 1. Dispersion of the single-particle and single-hole states
of the square lattice Bose-Hubbard modet/at =0.055.
S.(0=S, k), ®)

where Greek indices run over states in the full Hilbert spac
while Latin indices are restricted to the degenerate manifol
of single-particle and single-hole state@y and (5), respec-
tively. Then the linked cluster theorem applies Iﬁﬁfjf(t)
—Emoit(t). In the case of a homogeneous systblrﬁ de-
pends only on the difference of indicésj and is easily

ere found to converge very rapidly. Figure 1 was obtained
fy summation of the 13th order series. It turned out to be
almost indistinguishable from the result of the 10-term series
even fort/U=0.055, which is not far from the critical end-
point t, of the Mott lobe. The particle and hole excitations
both have a pronounced extremum at wave vektef and
) . . i are separated by a gan For values of the chemical poten-
d|agqnal|zed by a Fourl_er trar?sform. This way one can defial w in this range all single charge excitations are gapped
termine the full dispersiorkE(k;t,u) of the charge excita- and the system is insulating.

tions. In many ways the linked cluster expansion is similar to- 1 phase diagram shown in Fig. 2 is obtained by a Pade
{ahexla_\ctk d(ljagcl)na;hzanon stu_dy O.I s_mall sy_sbtlemts—however 'l?smalysis of the series for the single particle gAp,Scaling
ne linked cluster expansion It IS possibie 1o rémove a theory predicts that in the neighborhood of the critical point
finite-size effects in each order and one obtains the full dls-(t 11.) the single particle gap(t) as a function of the
e T cr Me
per_ﬂ]on n thte trfrgrﬁ?dyn?rrlllc I|m|t:[h ; hopping-matrix elementt has the general form:A(t)
e spectrumi(k;t, u) takes on the form =A(t)(t.—t)?", whereA(t) is a regular function of andzv
Epar(Kit, 1) = €parKit) — i, (9) is the dynamical critical exponent. We use the following pro-

Enole Kt ) = — enoid Kit) + (10) 20 - - - . : :

in complete analogy to Eq$6) and (7). For positive values 0.40 -
of the hopping-matrix elementthe smallestlargesj eigen-
value in the particléhole) sector is always located at a wave MI (n=2)
vector k=0. The upper and lower phase boundary of the
Mott phase are thus given by ppe(t) = €pak=0;t) and
Miowed 1) = €noil(K=0;1), respectively. As a consequence the WU 44 SF _
single charge gap\(t) = epa(K;t) — enoielk;t), determines 0.059 0.060
also the widthu ppe(t) — siowedt) Of the insulating region.
With increasing hopping the distance between the upper
and lower boundary decreases until finally at some critical MI (n=1)
valuet; the energy to remove a particle and the energy to
add a particle become degenerate and the Mott insulator var
ishes altogether. 0.0 : . . . .
We will first discuss the BH model, Eq1) on a two- 0.00  o.01 002 003 004 005 006
dimensional lattice. We investigated both the square and tri- x=t/U
angular lattice and calculated the series for occupation nUM- £, 2 phase diagram of the square lattice constructed using a

bers np=1 and ng=2 up to 13th and 10th order, pade analysis of the series. The Mott phases are denotitl layd
respectively. The dispersior(k) of the particle and hole the superfluid region bF. The left curve is the lowest order Pade
excitations fomy=1 on the square lattice is shown in Fig. 1. approximant (4th-order serieshe right curve represents all the
The different shape of the two curves reflects the particlenigher approximants. The inset shows a resolution of the region
hole asymmetry of the model Hamiltonigd). The series around the critical point. Note the scale!
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FIG. 3. 1/order extrapolation of the critical poirtt). 0.00 0.05 010 X Ets/u 020 025 030
cedure to extrapolate the serf@dle calculate the logarith- FIG. 4. Comparison of the phase diagram obtained from series
mic derivative of the series of the gap with respecttto expansion(solid line, DMRG (solid circle3 and QMC (solid
which results in squares The Mott phase is denoted i and the superfluid phase

by SF.

Jin[A(D)]  zv  A'(Y)
ot _t—tc+ At)

11 . . .
(1) The Pade analysis of the series yields spectacular agreement

_ _ _ _ with the recent DMRG study of the phase diagtéms is
The right-hand side of Eq11) is well approximated by & ghown in Fig. 4 where we compare results from the series

Pade approximant. The pole of the Pade approximants ffpayysis with numerical data of guantum Monte Carlo
dIn[A(t)]/ét then determines the critical poing and the re- (QMC) simulations by Batrouni and Scalefdand DMRG

siduum determines the dynamical critical exponent We 451516 The agreement between the series and the DMRG
then integrate the Pade approximants numerically to obtaifata s excellent. Both calculations show that for a fixed

the single-particle gap(t). With the exception of the lowest  cpemjcal potential as a function of the hopping matrix ele-
approximant all others approximant turn out to be almosinentt the Mott phase is reentrant meaning that by increasing
indistinguishable from each other indicating a rapid converihe kinetic energy one returns tdacalizedstate! The series

gence. The results are shown in Fig. 2. To observe anynaiysis confirms the surprising behavior observed in the
change at all in the higher approximants we have magnifiegh\1rG16 calculation.

the region around the critical point in the inset. The chemical p simple intuitive way of understanding this phenomenon
potential is a regular function of the hopping-matrix elements {he fact that Mott lobe is particle-hole asymmetric for the
t. We used Pad_e' analy;is to check the scaling .p_rediction andttice problem. Starting from strong coupling &1) it is
found for the critical point.~0.0599 and the critical expo- ¢|ear that the effect of the kinetic energy is to delocalize the
nenty~0.69. This has to be compazrled with the known valuepayticles. The delocalization decreases the average number of
for the three-dimensionaty model;” »=0.6693-0.0010, particles per site if the chemical potential is held fixed. On
obtained by Borel summation of field theoretical results. Thene other hand, in the weak coupling liml &t) the bosons
difference between the two results is of the order of a few pegondense at the lower band edge so that for increasing band-
cent. Obviously, the Pade analysis has a tendency to slightlyiqth (t) and fixed chemical potential the average number of
overestimate the value of the critical point, which in turn harticles per site is decreasing. The nonmonotonic behavior
induces an error in the value of the critical exponent. of the density can be understood simply as a result of two
It is also possible to extract the critical hopping-matrix |initing cases. Thus starting from the Mott phase the number
elementt and the chemical potential at the critical popt  of particles per site first decreases and then increases leading
directly from the series. In each ordeof the expansion the g 5 second Mott transition for a well-defined range of the
single-particle gap\(t) vanishes at some effective critical chemical potential.
valuet™ with a corresponding effective{ . Plotting t& The uncertainties in the precise location of the Kosterlitz-
and 1 vs 1k one finds again a rapid convergence asThouless transition are still comparatively large. We use a
shown in Fig. 3. Extrapolation tk— o allows to determine Pade analysis of f(t)«(tcr—t) 1. This quantity has a
accurately the critical pointt,=0.05974-0.00004 andu,. simple pole at the critical point that can be captured by ra-
=0.371+0.001. tional function. This method turned out to give excellent re-
We now turn to the one-dimensional case. From scalingults. We estimate the point for Kosterlitz-Thouless transi-
theory the critical behavior of the system is expected to betion to be located at,r/U=0.26-0.01 anduy;/U=0.16
that of a Kosterlitz-Thouless transititifor which the gap  +0.01.
closes according ta\(t)xA(t)exp(—W/ytxr—t) for |tcr In conclusion, series expansion techniques were applied
—t|<1, where A(t) is a regular function oft. The to investigate the zero-temperature properties of the Bose-
asymptotic form of the gap makes it difficult to approximate Hubbard model in one and two dimensions. We determine
A(t) directly. Therefore, we analyze the series fdl)]2.  the complete spectrum of single-particle and single-hole ex-
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citations in the Mott phase. The phase diagram in one anton for counterintuitive reentrance behavior from the com-
two dimensions is obtaineduantitativelyand the critical- ~ pressible to the insulating phase near the Kosterlitz-Thouless
end points of the Mott insulator regions are determined. IrPoINt.

two dimensions, this is so far the only quantitative investi- \ye acknowledge useful and interesting discussions on
gation of the complete phase diagram of this problem. In onghis problem with M. P. Gelfand, T. Giamarchi, T. Kuer,
dimensions, the series shows almost perfect agreement wigh, J. Millis, A. v. Otterlo, R. R. P. Singh, G. Schpand H.

a recent DMRG study and provides a conclusive confirmaSchulz.
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