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A general Green’s-function technique for elastic spin-dependent transport calculations is presented) which
scales linearly with system size afid) allows straightforward application to general tight-binding Hamilto-
nians 6pdin the present work The method is applied to studies of conductance and giant magnetoresistance
(GMR) of magnetic multilayers in current perpendicular to planes geometry in the limit of large coherence
length. The magnetic materials considered are Co and Ni, with various nonmagnetic materials fromatie 3
and & transition metal series. Realistic tight-binding models for them have been constructed with the use of
density functional calculations. We have identified three qualitatively different cases which depend on whether
or not the bandg¢densities of stateof a nonmagnetic metdi) form an almost perfect match with one of spin
subbands of the magnetic metak in Cu/Co spin valves(ii) have almost purep character at the Fermi level
(e.g., Ag, and(iii) have almost puré character at the Fermi ener@s.g., Pd, Pt The key parameters which
give rise to a large GMR ratio turn out to lfig a strong spin polarization of the magnetic meta), a large
energy offset between the conduction band of the nonmagnetic metal and one of spin subbands of the magnetic
metal, and(iii) strong interband scattering in one of spin subbands of a magnetic metal. The present results
show that GMR oscillates with variation of the thickness of either nonmagnetic or magnetic layers, as observed
experimentally[S0163-182@9)03118-5

I. INTRODUCTION full quantum description is required. For such structures the
magnetoconductance and GMR are found to be oscillatory
The discovery of giant magnetoresistan¢6MR) in me-  functions of the nonmagnetic layer thicknessith periods
tallic multilayers about a decade ago has attracted a greaitending over several atomic planes. This is due to a peri-
deal of attention. This is not only because of the possibilityodic switching of the exchange coupling from ferromagnetic
of bU|Id|ng sensitive magnetometers, but also because GM'R) antiferromagnetic, as a function of a spacer |ayer thick-
provides valuable insight into spin-dependent transport in inness. In the former case the GMR effect vanishes. Despite
homogeneous systems. The GMR is the drastic change e evidence of such important quantum effects, early theo-
electrical resistance that occurs when a strong magnetic fieldtical work was based on spin-dependent scattering at inter-
is applied to a superlattice made with alternating magneti¢,ces and/or magnetic impurities and the effects of quantum
and nonmagneti(:sp_ace) metallic layers. Early_experiments interference have been usually ignored. In 1995 Schep,
were conducted with the so-called current-in-pla@P) o “and Baueh” challenged this conventional picture and

configuration, in Wh'.Ch the current flows pqrallel to the planeshowed that large values of GMRf the order of 120%can
of the layers. In this configuration the dimensions of the” . . . . .
exist even in absence of impurity scattering.

system are macroscopic with transport properties being rea- . . L
sonably described by a classical Boltzmann equAtamd The aim of the present paper is to develop a quantitative

GMR is associated with the spin-dependent scattering offPProach to quantum transport, which describes the depen-
electrons at the interfaces. dence of GMR on specific materials and/or layer th_lcknesses.
The first experiments with the current perpendicular to thé Ur calculations are based on the Landauettiiger
plane (CPP of the layerd paved the way to a completely formalism? using a nearest-neighbor tight-bindingpd
different regime, where quantum effects can play a dominarffamiltonian. The tight-binding energy parameters have been
role. In good quality superlattices the elastic mean free patfitted to accurateb initio density functional calculations.
can extend over several layers and the spin diffusion length We have developed and present here a completely general
can be longer than the total superlattice thickness. In thitechnique for calculating Green’s functions and hence a scat-
case we can talk, according to M&tabout majority and tering S matrix and transport coefficients of a finite superlat-
minority spin carriers as two independent spin fluids whichtice connected to pure crystalline semi-infinite leads. This
remain coherent as they cross the superlattice layers. Thenadlowed us to perform a systematic study of 8and Ni/A
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FIG. 1. Sketch of a finite superlattice connected to two semilimited to cases with translational invariance. However, dis-
infinite leads. order may be rather easily introduced even in these cases by
using a sufficiently large unit cell and repeating it periodi-
cally. This standard supercell approach has been used, for
multilayers, whereA=Cu, Ag, Pd, Au, and Pt, and analyze instance, in Refs. 10 and 11 for the calculations of Co/Cu
optimal conditions for GMR. and Fe/Cr multilayers.
We shall consider below a GMR ratio of a finite superlat-
tice connected to two semi-infinite crystalline leddas
sketched in Fig. 1. The GMR ratio is defined by

Il. GREEN'S-FUNCTION FORMALISM
FOR SCATTERING MATRIX

—(T! I _orll Tl
GMR= (et T = 2T ) 2T 4 (D The problem of analyzing a realistic tight-binding model

with spdorbitals on each site represents a difficult numerical
problem which requires various approximatidfis® Usu-
ally the studies are limited toslband modelg*® with in-
clusion of spin splitting to mimic a spin-dependent
transport:®’In this section we describe a very general and
Lficient technique for calculating ttematrix and hence the
transmission coefficients of an arbitrary scattering region
such as a superlattice, attached to two semi-infinite crystal-
line leads. The key steps of the calculation @jehe evalu-
[ro—S 1o 1.2 ation of thg retarded Greerj’s functignof thg semi-infinitg

' leads and(ii) the construction of an effective Hamiltonian
Hs describing the scattering region and its coupling to the
leads. The approach described below provides a versatile
whereT? is the total transmission coefficient for the spin  method for computing these two entities, which are then
calculated at the Fermi energy. Below we shall assume aombined via Dyson’s equation to yield the Green'’s function
perfect match at the interface between the fcc lattices of thef the whole structure, for which the transport coefficients
different metals. This assumption is particularly good in theare sought. A feature of the technique is that it avoids adding

case of Co, Cu, and Ni, which have almost identical latticea small imaginary part to the energy and provides a semiana-
constants. We shall consider below crystalline systems witlytic formula for g.

smooth interfaces, wheig is a good quantum numbéwe
use the symbd| for the in-plane coordinates and for the
direction of the current The Hamiltonian can then be diago-

nalized in the Bloch basik to yield A. The Green’s function of an arbitrary semi-infinite lead

wherel'Z,, is the conductance of a given spin chanaein
the ferromagneti¢FM) configuration and’ - is the corre-
sponding conductancgor either spin in the antiferromag-
netic (AF) state. We calculate the conductance by evaluatin
the Landauer formufa

To compute the Green'’s function for a semi-infinite crys-
& talline lead with a finite cross-section, we first calculate the
o_ oL P Green’s function of an infinite system and then derive it for
r ;” To(ky) h ;” Tk 3 the semi-infinite lead by applying boundary conditions at the
end of the lead. To this end, we shall now consider the infi-
nite system shown in Fig. 2.
where the sum ovek; is extended over the two-dimensional  If zis the direction of electron transport, the system com-
Brillouin zone in the case of infinite cross section and overprises a periodic sequence of slices, described by an in-
the allowed discretd’s in the case of finite cross section. traslice matrixH,, coupled by a nearest-neighbor interslice
We note that equatiofil.2) is valid in general, even in the hopping matrixH;. The nature of the slices need not be
presence of disorder. Nevertheless, from a computationapecified at this stage. They can describe a single state atom
point of view it requires the definition of a cell including all in an atomic chain, or an atomic plane, or a more complex
degrees of freedom of the scatterer, which rapidly leads teell. For such a general system, the total Hamiltorttaoan
unmanageably large matrices. On the contrary, @) is  be written as an infinite matrix of the form
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0 H.y Hy H; 0

' (2.9

0 O0OH, Hy, H, O

where Hy is Hermitian andH,1=HI. The Schrdinger
equation for this system is of the form

Ho,+Hithy 1+ H 14, 1=Ei,, (2.2

These real wave vectors define the open scattering channels
of the structure and in the simplest case, whidre=H _,

one findsk= —k. All other solutions fork have finite imagi-

nary parts and they would correspond to the closed channels

wherey, is a column vector corresponding to the slice at thein the leads. For each solutién the Hermitian conjugate of
position z with z an integer measured in units of interslice Eq. (2.4) shows thatk? is also a solution. Hence, to each
distance. Let the quantum numbers, corresponding to the déright-decaying” solution k having a positive imaginary

grees of freedom within a slice, he=1,2,... M and the
corresponding components ¢f be ¢4 . For example, in the

part, there always exists a “left-decaying” solutiérwith a
negative imaginary part. For the purpose of constructing the

following sections these will enumerate the atomic sitesGreen’s function we introduce a division of the roots of Eq.

within the slice and the valencesfd—) orbitals on a site.

(2.4) into two sets: the first set dfl wave vectors labeled

The Schrdinger equation may then be solved by introducingk, (I=1,... M) correspond to right-moving and right-

the Bloch state
_ 12k, z
=N € Py (2.3

Whered;kl is a normalizedM-component column vector and

nﬁf is the arbitrary constant. Substituting this into E2.2)

gives
(HotHe" +H_je ™ —E)¢y =0. (2.9

Our goal is to compute the Green’s functignof such a
structure for all real energies. For a given enegyne has
to find all possible valuegboth real and complexof the
wave vectork; by solving the secular equation

de{Hy+H. x+H_1/x—E)=0, (2.5

where y=e'“L. In contrast with the conventional band
theory, where the problem is to compute tevalues ofE
for a given(rea) choice ofk, , our aim is to compute the
complex rootsy of the polynomial(2.5 for a given(rea)
choice ofE. Consider first the case whelrb is not singular.
We note that for redk, , conventional band theory yieldd
energy bandsg,(k, ), n=1,... M, with E.(k +2m)
=E,(k,). As a result, for any giveit there exists a pair of
solutions fork, =k. For each reak, corresponding to a posi-
tive group velocity(“right-moving” solution)

1 9E(K)

=7 K O (2.6

Uk

there exists a secondleft-moving” ) solutionk, =k with
the negative group velocity

_E_&E(V)<O (2.7
Uk_ﬁ 5? . .

decaying plane waves and the second set labé&ledl
=1,... M) corresponds to left-moving and left-decaying
plane waves.

Although the solutions to Ed2.5) can be found by using
a root tracking algorithm, for numerical purposes it is more
convenient to map Eq2.4) onto an equivalent eigenvalue
problem by introducing the matrik(

—HiYHo—E) —Hi'H
H= T 0 y (28)

whereZ is theM X M unit matrix. The eigenvalues 61 are

the 2M roots e’*1,e’* and the uppeM components of the
eigenvectors ofH are the sought eigenvecto@l,¢;|.

To construct the retarded Green'’s functigyy of an in-
finite lead, we note that, exceptatz', g is simply a wave
function and hence must have the form

M
21 ¢kle‘kl(z‘z')wll . =7,
027 = (2.9

M
> q&;leikl(z‘z')m& . z<7',
=1 I

where theM-component vectors andwk—I are to be deter-

mined. Sinceg,, is retarded both iz andz’, it satisfies the
Green'’s function equation corresponding to E22) and is
continuous at the poirt=z’, so that one obtains

M
> ¢k|eik'(z_2,)2’llv_l. =7,
927 = (2.10

=1
M —

i —z2n T — '
lgl ¢klelk|(z Z)(bflv 1, 7<7'.
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The matrixV is defined by

M
V=2 Hoaldge Mol - dre Mgl (21

and the set of vectorgﬁlI (Zw%l) are the duals of the set
by, (q&(l), defined by

Eﬁlﬁkh:&%(ﬁﬁ]:@h, (2.12
from which the completeness conditions follow
M M
2 b dl=2 sy =T (213

Equation(2.10 is the retarded Green'’s function for an
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k-space integrals or contour integration. As a consequence of
translational invariance of the infinite system, the surface
Green'’s functions are independent of the position of the sur-
facez,. Furthermore, as noted below, in the case of different
vectors ¢, corresponding to the same rdgl the current
operator is not diagonal. Hence, it is convenient to perform a
unitary rotation in such a degenerate subspace to ensure the
unitarity of theS matrix.

B. The effective Hamiltonian of the scattering region

Given the Hamiltonian of a scattering region and a matrix
of couplings to the surfaces of external leads, the Green’s
function of the scatterer plus leads can be computed from
Dyson’s equatiori2.21). For structures, such as those in Fig.
1 with a quasi-one-dimensional geometry and a Hamiltonian
which is block tridiagonali.e., of a finite rangg this task

infinite system. For a semi-infinite lead, it must be modifiedcan be made more efficient by first projecting out the internal
to satisfy the boundary conditions at the end of the leadsdegrees of freedom of the scatte(@rl8. This would yield

Consider first the left lead, which extends 2e= — and
terminates ar=z,— 1, so that the position of the first miss-
ing slice isz=z,. To satisfy the boundary condition that the
Green'’s function must vanish at z,, we subtract from the
right-hand side of Eq(2.10 a wave function of the form

M

A2\ 20)=3 deAn(Z 20, (214

whereA,,(z',zp) is a complex matrix, determined from the

condition that the Green’s function vanisheszgt which
yields

AAZ',20)=47/(2,20)

M
__ikn(z—z) 3t i -z -
:mz‘l g e DG gy ety

(2.19

an effective Hamiltonian involving only those degrees of
freedom which are at the surfaces of the external leads. Then,
secondly, one can calculate the Green’'s function for the
whole system(2.21), comprising the scatterer and the leads,
and evaluate transport coefficients of interest. In the litera-
ture, depending on the context or details of implementation,
this procedure is sometimes referred to as the “recursive
Green’s-function technique” or the “decimation method,”
but is no more than an efficient implementation of Gaussian
elimination*

Consider a scatterer composed bi+-2M degrees of
freedom. Then the Hamiltonian for the scatter plus semi-

infinite leads is of the formH=H_+Hg+H, whereH, ,Hg
are the Hamiltonians of the left and right isolated leads and

H aNxN Hamiltonian describing the scattering region and
any additional couplings involving surface sites of the leads
induced by the presence of the scatterer. The aim of the
decimation(i.e., recursive Green’s functiprmethod is to
successively eliminate the internal degrees of freedom of the

For the purpose of computing the scattering matrix, Wescatterer, which we labé| i=1,2, ... N—2M, to yield a
shall require the Green’s function of the semi-infinite left (2M)x (2M) effective HamiltoniarH .. After eliminating

lead 9,,(20) =0, — A,(z',2,) evaluated at the surface of
the lead, namely, a&t=z'=2z,—1. Note that in contrast with

the degree of freedor=1, H is reduced to aN—1)x (N
—1) matrix with elements

the Green’s function of an infinite lead, which depends only

on the difference betweerandz’, the Green’s functiog of

a semi-infinite lead for arbitrarg,z’ is, in addition, a func-
tion of the positionz, of the first missing slice beyond the
termination point of the lead. WritingL=g(zo,l)(zo,l)(zo)
yields for this surface Green’s function

aL=

- |§r; ¢khe‘k_ffb%1¢kle""7z>ll}vl. (2.16

Similarly, at the surface of the right lead, which extends to

z= +», the corresponding surface Green'’s function is

gr= vyl (217

iyt e kg
I—LEh i, Pl sy

The expression&.16) and(2.17), when used in conjunc-
tion with Eq. (2.8) form a versatile method of determining

(2.18

Repeating this procedutdimes, we obtain the “decimated”
Hamiltonian atlth order

1-1 I-1
il DH(

=p(-1)
Hij'=Hij ~+ E—H{ D’

(2.19

and afterN—2M such steps, an effective Hamiltoni&t.
=HN"2M of the form

In this expressionH} (E) [HE(E)] describes intrasurface

HI (E)
He(E)

HIR(E)

2.2
HA(E) 229

Heﬁ(E):(

the lead Green's functions, without the need to performcouplings involving degrees of freedom belonging to the sur-
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face of the left(right) lead andH}r(E)=H}r(E)" describes 19 1a_, " e

the effective coupling between the surfaces of the left and th&x=z ﬁwd Hlgho =7 kLoc(Hot Hie+H 167 ¢y]

right leads. (2.25
Since the effective Hamiltonian is energy dependent, this

procedure is a particularly useful method when one wishes to

compute the Green’s function at a given energy. It is also :%(pE(Hleik—H,le*‘k)(ﬁk, (2.26

very efficient in the presence of short range interactions, be-

cause only matrix elements involving degrees of freedom

where the last step follows from E@.4) and the normal-
coupled to the decimated one are redefined. Since the pro%’ation of .. P @4

lem now involves only (1) X (2M) matrices, it is straight- It can be shown that the staté&24) diagonalize the cur-

forward to obtain the surface Green'’s function for the Who'?rent operator only if they correspond to the distikatalues.

system (i.e., the scattering region attached to the SeMiq, the case of degenerales, the current is in general non-

infinite leads by solving the Dyson’s equation diagonal. Nevertheless, it is always possible to define a rota-
tion in the degenerate subspace for which the current opera-

— -1_ -1
G(B)=19(F) Her(B)]7, (223 tor is diagonal. When the degeneracy is encountered, we
where assume that such a rotation has been performed. With this
convention, the current carried by a state of the form
g(E) O
9(E)= 0 guE))’ (2.22 aikiz
R > 8=y, (2.27)
with g, andggr given by Egs(2.16 and(2.17. vl
is simply given byZ,|a|2.
C. The scattering matrix and transport coefficients It is now straightforward to generalize the analysis of Ref.

To extract transport coefficients from the Green’s func-14 0 the case of nonorthogonal scattering channels. Con-
tion, we generalize the method described in Ref[ib4par- sider first an infinite periodic structlure, whose Green’s func-
ticular see Eq(A26) of Ref. 14 to the case of nonorthogonal tion is given by Eq(2.10. Forz=2', by operating org
scattering channels. For a system of Hamiltonignthe S from the right with the following projector:
matrix is defined to connect incoming to outgoing propagat-
ing states in the external leads.Kf(k') are real incoming ,
(outgoing wave vectors of energl, then an incident plane Pi(z ):V‘f"ﬂ_@—’ (2.28
wave in one of the leads with longitudinal wave veckor '
will scatter into outgoing plane wavds with amplitudes yields the normalized plane way2.24). Similarly, by acting
swk(E,H). If all plane waves are normalized to unit flux by on the Green’s functiony,, (z,) of a semi-infinite left lead
dividing by the square root of their group velocities then,terminating atz,, one obtains foz=z', z,=>z, an eigenstate
provided the plane wave basis diagonalizes the current opf a semi-infinite lead arising from a normalized incident
erator in the leads, the outgoing flux along chankelis  wave along a channd .
|sc«(E,H)|?, andSwill be a unitary matrix. IfH is real, then Thus the operatoP,(z’') and its left-going counterpart
Swill be symmetric. More generally, time reversal symmetryﬁl(zr) allow us to project out wave functions from the
- - . i :
|mp,I|es the propertys(E,H) =Sy (E,H*). Evidently, if  Green's function of a given structure. For exampleSit, is
k,k’ belong to the leftright) lead, then one finds theflec-  he retarded Green’s function for a scattering region sand-
tion coefficients fronr o =s, (1 =S If, howeverk  wiched between two perfect leads whose surfaces are located
andk’ belong to left and right leads, respectively, one findsat the pointsz=0 andz=L, then, forz’<0, the projected

eik|Z'

the transmissioncoefficientsty/ = scrk (ty, = Skk)- wave function is of the form

To find the transport coefficients for the system in Fig. 2,
consider the probability current for an electron in the Bloch e'kiz i —
state(2.3) =it 2 =iy, 2=0,

Vo R oy
Je=ny vy (2.23 = (2.29
1R th
. . - . . > —eknZg, | z=L,

whereny is the probability of finding an electron in a slice m o, h
andvkL is the corresponding group velocity. It follows that
the vector whererp, = M, ko thi =t K are the reflection and the trans-

mission coefficients associated with an incoming state from

1 the left. In particular, foz=L, z'=0, one obtains
P,=——=e"%y, 2.2
z \/U_k ¢k ( 4)
S gt g, =GPy (0) (2.30
is normalized to a unit flux. To compute the group velocity & Jon ky— FLOTI :

we note that if|i,) is an eigenstate of E¢2.1), whose
projection onto slice is ,, then and hence



PRB 59 GENERAL GREEN’'S-FUNCTION FORMALISM F® . .. 11941

TABLE I. Lattice constants of the metals considered in the cal-
culation. Total
—-— selectrons
. ---- pel
Metal Lattice constanth) | V| Eiliﬁﬂﬁﬁi
Co 3.55
Ni 3.52
Cu 3.61
Ag 4.09
Pd 3.89
Au 4.08
Pt 3.92
Up . Eg
thi= ¢thLoV¢kl —eknt, (2.3) w w
U 6.8 1.8 3.2
Energy (eV)

Since the right-hand side of E¢2.31) involves only the

surface Green'’s function of E@2.21) the transmission co- FIG. 3. DOS for pure Co. The vertical line denotes the position
efficients(and by analogy all other transport coefficigrase  of Er that is chosen to be 0 eV.

thus finally determined. Since the above analysis is valid for

any choice of the Hamiltoniand, andH, this approach is relative role of the angular character interband and intraband

indeed very general. scattering, it is useful to project the DOS and conductance
onto an angular momentum basis. We will label assdike
lIl. RESULTS FOR Co AND Ni BASED MULTILAYERS electron(and similarly for thep andd electron$ an electron

whose s component|(s|¢)|? of the wave function|y) is

Using the technique developed above, we have studieghuch larger than the andd components.
transport properties of multilayers formed from Co and Nias The DOS'’s for the two spin sub-bands of Co and Ni are
magnetic layers and several 34d, and & transition metals  very similar, and we show, as an example, the Co DOS in
as nonmagnetic spacer layers. All of these metals have a fqeig. 3. As in all thed transition metals, the DOS is formed
lattice structure with the following lattice constants listed infrom a localizedd band embedded in nearly parabaiend
Table I. p bands. The width of the bands is roughly the same in Co

It is clear that Co and Ni have a good lattice match withand Ni, as well as the position of the majority band with
Cu, while for the other metals the lattice mismatch is largerespect to the Fermi energy. In both materials, the Fermi
and may introduce strain and defects at the interface. Thenergy lies just above the edge of the majodtyand, while
latter produces an additional scattering at the interfaces, nehe minority band is almost rigidly shifted with respect to the
glected in our present calculations. Nevertheless, we wilmajority band towards higher energies, the shift being larger
show that large values of the GMR ratio can be obtained, inn Co than in Ni. In both the minority bands of Co and Ni the
agreement with experimental values, suggesting that CPPermi energy lies well within thel band and the DOS is
GMR is a bulk effect, whose main features are contained ircompletely dominated by the electrons. A rough estimate
a ballistic quantum description of the conductance with arof the mismatch between the minoritybands of Co and Ni
adequate band structure. Below we model all the metals byan be obtained from the on-site energies of dralectrons
anspdtight-binding Hamiltonian with nearest-neighbor cou- in the minority band. As shown in Table Il, the difference
plings, whose parameters are chosen to fit the band structuktween the on-site energies of thlaninority electrons in
evaluated from first-principles calculatiofsThe hopping Co and Ni is about 0.7 eV and it corresponds to the relative
parameters at the heterojunctions between materials hawhift of the bandsthe on-site energies shown in the table are
been approximated by a geometric mean of the correspon@dhosen in order to have the Fermi enefy=0).
ing pure metal values. It is worth noting that different aver- The conductance of pure Co and Ni is determined solely
aging procedures used to obtain the hopping coefficients iby the DOS. For majority electrons at the Fermi energy, the
the heterojunctions yield small changes in the calculated
conductance of the multilayers. Nonetheless, a more realistic TABLE II. On-site energies used in the calculations.
approach to the heterojunctions between different metalss
based orab initio calculations, would be useful to clarify the Metal Eg(eV) E,(€V)  Eq majority €Y)  Eqg minority (€V)
role of coupling across the interfaces in such structures.

5.551 14.025 —2.230 —0.660

. . Ni 4.735 11.850 —-2.114 —-1.374

A. Density of electronic stategDOS) and conductance cu 2.992 10.594 —2.746 —2.746

of the pure metals Ag 2986  9.127 — 4,650 — 4,650

We begin our analysis by examining the DOS and con- pd 5.764 11.457 —2.050 —2.050
ductance of the pure metals. Since the Hamiltonians include au 0.329 10.081 -3.823 —-3.823
spd hybridization, angular momentum states are not eigen- pt 1.849 11.523 —2614 —-2.614

states of the system. However, in order to understand the
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— Total A — Total — Total

Cu — -~ selectrons — -~ selectrons Pd — -~ selectrons
- -~ pelectrons - - pelectrons - -~ pelectrons
--------- d electrons == { eletrons == { electrons

FIG. 4. DOS for pure Cu, Ag,
and Pd. The vertical lines denote
the position of the Fermi energy,
which is chosen to b&=0.

ot

v wpd e

68 ] 18 32 68 18 32 68 18
Energy (eV) Energy (&V) Energy (eV)

Sy

7 san .
PN Tt

current is carried by the, p, andd electrons, which give As we shall see below for ballistic structures, the mis-
almost equal contributions. On the other hand, the currentatch between the bands of the magnetic and nonmagnetic
carried by minority electrons is completely dominated by themetals forming the multilayer is the key feature which deter-
d electrons, with the contributions from and p electrons mines the conductance. Moreover, although the positions of
being no larger than 10% of the total. If we neglect thethesandp bands are the same for both spins, dalectrons
relative shift in energies of the minority bands, the Ni and Cothe two spin sub-bands possess a different mismatch at the
conductances possess the same qualitative features and, sintterface and therefore this mismatébotential step ford
the effective mass is proportional to the inverse of the banelectrons at the interfagdargely determines the magnitude
width, we find that the current carried by majority electronsof CPP GMR.
is formed from a mixture of lighs andp electrons and heavy In addition to the above generic features, the on-site en-
d electrons, whereas the minority-electron current is carrie@rgies of thes bands of Au and Pt are small compared with
almost entirely by heavy electrons. those of Ni and Co. In the Co/Au and Co/Pt multilayers, this
Now consider the nonmagnetia34d, and & transition ~ may induce strong scattering of teelectrons, resulting in a
metals with fcc lattices. A glance at the DOS of these matestrong suppression of theelectron contribution to the total
rials reveals three types of band structut®: the DOS conductance. This effect should be weaker in the Pt-based
closely matches the DOS of the majority spin sub-band othan in the Au-based multilayers, because a DOS of Plati-
Co and Ni(e.g., Cu and Ay (ii) the DOS has onlysp  num has mainlyd character at the Fermi energy, which
components at the Fermi energy, with tdecomponent means that the Co/Pt multilayers will be sensitive to the ef-
highly suppresseths in Ag, and(iii) the DOS is composed fect of the larges-band mismatch only through the hybrid-
of an almost purel component at the Fermi ener¢y.g., for  ization of thes andd bands at the Fermi energy.
Pd and Pt Examples of each of these cases are given in Fig. Figure 5 shows how these three distinct DOS characteris-
4, which shows the DOS of Cu, Ag, and Pd and in Fig. 5,tics are reflected in the conductances of the normal metals

which displays the corresponding conductances. and give rise to three different scenarios for charge transport:
— Total A — Totl — Total
— - selectrons — -~ selectrons Pd — -~ selectrons
- -~ pelectrons - - pelectrons - -~ pelectrons
--------- delectrons -  electrons -~  electrons

FIG. 5. The conductance for
pure Cu, Ag, and Pd. The vertical
lines denote the Fermi enerds;
=0.

18 :
Energy (&V) Energy (V)
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FIG. 6. GMR and spin conduc-
tance for Co/Cu and Ni/Cu sys-
tems as a function of the Cu layers
thickness. The first graph is the
GMR, the second is the conduc-
tance for the Co/Cu system nor-
malized to the conductance of
pure Cu, and the third is the con-
ductance of the Ni/Cu system with
the same normalization. To evalu-
ate the conductance in units of
QO 'm™2, these data should be
multiplied by the conversion fac-
tor fc,=0.61x 10'°,
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(i) the contributions to the current fros p, andd electrons
are almost equale.g., in Cu and Ay (ii) the current has a
strongsp character(e.g., in Ag, and(iii) the current has a

obtained from Eq(1.1). In all our calculations the current
flows in the(110) crystalline direction and the structures are
translationally invariant within the layers. Below we con-

strongd character(e.g., Pd and Pt sider 8100k, points (90<90) in the plane of the layers. We
These different characteristics of the current carriers irhave estimated that the GMR ratio calculated with 2

the nonmagnetic metals give rise to another important source 10* k| points on average differs by 3%, from that cal-

of interface scattering. Since the majority spins in the mag<eulated using

netic metals are mainlgp electrons with light effective

masses and the minority spins ateelectrons with heavy

effective masses, it is clear that, depending on the choice of 8100 k; points

nonmagnetic metal, different spin-dependent interband scat-

tering must occur at the interfaces. For example in the Co/A%_ o o
system, a majority spin propagates in Co as a mixture pf ince the oscillations of the GMR ratio with respect to the

andd electrons, whereas in Ag it has mainly spcharacter. ayer thicknesses are larger than 3%, the choice of 8800
This means that an electron in the Ag, whose spin is in thoints allows us to investigate the_oscnlatlng behawor_of the
same direction of the magnetization, can enter Co aspan conductance and the GMR, and is a good compromise be-
electron without the need for strong interband scattering. Offween the accuracy of the calculation and the required com-
the other hand, if its spin points in the opposite direction, jtPuter time. Initially we fix the magnetic layer thickness to
will undergo an interband scattering because in the minorityive atomic planes, and calculate the conductance and GMR
band the electron must propagate as electron. Moreover @S @ function of the Cu layer thickness. o

the interband scattering involves final states with a large W€ shall normalize the conductance by dividing it by the
DOS, and hence a scattering is expected to be strong. conductance of a single spin in the pure metallic leads, which

The above observations suggest that the key mechanisnifs@ Natural choice for the present work. For results shown in
affecting transport aré) a strong band mismatch ari) a  Fi9- 6 it means the normalization to one half of the total Cu
strong interband scattering. The best GMR multilayers musgonductance, because of a spin degeneracy.
be able to maximize electron propagation in one of the two From Fig. 6 itis clear that the Co-based multilayers show
spin bands and to minimize it in another one. To achieve thi¢dr9er GMR ratios. In the ferromagnetic configuration, the
result, the high conduction spin band should have a small&ority electrons have high conductances in both cases, re-
band mismatch and weak interband scattering at the heter§€cting the good match between the majority bands of Co

junctions, while the low conduction band should have a largénd Ni, and the Cu band. Moreover, the better match osthe
band mismatch and strong interband scattering. andp majority bands of Ni with Cu, compared with those of
Co, gives rise to a slightly higher conductance in majority

channel for Ni than for Co. A similar argument explains the
difference in the conductances of the minority channel. As
To clarify how the spin polarization of the magnetic ma- we can see from Table Il, the minority band of Ni is a

terial affects the properties of the GMR multilayers, we be-better match to Cu than that of Co, as indicated by the dif-
gin by examining GMR in Cu-based multilayers, in which ference in the on-site energies about 0.7 eV. Hence for the
the magnetic metals are either Ni or Co. All the multilayersminority band, the interface scattering between Co/Cu is
consist of ten bilayers of the for#/Cu whereAis Co or Ni,  greater for Ni/Cu. In the antiferromagnetic configuration
attached to two semi-infinite Cu leads. The Fermi energy i$oth spins undergo the same scattering sequence, belonging
fixed by the semi-infinite leads which is taken as zero. Afteralternately to the majority and to the minority bands. The
calculating the different spin conductances in the ferromagtotal spin conductance in the antiferromagnetic configuration
netic and antiferromagnetic configurations, the GMR ratio isis found to be close to that of the minority band in the fer-

GMR(8100 — GMR(2x 10%)
GMR(8100

~3%)].

B. A comparison between Co-based and Ni-based multilayers
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m 08 SAF 08! oA FIG. 7. GMR and spin conduc-
\ tance for Co/Cu and Ni/Cu sys-
l tems as a function of Co and Ni
o dos g0 \ layers thicknesses. The first graph
S g g \ is the GMR, the second is the con-
E‘ z |4 3 ‘u‘(ux o~ ductance for the Co/Cu system
S (5)0,4 A 50'4 R e S normalized to the conductance of
‘.‘!/ Lo pure Cu, and the third is the con-
R Y ductance of the Ni/Cu system with
" ol " the same normalization. See Fig. 6
N for the conversion factor into units
’\.\/\\f/\/"\/‘f\—"\/\"/‘ of Qfl m72.
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romagnetic configuration, because the minority band misdependence on the magnetic-layer thickness. For a fixed Cu
match is larger than the majority band, and dominates théayer-thickness of five atomic planes, Fig. 7 shows results for
scattering. Co/Cu and Ni/Cu multilayers. A key result in this figure is

The ratioR between the conductanc€) of the AF con-  that for thin magnetic layers GMR in both Ni/Cu and Co/Cu
figuration and of the minority band in the configuration  multilayers is suppressed. This can be understood in terms of
[R=T(AF)/T'(F minority)] is ~0.6 for Co/Cu and~0.9  an effective scattering potential. The large off-sets between
for Ni/Cu. This difference can be understood by modelingthe minorityd bands of the different materials create an ef-
the interface scattering through an effective step potentialfective barrier in thed band, for channels with high trans-
whose magnitude is equal to the band mismatch, as diskerse momentum. When the width of such a barrier is small,
cussed elsewher@.The effective scattering potential in the tunneling across the magnetic metal within ttiéband is
antiferromagnetic configuration will be a sequence of highpossible, and this results in an enhancement of the conduc-
steps(for minority band and low stepgfor majority band  tance in the minority spin channel and hence in a reduction
with respect to a common reference. of GMR. Thus we predict a lower limit of approximately

The calculatedR ratios arise, because the perturbation offour atomic planes to the magnetic-layer thickness, in order
the minority steps due to the majority steps, is smaller into achieve the highest possible GMR ratio. In what follows
Ni/Cu than in Co/Cu. From this analysis the splitting be-we will only consider thicknesses larger than this value.
tween the two spin sub-bands in the magnetic materials is the
crucial parameter leading to large GMR ratios and, since
such splitting is larger in Co than in Ni, Co emerges as a
natural candidate for high GMR ratio multilayers. Note that We now consider the dependence of GMR on the choice
highest possible values of GMR can probably be achievedf nonmagnetic material in Co- and Ni-based multilayers. In
with the use of half-metallic ferromagnets with 100% spinall calculations we fix the Co thickness at five and ten atomic
polarization of electron® planes and vary the thickness of the nonmagnetic layers from

Having examined the dependence of transport propertie$ to 40 atomic planes. The material in the external leads is
on the normal-metal layer thickness, we now examine théhe same nonmagnetic material used for the multilageig,

C. Dependence of GMR on nonmagnetic spacer material

TABLE lll. GMR ratio and GMR oscillations for different metallic multilayers.

Multilayer GMR ratio (%) A (%) Al (%) A/GMR (%) A1/GMR (%)
Cos;/Cu 183.7 10.0 12.4 54 6.7
Cos/Ag 153.7 9.5 13.1 6.1 8.5
Cos/Pd 102.0 13.9 16.7 13.7 13.4
Co; /Pt 104.1 10.9 15.6 10.5 15.0
Co;/Au 98.8 20.4 33.62 20.6 34.0
Coo/Cu 150.7 9.2 9.2 6.1 6.1
Co,o/Ag 131.0 7.6 5.3 5.8 4.1
Coyo/Pd 165.2 31.1 32.2 18.8 19.4
Coyo/Pt 175.7 14.8 21.1 8.4 125
Cop/Au 138.8 20.1 26.4 14.5 17.8
Nis/Cu 25.9 15 1.8 5.8 6.9

Nis/Cos 66.1 4.1 6.6 6.2 10.0
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suggest that thep conductors as spacer layef@u, Ag
result in larger GMR ratios in this case. The simulations with
ten Co atomic planes show that the multilayers with
d-electron spacer¢Pd, P} correspond to relatively larger
GMR. It is also evident that the Co based multilayers show
much larger GMR ratios than the Ni based multilayers. The
table also demonstrates that the conductors dominatedl by
electrons, namely, Pd and Pt, have very similar GMR ratios
V and amplitudes of oscillation and that Au has the largest
amplitude oscillations. As examples, Fig. 8 shows plots of
the GMR ratio as a function of the nonmagnetic metal layer
thickness for the Co/Ag and Co/Pd systems.

In all casegexcluding Ay the oscillations are small com-
pared with the average value of the GMR ratio, suggesting
that there is an additional contribution to the long range os-
cillations observed experimentally. This is most likely to

FIG. 8. GMR as a function of the nonmagnetic metal layerarise from a periodic deviation from a perfect antiferromag-
thickness for Co/Ag and Co/Pd. The horizontal lines denote thenetic configuration, the possibility of which is neglected in
position of the average GMR. our calculations. It is important to point out that a perfect

antiferromagnetic alignment of the multilayer in zero mag-
Ag in Co/Ag multilayers. Table 11l shows the average value netic field is a consequence of the exchange coupling of the
of the GMR ratio and the root mean square amplitude ofadjacent magnetic layers through the nonmagnetic layer. The
oscillation around such value\]. To highlight the fact that strength and phase of such coupling depend critically on the
GMR is an oscillatory function of the normal-metal thick- Fermi surface of the nonmagnetic metallo the best of our
ness with an amplitude which decreases with increasingnowledge no experimental data are available fordtoen-
thickness, the table also shows the mean square oscillatiatuctor multilayers, for which the antiferromagnetic configu-
calculated for nonmagnetic metal layers thicknesses betweeation may be difficult to achieve. In spin valves, however,
1-10 @A1). In the table the subscript at Co indicates thesuch an antiferromagnetic configuration can always be ob-
number of atomic planes of the Co layers. The penultimateained by tuning the coercive fields of the different magnetic
row of the table shows results for the Ni/Cu system, forlayers, for instance by an appropriate choice of the spin valve
which we believe that no current perpendicular to planegeometry, or by using some magnetization pinning tech-
(CPB experimental results are currently available, evennique. Hence our theoretical predictions for Co/Pd and Co/Pt
though the CIP conductance in high magnetic field has beemultilayers can, at least in principle, be tested experimen-
studied?® We also show the hypothetical GMR values for tally.
Co/Ni multilayers in the last row of the table. The Schuller's  The above results for the GMR ratio somewhat obscure
group at UCSD has not observed any GMR for Co/Ni mul-the material dependence of the electrical conductance and
tilayers, likely because of a strong exchange coupling bewith a view to comparing these with their band structures,
tween the layers. From Table Il it is clear that the GMR we now present results for the conductances of the different
ratio results depend quite sensitively on the multilayer geomspin channels and of the AF configuration. In the Tables IV,
etry, i.e., on the layer thicknesses. In fact the simulationd/, and VI we present the conductancE)( the mean con-
with the Co thickness fixed at five atomic planes seem taluctance oscillationAI"), their ratio AI'/I"), the maximum

150 - R

GMR (%)
8

0 10 20 30 40
NonMagnetic Layers Thickness (AP)

TABLE IV. Conductance and conductance oscillations for different metallic multilayers: majority band.
The conductance of each multilayer is normalized to the conductance of the corresponding nonmagnetic
metal, which composes the leads. To evaluate the conductance in ufits'oh 2, see conversion factors
in the caption to Fig. 9.

Multilayer r AT ATIT (%) AT s AT o T (%)
Co;/Cu 0.61 3.76&c10°® 0.61 1.1% 102 1.92
Cos/Ag 0.66 41x10°3 0.62 1.2410°2 1.88
Cos/Pd 0.35 5.3%102 1.50 1.5%10°2 4.29
Cos /Pt 0.38 5.0k 103 1.31 1.8% 1072 4.91
Cos/Au 0.24 1.2%10°? 4.94 5.0% 102 20.52
Co,p/Cu 0.59 5.3%10°3 0.90 1.06<1072 1.81
Coyo/Ag 0.63 43x10°° 0.69 1.3xX10°2 2.06
Coyo/Pd 0.33 8.8% 1073 2.67 2.05¢10°2 6.14
Coyo/Pt 0.37 5.0x10°°3 1.37 1.25¢10°2 3.41
Coy/Au 0.24 1.05¢10°2 4.42 3.6% 10 ? 15.53
Nis/Cu 0.69 3.1x10°°® 0.45 8.3x 103 1.21
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TABLE V. Conductance and conductance oscillations for different metallic multilayers: minority band.
The conductance of each multilayer is normalized to the conductance of the corresponding nonmagnetic
metal, which composes the leads. To evaluate the conductance in ufiits'oh™2, see the caption to Fig.

9.
Multilayer r AT ATIT (%) AT jax AT o/ T (%)
Cos/Cu 0.29 1.1%10°? 3.97 4211072 14.04
Cos/Ag 0.28 1.15¢10°2 4.08 4.0 102 14.31
Cos/Pd 0.18 1.2%10 2 6.93 4.1%10 2 23.24
Cos /Pt 0.19 8.5410°° 4.29 2.51x10°? 12.65
Cos/Au 0.20 1.06<10°2 5.08 3.5%10°? 16.86
Coyo/Cu 0.32 1.0%10°3 3.38 2.8%10°? 8.80
Coyo/Ag 0.32 1.75¢10°2 5.54 5.7%10°? 18.15
Coy/Pd 0.16 1.56 10 2 9.78 3.5 1072 21.14
Coyo/Pt 0.19 9.0x10°8 4.71 2.6%10°2 13.73
Coyo/Au 0.16 9.60x 1073 5.95 2.34& 102 14.53
Nis/Cu 0.51 7.6%x10°° 1.49 2.3% 10 2 4.71

of the conductance oscillationd [ ,5,) and its ratio with the  two materials match that of Co and there is little interband
mean conductance\l" ma/T"), respectively for the majority ~ scattering(even less in Ag where the electrons at the Fermi
electrons in the ferromagnetic configuration, the minorityenergy are completelyp). By contrast, the minority carriers
electrons in the ferromagnetic configuration, and both spinsire subject to a large scattering potential due to a difference
in the antiferromagnetic configuration. All conductances arebetween the on-site energies of tdeéband. They are also
normalized to the single-spin conductance of the nonsubject to large interband scattering because of almostdure
magnetic-metal leads. This allows us to compare the differcharacter of the minority carriers in Co. On the other hand,
ent scattering properties arising from the electronic structuréor Pd and Pt, which ard metals, both sub-bands are subject
of the multilayers independently of the material of the leadsto high scattering albeit for different reasons. The on-site
It is possible to extract the values of the conductance per unénergies of the majority band of Co, Pd, and Pt are roughly
area in units ofQ~*m~2 by multiplying the normalized the same, ensuring a good band match. It is worth noting that
conductances by the following conversion factdrsfc, the width of thed majority band of Co is associated with
=0.61x10"”° QO 'm 2, f\=0.45<10"° O 'm 2 f,,  hybridization ofs, p, andd electrons, while the Pd and Pt
=0.47x10%° QO 'm 2, fp=0.73x10" O Im 2, fp,  bands are mainly-like. Hence, a strong inter-band scatter-
=0.83x10'"° O 'm 2. Note that the absolute values of ing is present in the majority band of Co/Pd and Co/Pt su-
conductance per unit area are consistent wiihnitio calcu-  perlattices. By contrast, the minority bandiidike in Co, Pd,
lations for infinite superlattices in the ballistic regirhe. and Pt, but there is a significant difference in the on-site
Tables IV-VI illustrate that, with the exception of Au, energies, resulting in a large effective potential step at the
materials belonging to the same class have similar normalnterface.
ized conductances. For Cu and Ag the majofityinority) The Au/Co multilayers lie somewhat outside the above
band is a high(low) transmission band, leading to a large picture, because even though tiéband resembles that of
GMR ratio for such materials. The majority bands of theseAg, the on-site energies of tleandp bands are considerably

TABLE VI. Conductance and conductance oscillations for different metallic multilayers: AF configura-
tion. The conductance of each multilayer is normalized to the conductance of the corresponding nonmagnetic
metal, which composes the leads. To evaluate the conductance in ufits'oh 2, see conversion factors
in the caption to Fig. 9.

Multilayer r AT ATIT (%) AT o AT ol T (%)
Cos/Cu 0.16 5.3%10 3 3.31 1.35¢10 2 8.40
Cos/Ag 0.18 6.7x 1072 3.62 2.3410°2 12.68
Cos/Pd 0.13 7.9%10 3 6.04 1.5%10°2 15.00
Cos /Pt 0.14 6.8 103 4.81 2.28<10°? 16.01
Cos/Au 0.11 1.25¢1072 10.85 5.4% 1072 47.45
Co,/Cu 0.18 6.4x 1073 3.51 1.6Xx10? 8.94
Co,0/Ag 0.21 5.10<10°3 2.46 1.06< 10 2 5.17
Co,o/Pd 9.41x10 2 1.09x 102 11.62 3.1%10°2 33.45
Coyo/Pt 0.10 47%10°3 4.69 1.43¢10°2 14.12
Coyo/Au 8.40x 102 6.95< 102 8.27 1.66<10°2 19.77

Nis/Cu 0.47 4.8%10°3 1.02 1.38<10°2 2.91




PRB 59 GENERAL GREEN’'S-FUNCTION FORMALISM F® . .. 11 947

0.45 . . ‘ netic configuration in those systems can be somewhat differ-
—— Co/Cu ent as compared to an ideal one that we considered. It is
e4r 7T Co/Ag ] interesting to note that, generally, materials with small con-
T gg/fgf ductances I{ <0.25 using the usual normalization for con-
0.35 | —-— Co/Au ] ductancel have larger oscillations, because low conduc-
3 tances indicate strong scattering potentials and, hence, larger
g 03¢ fluctuations. A qualitative picture of these conductance oscil-
é \ lations has been presented in another publicdflonhere
g 025 the above quantitative results are compared with a simple
o \ //\\ P i Kronig-Penney model.
0.2 \/, /JA‘\/T’\/V?T\,”<:<;\,:\//\—_\ \/:/:_\/ \\,{i‘,\/_
VTN LY T N e T IV. CONCLUSION
0.15 F\ / ]
Y First, we have developed a completely general Green’s
01 . . ‘ function technique for elastic spin-dependent transport calcu-
0 10 20 30 40 lations, which(i) scales linearly with a system size a(i

NonMagnetic Layers Thickness (AP) allows straightforward application to general tight-binding

FIG. 9. Conductance of the minority spin electrons as a functiorkSPd in the present workHamiltonians. This technique can
of the nonmagnetic layers thickness. The conductance of eache applied to unrestricted studies of different systems, in-
multilayer is normalized to the conductance of the correspondingluding tunneling spin valvé?>*°and magnetic multilayers
nonmagnetic metal, which composes the leads. To evaluaté&ith superconducting leads. The formulés16 and(2.17)
the conductance in units &8~ m~2, these data should be multi- for the surface Green’s functions of external leads are the
plied by the following conversion factorsfe,=0.61x10%, central result of the first part. Explicit general expressions for
fag=0.45<10" O~ t*m2,  f,,=047x10"° Q" 'm 2  fpy the Green's functions enable us to avoid using a small imagi-
=0.73x10"®° Q" Im™2, f5=0.83x 10" Q" Im2 nary part in energy.

Secondly, we have presented an extensive study of trans-
smaller than the corresponding bands in Co. This means th@brt in magnetic multilayers in CPP geometry in the limit of
strong scattering occurs in tissandp bands and since the  |arge coherence length. Ni and Co were considered as mate-
and p electrons of Au carry most of the current, there is arials for magnetic layers and several,34d, and 5 metals
strong suppression of the conductance in all spin channelgs nonmagnetic spacers. Key parameters have been identified
From the above tables, we see that the Co/Au system pogs controlling a giant magnetoresistance in those systems.
sesses a low conductance in all the spin channels and in thehese are the character of electronic states at the Fermi level
antiferromagnetic configuration. and a mismatch in relevant band edges across interfaces. We

Finally we note that, compared with the majority spin have found that, in accordance with experim@rttthere are
channel, the oscillations are larger in the minority spin chanoscillations in the conductance as a function of both mag-
nel and in the antiferromagnetic configuration. This suppresnetic and spacer layer thicknesses. The magnitude of the cal-
sion of oscillations in the former occurs because of the bettegulated oscillations is, however, smaller than those observed
band matching in the majority band. In Fig. 9 we show theexperimentally. Some reasons for this behavior have been
conductance of the minority band as a function of the nonidentified and they deserve further study. A semiquantitative
magnetic layers thickness, for all the materials studied.  analysis of the conductance oscillations is presented

The oscillations that we observe never exceed 20% of|sewheréd?®
their mean valuéexcept for the Co/Au systenand they are
larger for smaller thicknesses. This is substantially smaller
than the observed values for Co/Ni syst&iA* The differ- ACKNOWLEDGMENTS
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