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Mesoscopic superconducting disc with short-range columnar defects

Gregory M. Braverman, Sergey A. Gredeskul, and Yshai Avishai
Ben-Gurion University of the Negev, Beer-Sheva, Israel

~Received 7 January 1999!

Short-range columnar defects essentially influence the magnetic properties of a mesoscopic superconducting
disc. They help the penetration of vortices into the sample, thereby decreasing the sample magnetization and
reducing its upper critical field. Even the presence of weak defects split a giant vortex state„usually appearing
in a clean disc in the vicinity of the transition to a normal state! into a number of vortices with smaller
topological charges. In a disc with a sufficient number of strong enough defects, vortices are always placed
onto defects. The presence of defects leads to the appearance of additional magnetization jumps related to the
redistribution of vortices which are already present on the defects and not to the penetration of new vortices.
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I. INTRODUCTION

Advances in microtechnology have allowed the fabric
tion of Hall probes of micron size. They were successfu
applied for time- and space-resolved detection of individ
vortices in superconductors.1–4 Recently Geimet al.5 devel-
oped Hall probe techniques by employing submicron bal
tic probes of this type for studying individual submicro
samples. The use of Hall probes in the regime of ballis
electron transport and samples of size smaller than the p
size allowed them to make a link between the detected si
and the sample magnetization. The experiments showed
the sample undergoes a sequence of phase transitions o
first kind, which manifest themselves by mesoscopic jum
of the magnetization curve.6 These jumps are due to penetr
tions of additional vortices inside the superconductor as
applied magnetic field increases.~Due to the small size of the
sample, each vortex carries a magnetic flux smaller tha
single superconducting flux quantumF0 .)

The results obtained in Ref. 6 stimulated a series of t
oretical works.7–11 Deo et al.7,8,10 numerically solved the
three-dimensional~3D! nonlinear Ginzburg-Landau equa
tions together with the Maxwell equations. They emphasi
role of finite sample thickness and showed thatS-N transi-
tion in mesoscopic disc could be first or second order. T
also analyzed the conditions of multivortex states or a g
vortex state formation, constructed a vortex phase diag
and explained the experimental results.6 Palacios9 considered
the same problem within a variational approach, obtained
magnetization jumps related to the penetration of new vo
ces into the sample and showed that below the upper cri
field for an infinite sampleHc2 the vortices occupy spatially
separated positions~a vortex glass structure! while above
this field they always form a giant vortex located at the d
center. The choice of the Ginzburg-Landau parameterk53
resulted in a good agreement with experimental results.6 Re-
cently Akkermans and Mallik11 considered a finite sample a
the dual point with Ginzburg-Landau parameterk51/& and
obtained the magnetization curve which also came to
qualitative agreement with the numerical results of Ref
and the experimental curve.6

The introduction of strong pinning centers such as colu
PRB 590163-1829/99/59~18!/12039~9!/$15.00
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nar defects, which can be produced by heavy-
irradiation,12 essentially influences the magnetic propert
of the sample. In bulk superconductors these defects lea
important change of the reversible magnetization.13 Even
small concentration of defects modifies the magnetizat
curve of a conventional superconductor nearHc2 leading to a
sequence of reentering transitions related to the two poss
types of the local symmetry near each defect.14

Columnar defects should also essentially change the m
netic properties of mesoscopic superconductors. Such de
are known to be insulating inhomogeneities. Generally th
can be described as local inclusions with lower critical te
perature. In the case when the number of defects is of
order of the number of vortices one can expect that they
essentially suppress the magnetic response of the sample
reduce the upper critical fieldHc3 . If the number of defects
is larger than the number of vortices and the defects
strong enough it seems plausible that all vortices could
pinned by defects. As the applied field changes the vorti
can change their position on the defects. These rearra
ments should lead to increasing of the number of mesosc
jumps of the magnetization curve as compared with that o
clean sample. In the present paper we show that all th
phenomena really take place in small enough supercond
ing discs.

The content of the paper is as follows. In the Sec. II
formulate the problem. Section III has an auxilia
character—here we reproduce some numerical results w
should be used later on. In Sec. IV we describe the va
tional approach for the thermodynamic potential. Proper
of the clean disc are discussed in Sec. V. The main res
concerning the disc with defects are presented in Sec. VI
summarized in Sec. VII.

For convenience any length appearing below is measu
in units of the temperature-dependent coherence len
j(T). In these units the penetration length coincides with
Ginzburg-Landau parameterk.

II. THE MODEL

Consider a type II superconducting disc with thicknessd
and radiusr 0 containing columnar defects of sizel . The
12 039 ©1999 The American Physical Society
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12 040 PRB 59BRAVERMAN, GREDESKUL, AND AVISHAI
sample is subject to an applied magnetic field, which is p
allel both to the defects and to the disc axis. In what follo
we use the dimensionless variables measuring magnetic
and vector potential in units ofHc25F0/2pj2(T) and
F0/2pj(T), respectively (F0 is the superconducting flux
quantum!. Then the density of the thermodynamic potent
and the order parameter will be measured in unitsa0

2/b and
A2a0 /b wherea0 andb are the standard Ginzburg-Landa
coefficients of the clean disc. In the presence of defects
coefficienta should be modified and depends on coordina

a~r !5a0@12da~r !#.

The last term in parentheses is simply related to the crit
temperature changedTc(r ) caused by defects

da~r !5
dTc~r !

Tc2T
, ~1!

whereTc is the critical temperature of a clean sample.
We assume that the disc is thin and smalld!r 0,k. All

the dimensions of such a disc are smaller than the pen
tion depthk. Therefore the problem becomes essentially
one, and, moreover, it is possible neglect the spatial varia
of the magnetic inductionb inside the disc and replace it b
its average valuêb& ~Ref. 9! ~here and below the bracke
^¯& mean averaging over the sample area!. As a result one
gets the following expression for the thermodynamic pot
tial density:

G5K 2uCu21
1

2
uCu41uD2Cu21da~r !uCu2L

1k2~^b&2h!2. ~2!

The gauge invariant gradientD2 is given by

D2[2 i
]

]r
1a,

where the symmetric gaugea5^b&rqW /2 is adopted.
According to the general approach of the Ginzbu

Landau theory one has to minimize the thermodynamic
tential density~2! with respect to the order parameterC with
an average induction̂b& fixed and then to minimize the
result once more with respect to^b&. The first step results in
a nonlinear differential equation with a boundary conditio

D2Cur 5r 0
50, ~3!

the solution of which is rather difficult even in the absence
defects. Therefore we use the variational procedure choo
the trial function as a linear combination of the eigenfun
tions of the operator (D2)2 with the boundary condition~3!.
The corresponding eigenfunctionsDn,m and eigenvalues
sn,m depend on the disc radiusr 0 . Here m is an orbital
number andn stands for the number of the Landau lev
which this eigenvalue belongs to when the disc radiusr 0
tends to infinity. In strong enough magnetic field one c
take into account onlyn50 states and therefore the quantu
numbern will be omitted in what follows. For an infinite
sample such an approximation corresponds to neglectio
higher Landau levels contribution which is justified from t
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fields h50.5.15 In our case it is adequate when the streng
of defectsda~r ! is much smaller than the distance betwe
then50 andn51 eigenvalues. Then, to describe states w
a fixed numberNv of vortices the maximal orbital number o
topological charge which enters the trial function should
equal toNv . Finally our trial function can be written as

C5 (
m50

Nv

Cm exp~2 imq!Dm , ~4!

whereDm is given by

Dm5A^b& expS 2
r 2

2
^b& DFS ^b&2sm

2^b&
,m11;

r 2

2
^b& D .

~5!

In Eq. ~4! the expansion coefficientsCm serve as variation
parameters andF(a,c;x) in Eq. ~5! is the confluent hyper-
geometric function.16

To proceed the problem one should substitute the t
function ~4! into the expression~2! for the thermodynamic
potential density and first minimize it with a respect to t
expansion coefficientsCm at an average induction̂b& fixed.
As a result one obtains a system of a finite number of n
linear equations for the coefficientsCm . This system is a
finite version of the Ovchinnikov equations.17 However in
the presence of disordered set of defects the solution of th
equations is very complicated. The point is that now no
lection rule ~successfully used in the homogeneo
case17,14,9! can be applied. Thus the problem needs anot
approach.

In what follows we consider a disc which containsNd
short-range defectsl !1 placed at the pointsr1 ,r2 , . . . ,rNd

.

The number of defectsNd is assumed to be larger than th
maximal possible number of vorticesNv . As we could see
~see Sec. V below! a small enough clean disc can accumula
vortices only in its center. The defects attract the vortices
due to their short range can pin the latters exactly on
positions of the defects. Therefore we consider only so
special configurations of vortices such that they occupy o
the positions of defects and the disc center. This choice
trial function implies the following procedure. Let us fix
defect configuration$r j%, j 50,1,. . . ,Nd , r050, a set of
corresponding topological charges$p( j )%, an external mag-
netic fieldh, and an average induction^b&. Each topological
chargenj is non-negative integer and the set$p( j )% satisfies
the condition

(
j 50

Nd

p~ j !5Nv . ~6!

Thus our procedure accounts for the existence of mult
vortices located on the disc center or on any defect posi
as well. The trial function~4! has zeros only at points$r j%
with multiplicities p( j ). The latter condition completely de
fines all coefficients$Cm% (m50,1,. . . ,Nv21) up to a com-
mon multiplier CNv

, which we term as the order paramet
amplitude. Further, we need to minimize the thermodynam
potential with respect to this amplitude and the average
duction. The result has to be compared with those obtai
for different total numbers of vortices and different sets
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FIG. 1. Eigenvaluessn,m for the disc of radiusr 052.6 as a function of the applied fieldh.
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‘‘occupation numbers’’ $p( j )%. Comparing the obtained
value of the thermodynamic potential with that correspo
ing to a normal state one finally finds the preferable state
the disc for a fixed value of external magnetic field. Repe
ing this procedure for various values of the magnetic fi
one could describe magnetic properties of the sample
wide range of the fields up to the upper critical fieldHc3 .
The next four sections are devoted to the realization of
procedure described above and to the presentation of it
sults.

III. SPECTRUM OF THE OPERATOR „D2…
2

To construct the trial function~4! one should first obtain
the eigenvalues and eigenfunctions of the operator (D2)2.
This is a textbook problem and it has been solved m
times but we need the solution for various disc radii a
various average induction values. The eigenvalue equa
reads

1

r

]

]r S r
]C

]r D1
1

r 2 S ]

]q
1

i

2
^b&r 2D 2

C52sC, ~7!

]C

]r U
r 5r 0

50. ~8!

The solution of this differential equation can be written a

C~z!5Ce2z/22 imqz umu/2FS umu2m11

2
2

s

2^b&
,umu11;z D ,

where z5^b&r 2/2. The boundary condition~8! implies the
following eigenvalue equation for the quantitiessn,m :
-
of
t-
d
a

e
re-
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on

umu2z0

z0
FS ^b&2s

2^b&
,umu11;z0D

5
s2^b&

^b&~ umu11!
FS 3^b&2s

2^b&
,umu12;z0D , ~9!

wherez05^b&r 0
2/2 and the indexn stands for the number o

a Landau level, to which the quantitysn,m tends as the disc
radius tends to infinity

lim
r 0→`

sn,m5^b&~2n1umu2m11!.

We solved Eq.~9! numerically tabulating some neede
eigenvaluessn,m and the corresponding eigenfunctionsDm
for various quantum numbersn50,1, m51,2,3,4,5 and disc
radius r 52.6. The eigenvalues as functions of an avera
induction are shown in Fig. 1. These results are comple
consistent with, e.g., those obtained earlier in Ref. 18. O
can observe that the distance between the zeroth and the
Landau levels is of the order of unity. So we can inde
neglect in expansion~4! the contributions of higher ‘‘Landau
levels’’ as long as defects are not extremely strongda(r )
,1.

The results shown in Fig. 1 help us estimate how ma
vortices can enter the sample. Indeed, fors51 the eigen-
value equation~7! coincides with the linearized Ginzburg
Landau equation. Therefore the maximal average induc
^b&m corresponding tosm51 can be treated as the upp
critical field for a given orbital numberm. The highest of
these fields is the genuine upper critical fieldhc3 and the
corresponding value ofm gives the topological charge of th
giant vortex usually appearing in the vicinity of the clea
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12 042 PRB 59BRAVERMAN, GREDESKUL, AND AVISHAI
disc phase transition point~see Refs. 8, 19 and Sec. V b
low!. In the caser 52.6 considered here the highest possi
field at which superconductivity still exists ishc3'1.98.
This corresponds to the intersection point of the curves4
and the dashed lines51. Thus a clean superconducting di
of this radius at the phase transition point can accumu
only four vortices since the curve forn50, m55 never
reaches the lines51.

IV. THE THERMODYNAMIC POTENTIAL

Substituting the test function~4! for the order paramete
into the expression for the thermodynamic potential den
~2! one obtains

G52 (
m50

Nv

uCmu2~12sm!I m

1
^b&
2 (

k,m,n50

Nv

Cm* Cn* CkCm1n2kJm,n,k1^dauCu2&

1k2~^b&2h!2, ~10!

where the angle brackets mean averaging over the sa
area, I m[^Dm

2 &, Jm,n,k[^DmDnDkDm1n2k&, and sm

[s0,m . For the state characterized by a topological cha
Nv the coefficientCNv

necessarily differs from zero. W
choose it as an amplitude of the order parameter and in
duce new expansion coefficientsDm and new order param
eterc

Cm5CNv
Dm ,

DNv
51,

C5CNv
c.

~11!

Rewriting the thermodynamic potential~10! in terms of these
new variables and varying it with respect to the amplitu
CNv

we obtain the following expression for its extrem
value:

uCNv
u25

(
m50

Nv

~12sm!I m2^daucu2&

^b& (
k,m,n50

Nv

Dm* Dn* DkDm1n2kJm,n,k

. ~12!

The expansion coefficients of the order parameter~4!,
~11! are completely defined by the position of vortices on
defects. Let us choose some configuration of vortices$r j%. In
this set there are points occupied by a single vortex@p( j )
51# and points corresponding to multiple vortices with t
pological chargep( j ).1. Then the set of coefficients$Dm%
5$w21Cm% can be calculated from the following system
Nv linear equations:

(
m50

Nv21

Dm exp~2 imq j !Dm
[ p( j )]~r j !5exp~2 iNvq j !DNv

[ p( j )]~r j !,

~13!

where the notationf (n)(x) is used for thenth derivative.
e
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The ‘‘inhomogeneous term’’ in Eq.~2! which is propor-
tional to da~r ! appears due to columnar defects. We ha
already mentioned that defects are supposed to be s
range ones. In this case this term can be represented as a
over defects. For the Gaussian form of defects

da~r !5
a1

l 2 (
j 51

Nd

expS 2
~r2r j !

2

2l 2 D ~14!

the ‘‘inhomogeneous’’ term in Eq.~10! in the leading ap-
proximation with respect to our small parameterl can be
rewritten as

^daucu2&5
2a1

r 0
2 (

j 51

Nd

uc~r j !u2. ~15!

Substituting Eqs.~11!, ~12!, and~15! into Eq.~10! we obtain
the final expression for the thermodynamic potential of
disc with defects

G52

S (
m50

Nv

uDmu2~12sm!I m2
2a1

r 0
2 (

j 51

Nd

uc~r j !u2D 2

2^b& (
k,m,n50

Nv

Dm* Dn* DkDm1n2kJm,n,k

1k2~^b&2h!2. ~16!

We solve the system~13! for each combination of vorti-
ces on the defects in order to find the set of expansion c
ficients$Dm% as a function of the average induction^b&. The
set of coefficients is then plugged into expression~16! for the
thermodynamic potentialG at a fixed applied fieldh. Now
we can find the average magnetic induction^b& at which the
thermodynamic potential~16! has a minimal value at fixed
applied field and configuration of vortices. After that w
must repeat this procedure for different configurations a
different values of the applied field. As a result, we obtain
number of data sets for the thermodynamic potential a
function of the applied field for different configuration o
vortices. Then for each value of an applied field we sho
choose the preferable vortex configuration which minimiz
the thermodynamic potential. This enables us to obtain
disc magnetization as a function of the applied magne
field.

V. CLEAN DISC

We start from the case of a clean disc with radiusr 0
52.6 andk53. Although this value ofk limits the condition
k@r 0 , the chosen region of applied fields enables us to
glect the spatial variation of the magnetic induction.9 The
maximal number of vortices in such a disc equals four~see
Sec. III!. Due to the sample geometry and small maxim
number of vortices they can form only a number of symm
ric configurations when some vortices occupy the disc ce
and the others are placed away from the center in such a
that they form a regular polygon. All these configurations a
presented in Fig. 2. In cases~b!,~h! and~d! and~g! the topo-
logical charge of the multiple vortex at the origin is equal
2 and 3, 4 respectively. In cases~c!,~e!,~f!,~h!,~i!,~j! the
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FIG. 2. Possible configurations of vortices inside clean disc of radiusr 052.6.
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shifted vortices are placed at a distancer from the origin.
For a given vortex configuration the expansion coe

cients $Dm% can be calculated from the system of line
equations~13!. For each possible vortex configuration w
substitute these coefficients into the expression for the t
modynamic potential of the clean disc

G52

S (
m50

Nv

uDmu2~12sm!I mD 2

2^b& (
k,m,n50

Nv

Dm* Dn* DkDm1n2kJm,n,k

1k2~^b&2h!2

and minimize it with respect to the average induction^b&.
We repeat this procedure for all configurations and for va
ous distances of vortices from the disc center inside e
configuration. Thus the problem has three variational par
eters: the type of vortex configuration~Fig. 2!, the distancer
of vortices from the disc center, and the average induc
^b&. We changed the distancer by step ofdr50.1r 0 . Nu-

FIG. 3. Magnetization curve of a clean superconducting disc
radiusr 052.6.
-

r-

i-
h
-

n

merical calculation showed that because of the disc’s sm
size only configurations in whichr50 @Figs. 2~a!, 2~b!, 2~d!,
2~g!# gain the energy. So within the calculation accura
dr50.26 we have only a multiple vortex at the disc cen
with a possible topological chargep(0)51,2,3,4.

The dimensionless magnetizationm5h2^b& of the clean
disc is presented in Fig. 3. Penetration of an additional v
tex inside the sample is manifested by magnetization jum
Each branch of the curve corresponds to the one-, tw
three-, and four-vortex states. This result is similar to t
obtained by Palacios9 and Deoet al.7 for discs with larger
radii and it will be used in the next section devoted to t
magnetic properties of the disc with defects.

VI. DISC WITH DEFECTS

In the case of disc with defects, one should take in
account the defect configuration and minimize the therm

f
FIG. 4. Defects positions in the disc.
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12 044 PRB 59BRAVERMAN, GREDESKUL, AND AVISHAI
dynamic potential~16!. We present below the results for
single configuration of the defects obtained with the help
a random number generator. We hope that it is rather typ
~see Fig. 4!. In any case the results obtained below for th
configuration enable us to demonstrate all the new feat
characterizing the magnetic properties of a sample with
fects and to confirm all the expectations formulated abov
the Introduction.

TABLE I. Coordinates of defects.

x y r

1 20.253 21.755 1.773
2 0.830 0.856 1.192
3 21.205 21.248 1.734
4 20.755 0.948 1.212
5 1.083 1.405 1.774
f
al

es
e-
in

The coordinates of defects are collected in Table I.~Note
that all distances are measured in the temperature depen
coherence length units.!

We analyze the thermodynamic properties of the disc
various values of defect strengtha1 . This constant can be
easily varied experimentally by changing the sample te
perature@see Eq.~1!#. To present the results more clearly w
collect all configurations of vortices which will be realize

TABLE II. Configurations of vortices.

1 2 3 4 5 6

0.04 100000 200000 300000 40000
0.08 100000 200000 300000 310000
0.12 100000 200000 300000 211000
0.16 100000 200000 101100 300000 101200 2110
0.3 000101 000110 000111 001110 000130 0012
g
FIG. 5. Magnetization curve of the superconducting disc of radiusr 052.6 andk53 in the presence of defects with effective couplin
constantsa150.04 ~a!, a150.08 ~b!, a150.12 ~c!, anda150.16 ~d!.
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PRB 59 12 045MESOSCOPIC SUPERCONDUCTING DISC WITH SHORT- . . .
for values considered for the defect strength in Table II.
The left column of the table contains the values of t

coupling constants. The upper line enumerates the vo
configurations ordered with accordance to their appeara
with the growth of a magnetic field. The same numbers e
merate different regions of the magnetization curves in F
5 and 9. Note that the last configuration in each line appe
just before the phase transition to the normal state at
upper critical fieldhc3 . Then, each configuration is describe
by an ordered sequence of six numbers. Thej th number is
equal to the topological charge located at the pointr j 21 . In
other words the first number is the topological charge at
disc center, the second number is the topological charg
the first defect, and so on. For example, configurat
$211000% corresponds to double vortex at the disc center
two single vortices placed at the first and the second defe

We start from small values of the defect strength. T
corresponding magnetization curves are shown in Fig. 5

The first part~a! of this figure describes the magnetizatio
curve for a sample witha150.04. Because of the sma
value of the coupling constant, this part is qualitative
equivalent to that for a clean disc. Each branch of the m
netization curve corresponds to a one-, two-, three-, and f
vortex states. These branches are divided by jumps of
magnetization which are caused by penetration of an a
tional vortex inside the sample. However, even in this c
some new features caused by defects are manifested
particularly refer to the suppression of magnetization, p
etration of new vortices at lower fields and decreasing of
upper critical field in comparison with the results for th
clean sample~see Fig. 3!. Magnetization of the samples wit
a150.08 @Fig. 5~b!# and witha150.12 @Fig. 5~c!# have the

FIG. 6. Square modulus of the order parameter fora150.08 at
an applied fieldh51.753. The vortex configuration is$310000%.

FIG. 7. Square modulus of the order parameter fora150.12 at
an applied fieldh51.7. The vortex configuration is$211000%.
ex
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same number of mesoscopic jumps as in the previous c
This means that all the jumps are still due to vortex pene
tions. However, a new interesting feature appears near
phase transition point. The four-multiple vortex at the d
center is split. In the casea150.08 @Fig. 5~b4!# three-
multiple vortex remains at the center and one more vor
occupies the first defect~configuration$310000%!. The corre-
sponding distribution of the absolute value square of or
parameter is presented in Fig. 6.

A more complicated splitting is observed in the casea1
50.12@Fig. 5~c4!#. Two vortices remain at the disc cente
one occupies the first defect and another one occupies
second defect~configuration$211000%!. The square modulus
of the order parameter is plotted in Fig. 7.

In the two latter cases the defect strength was relativ
small. Therefore the defects could partially destroy the gi
vortex state with maximal multiplicity which precedes th
transition to the normal state. Further increasing of the c
pling constant leads to appearance of additional mesosc
jumps related to the rearrangement of the vortices on
defects as the applied magnetic field changes. Conside
casea150.16 @Fig. 5~d!#. At small values of the applied
field one gets one- and two-vortex states at the disc cen
However, when the third vortex is allowed to penetrate@Fig.
5~d3!# the multiple vortex is destroyed and the vortices o

FIG. 8. Square modulus of the order parameter forae f f50.16 at
an applied fieldh51.4. Thevortex configuration is$101100%.

FIG. 9. Magnetization curve of the superconducting disc of
dius r 052.6 andk53 in the presence of defects with an effectiv
coupling constanta150.3.
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12 046 PRB 59BRAVERMAN, GREDESKUL, AND AVISHAI
cupy the disc center, the second defect, and the third de
~configuration$101100%!. A plot of the square modulus o
the order parameter for this vortex configuration can
found in Fig. 8~to present the plot more clearly the orient
tion of the axes is changed with respect to the two previ
plots!.

With further increasing of the applied field the syste
turns again into the three-multiple vortex state at the d
center@Fig. 5~d4!#. So in the same sample two different vo
tex configurations with the same total topological charge
possible. When the fourth vortex penetrates the disc
three-multiple vortex state splits again@Fig. 5~d5!# into
double vortex at the third defect, one vortex at the disc ce
and another one at the second defect~configuration
$101200%!. The appearance of the second vortex on the th
defect is a result of a very restricted space of the trial fu
tions. Indeed, according to Eq.~16! any defect which is al-
ready occupied by a vortex is put out of the game and
cannot gain energy adding one more vortex to the same
fect. This means that in a wider variational space the c
figuration$101200% would be replaced by another one whic
should be preferable. At the same time it will necessary l
to the corresponding magnetization jump.

With increasing of the applied field we have a new jum
of the magnetization curve, which is caused by rearran
ment of the vortices into the configuration$211000% identical
to that of the four vortex state in the casea150.12. Thus
one can see that the stronger defects are the greater i
tendency of vortices to occupy defects. The destruction
the giant vortex at the disc center begins near the upper c
cal field. Increasing the defect strength destroys the cent

FIG. 10. Square modulus of the order parameter fora150.3 at
an applied fieldh50.71. The vortex configuration is$000101%.

FIG. 11. Square modulus of the order parameter fora150.3 at
an applied fieldh51.31. The vortex configuration is$000130%.
ct
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multiple vortices with lower multiplicity. The preferable ar
rangement of the vortices corresponds to the maximal red
tion of the square order parameter modulus.

At strong coupling constant one expects to get sta
where all vortices are placed onto defects for all values of
applied field. Consider the results of studying the casea1
50.3. The magnetization curve of such disc is shown in F
9.

Penetration of vortices inside the disc with such stro
defects occurs at values of the applied field smaller than
of the previously considered discs with relatively weak d
fects. Because of that, already at a fieldh50.6 the disc ac-
cumulates two vortices@Figs. 9~a!, 9~b1!#. Their configura-
tion is $000101% ~see Fig. 10!.

As the applied field increases this configuration
changed by another one$000110% with the same total topo-
logical charge. Three vortices appearing at higher fields
ways occupy three different defects. The corresponding c
figurations are$000111% and $001110%. Two configurations
with total topological charge four are realized. Both conta
a multiple vortex on one of the defects. The first configu
tion appearing in relatively low field is$000130%. Here one
has a three-multiple vortex on the fourth defect. The sec
configuration$001210% preceding the transition to the norm

FIG. 12. Square modulus of the order parameter fora150.3 at
an applied fieldh51.55. The vortex configuration is$001210%.

FIG. 13. The upper critical field as a function of the defe
strength.
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state athc3 contains a double vortex at the third defect. Plo
of the square modulus of the order parameter for these c
are shown in Figs. 11 and 12. Thus in the case of a str
defecta150.3 considered here the number of magnetizat
jumps within the same field region is twice the number
possible values of the total topological charge. We do
lieve that in a disc of the same radius containing more
fects this number will increase.

We already mentioned that the presence of attractive
fects reduces the upper critical fieldhc3 at which the ther-
modynamic potential of the superconductor~16! becomes
equal to zero~the thermodynamic potential of normal meta!.
Figures 5 and 9 show that the larger the defect strengtha1 is
the lower is the transition field. The dependence on the up
critical field of the defect strengtha1 is shown in Fig. 13.

VII. SUMMARY

Summarizing, we studied magnetic properties of mes
copic superconducting discs with disordered attractive
lumnar defects. The number of defects is assumed to
larger than the maximal possible number of vortices accu
lated by the disc. We obtained the magnetization curves
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various strengths of defects in a wide region of the appl
magnetic field. The results show that the defects help
penetration of vortices into the sample. They also red
both the value of the magnetization and the upper criti
field. Even the presence of weak defects can split the g
vortex state at the disc center~usually existing in a clean disc
of small radius! into vortices with smaller topologica
charges. This splitting occurs in the vicinity of the upp
critical field. Strong enough defects always pin all vortice
splitting multiple vortex states at the disc center in all fie
region. This leads to the appearance of additional mes
copic jumps in the magnetization curve related not to
penetration of new vortices into the sample but to redistri
tion of vortices within the set of defects. The number
these jumps increases with the number of defects.
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