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Electron spectrum and superconductivity in thet-J model at moderate doping
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A microscopical theory of electron spectrum and superconductivity within the two-dimensidmabdel in
paramagnetic state is proposed. By employing the projection technique for the Green functions in terms of the
Hubbard operators self-consistent Eliashberg equations are derived. A strong coupling of electrons with spin
and charge fluctuations due to exchange and kinematical interactions is obtained. In the normal state, one-
electron spectral functions reveal narrow quasiparticle peaks close to the Fermi $b8aaith an additional
broad incoherent band. The FS changes from holelike at low doping to electronlike for hole concentrations
6>0.3. In the superconducting state we obsetweave pairing with the maximal ;=0.04 at optimal doping
6=0.3.[S0163-182899)04513-0

I. INTRODUCTION d-wave pairing of spin polaron QP with maxim#&}=0.01
were obtained at optimal hole concentratié0.2. In Ref.
Experimental studies of high-temperature superconduct21 the superconducting instability within the spin-polaron
ors have provided strong support for a major role of strongnodel was obtained only with additional electron-phonon
electron correlations in copper-oxide materials as was firstoupling.
proposed by Andersoh? Among them are recent studies of At moderate doping only short-range dynamical AFM
electronic spectra by angle-resolved photoemission spectroserrelations exist and the spin-polaron model becomes inad-
copy (ARPES which reveal a quite unusual behavior for the equate. To deal with the strong coupling limit for the Hub-
Fermi liquid in the normal statéfor a review, see Ref.)3A bard model and the-J model a number of numerical meth-
very broad quasiparticle peaks with a pseudogap formationds for finite clusters has been develog#at review, see
of the d-wave-like symmetry at the Fermi surf4ceor even  Ref. 22. Spectral properties in the normal state of the two-
the Fermi surface destruction in underdoped regime havdimensionak-J model at moderate doping have been inves-
been reportefi.Direct measurements of the superconductingtigated by exact diagonalizatiGhwhich show a large elec-
gap and the normal state pseudogap by the technique of tutronic Fermi surface and a quasiparticlelike spectrum with
nelling spectroscopysee, e.g., Refs. 7 and 8, and referencedarge incoherent background. Spectral functions of ttde
therein suggest that both gaps have the same microscopicahodel were considered also by using the finite-temperature
origin. Lanczos method! A large asymmetry between the hole and
One of the possible scenarios of the gap formation is a&lectron spectra was observed with a strong damping for the
strong coupling of doped holes to antiferromagné&&M)  hole spectra.
spin fluctuationgsee, e.g., Ref.)9The problem can be stud- Concerning the superconducting pairing in thé model
ied within the simplest-J model'° which is believed to formation of thed,2_,2 pairing correlations due to strong
take properly into account spin correlations and hole kineAFM spin fluctuations were observed for small clusters.
matics. In the limit of small hole concentrations one canHowever, as has been recently shown by applying the
consider a one-hole motion on the AFM background withinconstrained-path Monte Carlo metfddto the two-
the spin-polaron representation for thel model’'? A dimensional Hubbard model the2 2 pairing correlations
number of studies of the mod&ee, e.g., Refs. 13-16, and vanish with increasing lattice size or the Coulomb repulsion.
references thereinpredicted that a doped hole dressed byBy using the power-Lanczos method, it has been concluded
AFM spin fluctuations can propagate coherently as a spin¢see Ref. 2Bthat the two-dimensional-J model does not
polaron quasiparticléQP) which was proved later in ARPES have long-ranged-wave superconducting correlations for
experiments! It was also suggested that the same spin flucd/t<0.5. In spite of important information obtained via nu-
tuations could mediate a superconducting pairing of the spinmerical techniques, the finite cluster calculations due to
polaron QP. The problem was treated within the BCS for-known limitations (finite size effects, few filling fractions,
malism for phenomenological models of pairing interactionetc, can give only restricted information concerning the low-
in Refs. 18 and 19. A self-consistent numerical solution ofenergy spectral properties and gap formation. So to study the
the strong coupling Eliashberg equations for spin-polaronspectral properties and possible superconducting pairing in
and magnons has been given in Ref. 20. A strong renormathe strong coupling limit an analytical treatment is highly
ization of the hole spectrum due to spin fluctuations and thelemanded.
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The main problem in analytical studies of thd model is  Eliashberg theory, we fix the phase of the gap function by
the so-called kinematical interaction imposed by the protaking it to be real that excludes phase fluctuations and gives
jected character of electron operators acting in the subspacefinite T, for the gap formation in two dimensions. At high
of singly occupied lattice site€. To take into account the temperaturel>T_ we observe narrow QP peaks for single-
constraints of no double occupancy different types of slave€lectron spectral functions near FS and a broad incoherent
boson(-fermion) techniques were proposddee Refs. 28— band below FS. The latter results in nonzero occupation
31, and references therginin the mean field approximation nhumbers , throughout the Brillouin zone which show only
(MFA) the local constraints are approximated by a globald small drop, increasing with doping, at FS. A direct numeri-
one, that reduces the problem to free fermions and bosons @l solution of the linearized gap equation revealsttveave
the mean field® To treat the constraints in a systematic way, superconducting instability with maximal.=0.04 at opti-
in Refs. 29 and 30 a largs-expansion, withN being the = mal dopings=0.3.
number of stategorbital9 at a lattice cite, was used. In that ~ The paper is organized as follows. In the next section we
approach the local constraints are relaxed and a weak co@resent the Dyson equation for the matrix Green function in
pling approximation is possible. By using thé\léxpansion, terms of the Hubbard operators. In Sec. Ill self-consistent
the d-wave superconducting instability induced by the ex-Eliashberg equations in the noncrossing approximation are
change interaction was obtained in thd model close to derived. In Sec. IV numerical results for the single-electron
half filling.>® The Baym-Kadanoff variational technique for spectral functions, occupation numberg,, a supercon-
the Green functions in terms of the Hubbard operators wagucting gap function, and’. are presented and discussed.
used in Refs. 32 and 3@&lso in the limit of largeN) to ~ Conclusions are given in Sec. V.
consider superconducting pairing in thel model. For a
finite J the d-wave superconducting instability mediated by Il. DYSON EQUATION FOR THE t-J MODEL
exchange and charge fluctuations was obtained bdlgw
=0.01t. However, in the largd\ expansion the kinematical
interaction is suppressed and this approach, being rigorous in o 1
the limit N—oo, is difficult to extrapolate to real spin sys- Hio=—t 2 ahaj,+J3> (ssj— 20N
tems withN=2. 1.0 (i)

A formglly rigorous method to_ treat the unconventional_wherear =ai+(1_ni_0) are projected electron operators
commutation relations for the projected electron operators is . T Ty~ _
based on the diagram technique for the Hubbar@NdSi =(1/2)2ss a0 ais are spin-1/2 operators. Here
operator$*3® since in this method the local constraints are!S an effective transfer mte_gral adds the ar_1t|ferrom_a}gne_t|c
rigorously implemented by the Hubbard operator algebra. A&Xchange energy for a pair of nearest neighbor gitgs i
superconducting pairing due to the kinematical interaction in~J - ) ) ) _
the Hubbard model in the limit of strong electron correla- 10 take into account on a rigorous basis the projected
tions (U—=) was first obtained by Zaitsev and Ivaribv character of elec_tron 2operators we emplpy the Hubbard op-
who studied the lowest order diagrams for a two-particlerator(HO) technique®? The HO's are defined as
vertex equation. Their approximation, being equivalent to the XeB=|i )i, Bl @
MFA for a superconducting order parameter, gives only the ! k '
swave pairing. As was shown latét’® the swave pairing  for three possible states at a lattice sife |i,a)
in the limit of strong correlations violates an exact require-=1i,0), |i,o) for an empty site, and for a singly occupied
ment of no single-site pairs and should be rejected. By apsite by an electron with spin/2 (¢=*1, o= —0¢). They
plying the MFA for the Green functions in terms of the Hub- obey the completeness relation
bard operators it was proved in Refs. 37 and 38 that the
d-wave superconducting pairing mediated by the exchange
interaction is thermodynamically stable and has high
=0.1t for J=0.4.

On the basis of the diagram technique, detailed studies d¥hich rigorously preserves the constraint of no double occu-
spin fluctuations and superconducting pairing in thd  Pancy.
model were performed by Izyumat al3® Summation of the By using the Hubbard operator representaii@nfor aif,
first order diagrams for the self-energy reproduced the results. x© and5j0=x?” and for spin and number operators we
of the MFA in Refs. 37 and 38. Estimations done in the weakite the Hamiltonian of the-J model(1) in a more general
coupling limit for the Eliashberg equation with account of ¢5,m-
the second order diagrams revealed quite a low supercon-
ductingT,.

To study the scenario of Cooper pair formation at high Hi-5= —i; tijxigox?g_:“iz X7
temperature in the present paper we consider a theory of he 7
electron spectrum and superconducting pairing for ttde _ _
model in paramagnetic state by applying the projection + Z.E Jij (XTOXT=XTOXT7). 4
techniqué® for the Green functior$ in terms of the Hub- b
bard operators. To go beyond of the MFA in Refs. 37 and 38ere we introduced the electron hopping energy for the near-
we derived the Eliashberg equations in the noncrossing agest neighborstj; =t, and the second neighbotg,=t’, on a
proximation and numerically solve it. As is usual in the 2D square lattice, and the exchange interacfips J for the

We consider the-J model in the standard notatibH

Y

X0+ > xo7=1, (3)
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nearest neighbors. These parameters can be considered asThe frequency matriX10) defines the zero-order GF in
independent ones if starting from a more realistic for coppethe generalized MFA

oxides three-bang-d model we reduce it to thed modef®

(see Ref. 48 The chemical potentigk is to be calculated Gl (0)=Ql{wred; —Ejj,+ . (13

from the equation for the average number of electrons By writing the equation of motion for the irreducible part of

the GF in Eq.(9) with respect to the second tinté for the
n=2 (X). (5)  right-hand side operato¥;,(t') and performing the same
7 projection procedure as in E¢9) we can obtain the Dyson
To discuss the superconducting pairing within the mddel equation for the GK6) in the form
we consider the matrix Green functidGF)

Gij o(t=t") = (Wi, ()W ,(t))) 6)
in terms of the Nambu operators

uo(w) GIJo’ wH‘E Gl w)iklo(w)é‘lja(w)u
(14

where the self-energy operatérkh,(w) is defined by the

X9 .
! , _-*(—f: (XIU'O X?(r)’ (7) equation

Vo= —
X770

lo

where Zubarev's notation for the anticommutator Green — Tijo(@)=3,(®)+ X Sip(@) Gl (@) T)jo(w).
function (6) is used* kT

By differentiating the GH6) over the timet we get the (15
following equation: Here the scattering matrix is given by
wéijo’(w):5ij©a+<<2ia|\Pj0'>)m1 (8) :I\—ij(r(w):Q71<<2i(i:-r)|zjgi(rrr)+>>inl' (16)

where Z;,=[¥;,,H], ng((?“Qg) with Q,=(X?°+X7?).  From Eq.(15) it follows that the self-energy operator is
T 0glven by theproperpart of the scattering matrid. 6) that has

Since we consider a spin-singlet state the correlation fun
P g {no parts connected by the single zero-order (GB:

tion Q,=Q=1-n/2 depends only on the average number o
electrons(5).

-1 (irr) (|rr) (prop~—1
Now, we project the many-particle GF in E) on the IJU(w <<Z |Z N PQ (17)
single-electron GF by introducing thieeducible part of Z; , Equations(13), (14), and (17) give an exact representation
operator for the single-electron GK6). To calculate it, however, one
has to introduce an approximation for the many-particle GF
((Z |q, )y = 2 E «(w |q/ )>+((Z .rr>|q, ), in the self-energy matrix17) which describes inelastic scat-
' ol Flo tering of electrons on spin and charge fluctuations.
{zZ) i =2+, Z(i0y =0, (9) Ill. SELF-CONSISTENT ELIASHBERG EQUATIONS
that results in the equation for the frequency matrix In the k representation for the GF
1 _
Bijo=(1¥io LW HQ (19 Gf(kw)=3) Ggfi(w)e ™, (18)
To calculate the matrix10) we use the equation of motion
for the HO we get for the zero-order GR.3)
d 0o _ 00’ GO(k,w) t={wT— (EJ— vrQTh (19
dt+,u, X 2| t”Bi(m/X| o ’ 0 k 3 1 ’

where 7,,7,,75 are the Pauli matrices. The energy of the
quasiparticlesEy, the renormalized chemical potential

1 ,
Z . — 0o
* 22,: i (Biger = 850 ) X", (11) = u— ou and the gap function in the MFA (10) are given

b
where we introduced the operator Y
00 oo oo o 2J
Bio’o”:(xi +Xi )50"0'+Xi 50”? Ek:_E(k)Q_GS(k)/Q_W% )’(k_Q)qu (20)
:(1—%Ni+a'SIZ Oypr ot SIF&(,,;, (12 where we have introduced(q)=4Jvy(q) and e(k)=t(k)
=4ty(k)+4t'y'(k),  e(K)=4ty(K)x1s+4t"y"(K) x2s,

The Bose-like operatofl2) describes electron scattering on With  ¥(k) = (1/2)(cosagc+cosaq)  and  y'(k)
spin and charge fluctuations caused by the nonfermionic €0S&0x COSa,Qy,
commutation relations for the HQthe first term in Eg.
(11)—the kinematical interactigrand by the exchange spin- 1 _oq| M Xas

7 . X ou= e(q) 2] , (21
spin interactior{the second term in Eq11)]. N
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2 050 where
A=~ o 9ak-a(X%Xg), (22
Q% 1 tani(z/2T) + coth( Q/2T)
) L , N(w,z,Q)= = . (28
where the interaction is given by the function 2 0—2—0
1 Here we introduce the spectral density
g(a.k—a)=t(q)— 5I(k—a). (23 1
ATI(0,2)= = 5IM((XTIXG )45 (29
There are two contributions in the gap equati@®2): the H Qm a9 1%a Sz
k-independent kinematical interactiofg) and the exchange 1
interaction J(k—q). The kinematical interaction gives no Afz(q,2)=——|m<<X2"IX9‘a>>z+ia. (30)

Qm

and the electron-electron interaction functions caused by
spin-charge fluctuations

contribution to thed-wave pairing in MFA, Eq.(22) (see
Ref. 37, and we disregard it in the following equations. The
average number of electrons in Eq20) and (21) in the k
representation is written in the form

M1y12(d,k—a]Q)=0?%(q,k—q)

Mo = (XE°XT) = QNi (24) )
In calculation of the normal part of the frequency matgx) X| = ;Im D*(k—q,Q+id)|,
we have neglected the charge fluctuations and introduced the
spin correlation functions: (31
_ _ where the spectral density for the spin-charge fluctuations is
X1s=(SS+a,)s  X25=(SS+a,), @9 Jefined by the bosonlike commutator GF
for the nearesj;s [a;=(*ay,*ay)] and the next-nearest 1
X2s [32= *(a,=ay)] neighbor lattice sites. Di(q,Q)=((Sq|S_q>>“tZ(<nq|n§))Q. (32

To calculate the self-energy operator we employ the non-
crossing approximatiofor the self-consistent Born approxi- The solution of the Dyson equati¢h4) can be written in the
mation) for the proper part of the many-particle Green func- Eliashberg notation as
tion in Eq. (17). It is given by the two-time decoupling for

the corresponding correlation functions in Ef7) G7(k,0)=QG(Kk,»)
<X}7,OBJ-+,,,,/X?/U,(t)Bi(mf(t)) _ wZ(0)To+H[Ef+ & (0) =]+ PP (w) Ty
[0Z{(0) P~ [E{+ &)~ B~ | P{(w)]*

0’0y, 00’ +
2<X]’ Xi' (t)><BjUU'BIUU’(t)> (26) (33)
The proposed decoupling does not violate equal time corres 1 are
lations since in Eq(26) j#j’ andi#i’. In the adopted
approximation vertex corrections are neglected while the 1 - -
Fermi-like and the Bose-like correlation functions are sup- w[1-Z(w)]= E[E‘l’l(k,w)JrE‘z’z(k,w)],
posed to be calculated self-consistently from the full Green
functions. As was argued in Ref. 44 where the analogous 1
approximation was used, at moderate doping we can con- E(w)= —[ii‘l(k,w)—igz(k,w)], (34)
sider the spin-charge fluctuations and single-particle excita- 2
tions as independent modes. Then we can perform the decou- _
pling (26) in the framework of the mode-coupling DY (w)=A7+30(k,0),
approximation which has been proved to be quite a reliable - & '
one even for systems with strong interactions. As was showA"d 211(k, @) = _Ezz(fkv — ). Here we fix the phase of
for the spin-polarort-J model the vertex corrections to the € 9ap function by taking it to be real.
noncrossing approximation are small and give only numeri-
cal renormalization of the model parametésse, e.g., Ref. IV. NUMERICAL RESULTS AND DISCUSSION

14). For numerical solution of the system of equatid@3)—

Using the _spectral represc_antation for thg GF, we optain iq34) we have used the imaginary frequency representation
the noncrossing approximation the following expression for ) it Green functior33) with w=iw,=i=T(2n+1) and
n

the normal and anomalous components of the self-energy: spin-charge Green functid82) with Q=iw,=i=T2n

=0 c wheren=0,+1,+2,... . By using the representation for
11(12)(k,w)=Q211(12)(k,w) the function(28)
1 +oo
- 1 1
—ﬁ% ff_w dz d2 N(w,z,Q2) N(iw,,z2,0)=—T>, - (35)

m lon—Zi(w,— oy, —Q

XN1112(0,k—A[Q)ATy15(0,2), (27)  after integration in Eq(27) we get
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TABLE 1. Static spin correlations versus AFM correlation

211(12) (kiiwp)= 2 2 Gll(lz)(q,iwm) length ¢ at different hole concentratiod.
X N1y12(0K—gliog—iwp). (36) 3 6 Xo X1s Xas xs(Q)/xs(0)
The interaction functions are given by 1 030 156  -0.072  0.019 3
3 0.10 7.40 —0.230 0.130 19
Mi12(0.k—qliw,)=09%(q,k—q)D*(k—q,iw,). 5 005 17.08 -0311  0.213 51

37)

~ To calculate superconducting it is sufficient to study a  acter of spin fluctuations with large correlation lengts 5
linearized system of the Eliashberg equati¢34 which has  observed at finite doping both in ka,Sr,CuQ, and

the following form: YBa,Cu;0;_, in neutron scattering experimertsFor the
frequency-dependent part we choose the scaling function
&7 (kiw )_ 1 39) with an enhanced intensity for frequencies<T and a large
1 n —E + - Ell(k Iwn) cutoff energyws=J according to neutron scattering experi-
ments in single-layered cuprate L.gSr,CuQ,. It is impor-
DK i wn) = AT+ ¢ (K,iwp) tant that the constang, in Eqg. (42) which defines intensity

of spin fluctuations at the AFM wave vector is normalized
according to the following condition:

.
=12 2 (k=a)Fhla.k—glion—iom)}

XBL(q 0 BI(A, ~iwm) D7 (@ iwp). (39 W (59)- E wa mm’“@

At first the system of equations for the normal G8) was 7Tws

solved numerically for a given concentration of electrons 2 Xs(Q)= (43)
n ! 1o % = . which gives
1—n/2: Ng, Nip=1+ W; n;m Guri(k,iwy).
3n 1 1

(40

Then the eigenvalues and eigenfunctions of the gap function
(39) were calculated to obtain the superconducting transition | 4o approximatiorf41) we get for the interaction func-
temperaturel . and the k,o) dependence of the gap func- tion (37)
tion.

For numerical calculations we take into account only the )\ | ,(q,k—qliw,)=\10,k—qli,)
spin-fluctuation contribution and write the function

- ey
Y 2m0ly TUNT 148014 9(q)]

Ds (a.iw,) (32) in the form — — g2(ak— ) xa(k—Q)F(iw,),
44
v +o 27 dz (44)
DS’(Q,IwV)z(<Sq|S_q>>imV= - fo Y sz(q 2). where
(41) ° 2x dx 1
To perform self-consistent calculations one should write an s(w,)= fo 2t (@, wg)? 1+X2Lanh2— (45

equation for the spin-fluctuation susceptibiligl) in terms

of the one-electron Green functiaq88) as has been done, is the spectral functionr=T/ws. _ _

e.g., in Ref. 45. However, to make our numerical work trac- Within the model(42) the static spin correlation functions
table in the present paper we use a model reperesentation f6¥5 are calculated by usingS;S_g)=(mws/2)xs(q). In

the spin-fluctuation susceptibility suggested in numericailable | we give characteristic values for the static spin cor-

studieé® relation functions and the constagt for different values
of &.
. 1 _ " To analyze a role of different interactions in the electron—
Xs(0, )=~ ;'m<<sq|qu»wﬂﬁ_Xs(q)Xs(“’) spin-fluctuation scattering in E¢44) we consider the weak
coupling approximation for the Eliashberg equati@3). It
Xo 1) 1 is given by the following approximation for the interaction
=———tanh— ———. (44):%8
&1+ y@] 2T 1+ (0lwg)? '
(42) MAdk—qliwg—iwy)
The g-dependent part has a peak at the AFM wave vector =—\(9,k—q) 8 ws— | wp|) O ws— | wm|),

(7r,7) with its intensity defined by the short-range AFM
correlation lengthé (measured in lattice constant unitsVe
take quite a smalf=1-3 to imitate incommensurate char- where we takd~;(w,)=F¢(ws)=1 and introduce

(46)
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Na,k—a)=g%(a,k—a) xs(k— Q). (47)
In the weak coupling limit we have for the anomalous GF

Akw)
05 1.0 1.5 20

&7 kion) oy
1Iw :_—1
EET (0m2H(00)?

where Q2=[EZ+ £7(0)—7.]2+|®?|? is the QP energy in 60 30 op
the superconducting state with the frequency-independent
gap function®d,. By performing summation ovem for
i‘l’z(k,i wy,) in EQ.(36), we get the weak coupling BCS equa-
tion

(48)

$=0.1 (b)

Alko)
05 1.0 1.5 2.0

d7(k ——E J k—q -\ q k_q —L allhz—q

In comparison with the results of the diagram technitjlie,

Eq. (49 the kinematical interaction is also included in the
effective coupling constant of the second order equation
(47). Below we compare results for the superconduciig
calculated in the weak coupling limit, E§49), and those
obtained from the Eliashberg equati(39).

The numerical calculations were performed using the fast
Fourier transformaticff for 32x 32 cluster. In the summa-
tion over the Matsubara frequencies we used up to 700
points with the constant cutofb,,=20t. Usually 10—30
iterations were needed to obtain a solution for the self-energy
with an accuracy of order 0.1%. The Padpproximation
was used to calculate the one-electron spectral function 60 39 0.0

5T
x

o
o
w
=3
=3
o

3.0 60

(0]

A(k,o)
05 10 1.5 20

. -3.0 .
Ak, @) (29) and the density of statd®09) L, 0 eo
1 - FIG. 1. Electron spectral densi#(k,) for the hole concen-
Alw)= Nzk: ATk o) (50 tration 5=0.1 and AFM correlation length=1.

on the real frequency axis.

The calculations were performed for several values of théarge disp_ersion below the Fermi energy<0. _The_ incoher-
t-J model parametersl(t,t'/t), the AFM correlation length ent band is caused by the self-energy contribution peaked at

¢ in the model function42) with w,=J, and the hole con- the AFM wave vecto(“shadow bands’). For¢=3 in Fig. 2
centration 5=1—n. Below we present results fof=0.1 the incoherent band has a higher intensity due to stronger
—0.4 andé=1,3 for the parameterd=0.4¢'=0 if other spin-fluctuations weight at the AFM wave vector. An addi-
values are not indicated. All the energies and temperature afonal hopping between next “e'gthVS_Chfijges the disper-
measured in units of To mimic suppression of AFM cor- Sion mostly af’” andX points(see Fig. 3 witft’ = —0.3) and
relations with doping we usually take=3 for 5=0.1 and ncreases the intensity of the incoherent band, especially at

keep £=1 for §=0.2—0.4. Temperature effects are rather tN€ X point (compare Figs. 1 and)3 . .
small for T<0.1 and therefore we present only results for With increasing hole concentration the dispersion of the
T=00125 QP band also increases and the intensity of QP peaks are

enhanced as shown in Fig. 4 f6=0.4, {=1. At the same
time the intensity of the incoherent excitations are sup-
pressed: the “high-energy feature” below the Fermi energy

Results for the electron spectral density in the normaht the X point for §=0.1, ¢=3 in Fig. 2 practically disap-
state, A(k,w) =A1(k,w) (29), are shown along the three pears for§=0.4, £=1 in Fig. 4. As was discussed by Shen
symmetry directions in the BZ: I'(0,0)— X(,0) and Schrieffet’ (see also Ref. 51the doping dependence of
—M(m,m)—T in Fig. 1 for 6=0.1, {£=1, Fig. 2 for § the spectral line shape neat,0) point can be explained by
=0.1, ¢é=3, Fig. 3for6=0.1, (£&=1, t'=-0.3, and Fig. 4 strong coupling of the QP hole excitations with collective
for 6=0.4, ¢£=1. excitations. In our model the latter are spin fluctuations

For small concentration of holesj=0.1, we observe which intensity at ¢r,7) point is proportional tet? [see Eq.
quite narrow QP peaks at the wave vectors crossing thé&2)] resulting in strong suppression of the incoherent exci-
Fermi surface(FS along M—X and M—TI" directions. tations with decreasing and increasings. An important
Along the X—T' direction wave vectors are below the FS role of the next neighbor hoppirtg in the explanation of the
(see Fig. 9and there are no QP peaks. In addition to the QRloping dependence of the spectral line shape neg) was
dispersion we see also a band of incoherent excitations withlso pointed out in Ref. 52.

A. Normal state
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FIG. 2. Electron spectral densify(k,w) for 5=0.1 andé=3.  tion [1+y(q)]=|q—Q|? in the spin susceptibility(42)
which enhances the peak intensity @t=(m,7) we get
These conclusions are supported by the doping depednuch stronger scattering and a more intensive incoherent
dence of the imaginary part of the self-energym 3, (k,0)  Pand. To enhance the incoherent contribution and to fulfill
_ Imii‘l(k,erie) shown in Fig. 5 fors=0.1, £=3 and the Luttinger theorem it was proposed in Ref. 44 to add to

Fig. 6 for 5=0.3, ¢=1. With increasing hole concentration the  self-energy (27) a momentum-independent part

: ) Im3 (w)=—cw? with quite a large value at maximum
and decreasing AFM corrglatmn lenggtthe self-engrgy de- .=3.5. However, this fitting is difficult to justify. We find
creases due to suppression of electron scattering on spi

: - . Iso a reasonable agreement of our results for the spectral
fluctuations. It is interesting to note that for the underdope unction for 8=0.1, £=3, including both the coherent QP
region, §<0.1, Im3(k,w) for T<w=J is approximately dispersion and incoherent band, with the calculations in Ref.
proportional tow (see Fig. 5, especially the point) while

for the overdoped regiong=0.3, for smallw we have 23 done by the exact-diagonalization technique for a finite

Im'S (k. )= 2. However, our k.) resolution is not high cluster of 20 lattice sites with 2 hole$£0.1).

i DL In Fig. 7 we show the QP dispersiok(k) for &
enough to prove a transition from the non-Fermi-liquid to the_ e ' _
Fermi-liquid behavior with doping. 0.1, ¢=3 andt’=0, 0.1 (upper pangland 5=0.1, &

Our results for electron spectral functions are in a semi-:3 and 6=0.4, £=1 (lower pane] which are calculated

guantitative agreement with the numerical studies ofttle from the maxima of spectral density. As we see, the QP band

s - width strongly increases with doping while the next neighbor
model within the finite-temperature Lanczos metfRbave hopping t' change the dispersion mostly &(0.0) and

observe also a large asymmetry between the photoemissi , . -
: o ,0) points. These results can be already explained within
(©0<0) and the inverse photoemission,x0) spectra. ?E(e sp)estrunEk in MFA, Eq. (20). Written inythepform

While the spectra below the FS in Figga)l, 2(a), 3(a), 4(a)
are strongly overdamped and show no QP peaks, the SPeCtra=o_ _ 44 (k)OO 1+ 21_ 4t ' (KO 1+ 2
for electrons outside the FS, e.g., at thi€ s, ) point in K YQLLH x1s/Q7] =4y (W QL x2s/ Q]

Figs. 1-3, show QP l?ehavior. Thg mqin disagreement with = —t_gy(k) —t' oy’ (K),

the results of Ref. 24 is a smaller imaginary part of the self- ) )
energy, Figs. 5 and 6, which also results in a less pronounceli Shows a strong dependence of the effective hopping pa-
incoherent part of the spectra below the FS. Partly this caf@Meters on the static AFM correlation functiof®5): x1s

be explained by the underestimation of the electron scatter={SSi+a,), X2s=(SS+a,)- For small hole concentration
ing on spin fluctuations. Namely, if we make an approxima-and large AFM correlation length, e.g5=0.1, £&=3, we
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FIG. 4. Electron spectral densify(k,w) for 6=0.4 andé=1. FIG. 5. Imaginary part of the electron self-energy

—Im3(k,o+ie) for §=0.1 and¢=3.
have y;s=—0.23, x2s=0.13 (see Table ) and tg miy(kotie) for andg

=0.53, t'.z=1.28". At large hole concentration, e.gs, ] ) ) )
=0.4, £&=1, we have y;s=—0.06, y»s=0.016 andte; S of states below the Fermi level is due to the incoherent

~2.58, t,;~2.7t". The self-energy additionally renormal- band. In that respect the DOS at0.1 agrees quite well

izes the spectrum but the genesa dependence obtained in With the results of numerical studies by the finite-
the MFA agrees quite well with that observed in Fig. 7.  temperature Lanczos mettf8dwhere the single-particle

Here we would like to point out that in the largé-ex- DOS is also quite asymmetric with large incoherent part be-
pansion technique, both for the slave b('.?g&ﬂ and the low the FS. Moreover, the absolute values of the DOS at
Baym-Kadanoff variational GB%*3 the narrowing of the maximum are close to each othgn Ref. 24, DOSN(w)
band due to the discussed above AFM correlations is ig=(1+ 8)A(w) whereA(w) is given by Eq.(50)].
nored. In the I\ expansion the static spin correlation func-  Now we consider the results for the electron occupation
tions x1s,x1s appear to be of the higher order inNLand  numbers(24) n ,=(XZ°Xp")=[(1+ 6)/2]Ny,. In Fig. 9
therefore are omitted. Moreover, the fac@in the spectrum  the functionN(k) =N, is shown for different hole concen-
in the MFA, Eq.(20) is also underestimated. We have in Eq. trations: (a) 6=0.1, £=3, and(b)—(d) §=0.2—0.4, ¢=1.

(20) Q,=(X°+X{?)=(1+ 6)/2 while in the 1N expan- The shape of the FS changes from holelike around the
sionQ=(X"% = 5 since the correlation functiofX’?) is of ~ M (ar,) point of BZ at small doping to electronlike around
the order 1IN and is disregarded. These underestimations othe I'(0,0) point of BZ for large doping. We obtain quite a
the strong kinematical interaction in the larijeexpansion small drop of N(k) at the FS especially at small doping,
change the doping dependence of the QP spectrum in MF#vhich is a specific feature of strongly correlated electronic
in comparison with the real situatidd= 2. systems. Large occupation numbers throughout the BZ are

Figure 8 shows the density of statdéw) for 6=0.1, ¢ due to the incoherent contribution in the spectral density
=3 (dashed lingand §=0.4, £&=1 (solid line). Since the A(k,w) under the Fermi levelsee Figs. 1-4 The evolution
incoherent band is strongly suppressed at large hole concenf the FS with hole concentration is also shown in Fig. 10 by
tration (6=0.4) and small AFM correlation lengtié€ 1), bold solid lines. The maximal occupation numbers for elec-
the DOS has a nearly symmetric form with a broad bandronsny ,=(1+ 6)N(k)/2<0.55 for 5=0.1 agrees with the
width (of the order of T) in comparison with the highly results of the exact-diagonalization technique for finite
asymmetric one for low dopings=0.1) where the high den- clusters?® According to Eq.(40), we also have inequalitg
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FIG. 8. Electron density of stateA(w) for 6=0.1, {£&=3
(dashed lingand §=0.4, £=1 (solid line).

4
o
w
o
=3
o

3.0 49 M the Luttinger theorem the ratio should be equal to (1
—0)/2. It is possible to obtain a large FS at small doping if
one introduces a strong incoherent part in the DOS below the
FS as it has been proposed in Ref. 44. However, the one
(subband t-J model could violate the Luttinger theorem
since it is derived for the Mott-Hubbard insulating state
which may not have an adiabatic connection to a noninter-
acting electron gas. A violation of the Luttinger theorem in
the high-temperature series for the momentum distribution
function of the two-dimensional-J has been recently re-
ported in Ref. 53. Our results for the FS&t 0.2, see Figs.
9(b) and 1@b), are in quantitative agreement with that one
presented in Ref. 53 concerning both the shape of the FS
[hole pockets at{ ,* ) points—see dotted line in Fig. 5
FIG. 6. Imaginary part of the electron self-energy of Ref. 53 and the volume of the FS: it is equal to 0.8
—Im39(k,w+ie) for 5=0.3 andé=1. instead of 0.4 according to the Luttinger theorem. In our
calculations we have also observed quite a strong depen-
<1 that results from the restriction of no double occupancydence of the FS shape on the next-nearest hopping parameter
of lattice sites in the-J model. t’ and the AFM correlation length. In any case, to study
Concerning the volume of the electron FS, it appears to be
proportional at small doping to (16), e.g., for &
=0.1, 0.2 the ratio of the BZ part fde<<kg to the whole BZ
are close to 90 and 80 %, respectively, while according to

e

-imZ(k,0)
05 1.0 1.5 2.0

6.
© 30 00 5, 60

()]

E(k)

" —— 5=0.1;E=3 S
———— 8=0.4;t=1
-4 . 5 .
r M X G

FIG. 9. Electron occupation numberdN(k) [n,=(1
FIG. 7. Electron quasiparticle spectrui(k) for 6=0.1 and  + 8)N(k)/2] versusk (0<Kk,,k, <) for different hole concentra-
t'=0, 0.1, £=3 (upper pang| and §=0.1, £=3 (solid line tion 8 and AFM correlation lengtld: §=0.1, =3 (a), 6=0.2,&=1
and 6=0.4, £=1 (dashed ling (lower pane). (b), 6=0.3, =1 (c), 6=0.4, &=1 (d).
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FIG. 10. The Fermi surfacéold solid lineg and the gap func- N \\2‘0‘”“““‘ 2

tion ® (k,0) [thin solid lines with ¢+) and (—) showing the sign of S 95 “:§:§;1:t§§:$ TR

the gag versusk (0<k, ,k,<) for different hole concentratiod 8 A '\

and AFM correlation lengtté: 6=0.1, é=3 (a), 6=0.2, &=1 (b), g‘

5=0.3, £&=1 (c), 6=0.4, £&=1 (d). '

the FS in strongly correlated systems one should consider the

original Hubbard model with upper and lower subbands ?

since a weight transfer between the subbands with doping %o (b)

away from the half-filled insulating state could drastically .

change the shape of the FS. FIG. 11. The gap functio® (k,w=0) versusk for §=0.1, ¢

=3 (a), =0.3, £=1 (b).

B. Superconducting state temperaturel, versus hole concentratiof for AFM corre-

The results of the numerical solution of the linearizedlation length{=1 in the weak coupling approximation, Eq.
Eliashberg equatiof39) are presented in Figs. 10—13. Fig- (49), for the full vertexJ(k—q) —\(q,k—q) (solid line), the
ure 10 shows the contour plots in a quarter of BZ (0vertex witht(q)=0 in A(q,k—q) (dashed ling and in the
<k,.,ky<m) for the static gap functiond®(k)=®(k,w MFA with \(q,k—q)=0 (dotted ling. We see that in the
=0). At a small doping,=0.1[Fig. 10a)], it has a more Wweak coupling approximatiom, is much higher in compari-
complicatedk dependence, with two positive and two nega-son with that one obtained from the frequency-dependent
tive maxima[shown by () and (—)] while at 5=0.2 only ~ equation(39) for the same static susceptibility, i.g5=1 in
one positive and one negative maximum surviléigs. Ed. (42). The most important contribution in the weak
10(b)—10(d)]. This is shown in Fig. 11 foP(k) in k space coupling approximation comes from MFA, i.eJ(k—q)
for a small concentration of holess=0.1 (a), and for a in Eq. (49). The second order contribution(q,k—q)
nearly optimal oned=0.3 (b). The®(k) dependence has a
complicated form that cannot be described by the simple I
(cosk,—cosk,) function usually used fod-wave symmetry.

0.006
However, in all cases the gap function obdg symmetry:
D (ky ky) =—P(ky,k,) which breaks the fourfold symmetry 0.004 |
of the FS ink space.
The frequency dependence of the gap functig(k, ) is —~ o000 |
also anomalous. In Fig. 12 we show thedependence for 3 )
the real Reb(k,w) and imaginary Inb(k,w+i€) parts of &
the gap function fo=0.3, ¢£=1 at theX(0,7) point of the 0.000
BZ.
In Fig. 13 we present the superconductihgversus hole =0.002 |
concentrations for AFM correlation lengthé=1 (solid line)
and £=3 (dashed ling obtained from numerical solution of —0.00400 0‘2 0‘4 0‘6 0'8 To
Eq. (39). With increasing AFM correlation length effective ’ ) T o ’ )
electron-electron coupling\15(g,k—qliw,) mediated by
spin fluctuationsys(k—q) also increases, which raisé@s . FIG. 12. Real R&(k,w) and imaginary Imb(k,w+i€) parts

For comparison in Fig. 14 we also present superconductingf the gap function versue for 6=0.3, é=1 at (k,,k,)=(0,m).
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served at the optimal doping é&=0.16. To obtain maximal

0.05 ; ‘ T. in our calculations at the lower hole concentration the FS
004 | - %: | should be _Iarge and run alon_g the diagonai_Sﬂ(,O)—(O,
' SN +q) at this hole concentration. In the spin-polarosd
o 003 | VAN 1 modef? the T.(8) curve has a narrow peak at the optimal
=~ 0.02 | / \ | doping §=0.15-0.25, depending on the next neighbor hop-
/ \\ pingt’ = *0.1t, since in that case the FS is close to the AFM
0.01 | P 2 N BZ along the diagonals 7,0)— (0,+ ) already at a low
0.00 ! MY concentration of doped holes.
0.2 0.3 04 0.5
3

V. CONCLUSIONS

FIG. 13. The superconducting temperatiiteversus hole con-
centration s for AFM correlation length¢=1 (solid line) and & In the present paper a theory of electron spectrum and
=3 (dashed ling obtained from Eq(39). superconducting pairing in theJ model (4) in a paramag-
netic state was developed by employing the projection
techniqué® for the two-time GF(Ref. 41) in terms of Hub-
bard operators. The obtained self-consistent system of
Eliashberg equations for the matrix GB3) and the self-
energy(27) in comparison with the diagram technigiéas
an additional contribution proportional to the second order of
the kinematical interaction(q) which gives an important
contribution in comparison to the exchange interaction
J(k—Qq)/2 in the vertex(23).

The one-electron spectral functions, the superconducting
¢, and the gap function were calculated by a numerical
solution of the linearized system of Eliashberg equations
(38),(39). To describe kinematical and exchange interactions
f electrons with spin fluctuations a model dynamic spin
Ssceptibility(42) with short-range AFM correlation length
was used.

The results for the electron spectral dendisge Figs.
1-4) show QP excitations at the FS crossing and a dispersive
incoherent band. For small hole concentration and large
AFM correlation lengthé the QP dispersion is small while
fhe intensity of the incoherent band is quite large. With dop-
ing the QP bandwidth strongly increases and the incoherent
band is suppressed. Our results for electron spectral func-
1/ ; tions are in semiquantitative agreement with the numerical
pairing occurs for electrons at the FS withk g gies of thet-J model within the finite-temperature Lanc-
=(£m,0),(0=m) coupled by the AFM wave vectoR ;o5 method and also agree quite well with the studies by

=(7,7r). This scenario is c;haracteristic for spin-fluctuation 4 exact-diagonalization technigtieTo perform a quanti-
pairing and has been discussed recently by Shen angiive comparison of our numerical results with ARPES

. 0 . . .
Schrieffer? in connection with the anomalous momentum investigationd one has to consider a more general-t"-J

and temperature dependence of the spectral line shape {Roqe| with the three-site terms as has been discussed re-
ARPES experiments. Experimentally the high&stis ob- cently (see, e.g., Ref. 54

The occupation numbeid(k) have the characteristic be-
0.06 havior for strongly correlated systems, Fig. 9. Being large
throughout the BZ they show only a small drop at the FS.
The volume of the FS at small doping is proportional to the

=g%(q,k—q)x(k—0q) enhancesT, both due to kinematical
t(q) and exchangd(k—q) interactions. For a larger AFM
correlation length superconductiflg is greatly enhanced in
the weak coupling approximation, e.§,,=0.1 for £&=3.

To elucidate the role of AFM short-range fluctuations in
the model and, in particular, the strong dependenck.afn
the AFM correlation lengthé we present in Table | thé
dependence of the static correlation functions, y»s and
the constanty, in Eq. (42). The latter, as well the ratio T
xs(Q)/xs(q=0), estimates the electron-spin fluctuation
coupling while the static correlation functionss, x»s, EQ.
(25), define the bandwidth in the MFA, ERO) as discussed
above. The large increase of these parameters seen in Ta@
[, with increasing ¢ from their values até=1, explains
changes in the spectral functioAgk,») and strongT. en-
hancement.

At the same time the peak position ©f(5) around the
hole concentratiod=0.33 does not change much wighAs
Fig. 10 shows, at this concentration the FS crosses th
(£,0),(0* ) points of the BZ. Since the pairing interac-
tion Eq. (44) is proportional to the spin susceptibilifys(k
—q) with the maximal contribution & —q= Q the strongest

0.04

= hole concentratio®, as shown in Fig. 10, which violates the
~ Luttinger theorem. However, our result for the volume of the
0.02 ¢ FS for n=0.8 is in quantitative agreement with the recent
numerical results of Putikkat al>®
0.00 The superconducting pairing due to the exchange and the

0.5 kinematic interactiongin second ordgrhasd-wave symme-

try, Fig. 11, and highT., Fig. 13. In the weak coupling

FIG. 14. The superconducting temperatiiieversus hole con- a@pproximation, Eq(49), a much largefT, is observed, Fig.

centrations for AFM correlation lengthé=1 in the weak coupling ~ 14. Our calculations confirm the results of tthevave super-
approximation Eq(49) for the full vertex(solid line), the vertex ~ conducting pairing obtained within the spin-polaror)

with t(q)=0 (dashed ling and in the MFA with\(q,k—q)=0 model?® One can argue that our result for thavave super-

(dotted line. conducting pairing for the 2D-J model contradicts the con-
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clusions of Ref. 26 based on numerical results for finite clustuations is a result of the kinematical and exchange interac-
ters. Moreover, it can be rigorously provésee, e.g., Ref. tions. Some uncertainty in the interaction is due to the non-
55) that there is no long-range superconducting order in twoerossing approximatioi26) where vertex corrections, as in
dimensional systems due to phase fluctuations of the ordehe diagram technique in Ref. 39, are neglected. We think
parameter. However, we consider Eliashberg equationghat vertex corrections should not change the main conclu-
which are really based on the mean field approximation—th&jons of our calculations. At least, we can argue that in our
phase of the order parameter is fixed in E8B) by taking it approach, where the model spin susceptibili2) with

to be real. Therefore the superconductiigin our calcula-  small AFM correlation lengthé=1—3 is used, the vertex
tions is the temperature of the Cooper pair formation whilerenormalization, estimated agy(Q)/x<(0) (see Ref. 5§

the temperature of phase coherence should be calculated BMould not be largesee Table )l More detailed studies
taking into account the coupling between the Guilanes.  jthin the developed theory are planned to elucidate some of

In our calculations within the E"ashberg theory for the 2Dthe unresolved problems of the present investigation'
t-J model we observe Cooper pair formation but in a re-

stricted region of hole doping. More detailed numerical stud-
ies are needed, including investigation of the étpﬁ!arge} ACKNOWLEDGMENTS
gap formation for the more genetat’-J model to verify the
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