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Mesoscopic superconducting disc with short-range columnar defects
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Short-range columnar defects essentially influence the magnetic properties of a mesoscopic superconducting
disc. They help the penetration of vortices into the sample, thereby decreasing the sample magnetization and
reducing its upper critical field. Even the presence of weak defects split a giant vortetusizdly appearing
in a clean disc in the vicinity of the transition to a normal stdtéo a number of vortices with smaller
topological charges. In a disc with a sufficient number of strong enough defects, vortices are always placed
onto defects. The presence of defects leads to the appearance of additional magnetization jumps related to the
redistribution of vortices which are already present on the defects and not to the penetration of new vortices.
[S0163-182699)03318-4

I. INTRODUCTION nar defects, which can be produced by heavy-ion
irradiation? essentially influences the magnetic properties
Advances in microtechnology have allowed the fabrica-of the sample. In bulk superconductors these defects lead to
tion of Hall probes of micron size. They were successfullyimportant change of the reversible magnetizafforEven
applied for time- and space-resolved detection of individuasmall concentration of defects modifies the magnetization
vortices in superconductots? Recently Geimet al® devel-  curve of a conventional superconductor nigs leading to a
oped Hall probe techniques by employing submicron ballissequence of reentering transitions related to the two possible
tic probes of this type for studying individual submicron types of the local symmetry near each deféct.
samples. The use of Hall probes in the regime of ballistic Columnar defects should also essentially change the mag-
electron transport and samples of size smaller than the probitic properties of mesoscopic superconductors. Such defects
size allowed them to make a link between the detected signd@re known to be insulating inhomogeneities. Generally they
and the sample magnetization. The experiments showed the@n be described as local inclusions with lower critical tem-
the sample undergoes a sequence of phase transitions of therature. In the case when the number of defects is of the
first kind, which manifest themselves by mesoscopic jump®rder of the number of vortices one can expect that they will
of the magnetization cunf&eThese jumps are due to penetra- €ssentially suppress the magnetic response of the sample and
tions of additional vortices inside the superconductor as théeduce the upper critical field 5. If the number of defects
applied magnetic field increas€Bue to the small size of the is larger than the number of vortices and the defects are
sample, each vortex carries a magnetic flux smaller than &trong enough it seems plausible that all vortices could be
single superconducting flux quantuin,.) pinned by defects. As the applied field changes the vortices
The results obtained in Ref. 6 stimulated a series of thecan change their position on the defects. These rearrange-
oretical works' ! Deo et al.”®1° numerically solved the ments should lead to increasing of the number of mesoscopic
three-dimensional3D) nonlinear Ginzburg-Landau equa- jumps of the magnetization curve as compared with that of a
tions together with the Maxwell equations. They emphasize¢lean sample. In the present paper we show that all these
role of finite sample thickness and showed tBal transi- phenomena really take place in small enough superconduct-
tion in mesoscopic disc could be first or second order. Theyng discs.
also analyzed the conditions of multivortex states or a giant The content of the paper is as follows. In the Sec. Il we
vortex state formation, constructed a vortex phase diagrarformulate the problem. Section Il has an auxiliary
and explained the experimental resiiRalaciod considered ~character—here we reproduce some numerical results which
the same problem within a variational approach, obtained thghould be used later on. In Sec. IV we describe the varia-
magnetization jumps related to the penetration of new vortitional approach for the thermodynamic potential. Properties
ces into the sample and showed that below the upper criticdlf the clean disc are discussed in Sec. V. The main results
field for an infinite sampléd ., the vortices occupy spatially concerning the disc with defects are presented in Sec. VI and
separated positiona vortex glass structurewhile above summarized in Sec. VII.
this field they always form a giant vortex located at the disc For convenience any length appearing below is measured
center. The choice of the Ginzburg-Landau paramete8  in units of the temperature-dependent coherence length
resulted in a good agreement with experimental re§uks: ~ £(T). In these units the penetration length coincides with the
cently Akkermans and Malli® considered a finite sample at Ginzburg-Landau parametar
the dual point with Ginzburg-Landau parameter 1/2 and

obtained the magnetization curve which also came to the II. THE MODEL
qualitative agreement with the numerical results of Ref. 7
and the experimental curfe. Consider a type Il superconducting disc with thickndss

The introduction of strong pinning centers such as columand radiusr, containing columnar defects of side The
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sample is subject to an applied magnetic field, which is parfields h=0.51° In our case it is adequate when the strength
allel both to the defects and to the disc axis. In what followsof defectséa(r) is much smaller than the distance between
we use the dimensionless variables measuring magnetic fiethen=0 andn=1 eigenvalues. Then, to describe states with
and vector potential in units oH,,=®y/27¢%(T) and  afixed numbeN, of vortices the maximal orbital number or
Oy/27¢(T), respectively @ is the superconducting flux topological charge which enters the trial function should be
quantum. Then the density of the thermodynamic potentialequal toN,, . Finally our trial function can be written as

and the order parameter will be measured in uag3 and

V— ag/ B whereay and g are the standard Ginzburg-Landau
coefficients of the clean disc. In the presence of defects the

coefficienta should be modified and depends on coordinates
whereA,, is given by

Nl)
V= Z_O Crexp—imd)A,, (4)

a(r)=ag[1—3da(r)].

. . .. r2 <b> “Om r2
The last term in parentheses is simply related to the critical A= \/Wexp( — §<b>)¢(Tb>'m+l; §<b> .
temperature changéT.(r) caused by defects )
Sa(r)= T¢(r) 2 In Eqg. (4) the expansion coefficientS,, serve as variation
T.—T' parameters and (a,c;x) in Eq. (5) is the confluent hyper-
. » geometric functiort®
whereT, is the critical temperature of a clean sample. To proceed the problem one should substitute the trial
We assume that the disc is thin and smiaiiro<«. All - fynction (4) into the expressiori2) for the thermodynamic

the dimensions of such a disc are smaller than the penetrantential density and first minimize it with a respect to the
tion depthk. Therefore the problem becomes essentially ZDexpansion coefficient§,, at an average inductiofb) fixed.
one, and, moreover, it is possible neglect the spatial variatiois 5 result one obtains a system of a finite number of non-
pf the magnetic inductiob inside the disc and replace it by |inear equations for the coefficien,,. This system is a
its average valugb) (Ref. 9 (here and below the brackets finjte version of the Ovchinnikov equatiohsHowever in
(--) mean averaging over the sample are%s a result one  he presence of disordered set of defects the solution of these
gets the _followmg expression for the thermodynamic pOte”‘equations is very complicated. The point is that now no se-
tial density: lection rule (successfully used in the homogeneous
1 casé’'*9 can be applied. Thus the problem needs another
G= —|\If|2+—|\I’|4+|D_‘If|2+5a(r)|\lf|2> approach. _ . _ _
2 In what follows we consider a disc which contaifg
+k2((b)—h)2, ?) short-range defects<1 placed at the points,,r,, . .. TNy
The number of defectbly is assumed to be larger than the
The gauge invariant gradiefit_ is given by maximal possible number of vorticé$, . As we could see
(see Sec. V belopwa small enough clean disc can accumulate
D =—i 9 ta vortices only in its center. The defects attract the vortices and
ar due to their short range can pin the latters exactly on the
_ > positions of the defects. Therefore we consider only some
where the symmetric gauge=(b)r 9/2 is adopted. special configurations of vortices such that they occupy only

According to the general approach of the Ginzburg-e hositions of defects and the disc center. This choice of
Landau theory one has to minimize the thermodynamic pog;a| function implies the following procedure. Let us fix a
tential density(2) with respect to the order parametgmwith  jafact configuration{r}, j=0,1 Ng, ro=0, a set of

J L 1 1t L 1

an average inducti.omb) fixed and then to minimize the corresponding topological chargés(j)}, an external mag-
result once more with respect {b). The first step results in - i fieldh, and an average inductigb). Each topological
a nonlinear differential equation with a boundary condition chargen; is non-negative integer and the §g(j)} satisfies
the condition

D W _ =0, )
N
the solution of which is rather difficult even in the absence of Zd (i)=N 6)
defects. Therefore we use the variational procedure choosing <o Pl v

the trial function as a linear combination of the eigenfunc-

tions of the operator@_)? with the boundary conditio(3). ~ Thus our procedure accounts for the existence of multiple
The corresponding eigenfunctions,,, and eigenvalues vortices located on the disc center or on any defect position
o, m depend on the disc radiug. Here m is an orbital as well. The trial function4) has zeros only at pointg ;}
number andn stands for the number of the Landau level With multiplicities p(j). The latter condition completely de-
which this eigenvalue belongs to when the disc radiys fines all coefficient§C)} (m=0,1,... ,N,~1) up to a com-
tends to infinity. In strong enough magnetic field one canmon multiplierCy , which we term as the order parameter
take into account onlp=0 states and therefore the quantumamplitude. Further, we need to minimize the thermodynamic
numbern will be omitted in what follows. For an infinite potential with respect to this amplitude and the average in-
sample such an approximation corresponds to neglection afuction. The result has to be compared with those obtained
higher Landau levels contribution which is justified from the for different total numbers of vortices and different sets of
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FIG. 1. Eigenvaluesr, , for the disc of radius,=2.6 as a function of the applied field

“occupation numbers”{p(j)}. Comparing the obtained Iml—¢o  ((b)—0o

value of the thermodynamic potential with that correspond- z ‘D< 2(b) | +1:§o)
ing to a normal state one finally finds the preferable state of 0

the disc for a fixed value of external magnetic field. Repeat- o—(b) 3(b)—0c

ing this procedure for various values of the magnetic field ‘I’( ,|m|+2i§o>, 9
one could describe magnetic properties of the sample in a
wide range of the fields up to the upper critical figfgs. wherego:<b>r§/2 and the index stands for the number of

The next four sections are devoted to the realization of the Landau level, to which the quantity, ., tends as the disc

“(by(Im[+1) "\ 2(b)

procedure described above and to the presentation of its
sults.

lIl. SPECTRUM OF THE OPERATOR (D_)?

To construct the trial functiod4) one should first obtain
the eigenvalues and eigenfunctions of the operalnr)g.

readius tends to infinity

lim o, m=(b)(2n+|m[—m+1).

rg—®

We solved Eq.(9) numerically tabulating some needed
eigenvaluessy, ,, and the corresponding eigenfunctiofsg,

This is a textbook problem and it has been solved manyor various quantum numbers=0,1, m=1,2,3,4,5 and disc
times but we need the solution for various disc radii andradiusr=2.6. The eigenvalues as functions of an average
various average induction values. The eigenvalue equatioimduction are shown in Fig. 1. These results are completely

reads
1o ¥\ 1(4a i o 22\1,_ v .
rar\Tar) trelge Tt WEmev, @)
v o
A ®

r:ro
The solution of this differential equation can be written as

|m|—m+1
2

W(§>=Ce‘4’2—‘m%m’2¢( Aml+1;¢

~ 2(b)

where {=(b)r2/2. The boundary conditio8) implies the
following eigenvalue equation for the quantitieg r, :

consistent with, e.g., those obtained earlier in Ref. 18. One
can observe that the distance between the zeroth and the first
Landau levels is of the order of unity. So we can indeed
neglect in expansio¥) the contributions of higher “Landau
levels” as long as defects are not extremely strafug(r)

<1.

The results shown in Fig. 1 help us estimate how many
vortices can enter the sample. Indeed, #or 1 the eigen-
value equation(7) coincides with the linearized Ginzburg-
Landau equation. Therefore the maximal average induction
(b), corresponding tar,=1 can be treated as the upper
critical field for a given orbital numbem. The highest of
these fields is the genuine upper critical figlgs and the
corresponding value ah gives the topological charge of the
giant vortex usually appearing in the vicinity of the clean
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disc phase transition poirfsee Refs. 8, 19 and Sec. V be-  The “inhomogeneous term” in Eq2) which is propor-

low). In the case = 2.6 considered here the highest possibletional to a(r) appears due to columnar defects. We have
field at which superconductivity still exists is.3~1.98. already mentioned that defects are supposed to be short-
This corresponds to the intersection point of the cusye range ones. In this case this term can be represented as a sum
and the dashed line= 1. Thus a clean superconducting disc over defects. For the Gaussian form of defects

of this radius at the phase transition point can accumulate

. . N
only four vortices since the curve far=0, m=5 never _a S (r—f;)2
reaches the line=1. r= 2 > exp - 5|2 (14
IV. THE THERMODYNAMIC POTENTIAL the “inhomogeneous” term in Eq(10) in the leading ap-

proximation with respect to our small parametecan be
Substituting the test functio(d) for the order parameter rewritten as

into the expression for the thermodynamic potential density
(2) one obtains 2a
<6a|w|2>——2 ()2 (15)
Mo i=1
Substituting Egs(11), (12), and(15) into Eq.(10) we obtain
the final expression for the thermodynamic potential of the

NU

- 2 [Cal* (1= 0wl

b N, . .
( ) S CECECCrin. It (8al¥[2) disc with defects
2 k,m,n=0 N 2
\ 2 201 2
+x2((b)—h)?, (10 2 D= om)in= 5 2 ()]
m= 0 i=
where the angle brackets mean averaging over the sample G=-— N,
area, ImE<A§1>1 Innk=(AmAnAdmin-k), and op

=gom. For the state characterized by a topological charge 2<b>k n%, DDA DPmen-iImnik

N, the coefficientCNU necessarily differs from zero. We

choose it as an amplitude of the order parameter and intro-
duce new expansion coefficierids,, and new order param-

+ k2((b)—h)2. (16)

We solve the systerfil3) for each combination of vorti-

etery ces on the defects in order to find the set of expansion coef-
C,=Cy D ficients{D,} as a function of the average inducti¢in). The
set of coefficients is then plugged into expressib) for the
Dy, =1, (1)  thermodynamic potentiab at a fixed applied fieldh. Now
V=Cy i we can find the average magnetic induct{ém at which the

thermodynamic potentiall6) has a minimal value at fixed
Rewriting the thermodynamic potentidl0) in terms of these  applied field and configuration of vortices. After that we
new variables and varying it with respect to the amplitudemust repeat this procedure for different configurations and
Cyn, We obtain the following expression for its extremal different values of the applied field. As a result, we obtain a
value: number of data sets for the thermodynamic potential as a
function of the applied field for different configuration of
vortices. Then for each value of an applied field we should
2 (I=omln—(5alyl?) choose the preferable vortex configuration which minimizes
B (12) the thermodynamic potential. This enables us to obtain the

NU

|CNU|2:

N, disc magnetization as a function of the applied magnetic
<b> 2 DED:DkDm+nfk\]m,n,k field.
k,m,n=0

The expansion coefficients of the order parametby V. CLEAN DISC

(11) are completely defined by the position of vortices onthe We start from the case of a clean disc with radigs
defects. Let us choose some configuration of vortiegs In =2.6 andx = 3. Although this value of limits the condition
this set there are points occupied by a single vofte§§)  «>r,, the chosen region of applied fields enables us to ne-
=1] and points corresponding to multiple vortices with to- glect the spatial variation of the magnetic inductfonThe
pological chargep(j)>1. Then the set of coefficien{,}  maximal number of vortices in such a disc equals fage
—{ ~!Cy} can be calculated from the following system of Sec. II)). Due to the sample geometry and small maximal
, linear equations: number of vortices they can form only a number of symmet-
ric configurations when some vortices occupy the disc center
AL p(m and the others are placed away from the center in such a way
E Dmexp(—imdj) At (ry) =exp(—iN, 9)) AN ""(rj),  that they form a regular polygon. All these configurations are
(13) presented in Fig. 2. In casés),(h) and(d) and(g) the topo-
logical charge of the multiple vortex at the origin is equal to
where the notatiori("(x) is used for thenth derivative. 2 and 3, 4 respectively. In casds),(e),(f),(h),@i),(j) the

N,—1

v
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FIG. 2. Possible configurations of vortices inside clean disc of ragja.6.

shifted vortices are placed at a distagctom the origin. merical calculation showed that because of the disc’s small
For a given vortex configuration the expansion coeffi-size only configurations in which=0 [Figs. 2a), 2(b), 2(d),
cients{D,} can be calculated from the system of linear2(g)] gain the energy. So within the calculation accuracy
equations(13). For each possible vortex configuration we §p=0.26 we have only a multiple vortex at the disc center
substitute these coefficients into the expression for the thewith a possible topological chargg0)=1,2,3,4.
modynamic potential of the clean disc The dimensionless magnetization=h—(b) of the clean
disc is presented in Fig. 3. Penetration of an additional vor-

Ny ) 2 tex inside the sample is manifested by magnetization jump.
Y Dl (1=l Each branch of the curve corresponds to the one-, two-,
G=— m=0 +k2((b)—h)2 three-, and four-vortex states. This result is similar to that
N, obtained by Palacidsand Deoet al.’ for discs with larger
2(b) > DmDr DDt n—kdmonk radii and it will be used in the next section devoted to the
k.m.n=0 magnetic properties of the disc with defects.

and minimize it with respect to the average inductid).

We repeat this procedure for all configurations and for vari- V1. DISC WITH DEFECTS

ous distances of vortices from the disc center inside each

configuration. Thus the problem has three variational param- In the case of disc with defects, one should take into
eters: the type of vortex configuratidRig. 2), the distance ~ account the defect configuration and minimize the thermo-
of vortices from the disc center, and the average induction

(b). We changed the distangeby step ofp=0.1ry. Nu- 26
0.025 T T 1.9
1.3
0.020 -
06
0.015
¥ oo}
13
0.010 1 0.6
1.3
0.005 -
20
0.000 L L
05 1.0 1.5 20 26 :
h 26 20 13 06 00 06 13 19 26

X
FIG. 3. Magnetization curve of a clean superconducting disc of
radiusr,=2.6. FIG. 4. Defects positions in the disc.
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TABLE |. Coordinates of defects. TABLE Il. Configurations of vortices.
X y r 1 2 3 4 5 6
1 —0.253 —1.755 1.773 0.04 100000 200000 300000 40000
2 0.830 0.856 1.192 0.08 100000 200000 300000 310000
3 —1.205 —1.248 1.734 0.12 100000 200000 300000 211000
4 —0.755 0.948 1212 0.16 100000 200000 101100 300000 101200 211000
5 1.083 1.405 1.774 0.3 000101 000110 000111 001110 000130 001210

dynamic potential16). We present below the results for a  The coordinates of defects are collected in Tablg\bte
single configuration of the defects obtained with the help ofthat all distances are measured in the temperature dependent
a random number generator. We hope that it is rather typicatoherence length unis.

(see Fig. 4. In any case the results obtained below for this We analyze the thermodynamic properties of the disc for
configuration enable us to demonstrate all the new featuregarious values of defect strength,. This constant can be
characterizing the magnetic properties of a sample with deeasily varied experimentally by changing the sample tem-
fects and to confirm all the expectations formulated above iperaturd'see Eq(1)]. To present the results more clearly we

the Introduction. collect all configurations of vortices which will be realized
0.025 : : 0.025
m m
0.020 t { oo20f
. 1
0.015 (a) E 0.015 (b)
2
0.010 | { ootof 2
0.005 | 8 1 o005} 3
4 4
0.000 . . 0.000 . .
0.5 1.0 15 20 0.5 10 15 2.0
h h
0.025 : : 0.025
m m
0.020 | { o020
! ()
0.015 | {1 oots5f 1 (d)
0.010 | {1 ootof
2
2
0.005 | {1 o005t
3
4
0.000 . . 0.000 . .
0.5 1.0 i 15 20 0.5 10 N 15 2.0

FIG. 5. Magnetization curve of the superconducting disc of radjus2.6 and«=3 in the presence of defects with effective coupling
constantsy; =0.04 (a), «;=0.08(b), @;=0.12(c), anda;=0.16 (d).
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FIG. 6. Square modulus of the order parameterdfpr-0.08 at FIG. 8. Square modulus of the order parameterfg;=0.16 at
an applied fielch=1.753. The vortex configuration {810000. an applied fielch=1.4. Thevortex configuration i§101104.
for values considered for the defect strength in Table Il.  same number of mesoscopic jumps as in the previous case.

The left column of the table contains the values of theThis means that all the jumps are still due to vortex penetra-
coupling constants. The upper line enumerates the vortetions. However, a new interesting feature appears near the
configurations ordered with accordance to their appearangghase transition point. The four-multiple vortex at the disc
with the growth of a magnetic field. The same numbers enueenter is split. In the case;=0.08 [Fig. 5b4)] three-
merate different regions of the magnetization curves in Figsmultiple vortex remains at the center and one more vortex
5 and 9. Note that the last configuration in each line appearsccupies the first defe¢tonfiguration{310000Q). The corre-
just before the phase transition to the normal state at theponding distribution of the absolute value square of order
upper critical fieldh.3. Then, each configuration is described parameter is presented in Fig. 6.
by an ordered sequence of six numbers. Tthenumber is A more complicated splitting is observed in the case
equal to the topological charge located at the pojnt. In =0.12[Fig. 5c4)]. Two vortices remain at the disc center,
other words the first number is the topological charge at th&ne occupies the first defect and another one occupies the
disc center, the second number is the topological charge aecond defectconfiguration{211000). The square modulus
the first defect, and so on. For example, configuratiorof the order parameter is plotted in Fig. 7.

{211000 corresponds to double vortex at the disc center and In the two latter cases the defect strength was relatively
two single vortices placed at the first and the second defectsmall. Therefore the defects could partially destroy the giant

We start from small values of the defect strength. Thevortex state with maximal multiplicity which precedes the
corresponding magnetization curves are shown in Fig. 5. transition to the normal state. Further increasing of the cou-

The first part(a) of this figure describes the magnetization pling constant leads to appearance of additional mesoscopic
curve for a sample withe;=0.04. Because of the small jumps related to the rearrangement of the vortices on the
value of the coupling constant, this part is qualitatively defects as the applied magnetic field changes. Consider the
equivalent to that for a clean disc. Each branch of the magease «; =0.16 [Fig. 5d)]. At small values of the applied
netization curve corresponds to a one-, two-, three-, and fouffield one gets one- and two-vortex states at the disc center.
vortex states. These branches are divided by jumps of thHowever, when the third vortex is allowed to penetidiig.
magnetization which are caused by penetration of an addi(d3)] the multiple vortex is destroyed and the vortices oc-
tional vortex inside the sample. However, even in this case
some new features caused by defects are manifested. Wi 00
particularly refer to the suppression of magnetization, pen- 1 2
etration of new vortices at lower fields and decreasing of the
upper critical field in comparison with the results for the
clean samplésee Fig. 3. Magnetization of the samples with
a1=0.08[Fig. 5b)] and witha;=0.12[Fig. 5c)] have the 0.0

0.03 AR E
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o
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O X
R
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FIG. 9. Magnetization curve of the superconducting disc of ra-
FIG. 7. Square modulus of the order parameterdigr=0.12 at  diusry=2.6 andx=3 in the presence of defects with an effective
an applied fielch=1.7. The vortex configuration {211000. coupling constantr,;=0.3.
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FIG. 10. Square modulus of the order parameterdfpr0.3 at
an applied fielch=0.71. The vortex configuration €00103. FIG. 12. Square modulus of the order parameterdfpr0.3 at
an applied fielch=1.55. The vortex configuration ¥901210.
cupy the disc center, the second defect, and the third defect
(configuration{10110Q). A plot of the square modulus of multiple vortices with lower multiplicity. The preferable ar-
the order parameter for this vortex configuration can bdangement of the vortices corresponds to the maximal reduc-
found in Fig. 8(to present the plot more clearly the orienta- tion of the square order parameter modulus.
tion of the axes is changed with respect to the two previous At strong coupling constant one expects to get states
plots). where all vortices are placed onto defects for all values of the
With further increasing of the applied field the systemapplied field. Consider the results of studying the case
turns again into the three-multiple vortex state at the disc=0.3. The magnetization curve of such disc is shown in Fig.
center[Fig. 5d4)]. So in the same sample two different vor- 9.
tex configurations with the same total topological charge are Penetration of vortices inside the disc with such strong
possible. When the fourth vortex penetrates the disc théefects occurs at values of the applied field smaller than that
three-multiple vortex state splits agalrig. 5d5)] into  Of the previously considered discs with relatively weak de-
double vortex at the third defect, one vortex at the disc centefiects. Because of that, already at a fiélet 0.6 the disc ac-
and another one at the second defgcbnfiguration cumulates two vorticefFigs. 9a), 9(b1)]. Their configura-
{101200). The appearance of the second vortex on the thirdion is {00010% (see Fig. 10
defect is a result of a very restricted space of the trial func- As the applied field increases this configuration is
tions. Indeed, according to E¢L6) any defect which is al- changed by another 0{80011Q with the same total topo-
ready occupied by a vortex is put out of the game and onéogical charge. Three vortices appearing at higher fields al-
cannot gain energy adding one more vortex to the same d&ays occupy three different defects. The corresponding con-
fect. This means that in a wider variational space the configurations are{00011% and {00111Q. Two configurations
figuration{101200 would be replaced by another one which with total topological charge four are realized. Both contain
should be preferable. At the same time it will necessary lea@ Multiple vortex on one of the defects. The first configura-
to the corresponding magnetization jump. tion appearing in relatively low field i§000130. Here one
With increasing of the applied field we have a new jumphas a three-multiple vortex on the fourth defect. The second
of the magnetization curve, which is caused by rearrangeconfiguration{00121Q preceding the transition to the normal
ment of the vortices into the configurati¢21100Q identical
to that of the four vortex state in the caag=0.12. Thus

2.0 (J) T T T
one can see that the stronger defects are the greater is th
tendency of vortices to occupy defects. The destruction of
the giant vortex at the disc center begins near the upper criti- 19t 8
cal field. Increasing the defect strength destroys the centerec ©
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FIG. 11. Square modulus of the order parameterdfpe 0.3 at FIG. 13. The upper critical field as a function of the defect
an applied fielch=1.31. The vortex configuration i©00130. strength.
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state ah.; contains a double vortex at the third defect. Plotsvarious strengths of defects in a wide region of the applied
of the square modulus of the order parameter for these casesagnetic field. The results show that the defects help the
are shown in Figs. 11 and 12. Thus in the case of a strongenetration of vortices into the sample. They also reduce
defecta;= 0.3 considered here the number of magnetizatiorboth the value of the magnetization and the upper critical
jumps within the same field region is twice the number offield. Even the presence of weak defects can split the giant
possible values of the total topological charge. We do bevortex state at the disc centersually existing in a clean disc
lieve that in a disc of the same radius containing more deef small radiug into vortices with smaller topological
fects this number will increase. charges. This splitting occurs in the vicinity of the upper

We already mentioned that the presence of attractive desritical field. Strong enough defects always pin all vortices,
fects reduces the upper critical fielg; at which the ther-  splitting multiple vortex states at the disc center in all field
modynamic potential of the superconductd®) becomes region. This leads to the appearance of additional mesos-
equal to zerdthe thermodynamic potential of normal metal copic jumps in the magnetization curve related not to the
Figures 5 and 9 show that the larger the defect streagtis =~ penetration of new vortices into the sample but to redistribu-
the lower is the transition field. The dependence on the uppdion of vortices within the set of defects. The number of
critical field of the defect strength is shown in Fig. 13. these jumps increases with the number of defects.
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