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We study a three-dimensional Abrikosov vortex lattice in the presence of an equilibrium concentration of
vacancy, interstitial, and dislocation loops. Vacancies and interstitials renormalize the long-wavelength bulk
and tilt elastic moduli. Dislocation loops lead to the vanishing of the long-wavelength shear modulus. The
coupling to vacancies and interstitials—which are always present in the liquid state—allows dislocations to
relax stresses by climbing out of their glide plane. Surprisingly, this mechanism does not yield any further
independent renormalization of the tilt and compressional moduli at long wavelengths. The long wavelength
properties of the resulting state are formally identical to that of the “flux-line hexatic” that is a candidate
“normal” hexatically ordered vortex liquid stat¢S0163-18209)02317-4

[. INTRODUCTION properties of the resulting vortex liquid state.
At low temperatures, in a well-ordered Abrikosov lattice

Both disorder and thermal fluctuations strongly affect thestate® these defects are bound, as the energy of an isolated
properties of the vortex array induced in type-Il supercon{ine defect diverges with system size. At higher temperatures
ductors by an external magnetic fi¢ftf One of the most entropy can, however, drive a proliferation of these line de-
striking consequences of thermal fluctuations, particularlyfects, in analogy with the melting of two-dimensional
pronounced in the higfi. materials, is the resistive vortex solids}*'® Two melting scenarios are possilife(i) a one-
liquid state? located between thid .,(T) line and the vortex  stage first order transition from a solid to sotropic vortex
solid in the magnetic field(H) temperature(T) phase liquid where both dislocations and disclinations unbind si-
diagram® Upon field cooling, a vortex liquid freezes into an multaneoushyas it occurs in the melting of ordinary three-
Abrikosov vortex solid. The nature of the freezing transitiondimensional(3D) solidg, (ii) a two-stage, possibly continu-
and of the resulting vortex solid phase depends on theus transitior® where dislocations unbind first, leading to a
amount of disorder present in the material. In dirty samplediexatic flux-line liquid with residual bond-orientational or-
the vortex solid has been described as a “vortex glfsarid  der, vanishing shear modulus, but finite hexatic stiffness.
its translational correlation length is limited by disorder to aThis first transition would then be followed by a proliferation
finite value! In three dimensions, the low-temperature vortexof disclination loops, thereby completing the transition into
glass solid is expected to be a true superconductor with anisotropicvortex liquid. The first stage of this second sce-
vanishinglinear resistivity. For weak disorder, the vortex nario for the melting of the Abrikosov lattice was first sug-
solid state is expected to be a topologically ordered “Bragg”gested by Marchetti and Nelsdhwhile avoiding the subtle
glass state in three dimensions, with logarithmically growingquestion of the melting transition itself, they adapted the
vortex displacements, but bound dislocation lobpshe  method developed long ago by Nelson and Toher de-
freezing transition of the vortex array has been observed tecribe the vortex-line—liquid state. Marchetti and Nelson de-
be first ordettin ultraclean samples and continuous in dirty scribed the hexatic vortex liquid as a vortex lattice with an
superconductors: 3 equilibrium concentration of dislocation loops, treating the

In very clean samples, where the disorder-limited translalatter in the Debye-Huckle approximation. Through detailed
tional correlation length is thousands of intervortex latticecalculations, they demonstrated that dislocations drive the
constants, the low-temperature phase can be well approxieng wavelength shear modulus of the system to zero and
mated by a vortexattice. Within an elastic description, the computed the effective hexatic stiffness of the resulting ori-
primary low-temperature excitations of the vortex lattice areentationally ordered vortex liquitf.
phonons, characterizing two-dimensional displacements of Vacancies and interstitials constitute another class of de-
vortex lines from their preferred lattice positions. As thefects that play an important role in solids. In ordinary crys-
temperaturéor field) is raised towards the melting transition, tals and in 2D vortex lattices, thegeint defects cost finite
other excitations become important. By definition, these arenergy and are therefore present in finite densitgnatfinite
defectsin the vortex lattice, i.e., they are not describable intemperature. While their static effects in these systems are
terms of single-valued vortex displacements. These line deminimal, their density represents an important hydrodynamic
fects are dislocations, disclinations, vacancies, and interstimode which must be included in the correct description of
tials and must be included in the model for a complete deerystal hydrodynamic&
scription of the melting of the vortex solid and of the In strong contrast, in vortex lattices, vacancies and inter-
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stitials areline defects with energy proportional to their
length and thereby diverging in bulk samples. Hence one B
expects that at low temperatures their average density van-
ishes. At higher temperatures, this positive energetic contri-
bution to the free energy can, however, be compensated by a
negative entropic contribution associated with line wander-
ing, which also scales with the defect length, in analogy with
the Kosterlitz-Thouless pictufé.These considerations allow
two thermodynamically distinct crystalline phases, with a
sharp phase transition between them. While in both phases
dislocations and disclinations are bound, and as a conse-
guence there is long-range translational orftene Bragg
spots in an x-ray scattering experimeand a finite shear
modulus, line vacancies and interstitials are bound in the
low-temperature crystal, but have proliferated in the high- 0 Meissner
temperature crystal phase. A thermodynamically sharp dis- TC T
tinction between these two crystal phases in three-
dimensional vortex systems was first emphasized by Fisher FIG. 1. Schemati®-T phase diagram illustrating the flux line
and Leé® based on the mathematical correspondence becrystal, vortex “supersolid”’(guaranteed to exist at fields much
tween vortex lines and world lines of two-dimensional quan-higher than the decoupling fielB,), the orientationally ordered
tum bosons. In this mapping the low-temperature vortexhexatic vortex liquid, and the isotropic vortex liquid.
crystal maps onto a 2D Wigner crystal and the high-
temperature vortex solid corresponds to the quantum supevacancy interstitials’ inability to relax shear, and confirms
solid phase of 2D bosons, with vacancies and interstitials inhe finiteness of the supersolid shear rigidity which distin-
its ground state. The quantum supersolid is quite exotic, imguishes it from a vortex liquid. We also compute a finite,
that it is both crystalline and superfluid. Correspondingly,downward renormalization of the compressional and tilt
due to the finite density of vacancies and interstitials in themoduli by vacancy and interstitial density fluctuations. We
vortex supersolid, vortex lines can move arbitrarily far anddemonstrate that as a consequence of the reduction of the
entangle, as in a vortex liquid, and therefore this phase exeffective tilt modulus, the flux-linavanderingis enhanced
hibits finite linear resistivity. and, analogously to a vortex liquid, a bulk vortex supersolid

While experiments seem to rule out the existence of aris always entangled, i.e., it does not exhibit longitudinal su-
equilibrated vortex supersolid phase in bulk 2[Dantum  perconductivity.
crystals, based on detailed calculations, Frey, Nelson, and The existence of a vortex supersolid allows for two sce-
Fishef® have argued that such a phase is more likely to exisharios for the melting transition into the vortex liquid state.
in flux-line arrays at high fields because of the layered strucAt low magnetic fields, we expettthis transition to be di-
ture of high-temperature superconductors. These authorgctly from the low-temperature, nonsupersolid crystal into a
conclude that a vortex supersolid phase will certainly exist invortex liquid phase. As discussed above, the vortex liquid
anisotropic superconductors for magnetic fields above a destate itself can be either a fully disordered isotropic liquid or
coupling fieldB, where vortices in different CuClayers are  a bond-orientationally ordered liquid that can further disor-
essentially decoupled by thermal fluctuatiéh&urthermore,  der into an isotropic liquid via disclination unbinding.
even if an equilibrium supersolid phase was absent, an ap- Alternatively, the nonsupersolid crystal can first undergo
preciable nonequilibrium density of vacancies and intersti-a transition into a vortex supersolid by a proliferation of
tials may still be present in a flux-line lattice, when the vor-vacancies and interstitiafS,and subsequently melt into a
tex array undergoes a first order freezing transition upomwortex liquid?? These two scenarios have been dubbed as
cooling in a constant field. type-1 and type-Il melting, respectivef{y,and are illustrated

In this paper we study the effects of vacancies and interin Fig. 1.
stitials within the vortex supersolid and liquid phases. As Very recent experiments investigating vortex penetration
discussed above, in the supersolid phase, aside from beirlgrough surface barriers in the presence of a transport current
responsible for its existence, these defects provide a mechax clean BSCCO samples have indeed indicated that the na-
nism for vortex line wandering and consequently for its finiteture of the melting line may change at high field, even in the
resistivity. They also are important degrees of freedom, irabsence of point disordét.In fact these experiments suggest
addition to phonons, that must be incorporated in the corredhe existence of an intermediate phase between the solid and
description of the supersolid. In Sec. lll we construct athe liquid at high fields. This observed regime lies above the
model of a vortex supersolid, as an elastic lattice with arfirst order melting line determined by equilibrium magneti-
equilibrium concentration of unbound vacancies and interstization measurements, but apparently exhibits a certain
tials. We compute the flux-line density correlation functions,amount of sixfold periodicity, as indicated by neutron
that characterize the static equilibrium properties of thisscattering® It is therefore a candidate for either the super-
phase, and extract from these the effective elastic moduli ofolid or the hexatic liquid phases studied here.
the supersolid phase. We find that the long-wavelength shear Although the nature of the type-I and type-Il melting tran-
modulus is unaffected by thiuctuationsin the density of sitions should be quite differeft,in either case vacancies
vacancies and interstitials. This result is consistent with thend interstitials should proliferate in the resulting vortex lig-
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TABLE I. A summary of our results for the elastic constants and the winding number in the various
phases of Fig. 1.

shear compression tilt (W?) [Eq. (3.29]
crystal Ces C11 Cas 0
-1 2 12 2
. c - CalK— ngkgT
supersolid Ces i S LTy o078
011+X71+2‘)/ C44+K+2’)/, K
A2 nZk T A IN\2
hex Il 0 C11— Ces CaK—y o¥B 1+ (Cas— ")
Cagt K+27v' Caq CaK—7y'2
N2k T
hex 1 0 C11— Ces Cas
Cas

uid state?® Hence, in addition to dislocations, vacancy andinterstitial defects as well, leading to the breakdown of the

interstitial defectanustbe taken into account for the proper model of Ref. 16. The type of long-range order present or

description of a vortex liquid. They were not, however, ex-absent in each of these phases is summarized qualitatively in

plicitly included in the calculations of Ref. 16. When vacan- Table II.

cies and interstitials are absent, dislocation loops in the vor-

tex line lattice are restricted to lie in the plane defined by the Il. ELASTIC PROPERTIES OF DEFECT-FREE

magnetic field axis and their Burger’s vector, and can only VORTEX LATTICES

glide (see Fig. %, but not climb. One of the consequences of

this is that the effective tilt modulus of the vortex liquid is

not renormalized by dislocations and in the model of Ref. 16 We begin by recalling the properties of an ordeefect-

is therefore identical to that of the vortex lattice. free vortex lattice, which we expect to be stable at low tem-
The results presented in Sec. IV remedy the limitations oPerature and field in a clean supercondutas discussed in

Ref. 16, by explicitly including vacancies and interstitials in the Introduction, long-scale degrees of freedom of this sys-

the description of a vortex liquid. Vacancies and interstitials!€™M areé uniquely characterized by a single-valued vortex dis-

renormalize the tilt and compressional moduli and allow dis-Placement fieldu(r). With the convection in which the ex-

location loops to climb out of their glide plane by absorbing €@ magnetic fielH, (aligned with thec axis of the

and emitting these defects. At long wavelengths, howevels,uperconduct()rpoints along the axis, the two-dimensional

the coupling of dislocations to vacancies and interstitials’€CtO" displacemeni(r, ,z) is co_nflned to the<y plane. .
The long-wavelength properties of a triangular flux-line

does not yield anpdditional independentnormalization of attice are characterized by the elastic free energy functional
the tilt and compressional moduli. Whether this is a generall y oy

property of the vortex lattice, or an artifact of the quadratic
quel and the Debye-HuckeI apprqximation used here, re- Flattzzf dr[2c66ufj+(cll— 2Cee) U2+ Caa(3,U)2],
mains an open question. Our work yields a complete descrip-
tion of a bond-orientationally ordered hexatic vortex liquid,
whose tilt and bulk moduli are renormalized by dislocations,where
vacancies, and interstitials, and whose shear modulus is
driven to zero by the proliferation of these defects. TABLE Il. This table displays the presence or absence of trans-
Our results characterizing the properties of the varioudational and orientational long-range ord&RO) as well as longi-

phases shown in Fig.1 are summarized in Tables | and I1. W#idinal superconductivity in each phase. The asterisk serves to em-
stress that hexatic | and hexatic Il are not two distinct hexatidhasize that although the supersolid does not exhibit longitudinal
phases, but rather two different regimes within the Saméuperconductivity, the degree of screening of longitudinal currents
hexaticl hase. distinquished by a high and low concentratiolf this phase is substantially different from that of the vortex liquid

P T 9 . y 9 . phase(see Table)l
of vacancy and interstitial defects, respectively. The cross-
over between these two regimes is indicated in Fig. 1 by a

A. Model

(2.1

. - - Translational  Orientational Longitudinal
dotted line. The results quoted in Table | for the hexatic | LRO LRO superconductivity
phase are those obtained by Marchetti and Nelson in Ref. 16
assuming that no vacancy or interstitial defects are present icrystal yes yes yes
the system. These results, however, only apply well belovgupersolid yes yes o
the dotted line in Fig. 1, very close to the solid-hexatic phaseex | no yes no
boundary. As the transition to the isotropic liquid is ap- hex II no yes no
proached, the large number of interacting dislocation loop$quid no no no

present in the hexatic will inevitably generate vacancy and



12 004 M. CRISTINA MARCHETTI AND LEO RADZIHOVSKY PRB 59

1 1
uijzz(wij‘l'wji) (2.2 S(q, -Qz):v<5n(Q)5n(—Q)> 2.9
is the symmetrized two-dimensional strain tensor, with and the tilt field correlation function

Waj:&a,ui (23) 1

_ ) o Tij(‘h:q2)2v<ti(Q)t,‘(—Q)>
a 3X2 hybrid strain tensor. Greek indices take on the full
three-dimensional set of labelsy,z, and Latin indices are _ L~ T, ~
reserved for the purely two-dimensional sgy. We will use =Tu(q,,02) Pij(a) + Tr(a, .92 PijaL),
this notation throughout the paper. The parametggs 41, (2.10
and c,, appearing in the Eqg2.1) are the shear, compres-
sional, and tilt modulus, respectivel{.In contrast to ordi-
nary crystals, in a flux-line lattice vortex interactions extend
over a range of order of the London penetration depth
which can be quite large, especially in higlh-superconduct- A A~
ors. As emphasized in the extensive literature on the Pij(00)= 8= 0.0, (212

; 8,2 H . . . .
subject;>” on scales shorter than, this leads to wave- are the longitudinal and the transverse projection operators,
vector-dependent elastic moduli. For a detailed Compa”SOFbspectively,a —q, /q, , andV is the volume of the super-
17 ML 1y

with experiments, inclusion of these nonlocal elastic effects. |4 \ctor. In light of the constraint, E(2.8), the longitudi-

can be_ Important, egpemally at high fields, an_d they can bﬂal part of the tangent field correlator is proportional to the
easily incorporated into our results by replacing all of thestructure function. with

bare elastic moduli by the proper wave-vector-dependent

where

Ph(ai):aiifhj ' (2.1)

expression$’ 2
When the lattice contains no vacancies nor interstitials, T(9, ,0)= —25(q, ,d,). (2.13
the number of flux lines equals the numié¢of sites in the a.

triangular lattice. On the average, the flux lines are aligned
with the external field and the equilibrium magnetic flux den-

sity field is given byBO:iBO:Ed?OnO' wherego=hci2eis  \eighte=F/%aT/z, with F the free energy functional and
the flgx quantumn9=N/A51/aC is the equnlbrlu.m.r)umbe_r =Tracde F/*eT] the corresponding partition function. In
density of vortex lines and. the area of the primitive unit 4, defect-fregnonsupersoliivortex lattice,F is given by

cell. Fiat, EQ. (2.1), and we denote the corresponding thermal

Fluctuations in the local inductiodB(r) =B(r) — B, can verages by - - )o. Using Eqs.(2.6) and(2.7), the structure
be described in terms of fluctuations in the areal density o unction and the tilt field correlation function can be ex-

flux lines, on(r, ,z)=n(r, ,z) —no, and of a tilt vector field  ,aqqed in terms of thermal averages of the phonon tigld

The angle brackets in above expressions and throughout
the paper indicate a thermal average with a Boltzmann

t(r.,2), with the relation and are therefore easily computed, with the result
6B,= ¢ydn, (2.9
o So(q)=ﬁn2<|& -u()[?) =M (2.14
B, = ¢ot, (2.5 2 O g +cag?
valid in the long wavelengtigh <1 limit.%®3In the absence gang
of vacancies and interstitials, the areal density of flux lines
and their orientation relative to the applied field direction are q2 R N2k T 0P
entirely determined by the local strains, according to T?(q)= VnéPﬁ(qQ(ui(q)uj(—q))O: — -
Ceed L t Cadd;
on/ng=— 6AIA= —u;; , (2.9 (2.19
t/ng=d,u. 2.7) The structure functiors(q) can be probed in a neutron

N ) o scattering experiment. The tilt correlation functi®p(q) is
The conditionV-B=0 translates into a “continuity” con- directly connected to the experimentally measurable linear
straint for the flux lines magnetic susceptibility tensay;(q) according to

30N+ V -t=0. (2.8 2

éo
As can be seen from Eq$2.6) and (2.7), this continuity aPUICTRED 47rkBTT”(qL Az)- (216

constraint is identically satisfied in tlefect-freevortex lat-

tice, where the displacemeatis single valued. Equation(2.16) holds in the long wavelengtip\ <1 limit. A

more general relationship between susceptibility and tilt cor-
relation function that applies at scales shorter thaim an
anisotropic material can be found, for instance, in Ref. 35.
Thermal fluctuations in the density and tilt field are char-The first term on the right-hand side of H.16 represents
acterized by the density-density correlation functithe a perfect diamagnetitnegative Meissner response, which,
structure factor in a mixed state is considerably reduced by the “normal”

B. Correlation and response functions
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paramagnetic vortex tilt respon3e , contained in the sec- ﬁ

ond term. The linear susceptibility relates the transverse flux slf,‘.‘llslors I

density 6B, (q) induced by an external perturbation field “2

S6H, (q), applied perpendicular to the fieldioziHo respon- Xxx P SH
1

sible for the onset of the vortex state, with

oBi(a)=[6;j+4mxij(a)]oH (). (217

1
_________ :_____,..—'—-V
From Egq. (2.19, appropriate for a perfect, defect-free ' oH,

flux-line lattice, we observe that the long wavelength limit of
the transverse part of the tilt field correlation function is

nonanalytic with ! >
yue : SH,
2
nokeT
oA, =0a) = ———, (218 1y
44
o o FIG. 2. Sketch of an idealized experimental setup to probe lon-
T+(q.,9,=0)=0. (2.19 gitudinal superconductivity.

The nonanalyticity of the tilt correlation function reflects a

drastically different linear response of the defect-free vortex FOF comparison, we recall that in a flux-line liquid, the
lattice to two types of transverse field perturbatidhs. long wavelength limit of the transverse part of the tilt corre-

The transverse field response in the ligjt<q,—0, cor-  1ation function is analytic, with
responds to a tilt perturbation of the flux lines, induced by an

2
applied transverse fiel' s, o6H, (d,) that is spatially ho- lim Tid(q, q,=0)= lim Tidq =0q,)= NoKe T
1 Z Y Z H H .
mogeneous in they plane. The corresponding long wave- q, -0 4,0 chgud
length transverse susceptibilityy= P x;; , is given by (2.22

As expected, a vortex liquid, beirgualitativelyidentical to
(2.20 the normal state, albeit highly conductive, exhibits neither
transverse Meissner effect, nor longitudinal superconductiv-

. . . ity. We will return to this point again in Sec. IV.
If the second term in brackets on the right-hand side of Eq'.ty Finallv)\/” we lﬂ]ote thalt iﬁ tlhe Igttlqu<q .0 limit. the
’ z L 1

(2.20 were absent, the superconductor_would exhibit Ioence(.:{ransverse part of the tilt correlation function corresponds to
screening of the transverse perturbation. Such a behavi fe world-lines winding numbetW?) studied by Pollock

can, for instance, occur in flux-line arrays pinned by aligne : : : :
damage tracks. In the presence of such correlated disordq,afnd Ceperle}f in their path integral approach to the super

the vortex lattice is replaced by a thermodynamically distinctpl’Jid transition in guantum boson systems. In such an ap-
“Bose” glass phasé® that is characterized by a divergent roach, dating back to Feynman, the superfluid phase is iden-

. L . tified with an entangled state of boson world-line trajectories
tilt modulus ¢4, and exhibits a transverse Meissner effect, g J

1 2
lim x%(q, =0, )=——[1— :
4,0 XT(QL qZ A4t 47TC44

with "qu_,OXT(CIz): —1/4x. In the absence danisotropic lim T1(q, ,q,=0)=(W?) (2.23
pinning of the vortex lattice, such a perfect transverse dia- a—0

magnetic response is spoiled by the finite vortex tilt re-

sponse, that leads to only a partial screening of the transverse :ﬁ_ns (2.24
field, displayed in Eq(2.20. m’ '

Conversely, the “m'tqz<<.q¢_>0’ describes a magnetic 5 ng the boson-superfluid density. The well-known identi-
response to a transverse fiéldq,o6H, (q,) that is homo- fication of physical parameters under the boson-vortex map-
geneous along the axis, but is spatially varying in they  ping is given by
plane. The inducead-directed screening currents lead to a
shear perturbation of the flux-line array, with the response in h—kgT, (2.2
a defect-free lattice given by

mee;, (2.26

) 1
lim x%(q, ,0,=0)=—7—. (.20

qJ_—>O ﬁﬁ(_)Lr (227)

Thus the flux lattice exhibits perfect screening in response tevith m the boson mas; the core energy per unit of length
this z-independent transverse perturbation. Since the screenf a single vortex lineg the inverse boson temperature, and
ing currents involved in the shear perturbation run parallel td. the vortex sample thickness. Utilizing this mapping, to-
the applied fielH|z, a perfect Meissner response to a sheaigether with the approximate local expression for the it
perturbation has also been termed longitudinal supercondueaodulusc,,= nye;, we reassuringly find that the defect-free
tivity. It follows directly from the fact that, in contrast to a flux-line lattice (in which vortex lines do not entangle and
liquid, a vortex lattice is characterized by a finite shearthe sample exhibits longitudinal superconductiyigorre-
moduluscgg. sponds to the “normal” boson crystal with vanishing super-



12 006 M. CRISTINA MARCHETTI AND LEO RADZIHOVSKY PRB 59

fluid densityng=0. The entangled flux-line liquid, on the ng(r,,z)=n;(r, ,2)—ny(r, ,z) (3.2
other hand, corresponds to the superfluid phase of bosons

with ng=ng, and does not exhibit longitudinal superconduc-and a two-dimensional tilt vector field

tivity. We stress, however, that the mapping described

above, as well as Eqs2.23 and (2.24), only apply to a

model of the vortices that neglects the nonlocality of the ta(r,2)=ti(r.,2)—t,(r.,2), 3.2
intervortex interaction along the fiela) direction®® A more
general approach to the derivation of vortex liquid hydrody-Where
namics, directly from a “kinetic theory” of interacting flux
lines was developed in Ref. 36. N,
Figure 2 shows a sketch of an idealized experimental na(rl,Z):nEl 5(2)[M—F§(Z)] (3.3

setup that could be used to probe longitudinal superconduc-
tivity. An external fieldH, is applied along the axig(in our
coordinate systejnof a cylindrical sample and a uniform and
vortex state with flux lines running alormis set up. A cur-

rentl confined to a wire running along the axis of the cylin- ard(z) 2 a

der and producing an additional azimuthal magnetic field ta(ry ’Z):zl 57 0 Lr—ra(2)]. 3.4

SH, (r,)=21zxr, I(r?c), which provides the shear pertur-

bation described above, can therefore probegfe0 field  Here ny(r, ,z) represents the net number of defect lines
response of the vortex state. The longitudinal superconduarossing a unit area perpendicular to the field direction, while
tivity can then be studied by measuring the induced azity(r, ,z) is the net number of defect lines crossing a unit
muthal componenB ,(r, ) of the local induction inside the area normal to théth direction, withi =x,y. Since the inter-
sample. This may be possible by placing radially directedaction among vacancy and interstitial defects is short ranged,
row of Hall sensors at the top of the sample. In the defectwe expect that a liquid of such defects be characterized by a
free crystal, which is a longitudinal superconductor, we ex-compressibility(inverse defect bulk modulug and a finite
pectB,=0 everywhere in the bulk of the sample, deepertilt modulusK. The corresponding long-wavelength free en-
than the penetration length from the surface of the cylin- ergy functional is therefore given by

der. In contrast in the supersolid and hexatic phases there

Na

will be a nonvanishing azimuthal responBg(r,) every- 1 L ) )
where in the sample. Fdzﬁf drx~"(ong)=+K(ty)“], (3.9
0
) —n.—n0 0 -
Il ELASTIC PROPERTIES OF SUPERSOLIDS Wlth. '5n'd—nd ng, andng the mean net defect density in
equilibrium.
A. Model In the presence of these defects, fluctuations in the local

As discussed in the Introduction, we expect that upormagnetic inductioror in the correspondinfjux-line density
increasing the temperature and the external magnetic field(") and flux tangent fieldt(r)] can be brought about by
the defect-free vortex crystal will undergo a thermodynami-changes in both the local lattice stramg; and the defect
cally sharp transition into a vortex supersolid, characterizedl€nsitiesng andty, as
by the coexistence of crystalline order and a finite equilib-

rium density of vacancy and interstitial defetsOur goal on=—ngwj; + Ny (3.6
here is to develop a continuum description of the long wave-
length elastic properties of such a supersolid phase. and
Once vacancy and interstitial line defects proliferate in the
supersolid, their positions and orientations represent new and ti=nowy+tg;. (3.7

important low-energy degrees of freedom, independent of
the lattice displacements characterized by the figld. At  In this case the continuity equatid8.8), arising fromV -B
finite temperature, these defects will lead to fluctuations in=0 yields thenontrivial constraint
the local induction, independent, but energetically coupled
to, local elastic strains. To incorporate such defect fluctua- 3,6ng+V, -14=0, (3.9
tions, we adapt the hydrodynamic methods developed for
vortex lines?"*® to the hydrodynamics of the vacancy and that defect lines cannot start or stop inside the sample. The
interstitial line liquid. elasticstrain drops out from Eq3.8), as it identically satis-

At finite density, i.e., within the vortex supersolid phase,fies the constraint due to the single valuedness of the dis-
the low-energy vacancy and interstitial configurations can bglacement fieldu(r).
parametrized by-directedconformationg r3(z),z] (with a Since motion of defects microscopically corresponds to
=i,v denoting interstitial and vacancy, respectiyedg they  hopping of vortex lines, we expect an energetic coupling
traverse the sample along the direction of the applied field, iletween fluctuations in the density and orientation of defects
close analogy to vortex lines themselves. Long-wavelengtland the elastic strain field. The lowest order coupling al-
properties of a gas dfl, vacancies and\; interstitials can lowed by symmetry corresponds to the following interaction
then be described in terms of a net areal density of defectgart of the free energy functional:
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1
Ti(a)= v<[n0Wzi(Q)+tdi(q)][nowzj( —q)+igi(—a)]).
(3.11)

In the above, the brackets denote a thermal average evalu-
ated with the totakupersolidfree energy functional which
includes both the elastic and the defects degrees of freedom,
given by

Txss T T
FIG. 3. A sketch illustrating the behavior of the elastic shear

modulus.c66 near the vorte>.< crystallto vortgx s.upersolld t.ransltlon.-l-o ensure the condition &7 - B=0, these averages must be
The proliferation of vacancies and interstitials is responsible for the

: : CC . carried out under the nontrivial constraint that defect lines do
softening of the effective shear modulus inside the supersolid phase. L . .
not start nor stop inside the sample, given in E38).
Utilizing this constraint to explicitly eliminateh in favor
of ény and reexpressing the strain tensgy in terms of the
(3.9 longitudinal and transverse single-valued lattice displace-

ments

Fss=Flaet Fat Fine- (3.12

1
Fimzn—of dr[yéngV -u+y'ty- d,u],

where y and y’' are positive phenomenological coupling -
constants with dimensions of elastic moduli. Ignoring a weak uc(a)=q.-u(q), (3.13
coupling to fluctuations in the local temperature, the free

energy functional§&;,. andF 4, together with the elastic part A

Fiat, EQ. (2.1), completely determine the long-scale elastic ur(a) =(zXxq.)-u(a), (3.14
properties of the vortex supersolid.

It is important to note that the parameters, Cgg, Caq, which are the independent finite wave vector elastic degrees
¥ ¥', x, andK, appearing in our model, are functions of the of freedom in the bulk, we obtain the total free energy char-
meannet defect densityn],*® which, within the supersolid ~acterizing the supersolid
phase, can in principle be determined through detailed mi-
croscopic calculations of the type presented in Ref. 20. At 3
the vortex crystal-to-supersolid transition, we expect these _f d°q EF (@)]un( )|2+EF (@)]u,( )|2
parameters to display a nonanalytic behavior as a functionof "% ] (p5)3|2 T DU @1 @Iug
the distance from the transitioT —T,sd (where T, de-
notes the crystal-to-supersolid transition temperatafehe
form illustrated forced N(T)] in Fig. 3. + 2nZ

In addition to these mean-field effects, the coupling of the
elastic degrees of freedom to tHactuationsin defect den- [
sity (around the averagel) and orientation field, Eq(3.9), + ny
yields further renormalization of the elastic constants, study
of which is in part the focus of our work here.

2
z

1,
(x 1+Kq—) | ona(a)| >+ Kltg(a)]?

2
L

q2
(yqp y'—z) sng(q)u (—q)
aq.

+y' i@ ur(—q)

| i

B. Correlation and response functions . o
In the above we have defined the transverse and longitudinal

The elastic properties of supersolids can be characterizegaye-vector-dependent stiffnesses
in a number of distinct ways, reflecting a variety of experi-
mental probes that couple differently to the supersolid de-
grees of freedom. The simplest of these, from the theoretical T'+(q) =Ceeq> + €492, (3.19
and experimental points of view, is the extension of the
equal-time equilibrium correlation functior®q) andT;;(q)
defined by Eqgs(2.9) and(2.10), respectively. They directly I (q)=c1q> + a2, (3.17
measure fluctuations in the local magnetic inductig(r),
related to the fluctuations in thetal vortex-line number and and not Surprising|y found that the transverse and the |ongi_
tilt densities, via relation$2.4) and(2.5). These latter quan- tydinal degrees of freedom decouple. After reexpressing the
tities are determined bioth the local elastic strain and the g(q) and T1(q) in Egs.(3.10 and(3.11) in terms of these
defect density fields through Eq8.6) and(3.7), and lead to  same independent degrees of freedom, these correlations can
be easily computed by inverting the corresponding2ma-
trices that can be read off from the expressionkqg, Eqg.
(3.15. For the structure function of the supersolid we

1
S = Inowii(a) — sng(9)]?), (3.10 thereby obtain
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1
S0 02) = (I = noq. uL (@) + dng(a)|?)

(c1107 +C4000) + (x ol +Ka2) +2(yal —y'q?)

2 2
=ngkgTq — - . (3.18
' (c110% +Caa02) (x 1% +KaZ) —(ya? — y'02)?
Similarly, the transverse part of the tilt correlation function is given by
SS, _E H T 2
TH(A 62 = (y{linoaur(a) +ta(a)|)
kgTn3 2(1—y'IK)?
- BK %+ ke T %l - ),2 . (3.19
i CesT 07 (Cas— ¥ “/K)

It is convenient to define defect-renormalized elastic confrom these expressions we observe that for vanishing cou-
stants that characterize the effective elastic properties of sglings y=y’' =0, the effective elastic moduli of the super-
persolids. One choice of such a definition, that naturallysolid are the corresponding moduli of the lattice and the
arises in experiments which measure fluctuations irtaked  liquid of defects, added in “parallél— a physically appeal-
magnetic inductiorB (e.g., neutron scattering experiments ing result. For weak coupling this implies that the effective
is in terms of the static correlation functions given in Eqgs.bulk and tilt moduli of the supersolid are alwagmallerthan
(3.18 and (3.19, identified with their defect-free lattice or equal to the minimum of the corresponding moduli of the

counterparts, Eq42.14) and(2.15 two subsystems, the lattice and the defects. Hence we find
that for y,y’ small compared to the elastic moduli of the
nakgT lattice and the defects, fluctuations of vacancy, and intersti-
R =$°%q,,9,=0) (3.20  tial densities alwayseducesthe effective longitudinal and
Cri(du) tilt moduli of the supersolid, relative to that of the defect-free
and crystal.
The typical behavior of the supersolid bulk modubfy
kel . for cllixfl as a function ofy is, displayed in Fig. 4c,
= =T1(0q,=04,). (3.2) behaves similarly as function of’). The figure shows that
Ca4(dz) the supersolid modulus grovidecreasedinearly with posi-

tive (negative coupling, at weak coupling. At an intermedi-
atepositivevalue of y, it reaches a maximum at the value of
&he smallest of the moduli for the two subsystems. In the
strong coupling regiméboth positive and negatiyeahe ef-
fective modulus decreases, vanishes and even changes sign,
indicating an instability in the quadratic model of the super-
solid. In our model, this instability is a signal of(spurious
phase transitiorwithin the supersolid phase, which in the
case of the bulk modulusy,, corresponds to additional pro-

Similarly, the effective shear modulgs of the supersolid
can be defined in terms of another equilibrium equal-tim
correlation function

KT
CEF;G( a,)

1
Ev[<Wij(Q)Wij(—Q)>—<Wii(Q)Wjj(—CI)>]|qZ=o

:l 2pl(q : (=
VqJ_ ij QJ_)<U|(Q)U]( Q)>|q2:0

R
11

1, ,
=9 {|ur(@)[*)lq,=0. (3.22

which can be easily evaluated by performing a Gaussian
thermal average with the free energy functional, Ggl5 in

the Boltzmann weight. Using Eq€3.18 and(3.19 together
with the definitions, Eqs(3.20 and(3.21), we find

-1_.2
Ciax "~V
)= ———— (3.23
Cutx “+2y -37-1.5 -1 -0.5 0.5 1 1.5] 2
and -0.2} ¥
12 FIG. 4. The behavior of the supersolid bulk modulus as function
CaalK—
44 Y

(3.24 of the couplingy between the elastic and the defect degrees of

1

R
Cal)=————.
antiz CastK—2vy' freedom, forc,=1<y .
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liferation of defects and change in thedtice density. How-

ever, as we show in Appendix A, for a physical vortex su-

persolid, the elastic modulicgg,Cq11,Ca4,x,K,7y,y") that

appear in our model are constrained to lie outside of this

unstable range. In the special degenerate casgefy 1,

the effective bulk modulus of the supersolid behaveshs
=(cq1t y)/2, with an analogous result for the tilt modulus
chy-

The calculation ofc§6, as defined in Eq(3.22, shows
that, not surprisingly, vacancy and interstitial dendliigtua-
tions do not renormalize the shear modulus, and

(3.29

In contrast to dislocation&o be considered in the next sec-

Cgﬁ(ql) =Cgp-

INTERSTITIALS, VACANCIES, AND DISLOCATIONS . ..

12 009

- n3
Tisjs(q) = V(Wzi(q)wzj( - Q)>,
(3.3)

which probe only fluctuations in thiattice positions andot

the total vortex density (related to magnetic inductioB).
These latter correlation functions are more difficult to probe
in a physical experiment, but can be straightforwardly mea-
sured in a numerical simulation. Making the identification
between the effective elastic moduli of the supersolid and the
corresponding correlation functions, in analogy with Egs.
(3.20 and(3.21), we define

tion), vacancies and interstitials are unable to relieve a shear

stress.

The presence of vacancy and interstitial defects also alters
the response to a transverse magnetic field. The long-

wavelength limit of the transverse part of the tilt correlation
function, T$%(q, ,q,), remains nonanalytic, as in a defect-
free crystal, and yields

1 2
lim x3(q,=00,)=——|1-——|, (3.26
qzﬁo XT (QL qZ 477_ 47TC§4‘|
1 2
lim x3%a. ,qzzo):_ﬂ{l_ 47TK} (3.27)
q.—0

Since, as discussed above, these defects soften the lattice
decreasingboth the longitudinal and tilt moduli the penetra-

nakeT -
& ——=5%9,.9,=0) (3.32
c11(a.)
and
n(z)kB IFss,
=R =T3(q,=04,). (3.33
CAA(qz)

Simple computation of$°(q) and T$%q), together with
these definitions leads

ch=cu—7x, (3.39
12

~ Y

C§4= C44_ ? y (333

EEGZ Ce6- (33@

b . .
yAnother experimentally relevant way to probe elastic

tion of a transverse field ienhanced as seen from Eq. properties of vortex supersolids is through the linear re-

(3.26). A more dramatic effect of the defects is the presenc
of the second term on the right-hand side of B327). In the

Sponse to a constant stresg; applied at the boundaries of

the system. For simplicity, we confine our discussion here to

vortex supersolid vacancy and interstitial defects allow flux-2 tWo-dimensional stress;; applied to a boundary lying in
line wandering and entanglement, and as a result there is fB€ XY plane. To study the response, we first need to decide

perfect screening of weak transverse fields uniform along th
z axis, and consequently the phase does not exhibit longit

tp which physical quantity does such stress couple. In a

[defect-free crystal, the answer is simple: the stress

dinal superconductivity. The supersolid is both crystallinecouples to the lattice strain;; . In a supersolid, there is,

(ces#0) and entangledT$q, ,q,=0)#0], as argued by
Frey et al?® and consistent with nonvanishing winding cor-
relation function

(W3)=lim T(q,,q,=0) (3.28
q, —0
ke TN2

= BK 0. (3.29

however, a number of possibilities, depending on the nature
of the experiment one seeks to desciiag was the case with
the correlation functions discussed abpve a real(as op-
posed to a numericalexperiment the stress on the vortex
lattice is produced through an electromagnetic interaction
and therefore couples to the magnetic induction, which in-
volves both the elastic lattice strain tensor and the defect
contribution. Arguments similar to those found in Ref. 39
indicate that the linear response of the supersolid can be
studied by adding to the free energy, in Eq. (3.15 a part

due to the external stress

We stress that the definitions of the effective elastic

moduli characterizing a vortex supersolid is far from unique.

This is related to the variety of experiments that pralife

ferentphysical properties of the vortex supersolid. Instead of

the correlation function§*Y(q) and T;;(q) defined in Egs.
(3.10 and(3.11), we could have instead focused on

2

~ ng
S*a)= A wi(a)l?), (330

: (3.37

1
Fo-: _j dra'ij<uij—2—%5i1-5nd

and then by minimizing it with respect to the independent
elastic strain and defect degrees of freedom.

Before proceeding with the calculation, some remarks are
in order. Invoking the fluctuation-dissipation theorem, one
might naively conclude that such a static response function is
identical to the corresponding equal-time correlation func-
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tion $°%(q), Eqg. (3.10 that we studied above. However, this 1+ yy
is in fact not the case, in general, even for a defect-free U= > Okks (3.44
crystal. To understand this difference, we consider for sim- 2(€117Ce6~ ¥°X)
plicity the case of a two-dimensional crystal. Bulk correla-
tion functions probe the fluctuations of the bulk degrees of ong _ X(C11—Cest ) 34
freedom at finite(albeit smal) wave vector. Theelastic de- Mo 2(Ci—Ces— ¥2x) Tk (3.49
grees of freedom of the lattice or supersolid aretthecom-
ponents of the lattice displacemefthonong, u,(q) and  Which, when used inside E¢3.38 give
u or equivalent! andu . Hence in the defi-

y(q) [or eq yu(a) ()] Uy =R (3.46

nition of $°Y(q), Egs.(3.10 and(3.30), the average is over
the two lattice displacementéas well as over the defedis  \hereRsS,, is theuniform static response function given by
not the components of the strain tensey; which can be '

written as derivatives of the displacements and therefore are o (20— C10)(1+ yx) +27x(C11—Coet )

not independent degrees of freedom. In contrast, the re- Rj’,= 5 Sij Okl
sponse functions, that most directly relate to experimental 4Cee(C11~Cos~ ¥ X)

probes of elasticity, measure the response t@ften uni- 1

form) stress applied at thieoundaryof the solid. The corre- + 5 6k - (3.47

spondingg= 0, uniform deformations are described thyee 2Ce6

zero-mode independent degrees of freedom, corresponding

to three macroscopic straing,, uy,, andu,, that can be

independently induced in a solid. As a consequence, for

supersolidor a crystal in generathe equal-time correlation

functions differ from the corresponding static response func- (2Ce5—C11) 1

tions, as we now explicitly demonstrate. icjryksltm: Skdj . (3.48
Finally, we note that the situation is different in a liquid, " 4Cee(C117 Cep) 2Ce5

where dislocations have prolif:_erated anql act as additionat o sistent with our discussion abO\l“éjSH differs from the
degr_ees of free_dom: The proliferated dislocations lead t%orrespondinng=0 equal-time correlation function, com-
multivalued lattice displacements and thereby allow for &, ;64 with the lattice displacements as the independent de-
Fransve.rsepart'of the straiw;; , yvh|ch (for the first mden), grees of freedom.

is forb|_dden in _the supersolid. As a result, in a two- Using Eqs.(3.46 and (3.47) we can now compute the
dimensional liquid, allthree components of the symmetric response to any uniform stress; . For example, a uniform

strain Uy, Uyy, andu,,) are independent degrees of free- hydrostatic pressurép corresponds to
dom.

Returr!ing to thg derivation of the linear response to a oij=—psij, (3.49
perturbation described by E(3.37), we treatu;; , w,;, and ) )
the defect densities as independent degrees of freedom aAfd We obtain the bulk modulus for the vortex supersolid as
minimize the total free energl,;=Fsst+F,, with respect
to them, to obtain o 1 __1oA_1on  uk 1dng

B.. AOD Noop  op Ng op

As a check we observe that fgr— 0, which freezes out
he defectsR}’y, reduces to the well-known response func-

lon for a defect-free crystl

Oi O+

i]

SF ot y
#:Zcﬁﬁuij+5ij(C11_2C66)ukk+5ijn_05nd_0'ij:0' B+yx 1+2y a5
1] = .
(338) BX_l_ 72 ’ ( @
SF o1 v' whereB=c;— Cgg iS the standard definition for a defect-free
Y C44sz+n—0tdj =0, (3.39  crystal bulk modulus. We note the similarity in form with the
Z]

correlation functionS*%q, ,q,=0), that we used to define
¢, Eq.(3.20. As discussed above, the computation of the

-1
6Ft°t= X—&nd+lukk+ iﬁijoij =0, (3.40 uniform staticresponse functiogives thebulk modulus ¢;
g  nj 0 2ng —Cgg While the equal-time correlation functiofat q,=0)
defines the longitudinal phonon modulgsg,. As we ob-
OF ot Y served above for the effective, in Eq. (3.24), here too in

=Ktg+ —w,;=0. : : : -
=Kl No Wzi=0 (3.43 the absence of interaction between the defects and the lattice

(v=0), the supersolid bulk modulus is simply determined

Given that the applied stress;; is purely within the y yhe ik moduli of the two systems, added in parallel,

xy-plane equation$3.39 and(3.4]) give B.l=B 1ty
SS "
— Significant caution must be applied in comparing expres-
tdl 01 (3.42 . . .
sion (3.50 with experiments. If, for example, the compres-
Wo=0 (3.43 sion is performed on a time scale that is slow compared to
zZI ’ .

the relaxation time of the elastic degrees of freedom, but fast
and the response i® independent. Solving the remaining compared to that of the defectahich, being a conserved
equations for the strain and the defect density, we find “charge” density, relaxes only diffusive)y then the defects
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are effectively frozen on the time scale of the experiment. In A. Model

this case, corresponding tp=0, only elastic degrees of 14 construct a complete model of a vortex liquid we now
freedom can respond and the resultiggis simplyB of the  rceed to incorporate dislocation loops into the model of a
defect-free crystal. supersolid, presented in Sec. Ill. We do this by allowing

The vortex supersolid shear modulzfz can be probed by  mytivalued lattice displacement fields The loop integral
applying a constant force normal to two opposite lateralyf |,

boundaries of a rectangulaty-cross-section sample. The
corresponding stress is given by

o-ij:a-5iX§jX' (35]) é dui(r):—bi(r) (41)

Such stress induces both the longitudinal)(and the trans-
verse (1) deformations of the lattice. The shear modulus is
defined in terms of the normal strain,—u,, as

enclosing a dislocation line, fails to close by a Burger’s lat-
tice vectorb. The direction of integration around the contour
is that of a right-handed screw advancing parallel to a unit
tangent vectorr to the dislocation line. The peculiarity of
- (3.52  dislocation in a lattice oiz-directed lines is that while the
Ce6 o Burger’s vector is two dimensional and by definition lies in

Consistent with our earlier calculation that used equal-timdh€ XY plane, the tangent to the defect line is a three-

H H 6,41
correlation function, we find here that dimensional vectot.
To study properties of the system on scales that are long

Cea=Ces. (3.53 compared to the spacing between dislocation lines, we use a
. . ) continuum description. We consider a small hydrodynamic
ie., the shea}r modulus remains l.mreno.r.mallzed by fluctua;iume and introduce the Burger's “charge” densignsor
tions in density of vacancies and interstitials. ag;(r), whose integral over an open surfa&egives the total
Burger’s vector of dislocation lines directed along the sur-
face normalng and enclosed by a conto@ bounding the
surface,

1 Uy~ Uyy

IV. DISLOCATION LOOPS IN A VORTEX SUPERSOLID:
A MODEL OF VORTEX LIQUID

We now turn to the description of a vortex liquid. This is
a disordered, dissipative state of the flux-line array, that re-
sults from either a direct melting of a defect-free vortex crys- f agngdA=2, bi™. (4.2)
tal or (possibly a continuous melting of a vortex super- s "

solid, discussed in previous sections. . . L .
Following ideas of Kosterlitz and Thoule¥sextended in PO @ single dislocation line, directed along the tangent

Ref. 16 to three-dimensional vortex systems, we describe ¥ith Burger'zs vectob;, the defect density tensor is given by
flux-line liquid as a supersolid with a finite equilibrium con- @i~ Tﬁ_bi‘s( X(r1). The rectangular (82) density tensor
centration of unbound dislocation loops and vacancy and in¢si(") iS therefore a measure of the number of dislocation
terstitial defect lines. Such an approach nicely complementdnes with Burger's vectob; crossing a unit area normal to
the more conventional hydrodynamic description of the vorthe dislocation tangent;. We remind the reader that Ro-
tex liquid studied in Refs. 37,36. While somewhat more in-man lettersi,j k, ..., areused to denote indices that run
volved, the advantage of the approach taken here is that @y over the valuesx and y, and Greek letters
provides a more direct connection between the vortex liquidt. 3.7, - - ., arereserved for indices that run over the three-
and vortexorderedphasescrystals, in which the defects are dimensional sex,y,z.
bound, thereby presenting a unified description. It also pro- BY definition, dislocations in the-directed line crystal
vides a valuable detailetmicroscopic” characterization of Mmust have their Burger’s vectors lie in thg plane. Conse-
the distinction between vortex liquids and solids. quently the three-dimensional vectar,(r) (j=x,y) de-
The properties of a flux-line lattice in the presence of anscribesz-directed edge dislocations. Edge dislocations lying
unbound gas of dislocation loops, but no vacancies nor inin thexy plane are described by the antisymmetric part of the
terstitials, were studied in Ref. 16. In the absence of vacancfwo-dimensional tensora;;(r) [i=x,y and j=x,y, with
and interstitial defects, dislocation loops are constrained t(avlgj=(aﬁ- ,@z))]. In the absenceof vacancies and intersti-
lie in a plane spanned by their Burger’s vector andzh&is. tials, however, this type oky-plane-directed edge disloca-
These planar dislocation loops can only relax appliedtions correspond to a branching or merging of flux lines,
stresses by “gliding” along the axis. Clearly, once dislo- which necessarily involve fractional or double “flux-
cation loops proliferate on all scales, vacancies and interstieharged” vortex lines, both energetically forbidden. In con-
tials will also unbind andoth of these defects will exist in trast, vacancies and interstitials allow for this type of edge
the resulting bond-orientationally ordered liquid. The goal ofdislocations, as we will demonstrate below. Screw disloca-
this section is to incorporate vacancies and interstitials into @&ons, on the other hand always run normal to flux lines, i.e.,
complete description of a vortex liquid. We will explicitly they lie in thexy plane, and lead to entanglement of the
demonstrate that a finite concentration of vacancy and intetvortex lines*? They are described by theymmetricpart of
stitial defects allows for “climblike” distortions of disloca- ailj(r).
tion loops, which can move out of tizeb plane by absorbing By rewriting Eq.(4.1) in differential form and then aver-
and emitting vacancies and interstitials. aging the resulting equation over a hydrodynamic volume,
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containing many dislocation lines, we relate the dislocatiortials Eq.(4.9) explicitly demonstrates that these defects pro-

density tensow;(r) to the local lattice straimvg;(r), vide a mechanism by which the dislocation loop can
effectively climb out of this plane. They do this by emitting
€apyd Wpk(1) = — aok(I). (4.3 or absorbing vacancy and interstitial line defects. The allow-

Hence in the presence of dislocationss(#0), the strain ance ofnonplanar dislocation loops in vortex supersolids

e cotains  snglar gt rtcannt e witen a7 S 0 0SS e S Conon o S
a gradient ¢z) of a single-valued displacement fielg . g y p y

. J_ . ..
Finally, dislocation loops must either close or terminate atn 9enerale;aj;#0 in these phases. As anticipated above,

sample boundaries. This amounts to the condition this allowsxy-plane-directecedgedislocations to proliferate
upon melting.
dgag(r)=0. (4.4 The above constraint, E¢4.9), is one way that the addi-

tional degrees of freedom associated with proliferated dislo-
We now proceed to incorporate the dislocation degrees ofations enter the description of the vortex liquid. Disloca-
freedom into the model of the supersolid studied in Sec. llltions of course also contribute directly through the “elastic”
We first recall that the fluctuations of the local magneticfree energy in a way that we now derive.
induction 6B= (B, ,5B,) are related to the changes in den- The free energyF of a lattice with dislocations and
sity and orientation of flux lines, with contributions from vacancy/interstitial defects is given by =F 4+ Fq
both local strains and vacancy and interstitial defects. In the- F, ., but with derivatives of the phonon field replaced by
long-wavelength limit these relations are obtained by insertthe total strain tensor given in E.7), i.e.,
ing én andt given by Egs(3.6) and(3.7) into Egs.(2.4) and
(2'5)’ F= 1 d 1 -1 2 2
=35 rWaiCai,BjWﬁj"'W dr[x *(éng)°+K(ty)“]
0B, = ¢pol —NoW;i (1) + dny(r)], (4.5 0

1
OB i= ol NgWi(r) +tgi(r)]. (4.6 +n_0f dr[ yw;; dng+ v' Wyitgi] + Fcore- (4.10

In the presence of dislocations, the strain tenggris given
by the sum of a regular, longitudinébn first, Greek index
part, defined in Eq(2.3) in terms of the derivatives of a
single-valued displacement field, and a singular, trans-

To make the notation more compact, the purely elastic part
of the free energy, given by the first term on the right-hand
side of Eq.(4.10, has been written in terms of the elastic

. : < ! tensor
verse(on the first, Greek indgxpart, w,,;, due to disloca-
tions Cigj=Ce6( Oap™ 042047) 6ij + Ce604) Opi
W o = 0+ WS, . 4.7 +(C11~2Ce6) 80 Opj T Ca46020p20i5 - (4.11)
By imposing theV -B=0 condition and using Eqg4.5) We have also added to the free energy of the defective lattice
and(4.6), we obtain o a termF ., representing the core energy of the dislocations,
’ given by

9,0Ng+ V| -tg=—ng(— WS+ awS"Y). (4.9

It is important to note that, in contrast to the defect-free Fcore:f dr[EeagiJ“Esaﬁ”LEé“ijaii+Eé(fij“ij)2]-
crystal and the supersolid, where tiastic partwg; (dzu;) (4.12
identically satisfiesV-B=0, here this condition imposes a . .
nontrivial constraint that couples dislocations and vacancy) N® COTe energ¥ coe has been written on the basis of sym-

interstitial defects. This becomes apparent by using(£8) metry considerations._ It inc_orporates terms accoun'ting for
to eliminatew; from the constraint in favor of the disloca- the edge and screw dislocation core energies per unit length,

! ! H H
tion density tensor, with the result Ee, Ec, Es, andE;. As discussed in Ref. 16, althoudi
=E,=0 for a single dislocation line, nonzero valueskf
d,6ng+V | -t4=ngej; aﬁj(r). (4.9 andE; are required to describe short range interactions in the

hydrodynamic limit. The values for the core energies are

This important condition is one of the main results of our gstimated to beE,~cggh?, E~ El=\/CeeCadb?, and E.
work and is an essential ingredient in the complete “elastic” _ /=~ |

C11Casp%.26
description of the vortex liquid state. We first note that in the Wﬁilémthe elastic partd,u;) of the strain tensor identi-
. . . a ™l
supersolid phase, where dislocation loops are bound and Iaéa"y satisfies Eq(4.3), the singular part is found by “invert-

tice displacements are single valued; =0, and the con- o 1his equation in Fourier space. This gives
straint reduces to the vacancy-interstitial line continuity con-

dition Eq. (3.8. On the other hand, in a description of a i

vortex liquid which ignores vacancies and interstitials it re- Wi (@)=~ —3€45,05a,j(A) +iqati(q), (413
duces to theejja;;=0 condition of Ref. 16, enforcing the q

constraint, discussed above, that in the absence of vacancieere ; is an arbitrary function, reflecting the fact that the
and interstitials, dislocation loops are confined to lie in thesolution to Eq.(4.3) is only determined up to an arbitrary
plane defined by their Burger's vector and the average extetongitudinal part. This is analogous to the gauge freedom
nal magnetic field. In the presence of vacancies and interstthat appears in electromagnetigior other gauge theorigs
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when, for example, Maxwell equatidvi- E= p is solved for 1 s s 1 1 ) )

the electric fieldE in terms of the charge densipy. Fdef=§j drwa; CoipW; + ﬁf drlx™"(8ng)“+ K(tg)“]
One convenient and natural choice #f is obtained by 0

requiring that the corresponding’; minimizes the total free 1 s L

energyF, Eq. (4.10, with respeclt to lattice displacements. + n_of drlywiiong+ ¥ Wy tail, (4.20

Such a choice is mathematically convenient for computing

thermodynamic averages, because it removes all couplingsherew?,; is the singular part of the strain tensor, given by

between the phonons; and the defect degrees of freedom. Egs. (4.13 and (4.16. This defect-free energy must be

Physically, this choice ofw; corresponds to elastically supplemented with the continuity conditions E¢4.9) and

equilibrated defects. (4.4) for the vacancy and interstitial defect lines and the dis-
To computey; corresponding to this convenient gauge location lines, respectively. The constrai@dt9) can be di-

choice, we insertv,;, Eq. (4.7) into F, Eq. (4.10, and re-  rectly incorporated into the free energy by using it to explic-

quire that thelinear terms inu vanish, which of course is itly eliminate thelongitudinal part of the vacancy-interstitial

equivalent to the requirement thats, minimizes F. The  defects tangent vector

resulting Euler-Lagrange equation is given by

, ti(@) =0, -ta(a) (4.21)
oF y 0%
—Z—é’aa'm——&iénd——&ztdiZO, (414)
ou; No No qa, i B
== I‘Snd(Q) - Inoeij a;; (q),
where 4.22
0 4i = CigjWgj (4.15 in favor of the defect densitgny(qg) and the antisymmetric

. _ o part of the dislocation density tensaﬁ-(q). Finally, using
is the corresponding stress tensor. The solution is more corEgs.(4.13 and(4.16) to eliminate the singular strain field in
veniently written in Fourier space, where it is given by terms of the defect degrees of freedom in F4.20, we

obtain
1
‘/Ii(q): ?(Ail)ijqacajﬁkeﬁynq'yank(q) 1[ dq -
=5 | 3 {Ruvi(@au(@a,(-a)
+ LA, [y ona(@)+ 7 aute(@)] 2] (g3t
— [ya:on (qQ)].
ng - JuLYAoNAATY Aaiq + A(Q) ang(q) Sng( — ) + C(AEHDI(— )
(4.19 D (@ @i~ 9 aNg(Q) — i (A) ()]
Here A~! is the inverse of a 2 matrix A, with A;; +iG i (@[ @~ Dty(a) —a (Dtg(— )]},
=0,C.ipjdp- Its elements are given by (4.23
1 (C11~ Ces) wheret}(q) =tq(q) —q, t(q) is the transverse part of the

(A7)

= i~ auidyj|, (417 =
Fr(g)[ " Ty(g W defect tangent vector. The kernd®s,; ,;(a), A(d), C(q),

. D,i(g), and G,i(q) depend in a complicated way on the

whereI't(q) andT’, (q) are the transverse and longitudinal g|astic moduli €,c11,C44) Of the lattice, and on wave vec-

elastic stiffnesses, defined in E¢8.16), (3.17. torsq, andgq,, and are given explicitly in Appendix B.
With this choice of;, by construction, the total free

energy breaks up into two parts . .
oy P P B. Correlations and response functions

F=F, . +F (4.189 In this section we evaluate the renormalization of the elas-
latt defs . . . . .
tic constants of the flux-line lattice due to dislocations and

whereF, is the defect-free elastic part of the free energyvacancy and interstitial defects. The renormalized elastic

given in Eq.(2.1) and rewritten here for convenience in Fou- constants are defined by Eg®.20—(3.22, but with the
rier space understanding that the correlation functions are now those of

a lattice with an equilibrated concentration of defects and
17 o dislocations. This means that the structure function and the
- 2 2 tilt correlation function are formally given in terms of the
latt ZJ (2w)3[FT(q)|uT(q)| FrU@ud@F strain tensor and the defect fields by the same expressions
(4.19 (3.10 and(3.11) used for the supersolid, but the strain tensor
w,; is now the total strain given in Ed¢4.7), including the
This involves only phonons degrees of freedom, as for aingular part. The same holds for the correlation function
defect-free crystal. The second, defect gagis, is the free  that determined the shear modulus defined on the first line of
energy of an interacting gas of dislocation loops andEg. (3.22. The brackets in these correlation functions now
vacancy-interstitial line defects. It is given by denote a thermal average with the free enefgy+ F gef



12014 M. CRISTINA MARCHETTI AND LEO RADZIHOVSKY PRB 59

with F g given by Eq.(4.23. The average is carried out by Volved and was carried out usingATHEMATICA symbolic
integrating over all configurations of dislocations, describednanipulator program. Only the results will be given here.
by the components of the dislocation density tensoy;,, The full expression for the density, tilt field, and other cor-
and vacancy and interstitial lines, described by the defecteelation functions are too “horrifying” to be shown here,
density énq and tilt field tg. The integration must be done and we therefore only display their long wavelength limits,
subject to the constraint that dislocation lines are closedwhich determine the renormalized elastic constants, accord-
given by Eq.(4.4). The “continuity” constraint for defect ing to Egs.(3.20—(3.22.

lines, expressed by E@4.9), has already been incorporated  The structure factor vanishes g@s— 0, as required by the
into the free energyF 4. The computation of correlation density sum rule. The renormalized longitudinal modulus as
functions is conceptually simple but technically quite in- defined by Eq(3.20 is given by

i 1 14 C11l 2Ce6(C11~ Coe) T C11Eel? ]+ 2C5ex 1+ y(y+2C10) (2Cest EoQ?) (4.24
ch(a,) Cu X '[2Ces(C11— Cee) + C11Eed? ]~ ¥(2Ce6t+ Ecq?)
The renormalized tilt modulus defined by E§.21) is
. C44+ K— 2’)”
=lim T(qz,q,=0)=———-. (4.29
Casd7) g0 CaK—y

We find that in the long-wavelength limit bottf; andcf, are identical to the elastic constants of a lattice with only vacancy
and interstitial defects. In other words, somewhat surprisingly, the coupling of dislocations to vacancy and interstitial defect
lines doesot yield anyadditional renormalization of the tilt and compressional moduli, even if it does make it possible for

dislocations to relax stresses by climbing out of thez) plane and allows fofotherwise forbiddingly costlyxy directed edge
dislocations. Finally, the renormalized shear modulus is

1 1 N 1 N X~ C11(C11—2Cee) — ¥*(C11— 4Cg0)
. 5 - _
Coo(d1)  Ces Bl eyl ¥ H(2ced(Cra Cor) + CuiEetf) — ¥ (2CesT Eca)]

(4.26

Dislocations renormalize the long-wavelength-¢0) shear
modulus to zero, yielding liquidlike response to shear
stresses.

We now discuss various limiting cases for our results. In
the absence of coupling between the gas of vacancy and
interstitial defects and the latticey&0, y' =0), the various y
correlation functions are simply given by the sum of the
contributions from a lattice with an equilibrium concentra-
tion of unbound dislocationgcorresponding to thecon- Z
strained hexatic line liquid discussed by Marchetti and X —
Nelsort®) and from a liquid of defect lines. The correspond-
ing elastic constants add in parallel, with ( ( w

( ! ) + ! (4.27
:X —_ ;
cfi(a.) y—y'=0 ey

( 1 ) —l+ 1 28
CZ(QL) y=y'=0 K CZA4N’ ' z
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. . FIG. 5. Gliding of an edge dislocation loop, allowed even in the
where we have denoted by the superschil the elastic  ghgence of vacancies and interstitials. For simplicity we have
constants of a lattice with an equilibrium concentration ofsketched the dislocation loop for the case of a square lattice. The

unbound dislocations, but with a constraint forbidding va-dotted vertical lines refer to the defect-free square lattice and serve
cancy and interstitial defect§ given by as a guide for the eye.
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FIG. 6. Climbing of an edge dislocation loop in a square lattice,
only allowed in the presence of vacancies and interstitials. The
Burger’s vector of the loop is in the x direction. The lattice con-
figuration at two cross sectiozs andz, shows the climbing in the
y direction, normal to the Burger's vector.
2
1 1 2Cgg z
Ci1 1 2Cg6(C11~ Cep) T C11E0T
y X
1 1 1 (€11~ 2Cgp)

— =t
MN 2 2"
Cgg.  Ce6 Eell  2Cqq(C11— Cop) +C1aEel]

(4.3)

FIG. 7. An edge dislocation loop described by a nonvanishing
aﬁj €, allowedonly in the presence of vacancies and interstitials.
The bottom figure showing a side view of the loop emphasizes the
equivalence between vacancy and interstitial defects and a nonvan-

i _ i (4.32 ishing aﬁ- €j . The loop can be thought of as arising from an inser-
C£\1/I4N Cas’ ’ tion of a row of “finite-length vortices,” which correspond to a
wandering of interstitial defects.
The elastic constants of a supersolid, i.e., the lattice with
only vacancy and interstitial defects, can be obtained by let-
ting all the dislocation core energies go to infinity FZK: eaByTya'?;(tbi ) (4.33
(Ee,E¢,Es,E{—). It is easy to see that in this limit we ) ) ) .
recover the results discussed in Sec. Il. Finally, whert ~ EQuation(4.33 differs slightly from the corresponding ex-
— % andK — vacancy and interstitial defects are forbidden Préession found in textboqks as the stress tensor ina flux-line
and the elastic constants reduce again to those given in Eéttice is not a symmetri¢or even a squayematrix. The

(4.30—(4.32. We recall that the coupling of dislocations to Peach-Kaler force on the rectangular loop shown in Fig. 5
vacancy and interstitial lines allows dislocations to relaxdue to a uniform tilt in thexy plane is normal to the plane of

stresses by climbing out of thé),(i) plane via the emission the loop(alongy) and there is no force on any segment of

or absorption of vacancies and interstitials—a mechanism foih€ 100p parallel tee. Specifically, forr=x, we find Frictt

relaxing stresses that is forbidden in the hexatic liquid of=—oSsby and for 7= —x, we find FPKt= ¢y In other

Marchetti and Nelsofh® words, the Peach-Kder force acts as a couple and tries to
Figure 5 shows a planar dislocation loop wiik=bx of ~ rotate the loop out of its glidAe plane. The screw components

the type considered by Marchetti and Nel$ithis loop lies  of the loop running along=x can glide in any plane that

in its glide plane(the xz plang and can easily relax a shear contains them. In particular, they will glide in theor —y

by gliding in this plane. The climbing of the same dislocationdirection under the action of the force. For this to happen the

loop out of its glide plane is described pictorially in Fig. 6. edge sections must climb out of the glide plane by emitting
It is clear that climb can only occur via the emission or or absorbing vacancies and interstitials, as shown in Fig. 6.

absorption of vacancy or interstitial defects, as summarize®y gliding out of the sample along thedirection, the screw

by Eq.(4.9). Such climb “motion” can occur in response to dislocations can relax a uniform tilt of the lines towards.

the force on the dislocation loop resulting from applying awe note that if one thinks af as a fictitious time, the con-

uniform external tilt to the lattice, corresponding to a con-straint (4.9) is formally identical to the temporal continuity

stant stressr{, = 5, 3,,05x . The force on a dislocation line equation for the density of point vacancy and interstitial de-

due to a uniform stress is the familiar Peach-Kider  fects, diffusing in the presence of dislocations in a two-

force, given by dimensional latticé® Dislocations provide a source of point
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defects as they climb across the sample. The renormalization N2k T
of the tilt modulus can therefore occur only when vacancy T™N(q, ,9,=0)= 0 — (4.36)
and interstitial defects are allowed. Caat2(Es+Eg)QL

It is also instructive to consider the behavior of another
typical dislocation loop, shown in Fig. 7. This loop has and

=bx and lies in theyz plane. The two edge segments run-

ning parallel toz lie in two different and parallel glide _ VN nakeT
planes. The loop is closed by segments running alpng lim T77(q,,0,=0)=— (4.37
which are also edge dislocations in naturepasr. q, -0 a4

This is an example of a dislocation loop characterized by ] .
€;ja;#0. Such a loop is not allowed in the absence of va-We find that independent of whether or not vacancy and
cancy and interstitials, as without such defects the edge sedlterstitial defects are included in the description of the
ments running along would require a row of vortex lines to Neéxatic vortex liquid, the transverse tilt-tilt correlatoraisa-
merge or split into single lines carrying twice or half a flux ytic and lim  , T+(q,,q,=0) is finite, indicating that
guantum—an energetically forbidding configuration. Denot-both systems are entangled. Vacancies and interstitials do,
ing by z, <z, the vertical location of the two segments of the however, decrease the tilt modulus, further enhancing the
loop running along/, we can understand the existence of theentanglement of the vortex array. Although vacancy and in-
loop as arising from a set of interstitial defects that are ranterstitial defects must be incorporated in a consistent descrip-
domly distributed in thexy plane forz<z, andz>z,, but tion of a flux-line hexatic, they do not change the qualitative
organize themselves into a vortex sheetdpr z<z,, acting  properties of the hexatic liquid, which even in their presence
as an extra row of lines in this region. In the region near maintains a vanishing long-wavelength shear modulus and
and z,, clearly 9,nq#0, corresponding to a nonvanishing does not exhibit longitudinal superconductivity.
value of,sijaﬁj . Under a constant stres£>' from a uniform To further characterize orientationally ordered liquid it is
tilt applied to the system, the Peachier force on the loop useful to define a characteristic length scéle that deter-
consists again of two forces of equal magnitude applied omines the typical transverse size of a disentangled flux-line
the sections running alongand directed along-x, as there bundle. This is a region of the flux array where the lines
is no force on the sections of the loop running alangnder ~ remain locally disentangled in the limit of infinite sample
the action of this couple, the loop rotates out of its planethickness along the fiel@z) direction. In the absence of va-
While this motion occurs in the glide plane for each sectioncancies and interstitials, Eqg.(4.36 gives gﬁ’”\‘
of the loop, it requires “diffusion” of vacancies and intersti- ~ \2(Eq+E.)/c,. Using Es~E.~ \CaCeeb?, we find
tials according to Eq(4.9. EMN~ay(ces/Ca) Y, with ag=\1/n, the mean intervortex

The addition of dislocations also removes the nonanaWseparation. In flux-line arrays we typically havg<c,, and
t|C|ty of the transverse part of the tilt-tilt correlation function, the ﬂux_”ne hexatic is entangled over a” macroscopic Sca|es_
present in bOth the defect'free vortex Iattice and the vortex The Coupling of dis|ocations to Vacancy and interstitial
supersolid. In fact we obtain defects renormalizes this entangling length, as can be

seen from Eq(4.34), which for smallq, is given by

K+Cagt 2(Es+EL)A — 2/

T1(q, ,0,=0)=n3kgT 03 N2k, T
’ o B
KCuut 2K(Es+EL)G? 743 Tr(@ 0~ 2T ey (4.39
(4.34 Caa
and with
(W)= lim T SPLCL LI £=/ G K=y 439
= Im ) = = ’ . = ! ! ' )
R ey b OV 2(EG+EL) [cagt K—2y/|

It is easy to see that for all physical parameter valées
<§TN. Not surprisingly, we find that vacancies and intersti-
tials therefore decrease the typical size of a disentangled flux
(W?) and the corresponding superfluid density of the  pundle.
equivalent boson systeriW?)=7%ns/m. The analyticity of Finally, we have also studied the effects of vacancy and
the transverse tilt-tilt correlator at long wavelength indicatesnterstitial defects on the properties of the orientationally or-
thatns=n,, i.e., the bosons are in the superfluid state. Congered hexatic liquid. Although the finite wave vector behav-
versely, this corresponds to an entangled flux-line array, withor is considerably modified, we find that at long wavelength
no longitudinal superconductivity. the effective hexatic stiffness is still given by the expression
For comparison, in the model of eonstrainedhexatic  optained in Ref. 16. This result is consistent with the lack of
line liquid, studied by Marchetti and Nelsdh,where the |ong-scale orientational order and therefore a vanishing ori-
absence of vacancy and interstitial defects prevents dislocantational stiffness in the isotropic line liquid of vacancies
tion loops from climbing out of thel{,z) plane, one obtains and interstitials.

with c§, given by Eq.(4.25. As indicated in Eq.(2.23,
Iimc| 0TT(qL,qz=0) determines the winding number
L—P
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V. CONCLUSIONS interstitial defects. This result is somewhat puzzling and may
e a consequence of the Debye-Huckel approximation used
ere. We are currently investigating the extension of the

X X , Thodel presented here beyond tfuypiadratic Debye-Huckel
of flux-line arrays in the mixed state of type-Il superconduct-yeaiment of defects in order to answer this question. The
ors. The transition from a fully ordered Abrikosov crystal ¢qpling of dislocations to vacancy and interstitial defects
phase into the vortex supersolid phase takes place at a criticghes, however, affect the response to a shear tilt perturbation
temperature or magnetic flux density, at which vacancy anghat probes longitudinal superconductivity. While both the
interstitial defects proliferate, providing a mechanism foryortex supersolid and the vortex liquid fail to exhibit longi-
vortex entanglement and yielding finite resistivity. In ordertudinal superconductivity, and are therefore always en-
to study the long-wavelength elastic properties of the superangled, in the supersolid it is only the response of the va-
solid phase, we modeled the supersolid as a lattice with atancy and interstitial defectéwhich form only a small
equilibrium concentration of unbound vacancy and interstifraction of the total vortex-flux densitythat spoils the
tial defect lines and computed the renormalization of theMeissner effect, as
elastic constants due to fluctuations in the density and orien-
tations of these defects. As expected, at long wavelengths, lim x$3q, ,0,=0)=— i 1
we find that vacancy and interstitial density fluctuations do q,—0 4m
not renormahze_ the shear modulus, (_:onflr_ml_ng the f'nl.ten%%vhereK is the tilt modulus of the vacancy-interstitial defect
of the supersolid shear modulus, which distinguishes it from The t tibilig?®, while larger than
the vortex liquid. In contrast, these defect fluctuations yield 2as: € ftransverse suscep ' € larger tha
finite downward renormalization of both the compressional__ 1/4m—the va!ue rqulrgd for a perfegt Meissner
and tilt moduli. The renormalization of the tilt modulus '-onon=c—TeMans negatm(ha_magnetm\,anq finite. We_ex-_
stems from the.fact that the liquid of vacancy and interstitialpeCt therefore_stnl an appremabl_e screening Of. longitudinal
defects promotes flux-line wandering. We explicitly demon_currents, running alor)g the applied field dllrectlon. In.co_n-
. 2 A trast, for the orientationally ordered hexatic vortex liquid
strate that this defect-based vortex line delocalization mechg-

X . . : . {where disl ions | I n fin
nism spoils the Meissner response to a shear tilt perturbation, ere dislocations loops also unbjpeve find

BZ

47K

), (5.9

characteristic of the defect-free vortex lattice. In other words, 1 B2
the vortex supersolid does not exhibit longitudinal supercon- lim X?‘*YqL ,0,=0)=— —( 1— =, (62
ductivity and, in this respect, similarly to the vortex liquid, is q,—0 4 AmCyy

always entangled. wherec§4 is the significantly reduced vortex liquid tilt modu-

It is clear that the vortex liquid phase, where unbound . o
dislocation loops have proliferated, is also characterized by !’;lljRS’ given by Eq(4.25. At all, but very low vortex densities

~ 2 - - . e .
finite density of vacancy and interstitials, whiotus there- ~ 544 B /4w and the diamagnetic susceplibility is therefore

fore, be included for a consistent description of such a resis\f"’mIShIneg small. Hence, as expected, the fully entangled

tive phase. A model of the vortex-line liquid as a solid with vortex qu.uid has ess_erjtially ”Om.‘a' response to a shgqr tit
an equilibrium concentration of unbound dislocation Ioops,perturbatlon and exhibits no longitudinal superconductlwty.
but no vacancies and interstitials, was previously studied b We hope that the results for the properties of the super-

Marchetti and Nelso®® As a consequence of the constraintgond and hexatic phases, and as well as for the transitions

of no vacancy or interstitial implicit in their model, only scenarios from and i_nto ”.‘e’.“’ presented herg, will serve as a
planar loops, that cannot climb out of their glide plane, Wereuseful guide for identifying these exotic phases in

included. We have generalized this model by allowing for aéi)(pe”mem%4 and simulation¥ of vortex systems. It is also

gas of vacancy and interstitial line defects, coupled to th kely that the equilibrium analytical description developed

- - . ere will be useful for incorporating defects into the current
dislocation loop gas and the elasgghonon degrees of free- . . . ;
P9 N deg elastic theories ofiriven vortex lattices’**° as well as for

dom, to be present in the orientationally ordered vortex lig-. . d ch - h its of -y
uid. We explicitly demonstrated that a finite concentration oflnterpretmg and ¢ arqctgérLZSmg the results of experiments
these vacancy and interstitial defects allows the dislocatioﬁ"nd numerical simulatio on these rich nonequilibrium
loops to climb out of their glide plane by emitting and ab- systems.
sorbing vacancies and interstitials, and allows for new types

of edge dislocationgotherwise forbiddep thereby signifi-

cantly increasing the entropy of topological defects charac- We both thank The Institute for Theoretical Physics at the
terizing the vortex liquid. This physical result is mathemati- University of California Santa Barbara, and the organizers of
cally summarized by EQ.(4.9, in which nonplanar the Vortex Workshop held there, where this work was initi-
dislocation loops and horizontal edge dislocations, withated, for their hospitality and financial support under NSF
Burger’s vector in thexy plane, act as sources for vacancy Grant No. PHY94-07194. We have benefited from conversa-
and interstitial line defects. This resulting climblike motion tions with David Nelson, Daniel Fisher, Erwin Frey, and
provides a mechanism for the relaxation of an externally apdohn Toner. M.C.M. was supported by the National Science
plied tilt, not present in the model of Ref. 16. We find, how- Foundation at Syracuse through Grant Nos. DMR-9730678
ever, that at long wavelengths therenis independentenor-  and DMR-9805818. L.R. was financially supported by the
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APPENDIX A: DETAILS OF COUPLING CONSTANTS

y=-a, (A3f)
APPEARING IN THE SUPERSOLID MODEL

In this appendix we study the phenomenological cou- ~
plings that appear in our model of a supersolid, defined by Y =a', (A39)
the effective free energl¥ss, EQ.(3.12. Our goal is to de- )
termine the range of values that these parameters can assuff¥! ttley all depend on the two independent parameters
in a physically realistic model of a supersolid. In Sec. Il B @1d @', which are always positive. , _
we found that the effective supersolid modaf, and c§,, We can now reexpress the renormalized supersolid
Egs. (3.23,(3.24 vanish at intermediate values of the cou- Moduli c1; andcy,, given by Eqs(3.23 and (3.24), respec-
plings y and y', suggesting a vortex density instability t|\_/ely, in terms of the couplings of the model defined here,
within the supersolid phase. The purpose of this appendix i¥/ith the result
to show that such an instability is only apparent and arises
from our definition of parameters. 1 1

As we have seen in Sec. Il A, the supersolid effective ok = Cux +(Cut x )a, (Ada)
free energy consists of the elastic lattice p&il;, the cptx !
vacancy-interstitial defect paFy, and a coupling between
the elastic and defect degrees of freedBgy given in Eq.
(3.9). The form off;,, was dictated by symmetry, with and R CalK+(CytK)a'
y' unknown phenomenological parameters. We argue here, 44— Cayt K '
however, that in a more realistic model of a supersolid, the
coupling between elastic degrees of freedom and defec{ghich clearly do not vanisior diverge for any positive
arises from fluctuations in the magnetic inductiéB and  yalues ofe anda’. Hence the instability found in Sec. Il B
therefore should be written as an expansion in powe@Bof  was spurious, an artifact of expressing our results in terms of
To lowest (quadrati¢ order, such energetic contribution, ,, and y’ and allowing these coupling constants to access
when expressed in terms of vortex line density fluctuationssalues that are unphysical in a generic model of a supersolid.
én andt, lead toF,; given by

(A4b)

1 APPENDIX B: THE DEFECT-FREE ENERGY

E - 2 1(+)2
Fin ZnSJ drfa(om™+ &’ (7. (A1) Here we give the expressions for the various kernels con-
tained in the defect-free energy of E@.23. The nonlocal

Inser_ting the expresgions fon an(_alt given in Eqs.(3.6) and  kemelR,, 5 is given by
(3.7 in F;y;, expanding the resulting expression and combin- ’
ing it with Fpo andFy, we findFo=F 44+ Fg+ Fing

1
Rai 6i(A) =3B (D) + A4 (A +Eui g, (B

= _1 ~ 2~ ~ 2 2 q
Fss=5 dr| 2CgeUjj (€11~ 2Cgp) Ui+ Ca4( 92U)
where
1 K 2y Y
+ =—(8ng)?+ — (tg)%>+ — gV -u+ —tg4- d,u|. _ - -
xn3 ¢ n3 d no ¢ no ¢°° Bui 5i(D) =[Cuisj— Caikl (A" Hiit,C il €ar . Or € szl

Clearly Eq.(A2) has the same functional form Bs, studied  describes the long-range interaction between dislocation
in the main text. The coupling constants, however, are givelPOPS in the absence of vacancy and interstitial defects, while

by

1 y'%a; )
~ A . . = —— K —_—— . .
Ci1=Cpta, (A3a) ai.ni(9) as ( ry €2ai €26
Y Ehk ~ R
Ces=Ces, (A3b) - 7[Ezkaqii €28i T €2k80 1 €24i] (B3)
¥ 0,9,9,0. «
C4g=Cygta’, (A30) + 9%q, T, [C ki €1ya€api
~ + C,ukvj evyﬁezai] (84)
x 1=x"1+a, (A3d)

is the part of such interaction mediated by vacancy and in-
5 terstitial defects. The matrik,; 5z describes the dislocation
K=K+a', (A3e) core energy and is given by
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Ewi gi=2Ee84705,8i + 2E584i 8 + 2EL805(1— 80285, 5ij Lo
" e ST ek pe D.i(a)= [75@ Y 0p,0.i0,/0, ]
+ ZEéEZai 6ZBj . (BS)
The effective interaction between the vacancy and interstitial T 2/a®Ya .9, .C - _]6 a
defects is described by the two scalar kernels FL(Y ¥ 0/ A) 9,911 Cigi | €gyady
qz Y 2, 2
1 2 i +5(y=7'02/47) |€zair  (BY)
A= | x MK 5 (=¥ Q)| (B6) DICHR R
No qi ry
and
12~2 , g, - ~
C(q):i Y qz (B?) al(q) ’ygﬁzc l—‘__l_q,ucjc,ujﬁl eﬁyaqy- (Bg)
ng Tt
Finally, the tensord ,; and G,; describe the coupling be-
tween the dislocation loop gas and the liquid of vacancy- - -
interstitial defect lines, and are given by with C;= €0, ; andd,=d,/q.
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