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Supersymmetry and theory of heavy fermions
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We propose an approach to the Kondo lattice in order to describe simultaneously the Kondo effect and the
local magnetism. This approach relies on an original representation &=tli¢2 impurity spin in which the
different degrees of freedom are represented by fermionic as well as bosonic variables. The band structure
shows a bosonic mode in addition to the usual fermionic bands found in slave-boson theories. The density of
states at the Fermi level is strongly enhanced and the Fermi-surface sum rule imglttdestates. Finally, we
study the dynamical spin susceptibility and the optical conducti{89163-1829)04719-0

An outstanding feature of heavy-Fermion systems is thes not; the gap appearing in the frequency dependence of the
coexistence of Fermi-liquid-type excitations with local mag-optical conductivity is equal to the direct gap between the
netism resulting from Ruderman-Kittel-Kasuya-Yosidatwo fermionic bands.

(RKKY) interactions among spins as shown by a number of In order to include the Fermi-liquid excitations as well as
experiments. An important probe is provided by the de Haasthe residual spin degrees of freedom, we propose to enlarge
van Alphen(dHvA) experiments. The resuttindicate heavy the representation of the spin operator as follows

effective mass. They also agree as to the existence of large

Fermi surfaces in the magnetically-disordered phase. Even _ t a t a _

though the charge degrees of freedom are frozen, the local- Sa_g‘, b”T“”’b”/+f”T””’f”'_S€+S?’ @

ized electrons seem to contribute to the Fermi-surface sum

rule together with the conduction electrons. where b’f, and fT, are, respectively, bosonic and fermionic

This coexistence of Fermi-liquid-type excitations with creation operators anef[a=(+,—,z)] are Pauli matrices.
low energy magnetic fluctuations is likely to stem from the Equation(1) corresponds to a mixed fermionic-bosonic rep-
nature of the screening of the localized moments in théesentation between Schwinger bosons and Abrikosov
Kondo lattice. According to the exhaustion principle,Tat ~ Pseudofermions. An additional constraint needs to be intro-
the available conduction electrons are exhausteefore  duced in order to complete the representation
achieving complete screeningncomplete Kondo effegt
leaving residual unscreened spin degrees of freedom on the ng+np=1. @

impurities. This constraint can be viewed as a charge conservation of the

Traditionally, the .spin is described either in fgrmionic or following SU(1|1) fermion-boson rotation symmetry leav-
bosonic representation. If the former representation, used fc?ﬁg the spin operator invariant

instance in the N expansion of the Andersdnor the

Kondd' lattice, appears to be well adapted for the description ('t b= phHvt 3)

of the Kondo effect, it is also clear that the bosonic repre- 7 e

sentation lends itself better to the study of local magnetismwhereV' is an unitary supersymmetric matrix/ {/'=Vv*v

Quite obviously the physics of heavy Fermions is dominated=1). It is important to notice that this representation over-

by the duality between Kondo effect and localized momentscounts the states. Four statd$0), {|0), b!|0), andb|0)

This constitutes our motivation to introduce an approach tare involved in the representation. We argue that this over-

the Kondo lattice mode(KLM) that relies on an original counting of the states does not affect the physics. The parti-

representation of the impurity spin 1/2 in which the differenttion function being a trace, it is the same when we evaluate it

degrees of freedom are represented by fermionic as well asn the fermionic or the bosonic subspace separately. Then on

bosonic variables. The former are believed to describe théhe extended subspace, it just acquires a multiplicative factor

Fermi-liquid excitations while the latter account for the re-that will cancel in the calculation of any physical quantity.

sidual spin degrees of freedom. One can easily check that the representation that we propose
Let us list the main results obtained in this pap@rthe  satisfies the standard rules $tJ(2) algebra.

band structure shows a bosonic band in addition to the fer- Let us consider the three-dimensional KLM near half fill-

mionic bands of the standard slave-boson theories; the deing (n.<1). The Hamiltonian is

sity of states at the Fermi level is strongly enhandéd the

Fermi-surface sum rule includeg + 1 states, which means T

that the Fermi-surface volume includes a contribution of one H= % SkckrrckoJr‘]Z S-S @)

state per localized spin in agreement with dHVA experi-

ments,(iii ) the dynamical susceptibility is dominated by the where J(>0) is the Kondo interaction ands

presence of the bosonic band while the optical conductivity= EW,(C;‘UTW,CW,) is the spin of conduction electrons. In
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the representation introduced before, the partition function (exten) T V(ex—en)2+4(al+ nn*)
can be written as the following path integral E-= 5 .
y" is the bosonic eigenvector whose eigenvalue, determined
z=2, | De;,Df;,Dbj,d\, from def(b—E)—p(a—E) 'o]=0 isE,=s;.

In the scheme we propose, and ¢; are slow variables
B that we determine by solving saddle-point equations, while
Xexp[ - fo dr| L( T)+H+Ei xi(”fﬁ”bi_ 1)H 7, n* are fast variables defined by a local approximation. As
we will see, the latter approximation incorporates part of the
fluctuation effects. Indeed, performing the functional integra-
with £(7)=2, (¢l d,ci,+ 1l a.fi,+bl a.b,) tion of Eq. (6) over the fermion and boson fiefigields a
o superdeterminan(iS De) form written as follows:

Z(n,n*)=S De(d,+H,),

and 1= 2 &0kt I (Si+ )-8 o2 Ne.

Det(G - oDp)
(55 where SDew,+H)=———,
DetD 1)
The time-independent Lagrange multipligy is introduced 4 —1
G *=g,+a and D *=4g.+b. (7)

to enforce the local constraing +n, —1=0.

Performing a Hubbard-Stratonovich transformation and Expanding to second order in, * allows us to define
neglecting the space and time dependence of the fields intae propagatolG,,,«(k,iw,) associated to the Grassmann

self-consistent saddle-point approximation, we have variable » and hence, the closure relation kﬁ-:(m]*)
2_1 > G, (K,
z=2 f dndn*C(oq,€,1m,7)Z(n,7"), Xo=5 o pr (K lwp),
ith G, «(K,iwg,) )
*)—  DF. . Wi *(K,iwp)=
Z( nn ) ; f DCIUDfIUDbIU nn n [1—J1_Igb(k,lwn)]
B o 1 )
xexpl — | drlL(n)+ 1] and ch(k,mn):E > Gedk+q,im,
Q,lwp
£, +iw,)D(q,iwp). (8
. Contrary to Ref. 6 which assumetézo leading to a two-
' PSS
with M _; (T 1Cko Picr)Ho| Cko |, fluid model description, the closure E@) that we introduce
Byo defines a finitex2. This parametex3 plays a major role in
controlling the relative weights of fermion and boson statis-
g og O tics.
_ The resolution of the saddle-point equations, keeping the
Ho=| o0 &k 7], ®  number of particles conserved, leads to
0 7* &

yr=—Dexf —1/(2Jpo)],
whereC(og,€;,7,7*) IS an integration constant; is the
_ : 2po(d2+x3)
saddle-point value of the Lagrange multipliey. Note the 1= Pol0o T #g
presence of a Grassmannian couplingbetweenc;, and —VYr
b;,, in addition to the usual coupling, betweerc;, andf;,

2 2
responsible for the Kondo effedtl is of the type = (051 Xp)
D L
a o
)\OZO, (9)
p b

whereye=u—e¢ andpg=1/2D is the bare density of states

in which a,b(p,o) are matrices consisting of commuting of conduction electrons. From that set of equations, we find
(anticommuting variables. Note the supersymmetric struc-&;=0.
ture of the matrixH, similar to the supermatrices appearing  The resulting spectrum of energies is schematized in Fig.
in the theory of disordered metals. 1. At zero temperature, only the lowest bamds filled with

H, being hermitian, the matrik) T transforming the origi- an enhancement of the density of states at the Fermi level
nal basisy'=(f',c’,b") to the basis of eigenvectod’ (and hence of t_he masanchanged frorr; thezstazndard slave-
=(a', BT, y" is unitary UUT=UTU=1). ®T=ytUT with boson theo_rles [p(ER) )/ po=1+ (oo+>_<0)/yF= 1+D/
U™ a supersymmetric matrixa™ and 8" are the fermionic (—yg)>1. This large mass enhancement is related to the flat

eigenvectors whose eigenvalues, determined fronfi(aet Part of the @ band associated with the formation of the
—E)—o(b—E) " 1p]=0, are Abrikosov-Suhl resonance pinned at the Fermi level. While

this feature was already present in the purely fermionic de-
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FIG. 1. Sketch of energy versus wave numhkdor the three o0 o0 oot oo o0 o

bandsa, B, andy resulting of the diagonalization of supersymmet-
ric Ho. FIG. 3. Frequency dependence of the optical conductiv(ty)
atT=0 for D=0.8 andT=0.001.

scription®# it is to be noted that the formation of a disper-

sionless bosonic band within the hybridization gap is an eng| M is an effective Hamiltonian derived from the periodic

tirely new result of the theory. . ~_ Anderson model, has been reached before by several other
The relative weight of boson and fermion statistics in theaythor3® We do think that it is a good sign to recover

spin representation is related x: ”b/“fz— Xolop- Itis then  previously established results if they are correct.

interesting to follow the) dependence of; as determined by | et us now consider the response functions to some ex-

the closure Eq(8). The result is reported in Fig. 2. This ternal fields namely the dynamical spin susceptibility

bell—shaped_ curve can .be mtt_arprete_d in the. light of thg eX533b(q ) and the frequency-dependent optical conductivity

haustion principle mentioned in the introduction. In the limit () (a,b=x,y,2). For that purpose, we introduce the

Fi 1}?;319 )‘}’ istgfeorggrngfothéet?;?\zlﬁrgtrr?-chr?(leé;ﬁgnDeixpectsMatSUbara correlation functions associated with the operator
Po ' P ?ﬁa(qyﬂi x**(9,iw,)=[§drexg(T,0%(q,7)0°(—q,0)).

(0]

a complete Kondo screening without any residual unscreen
spin degrzees of freedom. It is then natural to derive a zer
value ofxg and hence, ofi,. The opposite limit at small X . ;
corresponods to the free cabse of unf(?upled impurity spins angentation + mtraoduced |Tn ﬂ;e paper  by:S%(a)
conduction electrons. It also leadsx§=0. The finite value = Zkoo' fkra,07g0 fior T Bk g,0 76 Dk or - AS usual, the
of x2 between these two limits with a maximum reflects thedynamical spin susceptibility is then derived from the spin-
incomplete Kondo screening effect in the Kondo lattice, theSPin correlation function by the analytical continuatian,
unscreened spin degrees of freedom being described by @+i0". In the same way, the operator related to the
bosons. current-current correlation function is taecomponent of the
Largely discussed in the litteratdrés the question con- ¢ current. In the case of a cubic latticed3(q)
cerning the Fermi-surface sum rule: do the localized spins of ZEK,U,U'SinkaCLq,UCk,a- The frequency-dependent optical
the Kondo lattice contribute to the counting of states withinconductivity is then obtained from the current-current corre-
the Fermi surface or do they not? Depending on the answefation function by the analytical continuation following:
one expects large or small Fermi surfaces. The supersymmegab( ) =[ y2b(q,w+i0") — x22(q,i0 ") Ji .
ric theory leads to a firm conclusion in favor pf _the former. By expanding the previous expressions in the basis of the
One can c_heck that the number Qf states within the ',:erméigenstates &'BTy") of Hy, we have computed the fre-
surface is just equal tog+ny+ n, i.e., n.+1. The Fermi- quency dependence of**(Q,w) at the antiferromagnetic
surface volume includes a contribution of one state per lOWave vectorQ and ¢?%(w) at zero temperature. The two

calized spin in addition to that of conduction electrdriis . .

. : response functions show very different frequency depen-
conclusion that appears reasonable if one recalls that th& : : .

ence. The frequency scale at which the dynamical spin sus-

ceptibility takes noticeable values is much smaller than for
the optical conductivity. This can be understood in the fol-
005 | ] lowing way. The bosonig band is called to play a role only
when spin is concerned namely for the dynamical spin sus-
ceptibility. That feature comes from the fact that the spin is
Xy’ oos| 1 related to both fermionic and bosonic operators whiledhe
current is simply expressed within fermionic operators.
Therefore, one can show that the dynamical spin susceptibil-

he operator related to the spin-spin correlation function is
he a component of the spin expressed in the mixed repre-

0.04 -

0.02 -

001 | ity involves transitions between all three bands3, and y.
ol The main contribution for®®(Q,w) is due to the particle-
00 ter 20 88 J‘;}") 50 80 70 80 hole pair excitations from the fermionie to the bosonicy

band. Oppositely, the optical conductivity is associated with
FIG. 2. J/D dependence of the coupling=(#57*) fixing the  transitions between fermionic bands only. As can be seen in

relative weight of fermion and boson statistics. The unit on theFig. 3, a gap appears in the frequency dependence o)
vertical axis isD?. equal to the direct gap between theand 8 bands. The latter
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result agrees with the predictions of the dynamical meanFermi-liquid excitations and residual spin degrees of free-
field theory in the limit of infinite dimension. The whole ~ dom in heavy-Fermion systems. The work opens the way for
discussion clarifies the physical content of the novel bosoniéurther investigations as the systematic study of the effects of
mode brought by the supersymmetric approach. That mode fictuations in the pure Kondo lattice model or the incorpo-
related to the spin excitations. It introduces new features ifation of additional RKKY interactions in an extended
the dynamical spin susceptibility by comparison to the stanKondo lattice model.
dard slave-boson theories while it does not affect the optical \we would like to thank P. Coleman, F. Delduc, A.
conductivity. Georges, P.A. Lee, M.J. Rozenberg, A. Yashenkin, and T.
In summary, we have shown that the supersymmetriZiman for very helpful discussions. M.L. is a member of the
method proves to be a powerful tool to account for bothCentre National de la Recherche ScientifiG&RS.
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