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Supersymmetry and theory of heavy fermions
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We propose an approach to the Kondo lattice in order to describe simultaneously the Kondo effect and the
local magnetism. This approach relies on an original representation of theS51/2 impurity spin in which the
different degrees of freedom are represented by fermionic as well as bosonic variables. The band structure
shows a bosonic mode in addition to the usual fermionic bands found in slave-boson theories. The density of
states at the Fermi level is strongly enhanced and the Fermi-surface sum rule includesnc11 states. Finally, we
study the dynamical spin susceptibility and the optical conductivity.@S0163-1829~99!04719-0#
th
g
da
r o
a

ar
v
c

su

th
he
th

t

or
f

io
re
sm
te
t
t

l
n
ll
th
e-

fe
de

s
n
ri
e

vit

f the
the

as
arge

ic

p-
sov
tro-

f the
-

er-

er-
arti-
te it
n on
ctor
y.
pose

ll-

n

An outstanding feature of heavy-Fermion systems is
coexistence of Fermi-liquid-type excitations with local ma
netism resulting from Ruderman-Kittel-Kasuya-Yosi
~RKKY ! interactions among spins as shown by a numbe
experiments. An important probe is provided by the de Ha
van Alphen~dHvA! experiments. The results1 indicate heavy
effective mass. They also agree as to the existence of l
Fermi surfaces in the magnetically-disordered phase. E
though the charge degrees of freedom are frozen, the lo
ized electrons seem to contribute to the Fermi-surface
rule together with the conduction electrons.

This coexistence of Fermi-liquid-type excitations wi
low energy magnetic fluctuations is likely to stem from t
nature of the screening of the localized moments in
Kondo lattice. According to the exhaustion principle, atTK
the available conduction electrons are exhausted2 before
achieving complete screening~incomplete Kondo effect!
leaving residual unscreened spin degrees of freedom on
impurities.

Traditionally, the spin is described either in fermionic
bosonic representation. If the former representation, used
instance in the 1/N expansion of the Anderson3 or the
Kondo4 lattice, appears to be well adapted for the descript
of the Kondo effect, it is also clear that the bosonic rep
sentation lends itself better to the study of local magneti
Quite obviously the physics of heavy Fermions is domina
by the duality between Kondo effect and localized momen
This constitutes our motivation to introduce an approach
the Kondo lattice model~KLM ! that relies on an origina
representation of the impurity spin 1/2 in which the differe
degrees of freedom are represented by fermionic as we
bosonic variables. The former are believed to describe
Fermi-liquid excitations while the latter account for the r
sidual spin degrees of freedom.

Let us list the main results obtained in this paper:~i! the
band structure shows a bosonic band in addition to the
mionic bands of the standard slave-boson theories; the
sity of states at the Fermi level is strongly enhanced,~ii ! the
Fermi-surface sum rule includesnc11 states, which mean
that the Fermi-surface volume includes a contribution of o
state per localized spin in agreement with dHvA expe
ments,~iii ! the dynamical susceptibility is dominated by th
presence of the bosonic band while the optical conducti
PRB 590163-1829/99/59~19!/12180~4!/$15.00
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is not; the gap appearing in the frequency dependence o
optical conductivity is equal to the direct gap between
two fermionic bands.

In order to include the Fermi-liquid excitations as well
the residual spin degrees of freedom, we propose to enl
the representation of the spin operator as follows

Sa5(
ss8

bs
†tss8

a bs81 f s
†tss8

a f s85Sb
a1Sf

a , ~1!

where bs
† and f s

† are, respectively, bosonic and fermion
creation operators andta@a5(1,2,z)# are Pauli matrices.
Equation~1! corresponds to a mixed fermionic-bosonic re
resentation between Schwinger bosons and Abriko
pseudofermions. An additional constraint needs to be in
duced in order to complete the representation

nf1nb51. ~2!

This constraint can be viewed as a charge conservation o
following SU(1u1) fermion-boson rotation symmetry leav
ing the spin operator invariant

~ f 8s
† ,b8s

† !5~ f s
† ,bs

† !V†, ~3!

whereV† is an unitary supersymmetric matrix (VV†5V†V
51). It is important to notice that this representation ov
counts the states. Four statesf ↑

†u0&, f ↓
†u0&, b↑

†u0&, andb↓
†u0&

are involved in the representation. We argue that this ov
counting of the states does not affect the physics. The p
tion function being a trace, it is the same when we evalua
on the fermionic or the bosonic subspace separately. The
the extended subspace, it just acquires a multiplicative fa
that will cancel in the calculation of any physical quantit
One can easily check that the representation that we pro
satisfies the standard rules ofSU(2) algebra.

Let us consider the three-dimensional KLM near half fi
ing (nc<1). The Hamiltonian is

H5(
ks

«kcks
† cks1J(

i
Si .si , ~4!

where J(.0) is the Kondo interaction and si

5(ss8(cis
† tss8cis8) is the spin of conduction electrons. I
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PRB 59 12 181BRIEF REPORTS
the representation introduced before, the partition funct
can be written as the following path integral

Z5( E DcisDf isDbisdl i

3expH 2E
0

b

dtFL~t!1H1(
i

l i~nf i
1nbi

21!G J
with L~t!5(

is
~cis

† ]tcis1 f is
† ]t f is1bis

† ]tbis!

and H5(
ks

«kcks
† cks1J(

i
~Sf i

1Sbi
!.si2m(

i
nci

.

~5!

The time-independent Lagrange multiplierl i is introduced
to enforce the local constraintnf i

1nbi
2150.

Performing a Hubbard-Stratonovich transformation a
neglecting the space and time dependence of the fields
self-consistent saddle-point approximation, we have

Z5( E dhdh* C~s0 ,e f ,h,h* !Z~h,h* !,

Z~h,h* !5(
s

E DcisDf isDbis

3expH 2E
0

b

dt@L~t!1H8#J
with H85(

k
~ f ks

† ,cks
† ,bks

† !H0S f ks

cks

bks

D ,

H05S « f s0 0

s0 «k h

0 h* « f

D , ~6!

whereC(s0 ,e f ,h,h*) is an integration constant.« f is the
saddle-point value of the Lagrange multiplierl i . Note the
presence of a Grassmannian couplingh betweencis and
bis , in addition to the usual couplings0 betweencis and f is
responsible for the Kondo effect.H0 is of the type

S a s

r b D
in which a,b(r,s) are matrices consisting of commutin
~anticommuting! variables. Note the supersymmetric stru
ture of the matrixH0 similar to the supermatrices appearin
in the theory of disordered metals.5

H0 being hermitian, the matrixU† transforming the origi-
nal basisc†5( f †,c†,b†) to the basis of eigenvectorsF†

5(a†,b†,g†) is unitary (UU†5U†U51). F†5c†U† with
U† a supersymmetric matrix.a† and b† are the fermionic
eigenvectors whose eigenvalues, determined from de@(a
2E)2s(b2E)21r#50, are
e-
n

d
a

-

E75
~«k1« f !7A~«k2« f !

214~s0
21hh* !

2
.

g† is the bosonic eigenvector whose eigenvalue, determin
from det@(b2E)2r(a2E)21s#50 is Eg5« f .

In the scheme we propose,s0 and e f are slow variables
that we determine by solving saddle-point equations, whi
h, h* are fast variables defined by a local approximation. A
we will see, the latter approximation incorporates part of th
fluctuation effects. Indeed, performing the functional integra
tion of Eq. ~6! over the fermion and boson fields5 yields a
superdeterminant~S Det! form written as follows:

Z~h,h* !5S Det~]t1H0!,

where S Det~]t1H !5
Det~G212sDr!

Det~D21!
,

G215]t1a and D215]t1b. ~7!

Expanding to second order inh,h* allows us to define
the propagatorGhh* (k,ivn) associated to the Grassmann
variableh and hence, the closure relation forx0

25^hh* &

x0
25

1

b (
k,ivn

Ghh* ~k,ivn!,

with Ghh* ~k,ivn!5
J

@12JPcb
0 ~k,ivn!#

and ) cb
0 ~k,ivn!5

1

b (
q,ivn

Gcc~k1q,ivn

1 ivn!D~q,ivn!. ~8!

Contrary to Ref. 6 which assumesx0
250 leading to a two-

fluid model description, the closure Eq.~8! that we introduce
defines a finitex0

2. This parameterx0
2 plays a major role in

controlling the relative weights of fermion and boson statis
tics.

The resolution of the saddle-point equations, keeping th
number of particles conserved, leads to

yF52Dexp@21/~2Jr0!#,

15
2r0~s0

21x0
2!

2yF
,

m52
~s0

21x0
2!

D
,

l050, ~9!

whereyF5m2« f andr051/2D is the bare density of states
of conduction electrons. From that set of equations, we fin
« f50.

The resulting spectrum of energies is schematized in Fi
1. At zero temperature, only the lowest banda is filled with
an enhancement of the density of states at the Fermi lev
~and hence of the mass! unchanged from the standard slave
boson theories @r(EF)#/r0511(s0

21x0
2)/yF

2511D/
(2yF)@1. This large mass enhancement is related to the fl
part of the a band associated with the formation of the
Abrikosov-Suhl resonance pinned at the Fermi level. Whil
this feature was already present in the purely fermionic d
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scription,3,4 it is to be noted that the formation of a dispe
sionless bosonic band within the hybridization gap is an
tirely new result of the theory.

The relative weight of boson and fermion statistics in t
spin representation is related tox0

2: nb /nf5x0
2/s0

2. It is then
interesting to follow theJ dependence ofx0

2 as determined by
the closure Eq.~8!. The result is reported in Fig. 2. Thi
bell-shaped curve can be interpreted in the light of the
haustion principle mentioned in the introduction. In the lim
of large J, the Kondo temperature-scaleTK5Dexp
@21/(2Jr0)# is of order of the bandwidth. One then expec
a complete Kondo screening without any residual unscree
spin degrees of freedom. It is then natural to derive a z
value ofx0

2 and hence, ofnb . The opposite limit at smallJ
corresponds to the free case of uncoupled impurity spins
conduction electrons. It also leads tox0

250. The finite value
of x0

2 between these two limits with a maximum reflects t
incomplete Kondo screening effect in the Kondo lattice,
unscreened spin degrees of freedom being described
bosons.

Largely discussed in the litterature8 is the question con-
cerning the Fermi-surface sum rule: do the localized spin
the Kondo lattice contribute to the counting of states with
the Fermi surface or do they not? Depending on the ans
one expects large or small Fermi surfaces. The supersym
ric theory leads to a firm conclusion in favor of the forme
One can check that the number of states within the Fe
surface is just equal tonc1nb1nf , i.e., nc11. The Fermi-
surface volume includes a contribution of one state per
calized spin in addition to that of conduction electrons.1 This
conclusion that appears reasonable if one recalls that

FIG. 1. Sketch of energy versus wave numberk for the three
bandsa, b, andg resulting of the diagonalization of supersymme
ric H0.

FIG. 2. J/D dependence of the couplingx0
25^hh* & fixing the

relative weight of fermion and boson statistics. The unit on
vertical axis isD2.
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KLM is an effective Hamiltonian derived from the period
Anderson model, has been reached before by several o
authors.8,9 We do think that it is a good sign to recove
previously established results if they are correct.

Let us now consider the response functions to some
ternal fields namely the dynamical spin susceptibil
xab(q,v) and the frequency-dependent optical conductiv
sab(v)(a,b5x,y,z). For that purpose, we introduce th
Matsubara correlation functions associated with the oper
O a(q,t): xab(q,ivn)5*0

bdtexpivnt^TtO a(q,t)O b(2q,0)&.
The operator related to the spin-spin correlation function
the a component of the spin expressed in the mixed rep
sentation introduced in the paper by:Sa(q)
5(k,s,s8 f k1q,s

† tss8
a f k,s81bk1q,s

† tss8
a bk,s8 . As usual, the

dynamical spin susceptibility is then derived from the sp
spin correlation function by the analytical continuationivn

→v1 i01. In the same way, the operator related to t
current-current correlation function is thea component of the
c current. In the case of a cubic lattice:Jc

a(q)
52(k,s,s8sinkack1q,s

† ck,s . The frequency-dependent optic
conductivity is then obtained from the current-current cor
lation function by the analytical continuation following
sab(v)5@xab(q,v1 i01)2xab(q,i01)# iv.

By expanding the previous expressions in the basis of
eigenstates (a†b†g†) of H0, we have computed the fre
quency dependence ofxab(Q,v) at the antiferromagnetic
wave vectorQ and sab(v) at zero temperature. The tw
response functions show very different frequency dep
dence. The frequency scale at which the dynamical spin
ceptibility takes noticeable values is much smaller than
the optical conductivity. This can be understood in the f
lowing way. The bosonicg band is called to play a role only
when spin is concerned namely for the dynamical spin s
ceptibility. That feature comes from the fact that the spin
related to both fermionic and bosonic operators while thc
current is simply expressed within fermionic operato
Therefore, one can show that the dynamical spin suscept
ity involves transitions between all three bandsa,b, andg.
The main contribution forxab(Q,v) is due to the particle-
hole pair excitations from the fermionica to the bosonicg
band. Oppositely, the optical conductivity is associated w
transitions between fermionic bands only. As can be see
Fig. 3, a gap appears in the frequency dependence ofs(v)
equal to the direct gap between thea andb bands. The latter

FIG. 3. Frequency dependence of the optical conductivitys(v)
at T50 for D50.8 andTK50.001.
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result agrees with the predictions of the dynamical me
field theory in the limit of infinite dimensions.12 The whole
discussion clarifies the physical content of the novel boso
mode brought by the supersymmetric approach. That mod
related to the spin excitations. It introduces new feature
the dynamical spin susceptibility by comparison to the st
dard slave-boson theories while it does not affect the opt
conductivity.

In summary, we have shown that the supersymme
method proves to be a powerful tool to account for bo
-

ic
is

in
-

al

ic

Fermi-liquid excitations and residual spin degrees of fr
dom in heavy-Fermion systems. The work opens the way
further investigations as the systematic study of the effect
fluctuations in the pure Kondo lattice model or the incorp
ration of additional RKKY interactions in an extende
Kondo lattice model.
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