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Electron spectrum and superconductivity in the t-J model at moderate doping
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A microscopical theory of electron spectrum and superconductivity within the two-dimensionalt-J model in
paramagnetic state is proposed. By employing the projection technique for the Green functions in terms of the
Hubbard operators self-consistent Eliashberg equations are derived. A strong coupling of electrons with spin
and charge fluctuations due to exchange and kinematical interactions is obtained. In the normal state, one-
electron spectral functions reveal narrow quasiparticle peaks close to the Fermi surface~FS! with an additional
broad incoherent band. The FS changes from holelike at low doping to electronlike for hole concentrations
d.0.3. In the superconducting state we observed-wave pairing with the maximalTc.0.04t at optimal doping
d.0.3. @S0163-1829~99!04513-0#
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I. INTRODUCTION

Experimental studies of high-temperature supercond
ors have provided strong support for a major role of stro
electron correlations in copper-oxide materials as was
proposed by Anderson.1,2 Among them are recent studies
electronic spectra by angle-resolved photoemission spec
copy ~ARPES! which reveal a quite unusual behavior for th
Fermi liquid in the normal state~for a review, see Ref. 3!. A
very broad quasiparticle peaks with a pseudogap forma
of the d-wave-like symmetry at the Fermi surface4,5 or even
the Fermi surface destruction in underdoped regime h
been reported.6 Direct measurements of the superconduct
gap and the normal state pseudogap by the technique of
nelling spectroscopy~see, e.g., Refs. 7 and 8, and referen
therein! suggest that both gaps have the same microscop
origin.

One of the possible scenarios of the gap formation i
strong coupling of doped holes to antiferromagnetic~AFM!
spin fluctuations~see, e.g., Ref. 9!. The problem can be stud
ied within the simplestt-J model1,10 which is believed to
take properly into account spin correlations and hole ki
matics. In the limit of small hole concentrations one c
consider a one-hole motion on the AFM background with
the spin-polaron representation for thet-J model.11,12 A
number of studies of the model~see, e.g., Refs. 13–16, an
references therein! predicted that a doped hole dressed
AFM spin fluctuations can propagate coherently as a s
polaron quasiparticle~QP! which was proved later in ARPES
experiments.17 It was also suggested that the same spin fl
tuations could mediate a superconducting pairing of the s
polaron QP. The problem was treated within the BCS f
malism for phenomenological models of pairing interacti
in Refs. 18 and 19. A self-consistent numerical solution
the strong coupling Eliashberg equations for spin-polar
and magnons has been given in Ref. 20. A strong renorm
ization of the hole spectrum due to spin fluctuations and
PRB 590163-1829/99/59~18!/11949~13!/$15.00
t-
g
st

s-

n

e
g
n-
s
al

a

-

-

-
n-
-

f
s
l-
e

d-wave pairing of spin polaron QP with maximalTc.0.01t
were obtained at optimal hole concentrationd.0.2. In Ref.
21 the superconducting instability within the spin-polar
model was obtained only with additional electron-phon
coupling.

At moderate doping only short-range dynamical AF
correlations exist and the spin-polaron model becomes in
equate. To deal with the strong coupling limit for the Hu
bard model and thet-J model a number of numerical meth
ods for finite clusters has been developed~for review, see
Ref. 22!. Spectral properties in the normal state of the tw
dimensionalt-J model at moderate doping have been inve
tigated by exact diagonalization23 which show a large elec
tronic Fermi surface and a quasiparticlelike spectrum w
large incoherent background. Spectral functions of thet-J
model were considered also by using the finite-tempera
Lanczos method.24 A large asymmetry between the hole an
electron spectra was observed with a strong damping for
hole spectra.

Concerning the superconducting pairing in thet-J model
formation of thedx22y2 pairing correlations due to stron
AFM spin fluctuations were observed for small cluste
However, as has been recently shown by applying
constrained-path Monte Carlo method25 to the two-
dimensional Hubbard model thedx22y2 pairing correlations
vanish with increasing lattice size or the Coulomb repulsi
By using the power-Lanczos method, it has been conclu
~see Ref. 26! that the two-dimensionalt-J model does not
have long-ranged-wave superconducting correlations fo
J/t<0.5. In spite of important information obtained via n
merical techniques, the finite cluster calculations due
known limitations ~finite size effects, few filling fractions
etc.! can give only restricted information concerning the lo
energy spectral properties and gap formation. So to study
spectral properties and possible superconducting pairin
the strong coupling limit an analytical treatment is high
demanded.
11 949 ©1999 The American Physical Society
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The main problem in analytical studies of thet-J model is
the so-called kinematical interaction imposed by the p
jected character of electron operators acting in the subs
of singly occupied lattice sites.27 To take into account the
constraints of no double occupancy different types of sla
boson~-fermion! techniques were proposed~see Refs. 28–
31, and references therein!. In the mean field approximation
~MFA! the local constraints are approximated by a glo
one, that reduces the problem to free fermions and boson
the mean field.28 To treat the constraints in a systematic wa
in Refs. 29 and 30 a large-N expansion, withN being the
number of states~orbitals! at a lattice cite, was used. In tha
approach the local constraints are relaxed and a weak
pling approximation is possible. By using the 1/N expansion,
the d-wave superconducting instability induced by the e
change interaction was obtained in thet-J model close to
half filling.30 The Baym-Kadanoff variational technique fo
the Green functions in terms of the Hubbard operators
used in Refs. 32 and 33~also in the limit of largeN) to
consider superconducting pairing in thet-J model. For a
finite J the d-wave superconducting instability mediated
exchange and charge fluctuations was obtained belowTc
.0.01t. However, in the large-N expansion the kinematica
interaction is suppressed and this approach, being rigorou
the limit N→`, is difficult to extrapolate to real spin sys
tems withN52.

A formally rigorous method to treat the unconvention
commutation relations for the projected electron operator
based on the diagram technique for the Hubb
operators,34,35 since in this method the local constraints a
rigorously implemented by the Hubbard operator algebra
superconducting pairing due to the kinematical interaction
the Hubbard model in the limit of strong electron corre
tions (U→`) was first obtained by Zaitsev and Ivanov36

who studied the lowest order diagrams for a two-parti
vertex equation. Their approximation, being equivalent to
MFA for a superconducting order parameter, gives only
s-wave pairing. As was shown later,37,38 the s-wave pairing
in the limit of strong correlations violates an exact requi
ment of no single-site pairs and should be rejected. By
plying the MFA for the Green functions in terms of the Hu
bard operators it was proved in Refs. 37 and 38 that
d-wave superconducting pairing mediated by the excha
interaction is thermodynamically stable and has highTc
.0.1t for J50.4t.

On the basis of the diagram technique, detailed studie
spin fluctuations and superconducting pairing in thet-J
model were performed by Izyumovet al.39 Summation of the
first order diagrams for the self-energy reproduced the res
of the MFA in Refs. 37 and 38. Estimations done in the we
coupling limit for the Eliashberg equation with account
the second order diagrams revealed quite a low super
ductingTc .

To study the scenario of Cooper pair formation at hi
temperature in the present paper we consider a theor
electron spectrum and superconducting pairing for thet-J
model in paramagnetic state by applying the project
technique40 for the Green functions41 in terms of the Hub-
bard operators. To go beyond of the MFA in Refs. 37 and
we derived the Eliashberg equations in the noncrossing
proximation and numerically solve it. As is usual in th
-
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Eliashberg theory, we fix the phase of the gap function
taking it to be real that excludes phase fluctuations and g
a finite Tc for the gap formation in two dimensions. At hig
temperatureT.Tc we observe narrow QP peaks for singl
electron spectral functions near FS and a broad incohe
band below FS. The latter results in nonzero occupat
numbersnk,s throughout the Brillouin zone which show onl
a small drop, increasing with doping, at FS. A direct nume
cal solution of the linearized gap equation reveals thed-wave
superconducting instability with maximalTc.0.04t at opti-
mal dopingd.0.3.

The paper is organized as follows. In the next section
present the Dyson equation for the matrix Green function
terms of the Hubbard operators. In Sec. III self-consist
Eliashberg equations in the noncrossing approximation
derived. In Sec. IV numerical results for the single-electr
spectral functions, occupation numbersnk,s , a supercon-
ducting gap function, andTc are presented and discusse
Conclusions are given in Sec. V.

II. DYSON EQUATION FOR THE t-J MODEL

We consider thet-J model in the standard notation1,10

Ht2J52t (
iÞ j ,s

ãis
1 ã j s1J(̂

i j &
S SiSj2

1

4
ninj D , ~1!

where ãis
1 5ais

1 (12ni 2s) are projected electron operato

andSi
a5(1/2)(s,s8ãis

1ss,s8
a ãis8 are spin-1/2 operators. Heret

is an effective transfer integral andJ is the antiferromagnetic
exchange energy for a pair of nearest neighbor sites^ i j &, i
. j .

To take into account on a rigorous basis the projec
character of electron operators we employ the Hubbard
erator~HO! technique.42 The HO’s are defined as

Xi
ab5u i ,a&^ i ,bu ~2!

for three possible states at a lattice sitei: u i ,a&
5u i ,0&, u i ,s& for an empty site, and for a singly occupie
site by an electron with spins/2 (s561, s̄52s). They
obey the completeness relation

Xi
001(

s
Xi

ss51, ~3!

which rigorously preserves the constraint of no double oc
pancy.

By using the Hubbard operator representation~2! for ãis
1

5Xi
s0 and ã j s5Xj

0s and for spin and number operators w
write the Hamiltonian of thet-J model~1! in a more general
form:

Ht2J52 (
iÞ j ,s

t i j Xi
s0Xj

0s2m(
is

Xi
ss

1
1

4 (
iÞ j ,s

Ji j ~Xi
ss̄Xj

s̄s2Xi
ssXj

s̄s̄!. ~4!

Here we introduced the electron hopping energy for the ne
est neighbors,t i j 5t, and the second neighbors,t i j 5t8, on a
2D square lattice, and the exchange interactionJi j 5J for the
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nearest neighbors. These parameters can be consider
independent ones if starting from a more realistic for cop
oxides three-bandp-d model we reduce it to thet-J model10

~see Ref. 43!. The chemical potentialm is to be calculated
from the equation for the average number of electrons

n5(
s

^Xi
ss&. ~5!

To discuss the superconducting pairing within the model~4!
we consider the matrix Green function~GF!

Ĝi j ,s~ t2t8!5Š^C is~ t !uC j s
1 ~ t8!&‹ ~6!

in terms of the Nambu operators

C is5S Xi
0s

Xi
s̄0D , C is

1 5~Xi
s0 Xi

0s̄!, ~7!

where Zubarev’s notation for the anticommutator Gre
function ~6! is used.41

By differentiating the GF~6! over the timet we get the
following equation:

vĜi j s~v!5d i j Q̂s1Š^ẐisuC j s&‹v , ~8!

where Ẑis5@C is ,H#, Q̂s5(0 Qs̄

Qs 0) with Qs5^Xi
001Xi

ss&.

Since we consider a spin-singlet state the correlation fu
tion Qs5Q512n/2 depends only on the average number
electrons~5!.

Now, we project the many-particle GF in Eq.~8! on the
single-electron GF by introducing theirreduciblepart of Ẑis
operator

^^ẐisuC j s
1 &&5(

l
Êi l s^^C lsuC j s

1 &&1^^Ẑis
~ irr!uC j s

1 &&,

^$Ẑis
~ irr! ,C j s

1 %&5^Ẑis
~ irr!C j s

1 1C j s
1 Ẑis

~ irr!&50, ~9!

that results in the equation for the frequency matrix

Êi j s5^$@C is ,H#,C j s
1 %&Q21. ~10!

To calculate the matrix~10! we use the equation of motio
for the HO

S i
d

dt
1m DXi

0s52(
l

t i l Biss8Xl
0s8

1
1

2(l
Jil ~Blss82dss8!Xi

0s8 , ~11!

where we introduced the operator

Biss85~Xi
001Xi

ss!ds8s1Xi
s̄sds8s̄

5S 12
1

2
Ni1sSi

zD ds8s1Si
s̄ds8s̄ . ~12!

The Bose-like operator~12! describes electron scattering o
spin and charge fluctuations caused by the nonfermio
commutation relations for the HO@the first term in Eq.
~11!—the kinematical interaction# and by the exchange spin
spin interaction@the second term in Eq.~11!#.
as
r

n

c-
f
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The frequency matrix~10! defines the zero-order GF i
the generalized MFA

Ĝi j s
0 ~v!5Q$vt̂0d i j 2Êi j s%21. ~13!

By writing the equation of motion for the irreducible part o
the GF in Eq.~9! with respect to the second timet8 for the
right-hand side operatorC j s

1 (t8) and performing the same
projection procedure as in Eq.~9! we can obtain the Dyson
equation for the GF~6! in the form

Ĝi j s~v!5Ĝi j s
0 ~v!1(

kl
Ĝiks

0 ~v!Ŝkls~v!Ĝl j s~v!,

~14!

where the self-energy operatorŜkls(v) is defined by the
equation

T̂i j s~v!5Ŝi j s~v!1(
kl

Ŝiks~v!Ĝkls
0 ~v!T̂l j s~v!.

~15!

Here the scattering matrix is given by

T̂i j s~v!5Q21^^Ẑis
~ irr!uẐj s

~ irr!1

&&vQ21. ~16!

From Eq. ~15! it follows that the self-energy operator i
given by theproperpart of the scattering matrix~16! that has
no parts connected by the single zero-order GF~13!:

Ŝi j s~v!5Q21^^Ẑis
~ irr!uẐj s

~ irr!1

&&v
~prop!Q21. ~17!

Equations~13!, ~14!, and ~17! give an exact representatio
for the single-electron GF~6!. To calculate it, however, one
has to introduce an approximation for the many-particle
in the self-energy matrix~17! which describes inelastic sca
tering of electrons on spin and charge fluctuations.

III. SELF-CONSISTENT ELIASHBERG EQUATIONS

In the k representation for the GF

Gs
ab~k,v!5(

j
Go js

ab ~v!e2 ikj , ~18!

we get for the zero-order GF~13!

Ĝs
~0!~k,v!215$vt̂02~Ek

s2m̃ !t̂32Dk
st̂1%Q

21, ~19!

where t̂0 ,t̂1 ,t̂3 are the Pauli matrices. The energy of th
quasiparticlesEk

s , the renormalized chemical potentialm̃
5m2dm and the gap functionDk

s in the MFA ~10! are given
by

Ek
s52e~k!Q2es~k!/Q2

2J

N (
q

g~k2q!Nqs , ~20!

where we have introducedJ(q)54Jg(q) and e(k)5t(k)
54tg(k)14t8g8(k), es(k)54tg(k)x1s14t8g8(k)x2s ,
with g(k)5(1/2)(cosaxqx1cosayqy) and g8(k)
5cosaxqx cosayqy ,

dm5
1

N(
q

e~q!Nqs22JS n

2
2

x1s

Q D , ~21!
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Dk
s52

2

NQ(
q

g~q,k2q!^X2q
0s̄ Xq

0s&, ~22!

where the interaction is given by the function

g~q,k2q!5t~q!2
1

2
J~k2q!. ~23!

There are two contributions in the gap equation~22!: the
k-independent kinematical interactiont(q) and the exchange
interaction J(k2q). The kinematical interaction gives n
contribution to thed-wave pairing in MFA, Eq.~22! ~see
Ref. 37!, and we disregard it in the following equations. T
average number of electrons in Eqs.~20! and ~21! in the k
representation is written in the form

nk,s5^Xk
s0Xk

0s&5QNks . ~24!

In calculation of the normal part of the frequency matrix~20!
we have neglected the charge fluctuations and introduced
spin correlation functions:

x1s5^SiSi 1a1
&, x2s5^SiSi 1a2

&, ~25!

for the nearestx1s @a15(6ax ,6ay)# and the next-neares
x2s @a256(ax6ay)# neighbor lattice sites.

To calculate the self-energy operator we employ the n
crossing approximation~or the self-consistent Born approx
mation! for theproperpart of the many-particle Green func
tion in Eq. ~17!. It is given by the two-time decoupling fo
the corresponding correlation functions in Eq.~17!

^Xj 8
s80Bj ss8

1 Xi 8
0s8~ t !Biss8~ t !&

.^Xj 8
s80Xi 8

0s8~ t !&^Bj ss8
1 Biss8~ t !&. ~26!

The proposed decoupling does not violate equal time co
lations since in Eq.~26! j Þ j 8 and iÞ i 8. In the adopted
approximation vertex corrections are neglected while
Fermi-like and the Bose-like correlation functions are su
posed to be calculated self-consistently from the full Gre
functions. As was argued in Ref. 44 where the analog
approximation was used, at moderate doping we can c
sider the spin-charge fluctuations and single-particle exc
tions as independent modes. Then we can perform the de
pling ~26! in the framework of the mode-couplin
approximation which has been proved to be quite a relia
one even for systems with strong interactions. As was sho
for the spin-polaront-J model the vertex corrections to th
noncrossing approximation are small and give only num
cal renormalization of the model parameters~see, e.g., Ref.
14!.

Using the spectral representation for the GF, we obtain
the noncrossing approximation the following expression
the normal and anomalous components of the self-energ

S̃11~12!
s ~k,v!5QŜ11~12!

s ~k,v!

5
1

N(
q
E E

2`

1`

dz dV N~v,z,V!

3l11~12!~q,k2quV!A11~12!
s ~q,z!, ~27!
he

-

e-

e
-
n
s
n-
a-
u-

le
n

i-

in
r
:

where

N~v,z,V!5
1

2

tanh~z/2T!1coth~V/2T!

v2z2V
. ~28!

Here we introduce the spectral density

A11
s ~q,z!52

1

Qp
Im^^Xq

0suXq
s0&&z1 id , ~29!

A12
s ~q,z!52

1

Qp
Im ^^Xq

0suX2q
0s̄ &&z1 id , ~30!

and the electron-electron interaction functions caused
spin-charge fluctuations

l11~12!~q,k2quV!5g2~q,k2q!

3F2
1

p
Im D6~k2q,V1 id!G ,

~31!

where the spectral density for the spin-charge fluctuation
defined by the bosonlike commutator GF

D6~q,V!5^^SquS2q&&V6
1

4
^^nqunq

1&&V . ~32!

The solution of the Dyson equation~14! can be written in the
Eliashberg notation as

Ĝs~k,v!5QG̃s~k,v!

5Q
vZk

s~v!t̂01@Ek
s1jk

s~v!2m̃#t̂31Fk
s~v!t̂1

@vZk
s~v!#22@Ek

s1jk
s~v!2m̃#22uFk

s~v!u2
,

~33!

where

v@12Zk
s~v!#5

1

2
@S̃11

s ~k,v!1S̃22
s ~k,v!#,

jk
s~v!5

1

2
@S̃11

s ~k,v!2S̃22
s ~k,v!#, ~34!

Fk
s~v!5Dk

s1S̃12
s ~k,v!,

and S11
s (k,v)52S22

s̄ (2k,2v). Here we fix the phase o
the gap function by taking it to be real.

IV. NUMERICAL RESULTS AND DISCUSSION

For numerical solution of the system of equations~27!–
~34! we have used the imaginary frequency representa
for the Green function~33! with v5 ivn5 ipT(2n11) and
the spin-charge Green function~32! with V5 ivn5 ipT2n
where n50,61,62, . . . . By using the representation fo
the function~28!

N~ ivn ,z,V!52T(
m

1

ivm2z

1

i ~vn2vm!2V
~35!

after integration in Eq.~27! we get
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S̃11~12!
s ~k,ivn!52

T

N(
q

(
m

G̃11~12!
s ~q,ivm!

3l11~12!~q,k2qu ivn2 ivm!. ~36!

The interaction functions are given by

l11~12!~q,k2qu ivn!5g2~q,k2q!D6~k2q,ivn!.
~37!

To calculate superconductingTc it is sufficient to study a
linearized system of the Eliashberg equations~34! which has
the following form:

G̃11
s ~k,ivn!5

1

ivn2Ek1m̃2S̃11
s ~k,ivn!

, ~38!

Fs~k,ivn!5Dk
s1fs~k,ivn!

5
T

N(
q

(
m

$J~k2q!1l12~q,k2qu ivn2 ivm!%

3G̃11
s ~q,ivm!G̃11

s̄ ~q,2 ivm!Fs~q,ivm!. ~39!

At first the system of equations for the normal GF~38! was
solved numerically for a given concentration of electrons

n

12n/2
5

1

N(
k,s

Nks511
2T

N (
k

(
n52`

`

G̃11~k,ivn!.

~40!

Then the eigenvalues and eigenfunctions of the gap func
~39! were calculated to obtain the superconducting transi
temperatureTc and the (k,v) dependence of the gap func
tion.

For numerical calculations we take into account only
spin-fluctuation contribution and write the functio
Ds

6(q,ivn) ~32! in the form

Ds
6~q,ivn!.^^SquS2q&& ivn

52E
0

1` 2z dz

z21vn
2
xs9~q,z!.

~41!

To perform self-consistent calculations one should write
equation for the spin-fluctuation susceptibility~41! in terms
of the one-electron Green function~38! as has been done
e.g., in Ref. 45. However, to make our numerical work tra
table in the present paper we use a model reperesentatio
the spin-fluctuation susceptibility suggested in numeri
studies46

xs9~q,v!52
1

p
Im^^SquS2q&&v1 id5xs~q!xs9~v!

5
x0

11j2@11g~q!#
tanh

v

2T

1

11~v/vs!
2

.

~42!

The q-dependent part has a peak at the AFM wave vec
(p,p) with its intensity defined by the short-range AF
correlation lengthj ~measured in lattice constant units!. We
take quite a smallj5123 to imitate incommensurate cha
n
n

e

n

-
for
l

r

acter of spin fluctuations with large correlation lengthj.5
observed at finite doping both in La22xSrxCuO4 and
YBa2Cu3O72x in neutron scattering experiments.47 For the
frequency-dependent part we choose the scaling func
with an enhanced intensity for frequenciesv,T and a large
cutoff energyvs.J according to neutron scattering expe
ments in single-layered cuprate La22xSrxCuO4. It is impor-
tant that the constantx0 in Eq. ~42! which defines intensity
of spin fluctuations at the AFM wave vector is normaliz
according to the following condition:

1

N(
i

^SiSi&5
1

N(
q

xs~q!E
2`

1` dz

exp~z/T!21
xs9~z!

5
pvs

2N (
q

xs~q!5
3

4
n, ~43!

which gives

x05
3n

2pvsC1
, C15

1

N(
q

1

11j2@11g~q!#
.

In the approximation~41! we get for the interaction func
tion ~37!

l11~q,k2qu ivn!5l12~q,k2qu ivn!

52g2~q,k2q!xs~k2q!Fs~ ivn!,

~44!

where

Fs~vn!5E
0

` 2x dx

x21~vn /vs!
2

1

11x2tanh
x

2t
~45!

is the spectral function,t5T/vs .
Within the model~42! the static spin correlation function

~25! are calculated by usinĝSqS2q&5(pvs/2)xs(q). In
Table I we give characteristic values for the static spin c
relation functions and the constantx0 for different values
of j.

To analyze a role of different interactions in the electro
spin-fluctuation scattering in Eq.~44! we consider the weak
coupling approximation for the Eliashberg equation~33!. It
is given by the following approximation for the interactio
~44!:48

l12~q,k2qu ivn2 ivm!

.2l~q,k2q!u~vs2uvnu!u~vs2uvmu!,

~46!

where we takeFs(vn).Fs(vs).1 and introduce

TABLE I. Static spin correlations versus AFM correlatio
lengthj at different hole concentrationd.

j d x0 x1s x2s xs(Q)/xs(0)

1 0.30 1.56 20.072 0.019 3
3 0.10 7.40 20.230 0.130 19
5 0.05 17.08 20.311 0.213 51
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l~q,k2q!5g2~q,k2q!xs~k2q!. ~47!

In the weak coupling limit we have for the anomalous GF

G̃12
s ~k,ivm!.2

Fk
s

~vm!21~Vk
s!2

, ~48!

where Vk
25@Ek

s1jk
s(0)2m̃#21uFk

su2 is the QP energy in
the superconducting state with the frequency-independ
gap functionFk

s . By performing summation overm for

S̃12
s (k,ivn) in Eq. ~36!, we get the weak coupling BCS equ

tion

Fs~k!5
1

N(
q

$J~k2q!2l~q,k2q!%
Fq

s

2Vq
tanh

Vq

2T
.

~49!

In comparison with the results of the diagram technique,39 in
Eq. ~49! the kinematical interaction is also included in th
effective coupling constant of the second order equa
~47!. Below we compare results for the superconductingTc
calculated in the weak coupling limit, Eq.~49!, and those
obtained from the Eliashberg equation~39!.

The numerical calculations were performed using the
Fourier transformation49 for 32332 cluster. In the summa
tion over the Matsubara frequencies we used up to
points with the constant cutoffvmax520t. Usually 10–30
iterations were needed to obtain a solution for the self-ene
with an accuracy of order 0.1%. The Pade´ approximation
was used to calculate the one-electron spectral func
A11(k,v) ~29! and the density of states~DOS!

A~v!5
1

N(
k

A11
s ~k,v! ~50!

on the real frequency axis.
The calculations were performed for several values of

t-J model parameters (J/t,t8/t), the AFM correlation length
j in the model function~42! with vs5J, and the hole con-
centrationd512n. Below we present results ford50.1
20.4 andj51,3 for the parametersJ50.4,t850 if other
values are not indicated. All the energies and temperature
measured in units oft. To mimic suppression of AFM cor
relations with doping we usually takej53 for d50.1 and
keep j51 for d50.220.4. Temperature effects are rath
small for T<0.1 and therefore we present only results
T50.0125.

A. Normal state

Results for the electron spectral density in the norm
state,A(k,v)5A11(k,v) ~29!, are shown along the thre
symmetry directions in the BZ: G(0,0)→X(p,0)
→M (p,p)→G in Fig. 1 for d50.1, j51, Fig. 2 for d
50.1, j53, Fig. 3 ford50.1, j51, t8520.3, and Fig. 4
for d50.4, j51.

For small concentration of holes,d50.1, we observe
quite narrow QP peaks at the wave vectors crossing
Fermi surface~FS! along M→X and M→G directions.
Along the X→G direction wave vectors are below the F
~see Fig. 9! and there are no QP peaks. In addition to the
dispersion we see also a band of incoherent excitations
nt

n

st
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y

n

e

re

r

l

e

P
th

large dispersion below the Fermi energyv,0. The incoher-
ent band is caused by the self-energy contribution peake
the AFM wave vector~‘‘shadow bands’’!. Forj53 in Fig. 2
the incoherent band has a higher intensity due to stron
spin-fluctuations weight at the AFM wave vector. An add
tional hopping between next neighbors changes the dis
sion mostly atG andX points~see Fig. 3 witht8520.3) and
increases the intensity of the incoherent band, especiall
the X point ~compare Figs. 1 and 3!.

With increasing hole concentration the dispersion of
QP band also increases and the intensity of QP peaks
enhanced as shown in Fig. 4 ford50.4, j51. At the same
time the intensity of the incoherent excitations are su
pressed: the ‘‘high-energy feature’’ below the Fermi ener
at theX point for d50.1, j53 in Fig. 2 practically disap-
pears ford50.4, j51 in Fig. 4. As was discussed by She
and Schrieffer50 ~see also Ref. 51!, the doping dependence o
the spectral line shape near (p,0) point can be explained by
strong coupling of the QP hole excitations with collecti
excitations. In our model the latter are spin fluctuatio
which intensity at (p,p) point is proportional toj2 @see Eq.
~42!# resulting in strong suppression of the incoherent ex
tations with decreasingj and increasingd. An important
role of the next neighbor hoppingt8 in the explanation of the
doping dependence of the spectral line shape near (p,0) was
also pointed out in Ref. 52.

FIG. 1. Electron spectral densityA(k,v) for the hole concen-
tration d50.1 and AFM correlation lengthj51.
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These conclusions are supported by the doping dep
dence of the imaginary part of the self-energy2Im S(k,v)

52Im S̃11
s (k,v1 i e) shown in Fig. 5 ford50.1, j53 and

Fig. 6 for d50.3, j51. With increasing hole concentratio
and decreasing AFM correlation lengthj the self-energy de-
creases due to suppression of electron scattering on s
fluctuations. It is interesting to note that for the underdop
region, d<0.1, ImS(k,v) for T<v<J is approximately
proportional tov ~see Fig. 5, especially theM point! while
for the overdoped region,d>0.3, for small v we have
Im S(k,v)}v2. However, our (k,v) resolution is not high
enough to prove a transition from the non-Fermi-liquid to t
Fermi-liquid behavior with doping.

Our results for electron spectral functions are in a se
quantitative agreement with the numerical studies of thet-J
model within the finite-temperature Lanczos method.24 We
observe also a large asymmetry between the photoemis
(v,0) and the inverse photoemission (v.0) spectra.
While the spectra below the FS in Figs. 1~a!, 2~a!, 3~a!, 4~a!
are strongly overdamped and show no QP peaks, the sp
for electrons outside the FS, e.g., at theM (p,p) point in
Figs. 1–3, show QP behavior. The main disagreement w
the results of Ref. 24 is a smaller imaginary part of the s
energy, Figs. 5 and 6, which also results in a less pronoun
incoherent part of the spectra below the FS. Partly this
be explained by the underestimation of the electron sca
ing on spin fluctuations. Namely, if we make an approxim

FIG. 2. Electron spectral densityA(k,v) for d50.1 andj53.
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in-
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tion @11g(q)#.uq2Qu2 in the spin susceptibility~42!
which enhances the peak intensity atQ5(p,p) we get
much stronger scattering and a more intensive incohe
band. To enhance the incoherent contribution and to fu
the Luttinger theorem it was proposed in Ref. 44 to add
the self-energy ~27! a momentum-independent pa
Im S(v)52cv2, with quite a large value at maximum
.3.5t. However, this fitting is difficult to justify. We find
also a reasonable agreement of our results for the spe
function for d50.1, j53, including both the coherent QP
dispersion and incoherent band, with the calculations in R
23 done by the exact-diagonalization technique for a fin
cluster of 20 lattice sites with 2 holes (d50.1).

In Fig. 7 we show the QP dispersionE(k) for d
50.1, j53 and t850, 60.1 ~upper panel! and d50.1, j
53 and d50.4, j51 ~lower panel! which are calculated
from the maxima of spectral density. As we see, the QP b
width strongly increases with doping while the next neighb
hopping t8 change the dispersion mostly atG(0,0) and
X(p,0) points. These results can be already explained wi
the spectrumEk in MFA, Eq. ~20!. Written in the form

Ek
s524tg~k!Q@11x1s /Q2#24t8g8~k!Q@11x2s /Q2#

52teffg~k!2t8effg8~k!,

it shows a strong dependence of the effective hopping
rameters on the static AFM correlation functions~25!: x1s
5^SiSi 1a1

&, x2s5^SiSi 1a2
&. For small hole concentration

and large AFM correlation length, e.g.,d50.1, j53, we

FIG. 3. Electron spectral densityA(k,v) for d50.1, j51, and
next neighbor hopping parametert8520.3.
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have x1s520.23, x2s50.13 ~see Table I! and teff

.0.53t, t8eff.1.25t8. At large hole concentration, e.g.,d
50.4, j51, we have x1s520.06, x2s50.016 and teff

.2.5t, teff8 .2.7t8. The self-energy additionally renorma
izes the spectrum but the generald,j dependence obtained i
the MFA agrees quite well with that observed in Fig. 7.

Here we would like to point out that in the large-N ex-
pansion technique, both for the slave boson29,30 and the
Baym-Kadanoff variational GF,32,33 the narrowing of the
band due to the discussed above AFM correlations is
nored. In the 1/N expansion the static spin correlation fun
tions x1s ,x1s appear to be of the higher order in 1/N and
therefore are omitted. Moreover, the factorQ in the spectrum
in the MFA, Eq.~20! is also underestimated. We have in E
~20! Qs5^Xi

001Xi
ss&5(11d)/2 while in the 1/N expan-

sion Q5^Xi
00&5d since the correlation function̂Xi

ss& is of
the order 1/N and is disregarded. These underestimations
the strong kinematical interaction in the large-N expansion
change the doping dependence of the QP spectrum in M
in comparison with the real situationN52.

Figure 8 shows the density of statesA(v) for d50.1, j
53 ~dashed line! and d50.4, j51 ~solid line!. Since the
incoherent band is strongly suppressed at large hole con
tration (d50.4) and small AFM correlation length (j51),
the DOS has a nearly symmetric form with a broad ba
width ~of the order of 7t) in comparison with the highly
asymmetric one for low doping (d50.1) where the high den

FIG. 4. Electron spectral densityA(k,v) for d50.4 andj51.
-

.

f

A

n-

d

sity of states below the Fermi level is due to the incoher
band. In that respect the DOS atd50.1 agrees quite wel
with the results of numerical studies by the finit
temperature Lanczos method24 where the single-particle
DOS is also quite asymmetric with large incoherent part
low the FS. Moreover, the absolute values of the DOS
maximum are close to each other@in Ref. 24, DOSN(v)
5(11d)A(v) whereA(v) is given by Eq.~50!#.

Now we consider the results for the electron occupat
numbers~24! nk,s5^Xk

s0Xk
0s&5@(11d)/2#Nks . In Fig. 9

the functionN(k)5Nks is shown for different hole concen
trations: ~a! d50.1, j53, and ~b!–~d! d50.220.4, j51.
The shape of the FS changes from holelike around
M (p,p) point of BZ at small doping to electronlike aroun
the G(0,0) point of BZ for large doping. We obtain quite
small drop ofN(k) at the FS especially at small doping
which is a specific feature of strongly correlated electro
systems. Large occupation numbers throughout the BZ
due to the incoherent contribution in the spectral dens
A(k,v) under the Fermi level~see Figs. 1–4!. The evolution
of the FS with hole concentration is also shown in Fig. 10
bold solid lines. The maximal occupation numbers for ele
tronsnk,s5(11d)N(k)/2<0.55 for d50.1 agrees with the
results of the exact-diagonalization technique for fin
clusters.23 According to Eq.~40!, we also have inequalityn

FIG. 5. Imaginary part of the electron self-energy

2Im S̃11
s (k,v1 i e) for d50.1 andj53.
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<1 that results from the restriction of no double occupan
of lattice sites in thet-J model.

Concerning the volume of the electron FS, it appears to
proportional at small doping to (12d), e.g., for d
50.1, 0.2 the ratio of the BZ part fork,kF to the whole BZ
are close to 90 and 80 %, respectively, while according

FIG. 6. Imaginary part of the electron self-energ

2Im S̃11
s (k,v1 i e) for d50.3 andj51.

FIG. 7. Electron quasiparticle spectrumE(k) for d50.1 and
t850, 60.1, j53 ~upper panel!, and d50.1, j53 ~solid line!
andd50.4, j51 ~dashed line! ~lower panel!.
y

e

o

the Luttinger theorem the ratio should be equal to
2d)/2. It is possible to obtain a large FS at small doping
one introduces a strong incoherent part in the DOS below
FS as it has been proposed in Ref. 44. However, the
~sub!band t-J model could violate the Luttinger theorem
since it is derived for the Mott-Hubbard insulating sta
which may not have an adiabatic connection to a nonin
acting electron gas. A violation of the Luttinger theorem
the high-temperature series for the momentum distribut
function of the two-dimensionalt-J has been recently re
ported in Ref. 53. Our results for the FS atd50.2, see Figs.
9~b! and 10~b!, are in quantitative agreement with that on
presented in Ref. 53 concerning both the shape of the
@hole pockets at (6p,6p) points—see dotted line in Fig. 5
of Ref. 53# and the volume of the FS: it is equal to 0
instead of 0.4 according to the Luttinger theorem. In o
calculations we have also observed quite a strong dep
dence of the FS shape on the next-nearest hopping param
t8 and the AFM correlation lengthj. In any case, to study

FIG. 8. Electron density of statesA(v) for d50.1, j53
~dashed line! andd50.4, j51 ~solid line!.

FIG. 9. Electron occupation numbersN(k) @nk,s5(1
1d)N(k)/2# versusk (0<kx ,ky<p) for different hole concentra-
tion d and AFM correlation lengthj: d50.1,j53 ~a!, d50.2,j51
~b!, d50.3, j51 ~c!, d50.4, j51 ~d!.
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the FS in strongly correlated systems one should conside
original Hubbard model with upper and lower subban
since a weight transfer between the subbands with dop
away from the half-filled insulating state could drastica
change the shape of the FS.

B. Superconducting state

The results of the numerical solution of the lineariz
Eliashberg equation~39! are presented in Figs. 10–13. Fi
ure 10 shows the contour plots in a quarter of BZ
<kx ,ky<p) for the static gap functionF(k)5F(k,v
50). At a small doping,d50.1 @Fig. 10~a!#, it has a more
complicatedk dependence, with two positive and two neg
tive maxima@shown by (1) and (2)# while at d>0.2 only
one positive and one negative maximum survive@Figs.
10~b!–10~d!#. This is shown in Fig. 11 forF(k) in k space
for a small concentration of holes,d50.1 ~a!, and for a
nearly optimal one,d50.3 ~b!. TheF(k) dependence has
complicated form that cannot be described by the sim
(coskx2cosky) function usually used ford-wave symmetry.
However, in all cases the gap function obeysB1g symmetry:
F(kx ,ky)52F(ky ,kx) which breaks the fourfold symmetr
of the FS ink space.

The frequency dependence of the gap functionF(k,v) is
also anomalous. In Fig. 12 we show thev dependence for
the real ReF(k,v) and imaginary ImF(k,v1 i e) parts of
the gap function ford50.3, j51 at theX(0,p) point of the
BZ.

In Fig. 13 we present the superconductingTc versus hole
concentrationd for AFM correlation lengthj51 ~solid line!
andj53 ~dashed line!, obtained from numerical solution o
Eq. ~39!. With increasing AFM correlation lengthj effective
electron-electron couplingl12(q,k2qu ivn) mediated by
spin fluctuationsxs(k2q) also increases, which raisesTc .
For comparison in Fig. 14 we also present superconduc

FIG. 10. The Fermi surface~bold solid lines! and the gap func-
tion F(k,0) @thin solid lines with (1) and (2) showing the sign of
the gap# versusk (0<kx ,ky<p) for different hole concentrationd
and AFM correlation lengthj: d50.1, j53 ~a!, d50.2, j51 ~b!,
d50.3, j51 ~c!, d50.4, j51 ~d!.
he
s
g

-

le

g

temperatureTc versus hole concentrationd for AFM corre-
lation lengthj51 in the weak coupling approximation, Eq
~49!, for the full vertexJ(k2q)2l(q,k2q) ~solid line!, the
vertex with t(q)50 in l(q,k2q) ~dashed line!, and in the
MFA with l(q,k2q)50 ~dotted line!. We see that in the
weak coupling approximationTc is much higher in compari-
son with that one obtained from the frequency-depend
equation~39! for the same static susceptibility, i.e.,j51 in
Eq. ~42!. The most important contribution in the wea
coupling approximation comes from MFA, i.e.,J(k2q)
in Eq. ~49!. The second order contributionl(q,k2q)

FIG. 11. The gap functionF(k,v50) versusk for d50.1, j
53 ~a!, d50.3, j51 ~b!.

FIG. 12. Real ReF(k,v) and imaginary ImF(k,v1 i e) parts
of the gap function versusv for d50.3, j51 at (kx ,ky)5(0,p).
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5g2(q,k2q)xs(k2q) enhancesTc both due to kinematica
t(q) and exchangeJ(k2q) interactions. For a larger AFM
correlation length superconductingTc is greatly enhanced in
the weak coupling approximation, e.g.,Tc.0.1 for j53.

To elucidate the role of AFM short-range fluctuations
the model and, in particular, the strong dependence ofTc on
the AFM correlation lengthj we present in Table I thej
dependence of the static correlation functionsx1s ,x2s and
the constantx0 in Eq. ~42!. The latter, as well the ratio
xs(Q)/xs(q50), estimates the electron-spin fluctuatio
coupling while the static correlation functionsx1s ,x2s , Eq.
~25!, define the bandwidth in the MFA, Eq.~20! as discussed
above. The large increase of these parameters seen in T
I, with increasing j from their values atj51, explains
changes in the spectral functionsA(k,v) and strongTc en-
hancement.

At the same time the peak position ofTc(d) around the
hole concentrationd.0.33 does not change much withj. As
Fig. 10 shows, at this concentration the FS crosses
(6p,0),(0,6p) points of the BZ. Since the pairing interac
tion Eq. ~44! is proportional to the spin susceptibilityxs(k
2q) with the maximal contribution atk2q5Q the strongest
pairing occurs for electrons at the FS withk
5(6p,0),(0,6p) coupled by the AFM wave vectorQ
5(p,p). This scenario is characteristic for spin-fluctuati
pairing9 and has been discussed recently by Shen
Schrieffer50 in connection with the anomalous momentu
and temperature dependence of the spectral line shap
ARPES experiments. Experimentally the highestTc is ob-

FIG. 13. The superconducting temperatureTc versus hole con-
centrationd for AFM correlation lengthj51 ~solid line! and j
53 ~dashed line!, obtained from Eq.~39!.

FIG. 14. The superconducting temperatureTc versus hole con-
centrationd for AFM correlation lengthj51 in the weak coupling
approximation Eq.~49! for the full vertex ~solid line!, the vertex
with t(q)50 ~dashed line!, and in the MFA withl(q,k2q)50
~dotted line!.
ble

e

d

in

served at the optimal doping ofd.0.16. To obtain maximal
Tc in our calculations at the lower hole concentration the
should be large and run along the diagonals (6p,0)2(0,
6p) at this hole concentration. In the spin-polaront-J
model20 the Tc(d) curve has a narrow peak at the optim
dopingd50.1520.25, depending on the next neighbor ho
ping t8560.1t, since in that case the FS is close to the AF
BZ along the diagonals (6p,0)2(0,6p) already at a low
concentration of doped holes.

V. CONCLUSIONS

In the present paper a theory of electron spectrum
superconducting pairing in thet-J model ~4! in a paramag-
netic state was developed by employing the project
technique40 for the two-time GF~Ref. 41! in terms of Hub-
bard operators. The obtained self-consistent system
Eliashberg equations for the matrix GF~33! and the self-
energy~27! in comparison with the diagram technique39 has
an additional contribution proportional to the second order
the kinematical interactiont(q) which gives an important
contribution in comparison to the exchange interact
J(k2q)/2 in the vertex~23!.

The one-electron spectral functions, the superconduc
Tc , and the gap function were calculated by a numeri
solution of the linearized system of Eliashberg equatio
~38!,~39!. To describe kinematical and exchange interactio
of electrons with spin fluctuations a model dynamic sp
susceptibility~42! with short-range AFM correlation lengthj
was used.

The results for the electron spectral density~see Figs.
1–4! show QP excitations at the FS crossing and a disper
incoherent band. For small hole concentration and la
AFM correlation lengthj the QP dispersion is small while
the intensity of the incoherent band is quite large. With do
ing the QP bandwidth strongly increases and the incohe
band is suppressed. Our results for electron spectral fu
tions are in semiquantitative agreement with the numer
studies of thet-J model within the finite-temperature Lanc
zos method24 and also agree quite well with the studies
the exact-diagonalization technique.23 To perform a quanti-
tative comparison of our numerical results with ARPE
investigations3 one has to consider a more generalt-t8-t9-J
model with the three-site terms as has been discussed
cently ~see, e.g., Ref. 54!.

The occupation numbersN(k) have the characteristic be
havior for strongly correlated systems, Fig. 9. Being lar
throughout the BZ they show only a small drop at the F
The volume of the FS at small doping is proportional to t
hole concentrationd, as shown in Fig. 10, which violates th
Luttinger theorem. However, our result for the volume of t
FS for n50.8 is in quantitative agreement with the rece
numerical results of Putikkaet al.53

The superconducting pairing due to the exchange and
kinematic interactions~in second order! hasd-wave symme-
try, Fig. 11, and highTc , Fig. 13. In the weak coupling
approximation, Eq.~49!, a much largerTc is observed, Fig.
14. Our calculations confirm the results of thed-wave super-
conducting pairing obtained within the spin-polaront-J
model.20 One can argue that our result for thed-wave super-
conducting pairing for the 2Dt-J model contradicts the con



us

o
rd
ion
th

il
d

D
re
d

e

ic
ir-
s
e
o

io
u

rac-
on-
n
ink
clu-
our

e of

ith
lso
is-

his
as
of
s

he
L,
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clusions of Ref. 26 based on numerical results for finite cl
ters. Moreover, it can be rigorously proved~see, e.g., Ref.
55! that there is no long-range superconducting order in tw
dimensional systems due to phase fluctuations of the o
parameter. However, we consider Eliashberg equat
which are really based on the mean field approximation—
phase of the order parameter is fixed in Eq.~38! by taking it
to be real. Therefore the superconductingTc in our calcula-
tions is the temperature of the Cooper pair formation wh
the temperature of phase coherence should be calculate
taking into account the coupling between the CuO2 planes.
In our calculations within the Eliashberg theory for the 2
t-J model we observe Cooper pair formation but in a
stricted region of hole doping. More detailed numerical stu
ies are needed, including investigation of the spin~charge!
gap formation for the more generalt-t8-J model to verify the
scenario of Cooper pair formation in the highly underdop
region.

The important advantage of the proposed microscop
theory for thed-wave spin-fluctuation superconducting pa
ing, in comparison with phenomenological approaches ba
on Fermi-liquid models close to AFM instability, is that w
have used only two basic parameters of the model, the h
ping energyt and the~super!exchange energyJ which are
characteristic in strongly correlated systems.27 We have no
additional fitting parameters for the electron–spin-fluctuat
interaction since the electron scattering on spin-charge fl
or
re
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tuations is a result of the kinematical and exchange inte
tions. Some uncertainty in the interaction is due to the n
crossing approximation~26! where vertex corrections, as i
the diagram technique in Ref. 39, are neglected. We th
that vertex corrections should not change the main con
sions of our calculations. At least, we can argue that in
approach, where the model spin susceptibility~42! with
small AFM correlation lengthj5123 is used, the vertex
renormalization, estimated asxs(Q)/xs(0) ~see Ref. 56!,
should not be large~see Table I!. More detailed studies
within the developed theory are planned to elucidate som
the unresolved problems of the present investigation.
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