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Interstitials, vacancies, and dislocations in flux-line lattices:
A theory of vortex crystals, supersolids, and liquids
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We study a three-dimensional Abrikosov vortex lattice in the presence of an equilibrium concentration of
vacancy, interstitial, and dislocation loops. Vacancies and interstitials renormalize the long-wavelength bulk
and tilt elastic moduli. Dislocation loops lead to the vanishing of the long-wavelength shear modulus. The
coupling to vacancies and interstitials—which are always present in the liquid state—allows dislocations to
relax stresses by climbing out of their glide plane. Surprisingly, this mechanism does not yield any further
independent renormalization of the tilt and compressional moduli at long wavelengths. The long wavelength
properties of the resulting state are formally identical to that of the ‘‘flux-line hexatic’’ that is a candidate
‘‘normal’’ hexatically ordered vortex liquid state.@S0163-1829~99!02317-6#
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I. INTRODUCTION

Both disorder and thermal fluctuations strongly affect
properties of the vortex array induced in type-II superco
ductors by an external magnetic field.1–3 One of the most
striking consequences of thermal fluctuations, particula
pronounced in the high-Tc materials, is the resistive vorte
liquid state,4 located between theHc2(T) line and the vortex
solid in the magnetic field~H! temperature~T! phase
diagram.5 Upon field cooling, a vortex liquid freezes into a
Abrikosov vortex solid. The nature of the freezing transiti
and of the resulting vortex solid phase depends on
amount of disorder present in the material. In dirty samp
the vortex solid has been described as a ‘‘vortex glass,’’6 and
its translational correlation length is limited by disorder to
finite value.7 In three dimensions, the low-temperature vort
glass solid is expected to be a true superconductor wi
vanishing linear resistivity. For weak disorder, the vorte
solid state is expected to be a topologically ordered ‘‘Brag
glass state in three dimensions, with logarithmically grow
vortex displacements, but bound dislocation loops.8 The
freezing transition of the vortex array has been observe
be first order9,11 in ultraclean samples and continuous in dir
superconductors.9–13

In very clean samples, where the disorder-limited trans
tional correlation length is thousands of intervortex latt
constants, the low-temperature phase can be well appr
mated by a vortexlattice. Within an elastic description, th
primary low-temperature excitations of the vortex lattice a
phonons, characterizing two-dimensional displacements
vortex lines from their preferred lattice positions. As t
temperature~or field! is raised towards the melting transitio
other excitations become important. By definition, these
defectsin the vortex lattice, i.e., they are not describable
terms of single-valued vortex displacements. These line
fects are dislocations, disclinations, vacancies, and inte
tials and must be included in the model for a complete
scription of the melting of the vortex solid and of th
PRB 590163-1829/99/59~18!/12001~20!/$15.00
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properties of the resulting vortex liquid state.
At low temperatures, in a well-ordered Abrikosov lattic

state,8 these defects are bound, as the energy of an isol
line defect diverges with system size. At higher temperatu
entropy can, however, drive a proliferation of these line d
fects, in analogy with the melting of two-dimension
solids.14,15 Two melting scenarios are possible:12 ~i! a one-
stage first order transition from a solid to anisotropicvortex
liquid where both dislocations and disclinations unbind s
multaneously@as it occurs in the melting of ordinary three
dimensional~3D! solids#, ~ii ! a two-stage, possibly continu
ous transition,13 where dislocations unbind first, leading to
hexatic flux-line liquid with residual bond-orientational o
der, vanishing shear modulus, but finite hexatic stiffne
This first transition would then be followed by a proliferatio
of disclination loops, thereby completing the transition in
an isotropic vortex liquid. The first stage of this second sc
nario for the melting of the Abrikosov lattice was first su
gested by Marchetti and Nelson.16 While avoiding the subtle
question of the melting transition itself, they adapted t
method developed long ago by Nelson and Toner17 to de-
scribe the vortex-line–liquid state. Marchetti and Nelson d
scribed the hexatic vortex liquid as a vortex lattice with
equilibrium concentration of dislocation loops, treating t
latter in the Debye-Huckle approximation. Through detail
calculations, they demonstrated that dislocations drive
long wavelength shear modulus of the system to zero
computed the effective hexatic stiffness of the resulting o
entationally ordered vortex liquid.16

Vacancies and interstitials constitute another class of
fects that play an important role in solids. In ordinary cry
tals and in 2D vortex lattices, thesepoint defects cost finite
energy and are therefore present in finite density, atany finite
temperature. While their static effects in these systems
minimal, their density represents an important hydrodynam
mode which must be included in the correct description
crystal hydrodynamics.18

In strong contrast, in vortex lattices, vacancies and in
12 001 ©1999 The American Physical Society
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12 002 PRB 59M. CRISTINA MARCHETTI AND LEO RADZIHOVSKY
stitials are line defects with energy proportional to the
length and thereby diverging in bulk samples. Hence o
expects that at low temperatures their average density
ishes. At higher temperatures, this positive energetic con
bution to the free energy can, however, be compensated
negative entropic contribution associated with line wand
ing, which also scales with the defect length, in analogy w
the Kosterlitz-Thouless picture.14 These considerations allow
two thermodynamically distinct crystalline phases, with
sharp phase transition between them. While in both pha
dislocations and disclinations are bound, and as a co
quence there is long-range translational order~true Bragg
spots in an x-ray scattering experiment! and a finite shear
modulus, line vacancies and interstitials are bound in
low-temperature crystal, but have proliferated in the hig
temperature crystal phase. A thermodynamically sharp
tinction between these two crystal phases in thr
dimensional vortex systems was first emphasized by Fis
and Lee19 based on the mathematical correspondence
tween vortex lines and world lines of two-dimensional qua
tum bosons. In this mapping the low-temperature vor
crystal maps onto a 2D Wigner crystal and the hig
temperature vortex solid corresponds to the quantum su
solid phase of 2D bosons, with vacancies and interstitial
its ground state. The quantum supersolid is quite exotic
that it is both crystalline and superfluid. Corresponding
due to the finite density of vacancies and interstitials in
vortex supersolid, vortex lines can move arbitrarily far a
entangle, as in a vortex liquid, and therefore this phase
hibits finite linear resistivity.

While experiments seem to rule out the existence of
equilibrated vortex supersolid phase in bulk 2Dquantum
crystals, based on detailed calculations, Frey, Nelson,
Fisher20 have argued that such a phase is more likely to e
in flux-line arrays at high fields because of the layered str
ture of high-temperature superconductors. These aut
conclude that a vortex supersolid phase will certainly exis
anisotropic superconductors for magnetic fields above a
coupling fieldBx where vortices in different CuO2 layers are
essentially decoupled by thermal fluctuations.21 Furthermore,
even if an equilibrium supersolid phase was absent, an
preciable nonequilibrium density of vacancies and inter
tials may still be present in a flux-line lattice, when the vo
tex array undergoes a first order freezing transition up
cooling in a constant field.

In this paper we study the effects of vacancies and in
stitials within the vortex supersolid and liquid phases.
discussed above, in the supersolid phase, aside from b
responsible for its existence, these defects provide a me
nism for vortex line wandering and consequently for its fin
resistivity. They also are important degrees of freedom
addition to phonons, that must be incorporated in the cor
description of the supersolid. In Sec. III we construct
model of a vortex supersolid, as an elastic lattice with
equilibrium concentration of unbound vacancies and inter
tials. We compute the flux-line density correlation function
that characterize the static equilibrium properties of t
phase, and extract from these the effective elastic modu
the supersolid phase. We find that the long-wavelength s
modulus is unaffected by thefluctuationsin the density of
vacancies and interstitials. This result is consistent with
e
n-
i-
a

r-
h

es
e-

e
-
s-
-
er
e-
-
x
-
er-
in
in
,
e

x-

n

nd
st
c-
rs

n
e-

p-
i-
-
n

r-
s
ing
a-

n
ct

n
i-
,
s
of
ar

e

vacancy interstitials’ inability to relax shear, and confirm
the finiteness of the supersolid shear rigidity which dist
guishes it from a vortex liquid. We also compute a fini
downward renormalization of the compressional and
moduli by vacancy and interstitial density fluctuations. W
demonstrate that as a consequence of the reduction o
effective tilt modulus, the flux-linewandering is enhanced
and, analogously to a vortex liquid, a bulk vortex superso
is always entangled, i.e., it does not exhibit longitudinal s
perconductivity.

The existence of a vortex supersolid allows for two sc
narios for the melting transition into the vortex liquid stat
At low magnetic fields, we expect20 this transition to be di-
rectly from the low-temperature, nonsupersolid crystal int
vortex liquid phase. As discussed above, the vortex liq
state itself can be either a fully disordered isotropic liquid
a bond-orientationally ordered liquid that can further dis
der into an isotropic liquid via disclination unbinding.

Alternatively, the nonsupersolid crystal can first under
a transition into a vortex supersolid by a proliferation
vacancies and interstitials,20 and subsequently melt into
vortex liquid.22 These two scenarios have been dubbed
type-I and type-II melting, respectively,20 and are illustrated
in Fig. 1.

Very recent experiments investigating vortex penetrat
through surface barriers in the presence of a transport cur
in clean BSCCO samples have indeed indicated that the
ture of the melting line may change at high field, even in t
absence of point disorder.23 In fact these experiments sugge
the existence of an intermediate phase between the solid
the liquid at high fields. This observed regime lies above
first order melting line determined by equilibrium magne
zation measurements, but apparently exhibits a cer
amount of sixfold periodicity, as indicated by neutro
scattering.24 It is therefore a candidate for either the supe
solid or the hexatic liquid phases studied here.

Although the nature of the type-I and type-II melting tra
sitions should be quite different,25 in either case vacancie
and interstitials should proliferate in the resulting vortex li

FIG. 1. SchematicB-T phase diagram illustrating the flux lin
crystal, vortex ‘‘supersolid’’~guaranteed to exist at fields muc
higher than the decoupling fieldBx), the orientationally ordered
hexatic vortex liquid, and the isotropic vortex liquid.
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TABLE I. A summary of our results for the elastic constants and the winding number in the va
phases of Fig. 1.

shear compression tilt ^W2& @Eq. ~3.28!#

crystal c66 c11 c44 0

supersolid c66
c11x

212g2

c111x2112g

c44K2g82

c441K12g8

n0
2kBT

K

hex II 0 c112c66
c44K2g82

c441K12g8

n0
2kBT

c44
F11

~c442g8!2

c44K2g82G
hex I 0 c112c66 c44

n0
2kBT
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uid state.26 Hence, in addition to dislocations, vacancy a
interstitial defectsmustbe taken into account for the prope
description of a vortex liquid. They were not, however, e
plicitly included in the calculations of Ref. 16. When vaca
cies and interstitials are absent, dislocation loops in the v
tex line lattice are restricted to lie in the plane defined by
magnetic field axis and their Burger’s vector, and can o
glide ~see Fig. 5!, but not climb. One of the consequences
this is that the effective tilt modulus of the vortex liquid
not renormalized by dislocations and in the model of Ref.
is therefore identical to that of the vortex lattice.

The results presented in Sec. IV remedy the limitations
Ref. 16, by explicitly including vacancies and interstitials
the description of a vortex liquid. Vacancies and interstiti
renormalize the tilt and compressional moduli and allow d
location loops to climb out of their glide plane by absorbi
and emitting these defects. At long wavelengths, howe
the coupling of dislocations to vacancies and interstiti
does not yield anyadditional independentrenormalization of
the tilt and compressional moduli. Whether this is a gene
property of the vortex lattice, or an artifact of the quadra
model and the Debye-Huckel approximation used here,
mains an open question. Our work yields a complete desc
tion of a bond-orientationally ordered hexatic vortex liqu
whose tilt and bulk moduli are renormalized by dislocatio
vacancies, and interstitials, and whose shear modulu
driven to zero by the proliferation of these defects.

Our results characterizing the properties of the vario
phases shown in Fig.1 are summarized in Tables I and II.
stress that hexatic I and hexatic II are not two distinct hex
phases, but rather two different regimes within the sa
hexatic phase, distinguished by a high and low concentra
of vacancy and interstitial defects, respectively. The cro
over between these two regimes is indicated in Fig. 1 b
dotted line. The results quoted in Table I for the hexati
phase are those obtained by Marchetti and Nelson in Ref
assuming that no vacancy or interstitial defects are prese
the system. These results, however, only apply well be
the dotted line in Fig. 1, very close to the solid-hexatic ph
boundary. As the transition to the isotropic liquid is a
proached, the large number of interacting dislocation lo
present in the hexatic will inevitably generate vacancy a
-
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interstitial defects as well, leading to the breakdown of t
model of Ref. 16. The type of long-range order present
absent in each of these phases is summarized qualitative
Table II.

II. ELASTIC PROPERTIES OF DEFECT-FREE
VORTEX LATTICES

A. Model

We begin by recalling the properties of an ordered,defect-
free vortex lattice, which we expect to be stable at low te
perature and field in a clean superconductor.8 As discussed in
the Introduction, long-scale degrees of freedom of this s
tem are uniquely characterized by a single-valued vortex
placement fieldu(r ). With the convection in which the ex
ternal magnetic fieldH0 ~aligned with thec axis of the
superconductor! points along thez axis, the two-dimensiona
vector displacementu(r' ,z) is confined to thexy plane.

The long-wavelength properties of a triangular flux-lin
lattice are characterized by the elastic free energy functio

F latt5
1

2E dr @2c66ui j
2 1~c1122c66!ukk

2 1c44~]zu!2#,

~2.1!

where

TABLE II. This table displays the presence or absence of tra
lational and orientational long-range order~LRO! as well as longi-
tudinal superconductivity in each phase. The asterisk serves to
phasize that although the supersolid does not exhibit longitud
superconductivity, the degree of screening of longitudinal curre
in this phase is substantially different from that of the vortex liqu
phase~see Table I!.

Translational Orientational Longitudinal
LRO LRO superconductivity

crystal yes yes yes
supersolid yes yes no*
hex I no yes no
hex II no yes no
liquid no no no



ul

-

nd

th

so
ct
b

he
en

ls

e
n

t

o

e
r

ar

ors,
-

he

hout
nn

n

al

x-
d

n

ear

or-

35.

,
l’’

12 004 PRB 59M. CRISTINA MARCHETTI AND LEO RADZIHOVSKY
ui j 5
1

2
~wi j 1wji ! ~2.2!

is the symmetrized two-dimensional strain tensor, with

wa j5]auj ~2.3!

a 332 hybrid strain tensor. Greek indices take on the f
three-dimensional set of labelsx,y,z, and Latin indices are
reserved for the purely two-dimensional setx,y. We will use
this notation throughout the paper. The parametersc66, c11,
and c44 appearing in the Eq.~2.1! are the shear, compres
sional, and tilt modulus, respectively.27 In contrast to ordi-
nary crystals, in a flux-line lattice vortex interactions exte
over a range of order of the London penetration depthl
which can be quite large, especially in high-Tc superconduct-
ors. As emphasized in the extensive literature on
subject,28,2 on scales shorter thanl, this leads to wave-
vector-dependent elastic moduli. For a detailed compari
with experiments, inclusion of these nonlocal elastic effe
can be important, especially at high fields, and they can
easily incorporated into our results by replacing all of t
bare elastic moduli by the proper wave-vector-depend
expressions.29

When the lattice contains no vacancies nor interstitia
the number of flux lines equals the numberN of sites in the
triangular lattice. On the average, the flux lines are align
with the external field and the equilibrium magnetic flux de
sity field is given byB05 ẑB05 ẑf0n0, wheref05hc/2e is
the flux quantum,n05N/A[1/ac is the equilibrium number
density of vortex lines andac the area of the primitive uni
cell.

Fluctuations in the local inductiondB(r )5B(r )2B0 can
be described in terms of fluctuations in the areal density
flux lines,dn(r' ,z)5n(r' ,z)2n0, and of a tilt vector field
t(r' ,z), with the relation

dBz5f0dn, ~2.4!

B'5f0t, ~2.5!

valid in the long wavelengthql!1 limit.30,31 In the absence
of vacancies and interstitials, the areal density of flux lin
and their orientation relative to the applied field direction a
entirely determined by the local strains, according to

dn/n052dA/A52uii , ~2.6!

t/n05]zu. ~2.7!

The condition“•B50 translates into a ‘‘continuity’’ con-
straint for the flux lines

]zdn1“'•t50. ~2.8!

As can be seen from Eqs.~2.6! and ~2.7!, this continuity
constraint is identically satisfied in thedefect-freevortex lat-
tice, where the displacementu is single valued.

B. Correlation and response functions

Thermal fluctuations in the density and tilt field are ch
acterized by the density-density correlation function~the
structure factor!
l

e

n
s
e

t

,

d
-

f

s
e

-

S~q' ,qz!5
1

V
^dn~q!dn~2q!& ~2.9!

and the tilt field correlation function

Ti j ~q' ,qz!5
1

V
^t i~q!t j~2q!&

5TL~q' ,qz!Pi j
L ~ q̂'!1TT~q' ,qz!Pi j

T ~ q̂'!,

~2.10!

where

Pi j
L ~ q̂'!5q̂' i q̂' j , ~2.11!

Pi j
T ~ q̂'!5d i j 2q̂' i q̂' j , ~2.12!

are the longitudinal and the transverse projection operat
respectively,q̂'5q' /q' , andV is the volume of the super
conductor. In light of the constraint, Eq.~2.8!, the longitudi-
nal part of the tangent field correlator is proportional to t
structure function, with

TL~q' ,qz!5
qz

2

q'
2 S~q' ,qz!. ~2.13!

The angle brackets in above expressions and throug
the paper indicate a thermal average with a Boltzma
weight e2F/kBT/Z, with F the free energy functional andZ
5Trace@e2F/kBT# the corresponding partition function. I
the defect-free~nonsupersolid! vortex lattice,F is given by
F latt , Eq. ~2.1!, and we denote the corresponding therm
averages bŷ•••&0. Using Eqs.~2.6! and~2.7!, the structure
function and the tilt field correlation function can be e
pressed in terms of thermal averages of the phonon fielu,
and are therefore easily computed, with the result

S0~q!5
q'

2

V
n0

2 ^uq̂'•u~q!u2&05
n0

2kBTq'
2

c11q'
2 1c44qz

2
~2.14!

and

TT
0~q!5

qz
2

V
n0

2Pi j
T ~ q̂'!^ui~q!uj~2q!&05

n0
2kBTqz

2

c66q'
2 1c44qz

2
.

~2.15!

The structure functionS(q) can be probed in a neutro
scattering experiment. The tilt correlation functionTi j (q) is
directly connected to the experimentally measurable lin
magnetic susceptibility tensorx i j (q) according to

4px i j ~q' ,qz!52d i j 1
f0

2

4pkBT
Ti j ~q' ,qz!. ~2.16!

Equation~2.16! holds in the long wavelengthql!1 limit. A
more general relationship between susceptibility and tilt c
relation function that applies at scales shorter thanl in an
anisotropic material can be found, for instance, in Ref.
The first term on the right-hand side of Eq.~2.16! represents
a perfect diamagnetic~negative! Meissner response, which
in a mixed state is considerably reduced by the ‘‘norma
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paramagnetic vortex tilt responseTi j , contained in the sec
ond term. The linear susceptibility relates the transverse
density dB'(q) induced by an external perturbation fie
dH'(q), applied perpendicular to the fieldH05 ẑH0 respon-
sible for the onset of the vortex state, with

dB' i~q!5@d i j 14px i j ~q!#dH' j~q!. ~2.17!

From Eq. ~2.15!, appropriate for a perfect, defect-fre
flux-line lattice, we observe that the long wavelength limit
the transverse part of the tilt field correlation function
nonanalytic, with

TT
0~q'50,qz!5

n0
2kBT

c44
, ~2.18!

TT
0~q' ,qz50!50. ~2.19!

The nonanalyticity of the tilt correlation function reflects
drastically different linear response of the defect-free vor
lattice to two types of transverse field perturbations.32

The transverse field response in the limitq'!qz→0, cor-
responds to a tilt perturbation of the flux lines, induced by
applied transverse fieldVdq' ,0dH'(qz) that is spatially ho-

mogeneous in thexy plane. The corresponding long wav
length transverse susceptibility,xT5Pi j

T x i j , is given by

lim
qz→0

xT
0~q'50,qz!52

1

4pF12
B2

4pc44
G . ~2.20!

If the second term in brackets on the right-hand side of
~2.20! were absent, the superconductor would exhibit perf
screening of the transverse perturbation. Such a beha
can, for instance, occur in flux-line arrays pinned by align
damage tracks. In the presence of such correlated diso
the vortex lattice is replaced by a thermodynamically disti
‘‘Bose’’ glass phase,33 that is characterized by a diverge
tilt modulus c44 and exhibits a transverse Meissner effe
with lim

qz→0
xT(qz)521/4p. In the absence ofanisotropic

pinning of the vortex lattice, such a perfect transverse d
magnetic response is spoiled by the finite vortex tilt
sponse, that leads to only a partial screening of the transv
field, displayed in Eq.~2.20!.

Conversely, the limitqz!q'→0, describes a magneti
response to a transverse fieldVdqz,0

dH'(q') that is homo-

geneous along thez axis, but is spatially varying in thexy
plane. The inducedz-directed screening currents lead to
shear perturbation of the flux-line array, with the response
a defect-free lattice given by

lim
q'→0

xT
0~q' ,qz50!52

1

4p
. ~2.21!

Thus the flux lattice exhibits perfect screening in respons
this z-independent transverse perturbation. Since the scr
ing currents involved in the shear perturbation run paralle
the applied fieldH0i ẑ, a perfect Meissner response to a sh
perturbation has also been termed longitudinal supercon
tivity. It follows directly from the fact that, in contrast to
liquid, a vortex lattice is characterized by a finite she
modulusc66.
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For comparison, we recall that in a flux-line liquid, th
long wavelength limit of the transverse part of the tilt corr
lation function is analytic, with

lim
q'→0

TT
liquid~q' ,qz50!5 lim

qz→0
TT

liquid~q'50,qz!5
n0

2kBT

c44
liquid

.

~2.22!

As expected, a vortex liquid, beingqualitatively identical to
the normal state, albeit highly conductive, exhibits neith
transverse Meissner effect, nor longitudinal superconduc
ity. We will return to this point again in Sec. IV.

Finally, we note that in the latterqz!q'→0 limit, the
transverse part of the tilt correlation function corresponds
the world-lines winding number̂W2& studied by Pollock
and Ceperley34 in their path integral approach to the supe
fluid transition in quantum boson systems. In such an
proach, dating back to Feynman, the superfluid phase is id
tified with an entangled state of boson world-line trajector

lim
q'→0

TT~q' ,qz50!5^W2& ~2.23!

5
\ns

m
, ~2.24!

andns the boson-superfluid density. The well-known iden
fication of physical parameters under the boson-vortex m
ping is given by

\↔kBT, ~2.25!

m↔ ẽ1 , ~2.26!

\b↔L, ~2.27!

with m the boson mass,ẽ1 the core energy per unit of lengt
of a single vortex line,b the inverse boson temperature, a
L the vortex sample thickness. Utilizing this mapping, t
gether with the approximate local expression for the
modulusc445n0ẽ1, we reassuringly find that the defect-fre
flux-line lattice ~in which vortex lines do not entangle an
the sample exhibits longitudinal superconductivity! corre-
sponds to the ‘‘normal’’ boson crystal with vanishing supe

FIG. 2. Sketch of an idealized experimental setup to probe l
gitudinal superconductivity.
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12 006 PRB 59M. CRISTINA MARCHETTI AND LEO RADZIHOVSKY
fluid density ns50. The entangled flux-line liquid, on th
other hand, corresponds to the superfluid phase of bo
with ns5n0, and does not exhibit longitudinal supercondu
tivity. We stress, however, that the mapping describ
above, as well as Eqs.~2.23! and ~2.24!, only apply to a
model of the vortices that neglects the nonlocality of t
intervortex interaction along the field~z! direction.35 A more
general approach to the derivation of vortex liquid hydrod
namics, directly from a ‘‘kinetic theory’’ of interacting flux
lines was developed in Ref. 36.

Figure 2 shows a sketch of an idealized experimen
setup that could be used to probe longitudinal supercond
tivity. An external fieldH0 is applied along the axis (z in our
coordinate system! of a cylindrical sample and a uniform
vortex state with flux lines running alongz is set up. A cur-
rent I confined to a wire running along the axis of the cyli
der and producing an additional azimuthal magnetic fi
dH'(r')52I ẑ3r' /(r'

2 c), which provides the shear pertu
bation described above, can therefore probe theqz50 field
response of the vortex state. The longitudinal supercond
tivity can then be studied by measuring the induced a
muthal componentBf(r') of the local induction inside the
sample. This may be possible by placing radially direc
row of Hall sensors at the top of the sample. In the defe
free crystal, which is a longitudinal superconductor, we
pect Bf50 everywhere in the bulk of the sample, deep
than the penetration lengthl from the surface of the cylin-
der. In contrast in the supersolid and hexatic phases t
will be a nonvanishing azimuthal responseBf(r') every-
where in the sample.

III. ELASTIC PROPERTIES OF SUPERSOLIDS

A. Model

As discussed in the Introduction, we expect that up
increasing the temperature and the external magnetic fi
the defect-free vortex crystal will undergo a thermodynam
cally sharp transition into a vortex supersolid, characteri
by the coexistence of crystalline order and a finite equi
rium density of vacancy and interstitial defects.20 Our goal
here is to develop a continuum description of the long wa
length elastic properties of such a supersolid phase.

Once vacancy and interstitial line defects proliferate in
supersolid, their positions and orientations represent new
important low-energy degrees of freedom, independen
the lattice displacements characterized by the fieldu(r ). At
finite temperature, these defects will lead to fluctuations
the local induction, independent, but energetically coup
to, local elastic strains. To incorporate such defect fluct
tions, we adapt the hydrodynamic methods developed
vortex lines,37,36 to the hydrodynamics of the vacancy an
interstitial line liquid.

At finite density, i.e., within the vortex supersolid phas
the low-energy vacancy and interstitial configurations can
parametrized byz-directedconformations@rn

a(z),z# ~with a
5 i ,v denoting interstitial and vacancy, respectively! as they
traverse the sample along the direction of the applied field
close analogy to vortex lines themselves. Long-wavelen
properties of a gas ofNv vacancies andNi interstitials can
then be described in terms of a net areal density of defe
ns
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nd~r' ,z!5ni~r' ,z!2nv~r' ,z! ~3.1!

and a two-dimensional tilt vector field

td~r' ,z!5t i~r' ,z!2tv~r' ,z!, ~3.2!

where

na~r' ,z!5 (
n51

Na

d~2!@r'2rn
a~z!# ~3.3!

and

ta~r' ,z!5 (
n51

Na ]rn
a~z!

]z
d~2!@r'2r n

a~z!#. ~3.4!

Here nd(r' ,z) represents the net number of defect lin
crossing a unit area perpendicular to the field direction, wh
tdi(r' ,z) is the net number of defect lines crossing a u
area normal to thei th direction, withi 5x,y. Since the inter-
action among vacancy and interstitial defects is short rang
we expect that a liquid of such defects be characterized b
compressibility~inverse defect bulk modulus! x and a finite
tilt modulusK. The corresponding long-wavelength free e
ergy functional is therefore given by

Fd5
1

2n0
2E dr @x21~dnd!21K~ td!2#, ~3.5!

with dnd5nd2nd
0 , and nd

0 the mean net defect density i
equilibrium.

In the presence of these defects, fluctuations in the lo
magnetic induction@or in the correspondingflux-line density
n(r ) and flux tangent fieldt(r )# can be brought about by
changes in both the local lattice strainswa j and the defect
densitiesnd and td , as

dn52n0wii 1dnd ~3.6!

and

t i5n0wzi1tdi . ~3.7!

In this case the continuity equation~2.8!, arising from“•B
50 yields thenontrivial constraint

]zdnd1“'•td50, ~3.8!

that defect lines cannot start or stop inside the sample.
elasticstrain drops out from Eq.~3.8!, as it identically satis-
fies the constraint due to the single valuedness of the
placement fieldu(r ).

Since motion of defects microscopically corresponds
hopping of vortex lines, we expect an energetic coupl
between fluctuations in the density and orientation of defe
and the elastic strain field. The lowest order coupling
lowed by symmetry corresponds to the following interacti
part of the free energy functional:
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F int5
1

n0
E dr @gdnd“•u1g8td•]zu#, ~3.9!

where g and g8 are positive phenomenological couplin
constants with dimensions of elastic moduli. Ignoring a we
coupling to fluctuations in the local temperature, the fr
energy functionalsF int andFd , together with the elastic par
F latt , Eq. ~2.1!, completely determine the long-scale elas
properties of the vortex supersolid.

It is important to note that the parametersc11, c66, c44,
g, g8, x, andK, appearing in our model, are functions of th
meannet defect densitynd

0 ,38 which, within the supersolid
phase, can in principle be determined through detailed
croscopic calculations of the type presented in Ref. 20.
the vortex crystal-to-supersolid transition, we expect th
parameters to display a nonanalytic behavior as a functio
the distance from the transitionuT2Txssu ~where Txss de-
notes the crystal-to-supersolid transition temperature! of the
form illustrated forc66@nd

0(T)# in Fig. 3.
In addition to these mean-field effects, the coupling of

elastic degrees of freedom to thefluctuationsin defect den-
sity ~around the averagend

0) and orientation field, Eq.~3.9!,
yields further renormalization of the elastic constants, stu
of which is in part the focus of our work here.

B. Correlation and response functions

The elastic properties of supersolids can be character
in a number of distinct ways, reflecting a variety of expe
mental probes that couple differently to the supersolid
grees of freedom. The simplest of these, from the theore
and experimental points of view, is the extension of t
equal-time equilibrium correlation functionsS(q) andTi j (q)
defined by Eqs.~2.9! and ~2.10!, respectively. They directly
measure fluctuations in the local magnetic inductionB(r ),
related to the fluctuations in thetotal vortex-line number and
tilt densities, via relations~2.4! and~2.5!. These latter quan
tities are determined byboth the local elastic strain and th
defect density fields through Eqs.~3.6! and~3.7!, and lead to

Sss~q!5
1

V
^un0wii ~q!2dnd~q!u2&, ~3.10!

FIG. 3. A sketch illustrating the behavior of the elastic she
modulusc66 near the vortex crystal to vortex supersolid transitio
The proliferation of vacancies and interstitials is responsible for
softening of the effective shear modulus inside the supersolid ph
k
e
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t
e
of

e

y

ed
-
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e

Ti j
ss~q!5

1

V
^@n0wzi~q!1tdi~q!#@n0wz j~2q!1td j~2q!#&.

~3.11!

In the above, the brackets denote a thermal average ev
ated with the totalsupersolidfree energy functional which
includes both the elastic and the defects degrees of freed
given by

Fss5F latt1Fd1F int . ~3.12!

To ensure the condition of“•B50, these averages must b
carried out under the nontrivial constraint that defect lines
not start nor stop inside the sample, given in Eq.~3.8!.

Utilizing this constraint to explicitly eliminatetd
L in favor

of dnd and reexpressing the strain tensorwi j in terms of the
longitudinal and transverse single-valued lattice displa
ments

uL~q!5q̂'•u~q!, ~3.13!

uT~q!5~ ẑ3q̂'!•u~q!, ~3.14!

which are the independent finite wave vector elastic degr
of freedom in the bulk, we obtain the total free energy ch
acterizing the supersolid

Fss5E d3q

~2p!3 H 1

2
GT~q!uuT~q!u21

1

2
GL~q!uuL~q!u2

1
1

2n0
2 F S x211K

qz
2

q'
2 D udnd~q!u21Kutd

T~q!u2G
1

i

n0
F S gq'2g8

qz
2

q'
D dnd~q!uL~2q!

1g8qztd
T~q!uT~2q!G J . ~3.15!

In the above we have defined the transverse and longitud
wave-vector-dependent stiffnesses

GT~q!5c66q'
2 1c44qz

2 , ~3.16!

GL~q!5c11q'
2 1c44qz

2 , ~3.17!

and not surprisingly found that the transverse and the lon
tudinal degrees of freedom decouple. After reexpressing
S(q) and TT(q) in Eqs. ~3.10! and ~3.11! in terms of these
same independent degrees of freedom, these correlation
be easily computed by inverting the corresponding 232 ma-
trices that can be read off from the expression forFss, Eq.
~3.15!. For the structure function of the supersolid w
thereby obtain

r
.
e
e.
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Sss~q' ,qz!5
1

V
^u2 in0q'uL~q!1dnd~q!u2&

5n0
2kBTq'

2
~c11q'

2 1c44qz
2!1~x21q'

2 1Kqz
2!12~gq'

2 2g8qz
2!

~c11q'
2 1c44qz

2!~x21q'
2 1Kqz

2!2~gq'
2 2g8qz

2!2
. ~3.18!

Similarly, the transverse part of the tilt correlation function is given by

TT
ss~q' ,qz!5

1

V
^u in0qzuT~q!1td

T~q!u2&

5
kBTn0

2

K
1kBTn0

2
qz

2~12g8/K !2

q'
2 c661qz

2~c442g82/K !
. ~3.19!
on
s
ll

s
s

m

ia

ou-
r-
the

ve

he
find
e
sti-

ee

t

i-
of
the

sign,
er-

e
-

ion
of
It is convenient to define defect-renormalized elastic c
stants that characterize the effective elastic properties of
persolids. One choice of such a definition, that natura
arises in experiments which measure fluctuations in thetotal
magnetic inductionB ~e.g., neutron scattering experiment!,
is in terms of the static correlation functions given in Eq
~3.18! and ~3.19!, identified with their defect-free lattice
counterparts, Eqs.~2.14! and ~2.15!

n0
2kBT

c11
R ~q'!

[Sss~q' ,qz50! ~3.20!

and

n0
2kBT

c44
R ~qz!

[TT
ss~q'50,qz!. ~3.21!

Similarly, the effective shear modulusc66
R of the supersolid

can be defined in terms of another equilibrium equal-ti
correlation function

kBT

c66
R ~q'!

[
1

V
@^wi j ~q!wi j ~2q!&2^wii ~q!wj j ~2q!&#uqz50

5
1

V
q'

2 Pi j
T ~ q̂'!^ui~q!uj~2q!&uqz50

5
1

V
q'

2 ^uuT~q!u2&uqz50 , ~3.22!

which can be easily evaluated by performing a Gauss
thermal average with the free energy functional, Eq.~3.15! in
the Boltzmann weight. Using Eqs.~3.18! and~3.19! together
with the definitions, Eqs.~3.20! and ~3.21!, we find

c11
R ~q'!5

c11x
212g2

c111x2112g
~3.23!

and

c44
R ~qz!5

c44K2g82

c441K22g8
. ~3.24!
-
u-
y

.

e

n

From these expressions we observe that for vanishing c
plings g5g850, the effective elastic moduli of the supe
solid are the corresponding moduli of the lattice and
liquid of defects, added in ‘‘parallel’’ — a physically appeal-
ing result. For weak coupling this implies that the effecti
bulk and tilt moduli of the supersolid are alwayssmallerthan
or equal to the minimum of the corresponding moduli of t
two subsystems, the lattice and the defects. Hence we
that for g,g8 small compared to the elastic moduli of th
lattice and the defects, fluctuations of vacancy, and inter
tial densities alwaysreducesthe effective longitudinal and
tilt moduli of the supersolid, relative to that of the defect-fr
crystal.

The typical behavior of the supersolid bulk modulusc11
R

for c11Þx21 as a function ofg is displayed in Fig. 4 (c44
R

behaves similarly as function ofg8). The figure shows tha
the supersolid modulus grows~decreases! linearly with posi-
tive ~negative! coupling, at weak coupling. At an intermed
atepositivevalue ofg, it reaches a maximum at the value
the smallest of the moduli for the two subsystems. In
strong coupling regime~both positive and negative! the ef-
fective modulus decreases, vanishes and even changes
indicating an instability in the quadratic model of the sup
solid. In our model, this instability is a signal of a~spurious!
phase transitionwithin the supersolid phase, which in th
case of the bulk modulusc11

R , corresponds to additional pro

FIG. 4. The behavior of the supersolid bulk modulus as funct
of the couplingg between the elastic and the defect degrees
freedom, forc1151,x21.
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liferation of defects and change in thelattice density. How-
ever, as we show in Appendix A, for a physical vortex s
persolid, the elastic moduli (c66,c11,c44,x,K,g,g8) that
appear in our model are constrained to lie outside of
unstable range. In the special degenerate case ofc115x21,
the effective bulk modulus of the supersolid behaves asc11

R

5(c111g)/2, with an analogous result for the tilt modulu
c44

R .
The calculation ofc66

R , as defined in Eq.~3.22!, shows
that, not surprisingly, vacancy and interstitial densityfluctua-
tions do not renormalize the shear modulus, and

c66
R ~q'!5c66. ~3.25!

In contrast to dislocations~to be considered in the next se
tion!, vacancies and interstitials are unable to relieve a sh
stress.

The presence of vacancy and interstitial defects also a
the response to a transverse magnetic field. The lo
wavelength limit of the transverse part of the tilt correlati
function, TT

ss(q' ,qz), remains nonanalytic, as in a defec
free crystal, and yields

lim
qz→0

xT
ss~q'50,qz!52

1

4p F12
B2

4pc44
R G , ~3.26!

lim
q'→0

xT
ss~q' ,qz50!52

1

4pF12
B2

4pKG . ~3.27!

Since, as discussed above, these defects soften the latti
decreasingboth the longitudinal and tilt moduli the penetr
tion of a transverse field isenhanced, as seen from Eq
~3.26!. A more dramatic effect of the defects is the presen
of the second term on the right-hand side of Eq.~3.27!. In the
vortex supersolid vacancy and interstitial defects allow flu
line wandering and entanglement, and as a result there i
perfect screening of weak transverse fields uniform along
z axis, and consequently the phase does not exhibit long
dinal superconductivity. The supersolid is both crystalli
(c66Þ0) and entangled@TT

ss(q' ,qz50)Þ0#, as argued by
Frey et al.20 and consistent with nonvanishing winding co
relation function

^W2&5 lim
q'→0

TT~q' ,qz50! ~3.28!

5
kBTn0

2

K
. ~3.29!

We stress that the definitions of the effective elas
moduli characterizing a vortex supersolid is far from uniqu
This is related to the variety of experiments that probedif-
ferentphysical properties of the vortex supersolid. Instead
the correlation functionsSss(q) and Ti j

ss(q) defined in Eqs.
~3.10! and ~3.11!, we could have instead focused on

S̃ss~q!5
n0

2

V
^uwii ~q!u2&, ~3.30!
-
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T̃i j
ss~q!5

n0
2

V
^wzi~q!wz j~2q!&,

~3.31!

which probe only fluctuations in thelattice positions andnot
the total vortex density ~related to magnetic inductionB).
These latter correlation functions are more difficult to pro
in a physical experiment, but can be straightforwardly m
sured in a numerical simulation. Making the identificatio
between the effective elastic moduli of the supersolid and
corresponding correlation functions, in analogy with Eq
~3.20! and ~3.21!, we define

n0
2kBT

c̃11
R ~q'!

[S̃ss~q' ,qz50! ~3.32!

and

n0
2kBT

c̃44
R ~qz!

[T̃T
ss~q'50,qz!. ~3.33!

Simple computation ofS̃ss(q) and T̃T
ss(q), together with

these definitions leads to43

c̃11
R 5c112g2x, ~3.34!

c̃44
R 5c442

g82

K
, ~3.35!

c̃66
R 5c66. ~3.36!

Another experimentally relevant way to probe elas
properties of vortex supersolids is through the linear
sponse to a constant stresssa j applied at the boundaries o
the system. For simplicity, we confine our discussion here
a two-dimensional stresss i j applied to a boundary lying in
the xy plane. To study the response, we first need to dec
to which physical quantity does such stress couple. In
defect-free crystal, the answer is simple: the stresss i j
couples to the lattice strainui j . In a supersolid, there is
however, a number of possibilities, depending on the na
of the experiment one seeks to describe~as was the case with
the correlation functions discussed above!. In a real~as op-
posed to a numerical! experiment the stress on the vorte
lattice is produced through an electromagnetic interact
and therefore couples to the magnetic induction, which
volves both the elastic lattice strain tensor and the defe
contribution. Arguments similar to those found in Ref. 3
indicate that the linear response of the supersolid can
studied by adding to the free energyFss in Eq. ~3.15! a part
due to the external stress

Fs52E drs i j S ui j 2
1

2n0
d i j dndD , ~3.37!

and then by minimizing it with respect to the independe
elastic strain and defect degrees of freedom.

Before proceeding with the calculation, some remarks
in order. Invoking the fluctuation-dissipation theorem, o
might naively conclude that such a static response functio
identical to the corresponding equal-time correlation fun
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12 010 PRB 59M. CRISTINA MARCHETTI AND LEO RADZIHOVSKY
tion Sss(q), Eq. ~3.10! that we studied above. However, th
is in fact not the case, in general, even for a defect-f
crystal. To understand this difference, we consider for s
plicity the case of a two-dimensional crystal. Bulk corre
tion functions probe the fluctuations of the bulk degrees
freedom at finite~albeit small! wave vector. Theelasticde-
grees of freedom of the lattice or supersolid are thetwo com-
ponents of the lattice displacement~phonons!, ux(q) and
uy(q) @or equivalentlyuL(q) anduT(q)]. Hence in the defi-
nition of Sss(q), Eqs.~3.10! and ~3.30!, the average is ove
the two lattice displacements~as well as over the defects!,
not the components of the strain tensorwa i which can be
written as derivatives of the displacements and therefore
not independent degrees of freedom. In contrast, the
sponse functions, that most directly relate to experime
probes of elasticity, measure the response to a~often uni-
form! stress applied at theboundaryof the solid. The corre-
spondingq50, uniform deformations are described bythree
zero-mode independent degrees of freedom, correspon
to three macroscopic strainsuxx , uyy , and uxy that can be
independently induced in a solid. As a consequence, fo
supersolid~or a crystal in general! the equal-time correlation
functions differ from the corresponding static response fu
tions, as we now explicitly demonstrate.

Finally, we note that the situation is different in a liqui
where dislocations have proliferated and act as additio
degrees of freedom. The proliferated dislocations lead
multivalued lattice displacements and thereby allow fo
transversepart of the strainwi j , which ~for the first indexi ),
is forbidden in the supersolid. As a result, in a tw
dimensional liquid, allthree components of the symmetri
strain (uxx , uyy , anduxy) are independent degrees of fre
dom.

Returning to the derivation of the linear response to
perturbation described by Eq.~3.37!, we treatui j , wz j , and
the defect densities as independent degrees of freedom
minimize the total free energyF tot5Fss1Fs , with respect
to them, to obtain

dF tot

dui j
52c66ui j 1d i j ~c1122c66!ukk1d i j

g

n0
dnd2s i j 50,

~3.38!

dF tot

dwz j
5c44wz j1

g8

n0
td j50, ~3.39!

dF tot

dnd
5

x21

n0
2

dnd1
g

n0
ukk1

1

2n0
d i j s i j 50, ~3.40!

dF tot

dtdi
5Ktdi1

g8

n0
wzi50. ~3.41!

Given that the applied stresss i j is purely within the
xy-plane equations~3.39! and ~3.41! give

tdi50, ~3.42!

wzi50, ~3.43!

and the response isz independent. Solving the remainin
equations for the strain and the defect density, we find
e
-

-
f

re
e-
al

ing
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-

al
to
a

a

nd

ukk5
11gx

2~c112c662g2x!
skk , ~3.44!

dnd

n0
52

x~c112c661g!

2~c112c662g2x!
skk , ~3.45!

which, when used inside Eq.~3.38! give

ui j 5Ri j ,kl
ss skl , ~3.46!

whereRi j ,kl
ss is theuniform static response function given b

Ri j ,kl
ss 5

~2c662c11!~11gx!12gx~c112c661g!

4c66~c112c662g2x!
d i j dkl

1
1

2c66
d ikd j l . ~3.47!

As a check we observe that forx→0, which freezes out
the defects,Ri j ,kl

ss reduces to the well-known response fun
tion for a defect-free crystal40

Ri j ,kl
crystal5

~2c662c11!

4c66~c112c66!
d i j dkl1

1

2c66
d ikd j l . ~3.48!

Consistent with our discussion above,Ri j ,kl
ss differs from the

correspondingqz50 equal-time correlation function, com
puted with the lattice displacements as the independent
grees of freedom.

Using Eqs.~3.46! and ~3.47! we can now compute the
response to any uniform stress,s i j . For example, a uniform
hydrostatic pressuredp corresponds to

s i j 52dpd i j , ~3.49!

and we obtain the bulk modulus for the vortex supersolid

1

Bss
[2

1

A

dA

dp
5

1

n0

dn

dp
52

ukk

dp
1

1

n0

dnd

dp

5
B1x2112g

Bx212g2
, ~3.50!

whereB5c112c66 is the standard definition for a defect-fre
crystal bulk modulus. We note the similarity in form with th
correlation functionSss(q' ,qz50), that we used to define
c11

R , Eq. ~3.20!. As discussed above, the computation of t
uniform staticresponse functiongives thebulk modulus c11
2c66 while the equal-time correlation function~at qz50)
defines the longitudinal phonon modulusc11. As we ob-
served above for the effectivec11

R in Eq. ~3.24!, here too in
the absence of interaction between the defects and the la
(g50), the supersolid bulk modulus is simply determin
by the bulk moduli of the two systems, added in parall
Bss

215B211x.
Significant caution must be applied in comparing expr

sion ~3.50! with experiments. If, for example, the compre
sion is performed on a time scale that is slow compared
the relaxation time of the elastic degrees of freedom, but
compared to that of the defects~which, being a conserved
‘‘charge’’ density, relaxes only diffusively!, then the defects
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are effectively frozen on the time scale of the experiment
this case, corresponding tox50, only elastic degrees o
freedom can respond and the result forBss is simplyB of the
defect-free crystal.

The vortex supersolid shear modulusc66
ss can be probed by

applying a constant force normal to two opposite late
boundaries of a rectangularxy-cross-section sample. Th
corresponding stress is given by

s i j 5sd ixd jx . ~3.51!

Such stress induces both the longitudinal (uL) and the trans-
verse (uT) deformations of the lattice. The shear modulus
defined in terms of the normal strainuxx2uyy as

1

c66
ss

52
uyy2uxx

s
. ~3.52!

Consistent with our earlier calculation that used equal-ti
correlation function, we find here that

c66
ss5c66, ~3.53!

i.e., the shear modulus remains unrenormalized by fluc
tions in density of vacancies and interstitials.

IV. DISLOCATION LOOPS IN A VORTEX SUPERSOLID:
A MODEL OF VORTEX LIQUID

We now turn to the description of a vortex liquid. This
a disordered, dissipative state of the flux-line array, that
sults from either a direct melting of a defect-free vortex cr
tal or ~possibly! a continuous melting13 of a vortex super-
solid, discussed in previous sections.

Following ideas of Kosterlitz and Thouless,14 extended in
Ref. 16 to three-dimensional vortex systems, we describ
flux-line liquid as a supersolid with a finite equilibrium con
centration of unbound dislocation loops and vacancy and
terstitial defect lines. Such an approach nicely compleme
the more conventional hydrodynamic description of the v
tex liquid studied in Refs. 37,36. While somewhat more
volved, the advantage of the approach taken here is th
provides a more direct connection between the vortex liq
and vortexorderedphases~crystals!, in which the defects are
bound, thereby presenting a unified description. It also p
vides a valuable detailed‘‘microscopic’’ characterization of
the distinction between vortex liquids and solids.

The properties of a flux-line lattice in the presence of
unbound gas of dislocation loops, but no vacancies nor
terstitials, were studied in Ref. 16. In the absence of vaca
and interstitial defects, dislocation loops are constrained
lie in a plane spanned by their Burger’s vector and thez axis.
These planar dislocation loops can only relax appl
stresses by ‘‘gliding’’ along thez axis. Clearly, once dislo-
cation loops proliferate on all scales, vacancies and inte
tials will also unbind andboth of these defects will exist in
the resulting bond-orientationally ordered liquid. The goal
this section is to incorporate vacancies and interstitials in
complete description of a vortex liquid. We will explicitl
demonstrate that a finite concentration of vacancy and in
stitial defects allows for ‘‘climblike’’ distortions of disloca
tion loops, which can move out of theẑ-b plane by absorbing
and emitting vacancies and interstitials.
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A. Model

To construct a complete model of a vortex liquid we no
proceed to incorporate dislocation loops into the model o
supersolid, presented in Sec. III. We do this by allowi
multivalued lattice displacement fieldsu. The loop integral
of u

R dui~r !52bi~r ! ~4.1!

enclosing a dislocation line, fails to close by a Burger’s l
tice vectorb. The direction of integration around the conto
is that of a right-handed screw advancing parallel to a u
tangent vectort to the dislocation line. The peculiarity o
dislocation in a lattice ofz-directed lines is that while the
Burger’s vector is two dimensional and by definition lies
the xy plane, the tangentt to the defect line is a three
dimensional vector.16,41

To study properties of the system on scales that are l
compared to the spacing between dislocation lines, we u
continuum description. We consider a small hydrodynam
volume and introduce the Burger’s ‘‘charge’’ densitytensor
ab j (r ), whose integral over an open surfaceS, gives the total
Burger’s vector of dislocation lines directed along the s
face normalnb and enclosed by a contourC bounding the
surface,

E
S
ab jnbdA5(

n
bj

~n! . ~4.2!

For a single dislocation line, directed along the tangenttb ,
with Burger’s vectorbi , the defect density tensor is given b
ab i5tbbid

(2)(r'). The rectangular (332) density tensor
ab j (r ) is therefore a measure of the number of dislocat
lines with Burger’s vectorbj crossing a unit area normal t
the dislocation tangenttb . We remind the reader that Ro
man lettersi , j ,k, . . . , areused to denote indices that ru
only over the values x and y, and Greek letters
a,b,g, . . . , arereserved for indices that run over the thre
dimensional setx,y,z.

By definition, dislocations in thez-directed line crystal
must have their Burger’s vectors lie in thexy plane. Conse-
quently the three-dimensional vectoraz j(r ) ( j 5x,y) de-
scribesz-directed edge dislocations. Edge dislocations lyi
in thexy plane are described by the antisymmetric part of
two-dimensional tensora i j

'(r ) @ i 5x,y and j 5x,y, with
ab j5(a i j

' ,az j)]. In the absenceof vacancies and intersti
tials, however, this type ofxy-plane-directed edge disloca
tions correspond to a branching or merging of flux line
which necessarily involve fractional or double ‘‘flux
charged’’ vortex lines, both energetically forbidden. In co
trast, vacancies and interstitials allow for this type of ed
dislocations, as we will demonstrate below. Screw dislo
tions, on the other hand always run normal to flux lines, i
they lie in thexy plane, and lead to entanglement of th
vortex lines.42 They are described by thesymmetricpart of
a i j

'(r ).
By rewriting Eq.~4.1! in differential form and then aver

aging the resulting equation over a hydrodynamic volum
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containing many dislocation lines, we relate the dislocat
density tensorab j (r ) to the local lattice strainwb j (r ),

eabg]bwgk~r !52aak~r !. ~4.3!

Hence in the presence of dislocations (ab jÞ0), the strain
tensorwb j contains a singular part that cannot be written
a gradient (]b) of a single-valued displacement fielduj .
Finally, dislocation loops must either close or terminate
sample boundaries. This amounts to the condition

]bab j~r !50. ~4.4!

We now proceed to incorporate the dislocation degree
freedom into the model of the supersolid studied in Sec.
We first recall that the fluctuations of the local magne
inductiondB5(B' ,dBz) are related to the changes in de
sity and orientation of flux lines, with contributions from
both local strains and vacancy and interstitial defects. In
long-wavelength limit these relations are obtained by ins
ing dn andt given by Eqs.~3.6! and~3.7! into Eqs.~2.4! and
~2.5!,

dBz5f0@2n0wii ~r !1dnd~r !#, ~4.5!

dB' i5f0@n0wzi~r !1tdi~r !#. ~4.6!

In the presence of dislocations, the strain tensorwa j is given
by the sum of a regular, longitudinal~on first, Greek index!
part, defined in Eq.~2.3! in terms of the derivatives of a
single-valued displacement fielduj , and a singular, trans
verse~on the first, Greek index! part, wa i

s , due to disloca-
tions

wa j5]auj1wa j
s . ~4.7!

By imposing the“•B50 condition and using Eqs.~4.5!
and ~4.6!, we obtain

]zdnd1“'•td52n0~2]zwii
sing1] iwzi

sing!. ~4.8!

It is important to note that, in contrast to the defect-fr
crystal and the supersolid, where theelasticpart wb j (]buj )
identically satisfies“•B50, here this condition imposes
nontrivial constraint that couples dislocations and vacan
interstitial defects. This becomes apparent by using Eq.~4.3!
to eliminatewb j from the constraint in favor of the disloca
tion density tensor, with the result

]zdnd1“'•td5n0e i j a i j
'~r !. ~4.9!

This important condition is one of the main results of o
work and is an essential ingredient in the complete ‘‘elast
description of the vortex liquid state. We first note that in t
supersolid phase, where dislocation loops are bound and
tice displacements are single valued,ab j50, and the con-
straint reduces to the vacancy-interstitial line continuity co
dition Eq. ~3.8!. On the other hand, in a description of
vortex liquid which ignores vacancies and interstitials it
duces to thee i j a i j

'50 condition of Ref. 16, enforcing the
constraint, discussed above, that in the absence of vaca
and interstitials, dislocation loops are confined to lie in t
plane defined by their Burger’s vector and the average ex
nal magnetic field. In the presence of vacancies and inte
n
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tials Eq.~4.9! explicitly demonstrates that these defects p
vide a mechanism by which the dislocation loop c
effectively climb out of this plane. They do this by emittin
or absorbing vacancy and interstitial line defects. The allo
ance of nonplanar dislocation loops in vortex supersolid
and liquids then removes the artificial condition of a vanis
ing antisymmetric part of the dislocation density tensor a
in generale i j a i j

'Þ0 in these phases. As anticipated abo
this allowsxy-plane-directededgedislocations to proliferate
upon melting.

The above constraint, Eq.~4.9!, is one way that the addi
tional degrees of freedom associated with proliferated dis
cations enter the description of the vortex liquid. Disloc
tions of course also contribute directly through the ‘‘elasti
free energy in a way that we now derive.

The free energyF of a lattice with dislocations and
vacancy/interstitial defects is given byFss5F latt1Fd
1F int , but with derivatives of the phonon field replaced b
the total strain tensor given in Eq.~4.7!, i.e.,

F5
1

2E drwa iCa ib jwb j1
1

2n0
2E dr @x21~dnd!21K~ td!2#

1
1

n0
E dr @gwii dnd1g8wzitdi#1Fcore. ~4.10!

To make the notation more compact, the purely elastic p
of the free energy, given by the first term on the right-ha
side of Eq.~4.10!, has been written in terms of the elast
tensor

Ca ib j5c66~dab2dazdbz!d i j 1c66da jdb i

1~c1122c66!da idb j1c44dazdbzd i j . ~4.11!

We have also added to the free energy of the defective la
a termFcore representing the core energy of the dislocatio
given by

Fcore5E dr @Eeazi
2 1Esa i i

2 1Es8a i j a i j 1Ee8~e i j a i j !
2#.

~4.12!

The core energyFcore has been written on the basis of sym
metry considerations. It incorporates terms accounting
the edge and screw dislocation core energies per unit len
Ee , Ee8 , Es , andEs8 . As discussed in Ref. 16, althoughEe8
5Es850 for a single dislocation line, nonzero values ofEe8
andEs8 are required to describe short range interactions in
hydrodynamic limit. The values for the core energies a
estimated to beEe.c66b

2, Es.Es8.Ac66c44b
2, and Ee8

.Ac11c44b
2.16

While the elastic part (]aui) of the strain tensor identi-
cally satisfies Eq.~4.3!, the singular part is found by ‘‘invert-
ing’’ this equation in Fourier space. This gives

wa j
s ~q!52

i

q2 eabgqbag j~q!1 iqac j~q!, ~4.13!

wherec j is an arbitrary function, reflecting the fact that th
solution to Eq.~4.3! is only determined up to an arbitrar
longitudinal part. This is analogous to the gauge freed
that appears in electromagnetism~or other gauge theories!
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when, for example, Maxwell equation“•E5r is solved for
the electric fieldE in terms of the charge densityr.

One convenient and natural choice ofc j is obtained by
requiring that the correspondingwa j

s minimizes the total free
energyF, Eq. ~4.10!, with respect to lattice displacement
Such a choice is mathematically convenient for comput
thermodynamic averages, because it removes all coupl
between the phononsuj and the defect degrees of freedom
Physically, this choice ofwa j

s corresponds to elasticall
equilibrated defects.

To computec i corresponding to this convenient gau
choice, we insertwa i , Eq. ~4.7! into F, Eq. ~4.10!, and re-
quire that thelinear terms inu vanish, which of course is
equivalent to the requirement thatwa i

s minimizes F. The
resulting Euler-Lagrange equation is given by

dF

dui
52]asa i2

g

n0
] idnd2

g8

n0
]ztdi50, ~4.14!

where

sa i5Ca ib jwb j ~4.15!

is the corresponding stress tensor. The solution is more
veniently written in Fourier space, where it is given by

c i~q!5
1

q2 ~A21! i j qaCa j bkebghqgahk~q!

1
i

n0
~A21! i j @gqjdnd~q!1g8qztd j~q!#.

~4.16!

Here A21 is the inverse of a 232 matrix A, with Ai j
5qaCa ib jqb . Its elements are given by

~A21! i j 5
1

GT~q! Fd i j 2
~c112c66!

GL~q!
q' iq' j G , ~4.17!

whereGT(q) andGL(q) are the transverse and longitudin
elastic stiffnesses, defined in Eqs.~3.16!, ~3.17!.

With this choice ofc i , by construction, the total free
energy breaks up into two parts

F5F latt1Fdef, ~4.18!

whereF latt is the defect-free elastic part of the free ener
given in Eq.~2.1! and rewritten here for convenience in Fo
rier space

F latt5
1

2E d3q

~2p!3
@GT~q!uuT~q!u21GL~q!uuL~q!u2#.

~4.19!

This involves only phonons degrees of freedom, as fo
defect-free crystal. The second, defect partFdef, is the free
energy of an interacting gas of dislocation loops a
vacancy-interstitial line defects. It is given by
g
gs
.

n-

a

d

Fdef5
1

2E drwa i
s Ca ib jwb j

s 1
1

2n0
2E dr @x21~dnd!21K~ td!2#

1
1

n0
E dr @gwii

s dnd1g8wzi
s tdi#, ~4.20!

wherewa i
s is the singular part of the strain tensor, given

Eqs. ~4.13! and ~4.16!. This defect-free energy must b
supplemented with the continuity conditions Eqs.~4.9! and
~4.4! for the vacancy and interstitial defect lines and the d
location lines, respectively. The constraint~4.9! can be di-
rectly incorporated into the free energy by using it to expl
itly eliminate thelongitudinal part of the vacancy-interstitia
defects tangent vector

td
L~q![q̂'•td~q! ~4.21!

52
qz

q'

dnd~q!2
i

q'

n0e i j a i j
'~q!,

~4.22!

in favor of the defect densitydnd(q) and the antisymmetric
part of the dislocation density tensora i j

'(q). Finally, using
Eqs.~4.13! and~4.16! to eliminate the singular strain field in
terms of the defect degrees of freedom in Eq.~4.20!, we
obtain

Fdef5
1

2E dq

~2p!3
$R̃m in j~q!am i~q!an j~2q!

1A~q!dnd~q!dnd~2q!1C~q!td
T~q!td

T~2q!

1 iD m i~q!@am i~2q!dnd~q!2am i~q!dnd~2q!#

1 iGm i~q!@am i~2q!td
T~q!2am i~q!td

T~2q!#%,

~4.23!

where td
T(q)5td(q)2q̂'td

L(q) is the transverse part of th

defect tangent vector. The kernelsR̃m i ,n j (q), A(q), C(q),
Dm i(q), and Gm i(q) depend in a complicated way on th
elastic moduli (c66,c11,c44) of the lattice, and on wave vec
tors q' andqz , and are given explicitly in Appendix B.

B. Correlations and response functions

In this section we evaluate the renormalization of the el
tic constants of the flux-line lattice due to dislocations a
vacancy and interstitial defects. The renormalized ela
constants are defined by Eqs.~3.20!–~3.22!, but with the
understanding that the correlation functions are now thos
a lattice with an equilibrated concentration of defects a
dislocations. This means that the structure function and
tilt correlation function are formally given in terms of th
strain tensor and the defect fields by the same express
~3.10! and~3.11! used for the supersolid, but the strain tens
wa i is now the total strain given in Eq.~4.7!, including the
singular part. The same holds for the correlation funct
that determined the shear modulus defined on the first lin
Eq. ~3.22!. The brackets in these correlation functions no
denote a thermal average with the free energyF latt1Fdef,
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with Fdef given by Eq.~4.23!. The average is carried out b
integrating over all configurations of dislocations, describ
by the components of the dislocation density tensor,ab i ,
and vacancy and interstitial lines, described by the defe
densitydnd and tilt field td

T . The integration must be don
subject to the constraint that dislocation lines are clos
given by Eq.~4.4!. The ‘‘continuity’’ constraint for defect
lines, expressed by Eq.~4.9!, has already been incorporate
into the free energyFdef. The computation of correlation
functions is conceptually simple but technically quite i
a

I
a

he
a-

d
d-

o
a

d

ts

d,

volved and was carried out usingMATHEMATICA symbolic
manipulator program. Only the results will be given he
The full expression for the density, tilt field, and other co
relation functions are too ‘‘horrifying’’ to be shown here
and we therefore only display their long wavelength limi
which determine the renormalized elastic constants, acc
ing to Eqs.~3.20!–~3.22!.

The structure factor vanishes asq'→0, as required by the
density sum rule. The renormalized longitudinal modulus
defined by Eq.~3.20! is given by
ncy
l defect
e for
1

c11
R ~q'!

5
1

c11
H 11

c11@2c66~c112c66!1c11Eeq'
2 #12c66

2 x211g~g12c11!~2c661Eeq'
2 !

x21@2c66~c112c66!1c11Eeq'
2 #2g2~2c661Eeq'

2 !
J . ~4.24!

The renormalized tilt modulus defined by Eq.~3.21! is

1

c44
R ~qz!

5 lim
qz→0

TT~qz ,q'50!5
c441K22g8

c44K2g82
. ~4.25!

We find that in the long-wavelength limit bothc11
R andc44

R are identical to the elastic constants of a lattice with only vaca
and interstitial defects. In other words, somewhat surprisingly, the coupling of dislocations to vacancy and interstitia
lines doesnot yield anyadditional renormalization of the tilt and compressional moduli, even if it does make it possibl
dislocations to relax stresses by climbing out of the (b,ẑ) plane and allows for~otherwise forbiddingly costly! xy directed edge
dislocations. Finally, the renormalized shear modulus is

1

c66
R ~q'!

5
1

c66
1

1

Eeq'
2 1

x21c11~c1122c66!2g2~c1124c66!

c11@x21
„2c66~c112c66!1c11Eeq'

2
…2g2~2c661Eeq'

2 !#
. ~4.26!
e
ave
The
erve
Dislocations renormalize the long-wavelength (q→0) shear
modulus to zero, yielding liquidlike response to she
stresses.

We now discuss various limiting cases for our results.
the absence of coupling between the gas of vacancy
interstitial defects and the lattice (g50, g850), the various
correlation functions are simply given by the sum of t
contributions from a lattice with an equilibrium concentr
tion of unbound dislocations~corresponding to thecon-
strained hexatic line liquid discussed by Marchetti an
Nelson16! and from a liquid of defect lines. The correspon
ing elastic constants add in parallel, with

S 1

c11
R ~q'!

D
g5g850

5x1
1

c11
MN

, ~4.27!

S 1

c44
R ~q'!

D
g5g850

5
1

K
1

1

c44
MN

, ~4.28!

S 1

c66
R ~q'!

D
g5g850

5
1

c66
MN

, ~4.29!

where we have denoted by the superscriptMN the elastic
constants of a lattice with an equilibrium concentration
unbound dislocations, but with a constraint forbidding v
cancy and interstitial defects,16 given by
r

n
nd

f
-

FIG. 5. Gliding of an edge dislocation loop, allowed even in th
absence of vacancies and interstitials. For simplicity we h
sketched the dislocation loop for the case of a square lattice.
dotted vertical lines refer to the defect-free square lattice and s
as a guide for the eye.
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1

c11
MN

5
1

c11
F11

2c66
2

2c66~c112c66!1c11Eeq'
2 G , ~4.30!

1

c66
MN

5
1

c66
1

1

Eeq'
2 1

~c1122c66!

2c66~c112c66!1c11Eeq'
2

,

~4.31!

1

c44
MN

5
1

c44
. ~4.32!

The elastic constants of a supersolid, i.e., the lattice w
only vacancy and interstitial defects, can be obtained by
ting all the dislocation core energies go to infini
(Ee ,Ee8 ,Es ,Es8→`). It is easy to see that in this limit we
recover the results discussed in Sec. II. Finally, whenx21

→` andK→` vacancy and interstitial defects are forbidd
and the elastic constants reduce again to those given in
~4.30!–~4.32!. We recall that the coupling of dislocations
vacancy and interstitial lines allows dislocations to re
stresses by climbing out of the (b,ẑ) plane via the emission
or absorption of vacancies and interstitials—a mechanism
relaxing stresses that is forbidden in the hexatic liquid
Marchetti and Nelson.16

Figure 5 shows a planar dislocation loop withb5bx̂ of
the type considered by Marchetti and Nelson.16 This loop lies
in its glide plane~the xz plane! and can easily relax a shea
by gliding in this plane. The climbing of the same dislocati
loop out of its glide plane is described pictorially in Fig. 6

It is clear that climb can only occur via the emission
absorption of vacancy or interstitial defects, as summari
by Eq.~4.9!. Such climb ‘‘motion’’ can occur in response t
the force on the dislocation loop resulting from applying
uniform external tilt to the lattice, corresponding to a co
stant stresss ia

ext5d ixdazszx
ext. The force on a dislocation line

due to a uniform stresss ia
ext is the familiar Peach-Ko¨hler

force, given by

FIG. 6. Climbingof an edge dislocation loop in a square lattic
only allowed in the presence of vacancies and interstitials.
Burger’s vector of the loop is in the1x direction. The lattice con-
figuration at two cross sectionsz1 andz2 shows the climbing in the
y direction, normal to the Burger’s vector.
h
t-

qs.

or
f

d

-

Fb
PK5eabgtgs ia

extbi . ~4.33!

Equation~4.33! differs slightly from the corresponding ex
pression found in textbooks as the stress tensor in a flux-
lattice is not a symmetric~or even a square! matrix. The
Peach-Ko¨hler force on the rectangular loop shown in Fig.
due to a uniform tilt in thexy plane is normal to the plane o
the loop~along y) and there is no force on any segment
the loop parallel toz. Specifically, fort5 x̂, we find FPK,tilt

52sxz
extbŷ and fort52 x̂, we findFPK,tilt5sxz

extbŷ. In other
words, the Peach-Ko¨hler force acts as a couple and tries
rotate the loop out of its glide plane. The screw compone
of the loop running along6 x̂ can glide in any plane tha
contains them. In particular, they will glide in theŷ or 2 ŷ
direction under the action of the force. For this to happen
edge sections must climb out of the glide plane by emitt
or absorbing vacancies and interstitials, as shown in Fig
By gliding out of the sample along they direction, the screw
dislocations can relax a uniform tilt of the lines towards6x.
We note that if one thinks ofz as a fictitious time, the con
straint ~4.9! is formally identical to the temporal continuit
equation for the density of point vacancy and interstitial d
fects, diffusing in the presence of dislocations in a tw
dimensional lattice.39 Dislocations provide a source of poin

e

FIG. 7. An edge dislocation loop described by a nonvanish
a i j

'e i j , allowedonly in the presence of vacancies and interstitia
The bottom figure showing a side view of the loop emphasizes
equivalence between vacancy and interstitial defects and a non
ishing a i j

'e i j . The loop can be thought of as arising from an ins
tion of a row of ‘‘finite-length vortices,’’ which correspond to
wandering of interstitial defects.
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12 016 PRB 59M. CRISTINA MARCHETTI AND LEO RADZIHOVSKY
defects as they climb across the sample. The renormaliza
of the tilt modulus can therefore occur only when vacan
and interstitial defects are allowed.

It is also instructive to consider the behavior of anoth
typical dislocation loop, shown in Fig. 7. This loop hasb
5bx̂ and lies in theyz plane. The two edge segments ru
ning parallel to z lie in two different and parallel glide
planes. The loop is closed by segments running alony
which are also edge dislocations in nature, asb't.

This is an example of a dislocation loop characterized
e i j a i j

'Þ0. Such a loop is not allowed in the absence of v
cancy and interstitials, as without such defects the edge
ments running alongy would require a row of vortex lines to
merge or split into single lines carrying twice or half a flu
quantum—an energetically forbidding configuration. Den
ing by z1,z2 the vertical location of the two segments of th
loop running alongy, we can understand the existence of t
loop as arising from a set of interstitial defects that are r
domly distributed in thexy plane forz,z1 and z.z2, but
organize themselves into a vortex sheet forz1,z,z2, acting
as an extra row of lines in this region. In the region nearz1
and z2, clearly ]zndÞ0, corresponding to a nonvanishin
value ofe i j a i j

' . Under a constant stresssxz
ext from a uniform

tilt applied to the system, the Peach-Ko¨hler force on the loop
consists again of two forces of equal magnitude applied
the sections running alongy and directed along6x, as there
is no force on the sections of the loop running alongz. Under
the action of this couple, the loop rotates out of its pla
While this motion occurs in the glide plane for each sect
of the loop, it requires ‘‘diffusion’’ of vacancies and interst
tials according to Eq.~4.9!.

The addition of dislocations also removes the nonana
ticity of the transverse part of the tilt-tilt correlation functio
present in both the defect-free vortex lattice and the vor
supersolid. In fact we obtain

TT~q' ,qz50!5n0
2kBT

K1c4412~Es1Es8!q'
2 22g8

Kc4412K~Es1Es8!q'
2 2g82

~4.34!

and

^W2&5 lim
q'→0

TT~q' ,qz50!5
n0

2kBT

c44
R

, ~4.35!

with c44
R given by Eq. ~4.25!. As indicated in Eq.~2.23!,

lim
q'→0

TT(q' ,qz50) determines the winding numbe

^W2& and the corresponding superfluid densityns of the
equivalent boson system,^W2&5\ns /m. The analyticity of
the transverse tilt-tilt correlator at long wavelength indica
that ns5n0, i.e., the bosons are in the superfluid state. C
versely, this corresponds to an entangled flux-line array, w
no longitudinal superconductivity.

For comparison, in the model of aconstrainedhexatic
line liquid, studied by Marchetti and Nelson,16 where the
absence of vacancy and interstitial defects prevents disl
tion loops from climbing out of the (b,ẑ) plane, one obtains
on
y

r

y
-
g-

-

-

n

.
n

-

x

s
-
h

a-

TT
MN~q' ,qz50!5

n0
2kBT

c4412~Es1Es8!q'
2

~4.36!

and

lim
q'→0

TT
MN~q' ,qz50!5

n0
2kBT

c44
. ~4.37!

We find that independent of whether or not vacancy a
interstitial defects are included in the description of t
hexatic vortex liquid, the transverse tilt-tilt correlator isana-
lytic and lim

q'→0
TT(q' ,qz50) is finite, indicating that

both systems are entangled. Vacancies and interstitials
however, decrease the tilt modulus, further enhancing
entanglement of the vortex array. Although vacancy and
terstitial defects must be incorporated in a consistent desc
tion of a flux-line hexatic, they do not change the qualitati
properties of the hexatic liquid, which even in their presen
maintains a vanishing long-wavelength shear modulus
does not exhibit longitudinal superconductivity.

To further characterize orientationally ordered liquid it
useful to define a characteristic length scalej' , that deter-
mines the typical transverse size of a disentangled flux-
bundle. This is a region of the flux array where the lin
remain locally disentangled in the limit of infinite samp
thickness along the field~z! direction. In the absence of va
cancies and interstitials, Eq. ~4.36! gives j'

MN

;A2(Es1Es8)/c44. Using Es;Es8;Ac44c66b
2, we find

j'
MN;a0(c66/c44)

1/4, with a05A1/n0 the mean intervortex
separation. In flux-line arrays we typically havec66!c44 and
the flux-line hexatic is entangled over all macroscopic sca

The coupling of dislocations to vacancy and interstit
defects renormalizes this entangling lengthj' , as can be
seen from Eq.~4.34!, which for smallq' is given by

TT~q',0!'
n0

2kBT

c44
R

@12q'
2 j'

2 #, ~4.38!

with

j'5A c44
R

2~Es1Es8!

uK2g8u

uc441K22g8u
. ~4.39!

It is easy to see that for all physical parameter valuesj'

,j'
MN . Not surprisingly, we find that vacancies and inters

tials therefore decrease the typical size of a disentangled
bundle.

Finally, we have also studied the effects of vacancy a
interstitial defects on the properties of the orientationally
dered hexatic liquid. Although the finite wave vector beha
ior is considerably modified, we find that at long waveleng
the effective hexatic stiffness is still given by the express
obtained in Ref. 16. This result is consistent with the lack
long-scale orientational order and therefore a vanishing
entational stiffness in the isotropic line liquid of vacanci
and interstitials.
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V. CONCLUSIONS

In this paper we have studied the effects of vacancy
interstitial line defects in the supersolid and the liquid pha
of flux-line arrays in the mixed state of type-II supercondu
ors. The transition from a fully ordered Abrikosov cryst
phase into the vortex supersolid phase takes place at a cr
temperature or magnetic flux density, at which vacancy
interstitial defects proliferate, providing a mechanism
vortex entanglement and yielding finite resistivity. In ord
to study the long-wavelength elastic properties of the sup
solid phase, we modeled the supersolid as a lattice with
equilibrium concentration of unbound vacancy and inter
tial defect lines and computed the renormalization of
elastic constants due to fluctuations in the density and or
tations of these defects. As expected, at long waveleng
we find that vacancy and interstitial density fluctuations
not renormalize the shear modulus, confirming the finiten
of the supersolid shear modulus, which distinguishes it fr
the vortex liquid. In contrast, these defect fluctuations yiel
finite downward renormalization of both the compressio
and tilt moduli. The renormalization of the tilt modulu
stems from the fact that the liquid of vacancy and intersti
defects promotes flux-line wandering. We explicitly demo
strate that this defect-based vortex line delocalization mec
nism spoils the Meissner response to a shear tilt perturba
characteristic of the defect-free vortex lattice. In other wor
the vortex supersolid does not exhibit longitudinal superc
ductivity and, in this respect, similarly to the vortex liquid,
always entangled.

It is clear that the vortex liquid phase, where unbou
dislocation loops have proliferated, is also characterized b
finite density of vacancy and interstitials, whichmust, there-
fore, be included for a consistent description of such a re
tive phase. A model of the vortex-line liquid as a solid wi
an equilibrium concentration of unbound dislocation loo
but no vacancies and interstitials, was previously studied
Marchetti and Nelson.16 As a consequence of the constra
of no vacancy or interstitial implicit in their model, onl
planar loops, that cannot climb out of their glide plane, w
included. We have generalized this model by allowing fo
gas of vacancy and interstitial line defects, coupled to
dislocation loop gas and the elastic~phonon! degrees of free-
dom, to be present in the orientationally ordered vortex
uid. We explicitly demonstrated that a finite concentration
these vacancy and interstitial defects allows the disloca
loops to climb out of their glide plane by emitting and a
sorbing vacancies and interstitials, and allows for new ty
of edge dislocations~otherwise forbidden!, thereby signifi-
cantly increasing the entropy of topological defects char
terizing the vortex liquid. This physical result is mathema
cally summarized by Eq.~4.9!, in which nonplanar
dislocation loops and horizontal edge dislocations, w
Burger’s vector in thexy plane, act as sources for vacan
and interstitial line defects. This resulting climblike motio
provides a mechanism for the relaxation of an externally
plied tilt, not present in the model of Ref. 16. We find, ho
ever, that at long wavelengths there isno independentrenor-
malization of the tilt and compressional moduli b
dislocations, other than that already induced in the supers
by fluctuations in the density and orientation of vacancy a
d
s
-

cal
d
r
r
r-
n

i-
e
n-
s,

o
s

a
l

l
-
a-
n,
,
-

d
a

s-

,
y

e
a
e

-
f
n

s

-
-

h

-

lid
d

interstitial defects. This result is somewhat puzzling and m
be a consequence of the Debye-Huckel approximation u
here. We are currently investigating the extension of
model presented here beyond the~quadratic! Debye-Huckel
treatment of defects in order to answer this question. T
coupling of dislocations to vacancy and interstitial defe
does, however, affect the response to a shear tilt perturba
that probes longitudinal superconductivity. While both t
vortex supersolid and the vortex liquid fail to exhibit long
tudinal superconductivity, and are therefore always
tangled, in the supersolid it is only the response of the
cancy and interstitial defects~which form only a small
fraction of the total vortex-flux density! that spoils the
Meissner effect, as

lim
q'→0

xT
ss~q' ,qz50!52

1

4p S 12
B2

4pK D , ~5.1!

whereK is the tilt modulus of the vacancy-interstitial defe
gas. The transverse susceptibilityxT

ss, while larger than
21/4p—the value required for a perfect Meissn
response—remains negative~diamagnetic! and finite. We ex-
pect therefore still an appreciable screening of longitudi
currents, running along the applied field direction. In co
trast, for the orientationally ordered hexatic vortex liqu
~where dislocations loops also unbind!, we find

lim
q'→0

xT
hex~q' ,qz50!52

1

4p S 12
B2

4pc44
R D , ~5.2!

wherec44
R is the significantly reduced vortex liquid tilt modu

lus, given by Eq.~4.25!. At all, but very low vortex densities
c44

R 'B2/4p and the diamagnetic susceptibility is therefo
vanishingly small. Hence, as expected, the fully entang
vortex liquid has essentially normal response to a shear
perturbation and exhibits no longitudinal superconductivi

We hope that the results for the properties of the sup
solid and hexatic phases, and as well as for the transit
scenarios from and into them, presented here, will serve
useful guide for identifying these exotic phases
experiments24 and simulations32 of vortex systems. It is also
likely that the equilibrium analytical description develope
here will be useful for incorporating defects into the curre
elastic theories ofdriven vortex lattices,44,45 as well as for
interpreting and characterizing the results of experimen46

and numerical simulations47,48 on these rich nonequilibrium
systems.
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APPENDIX A: DETAILS OF COUPLING CONSTANTS
APPEARING IN THE SUPERSOLID MODEL

In this appendix we study the phenomenological co
plings that appear in our model of a supersolid, defined
the effective free energyFss, Eq. ~3.12!. Our goal is to de-
termine the range of values that these parameters can as
in a physically realistic model of a supersolid. In Sec. III
we found that the effective supersolid modulic11

R and c44
R ,

Eqs. ~3.23!,~3.24! vanish at intermediate values of the co
plings g and g8, suggesting a vortex density instabilit
within the supersolid phase. The purpose of this append
to show that such an instability is only apparent and ari
from our definition of parameters.

As we have seen in Sec. III A, the supersolid effect
free energy consists of the elastic lattice partF latt , the
vacancy-interstitial defect partFd , and a coupling between
the elastic and defect degrees of freedomF int given in Eq.
~3.9!. The form ofF int was dictated by symmetry, withg and
g8 unknown phenomenological parameters. We argue h
however, that in a more realistic model of a supersolid,
coupling between elastic degrees of freedom and def
arises from fluctuations in the magnetic inductiondB and
therefore should be written as an expansion in powers ofdB.
To lowest ~quadratic! order, such energetic contribution
when expressed in terms of vortex line density fluctuatio
dn and t, lead toF̃ int given by

F̃ int5
1

2n0
2E dr @a~dn!21a8~ t!2#. ~A1!

Inserting the expressions fordn andt given in Eqs.~3.6! and
~3.7! in F̃ int , expanding the resulting expression and comb
ing it with F latt andFd , we find F̃ss5F latt1Fd1F̃ int

F̃ss5
1

2E drF2c̃66ui j
2 1~ c̃1122c̃66!ukk

2 1 c̃44~]zu!2

1
1

x̃n0
2 ~dnd!21

K̃

n0
2 ~ td!21

2g̃

n0
dnd“•u1

2g̃8

n0
td•]zuG .

~A2!

Clearly Eq.~A2! has the same functional form asFss studied
in the main text. The coupling constants, however, are gi
by

c̃115c111a, ~A3a!

c̃665c66, ~A3b!

c̃445c441a8, ~A3c!

x̃215x211a, ~A3d!

K̃5K1a8, ~A3e!
-
y

me

is
s

e,
e
ts

s

-

n

g̃52a, ~A3f!

g̃85a8, ~A3g!

and they all depend on the two independent parametera
anda8, which are always positive.

We can now reexpress the renormalized supers
moduli c11

R andc44
R , given by Eqs.~3.23! and~3.24!, respec-

tively, in terms of the couplings of the model defined he
with the result

c11
R 5

c11x
211~c111x21!a

c111x21
, ~A4a!

c44
R 5

c44K1~c441K !a8

c441K
, ~A4b!

which clearly do not vanish~or diverge! for any positive
values ofa anda8. Hence the instability found in Sec. III B
was spurious, an artifact of expressing our results in term
g and g8 and allowing these coupling constants to acc
values that are unphysical in a generic model of a superso

APPENDIX B: THE DEFECT-FREE ENERGY

Here we give the expressions for the various kernels c
tained in the defect-free energy of Eq.~4.23!. The nonlocal
kernel R̃a i ,b j is given by

R̃a i ,b j~q!5
1

q2 Ba i ,b j~q!1Da i ,b j~q!1Ea i ,b j , ~B1!

where

Ba i ,b j~q!5@Ca ib j2Ca igkqg~A21!klqhCh lb j #ealmq̂lebjnq̂j

~B2!

describes the long-range interaction between disloca
loops in the absence of vacancy and interstitial defects, w

Da i ,n j~q!5
1

q'
2 S K2

g82qz
2

GL
D eza iezb j

2
g8q̂'k

q2
@ezkaq̂' iezb j1ezkbq̂' jeza i # ~B3!

1
g8qzqmqgq̂'k

q2q'GL

@Cmkn iengaezb j

1Cmkn jengbeza i # ~B4!

is the part of such interaction mediated by vacancy and
terstitial defects. The matrixEa i ,b j describes the dislocation
core energy and is given by
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Ea i ,b j52Eedazdbzd i j 12Esda idb j12Es8dab~12dazdbz!d i j

12Ee8eza iezb j . ~B5!

The effective interaction between the vacancy and interst
defects is described by the two scalar kernels

A~q!5
1

n0
2 Fx211K

qz
2

q'
2 2~g2g8qz

2/q'
2 !2

q'
2

GL
G ~B6!

and

C~q!5
1

n0
2 FK2

g82qz
2

GT
G . ~B7!

Finally, the tensorsDa i and Ga i describe the coupling be
tween the dislocation loop gas and the liquid of vacan
interstitial defect lines, and are given by
-
g
ns

d

uid
-

on
v

pe
p
n
.

D.

de

n

al

-

Da i~q!5
1

n0q H @gdb i2g8dbzq̂' iqz /q'#

2
q'

GL
~g2g8qz

2/q'
2 !qmq̂' iCm j b i J ebgaq̂g

2
qz

n0
F K

q'
2 1

g8

GL
~g2g8qz

2/q'
2 !Geza i , ~B8!

Ga i~q!5
g8

n0q FgdbzĈi2
qz

GT
qmĈjCm j b i Gebgaq̂g , ~B9!

with Ĉi5e i j q̂' j and q̂j5qj /q.
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