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General Green’s-function formalism for transport calculations with spd Hamiltonians
and giant magnetoresistance in Co- and Ni-based magnetic multilayers
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A general Green’s-function technique for elastic spin-dependent transport calculations is presented, which~i!
scales linearly with system size and~ii ! allows straightforward application to general tight-binding Hamilto-
nians (spd in the present work!. The method is applied to studies of conductance and giant magnetoresistance
~GMR! of magnetic multilayers in current perpendicular to planes geometry in the limit of large coherence
length. The magnetic materials considered are Co and Ni, with various nonmagnetic materials from the 3d, 4d,
and 5d transition metal series. Realistic tight-binding models for them have been constructed with the use of
density functional calculations. We have identified three qualitatively different cases which depend on whether
or not the bands~densities of states! of a nonmagnetic metal~i! form an almost perfect match with one of spin
subbands of the magnetic metal~as in Cu/Co spin valves!, ~ii ! have almost puresp character at the Fermi level
~e.g., Ag!, and~iii ! have almost pured character at the Fermi energy~e.g., Pd, Pt!. The key parameters which
give rise to a large GMR ratio turn out to be~i! a strong spin polarization of the magnetic metal,~ii ! a large
energy offset between the conduction band of the nonmagnetic metal and one of spin subbands of the magnetic
metal, and~iii ! strong interband scattering in one of spin subbands of a magnetic metal. The present results
show that GMR oscillates with variation of the thickness of either nonmagnetic or magnetic layers, as observed
experimentally.@S0163-1829~99!03118-5#
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I. INTRODUCTION

The discovery1 of giant magnetoresistance~GMR! in me-
tallic multilayers about a decade ago has attracted a g
deal of attention. This is not only because of the possibi
of building sensitive magnetometers, but also because G
provides valuable insight into spin-dependent transport in
homogeneous systems. The GMR is the drastic chang
electrical resistance that occurs when a strong magnetic
is applied to a superlattice made with alternating magn
and nonmagnetic~spacer! metallic layers. Early experiment
were conducted with the so-called current-in-plane~CIP!
configuration, in which the current flows parallel to the pla
of the layers. In this configuration the dimensions of t
system are macroscopic with transport properties being
sonably described by a classical Boltzmann equation2 and
GMR is associated with the spin-dependent scattering
electrons at the interfaces.

The first experiments with the current perpendicular to
plane ~CPP! of the layers3 paved the way to a completel
different regime, where quantum effects can play a domin
role. In good quality superlattices the elastic mean free p
can extend over several layers and the spin diffusion len
can be longer than the total superlattice thickness. In
case we can talk, according to Mott,4 about majority and
minority spin carriers as two independent spin fluids wh
remain coherent as they cross the superlattice layers. Th
PRB 590163-1829/99/59~18!/11936~13!/$15.00
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full quantum description is required. For such structures
magnetoconductance and GMR are found to be oscilla
functions of the nonmagnetic layer thickness5 with periods
extending over several atomic planes. This is due to a p
odic switching of the exchange coupling from ferromagne
to antiferromagnetic, as a function of a spacer layer thi
ness. In the former case the GMR effect vanishes. Des
the evidence of such important quantum effects, early th
retical work was based on spin-dependent scattering at in
faces and/or magnetic impurities and the effects of quan
interference have been usually ignored. In 1995 Sch
Kelly, and Bauer6,7 challenged this conventional picture an
showed that large values of GMR~of the order of 120%! can
exist even in absence of impurity scattering.

The aim of the present paper is to develop a quantita
approach to quantum transport, which describes the de
dence of GMR on specific materials and/or layer thickness
Our calculations are based on the Landauer-Bu¨ttiker
formalism,8 using a nearest-neighbor tight-bindingspd
Hamiltonian. The tight-binding energy parameters have b
fitted to accurateab initio density functional calculations.

We have developed and present here a completely gen
technique for calculating Green’s functions and hence a s
teringSmatrix and transport coefficients of a finite superla
tice connected to pure crystalline semi-infinite leads. T
allowed us to perform a systematic study of Co/A and Ni/A
11 936 ©1999 The American Physical Society
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PRB 59 11 937GENERAL GREEN’S-FUNCTION FORMALISM FOR . . .
multilayers, whereA5Cu, Ag, Pd, Au, and Pt, and analyz
optimal conditions for GMR.

We shall consider below a GMR ratio of a finite superl
tice connected to two semi-infinite crystalline leads,9 as
sketched in Fig. 1. The GMR ratio is defined by

GMR5~GFM
↑ 1GFM

↓ 22GAF
↑↓ !/2GAF

↑↓ , ~1.1!

whereGFM
s is the conductance of a given spin channels in

the ferromagnetic~FM! configuration andGAF
↑↓ is the corre-

sponding conductance~for either spin! in the antiferromag-
netic ~AF! state. We calculate the conductance by evalua
the Landauer formula8

Gs5
e2

h
Ts, ~1.2!

whereTs is the total transmission coefficient for the spins
calculated at the Fermi energy. Below we shall assum
perfect match at the interface between the fcc lattices of
different metals. This assumption is particularly good in t
case of Co, Cu, and Ni, which have almost identical latt
constants. We shall consider below crystalline systems w
smooth interfaces, whereki is a good quantum number~we
use the symboli for the in-plane coordinates and' for the
direction of the current!. The Hamiltonian can then be diago
nalized in the Bloch basiski to yield

Gs5(
ki

Gs~ki!5
e2

h (
ki

Ts~ki!, ~1.3!

where the sum overki is extended over the two-dimension
Brillouin zone in the case of infinite cross section and o
the allowed discreteki’s in the case of finite cross section
We note that equation~1.2! is valid in general, even in the
presence of disorder. Nevertheless, from a computatio
point of view it requires the definition of a cell including a
degrees of freedom of the scatterer, which rapidly leads
unmanageably large matrices. On the contrary, Eq.~1.3! is

FIG. 1. Sketch of a finite superlattice connected to two se
infinite leads.
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limited to cases with translational invariance. However, d
order may be rather easily introduced even in these case
using a sufficiently large unit cell and repeating it period
cally. This standard supercell approach has been used
instance, in Refs. 10 and 11 for the calculations of Co/
and Fe/Cr multilayers.

II. GREEN’S-FUNCTION FORMALISM
FOR SCATTERING MATRIX

The problem of analyzing a realistic tight-binding mod
with spdorbitals on each site represents a difficult numeri
problem which requires various approximations.10–13 Usu-
ally the studies are limited to 1s band models,14,15 with in-
clusion of spin splitting to mimic a spin-depende
transport.16,17 In this section we describe a very general a
efficient technique for calculating theSmatrix and hence the
transmission coefficients of an arbitrary scattering reg
such as a superlattice, attached to two semi-infinite crys
line leads. The key steps of the calculation are~i! the evalu-
ation of the retarded Green’s functiong of the semi-infinite
leads and~ii ! the construction of an effective Hamiltonia
Heff describing the scattering region and its coupling to
leads. The approach described below provides a vers
method for computing these two entities, which are th
combined via Dyson’s equation to yield the Green’s functi
of the whole structure, for which the transport coefficien
are sought. A feature of the technique is that it avoids add
a small imaginary part to the energy and provides a semia
lytic formula for g.

A. The Green’s function of an arbitrary semi-infinite lead

To compute the Green’s function for a semi-infinite cry
talline lead with a finite cross-section, we first calculate t
Green’s function of an infinite system and then derive it
the semi-infinite lead by applying boundary conditions at
end of the lead. To this end, we shall now consider the i
nite system shown in Fig. 2.

If z is the direction of electron transport, the system co
prises a periodic sequence of slices, described by an
traslice matrixH0, coupled by a nearest-neighbor intersli
hopping matrixH1. The nature of the slices need not b
specified at this stage. They can describe a single state a
in an atomic chain, or an atomic plane, or a more comp
cell. For such a general system, the total HamiltonianH can
be written as an infinite matrix of the form

i-

FIG. 2. An infinite system formed from periodically repeate
slices.
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H5S . . . . . . . . . . . . . . . . . . . . . . . .

. . . H0 H1 0 . . . . . . . . . . . .

. . . H21 H0 H1 0 . . . . . . . . .

. . . 0 H21 H0 H1 0 . . . . . .

. . . 0 0 H21 H0 H1 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

D , ~2.1!
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where H0 is Hermitian andH215H1
† . The Schro¨dinger

equation for this system is of the form

H0cz1H1cz111H21cz215Ecz , ~2.2!

wherecz is a column vector corresponding to the slice at
position z with z an integer measured in units of interslic
distance. Let the quantum numbers, corresponding to the
grees of freedom within a slice, bem51,2, . . . ,M and the
corresponding components ofcz becz

m . For example, in the
following sections these will enumerate the atomic si
within the slice and the valence (spd2) orbitals on a site.
The Schro¨dinger equation may then be solved by introduci
the Bloch state

cz5nk'

1/2eik'zfk'
, ~2.3!

wherefk'
is a normalizedM-component column vector an

nk'

1/2 is the arbitrary constant. Substituting this into Eq.~2.2!

gives

~H01H1eik'1H21e2 ik'2E!fk'
50. ~2.4!

Our goal is to compute the Green’s functiong of such a
structure for all real energies. For a given energyE, one has
to find all possible values~both real and complex! of the
wave vectorsk' by solving the secular equation

det~H01H1x1H21 /x2E!50, ~2.5!

where x5eik'. In contrast with the conventional ban
theory, where the problem is to compute theM values ofE
for a given ~real! choice ofk' , our aim is to compute the
complex rootsx of the polynomial~2.5! for a given ~real!
choice ofE. Consider first the case whereH1 is not singular.
We note that for realk' , conventional band theory yieldsM
energy bandsEn(k'), n51, . . . ,M , with En(k'12p)
5En(k'). As a result, for any givenE there exists a pair o
solutions fork'5k. For each realk, corresponding to a posi
tive group velocity~‘‘right-moving’’ solution!

vk5
1

\

]E~k!

]k
.0, ~2.6!

there exists a second~‘‘left-moving’’ ! solution k'5 k̄ with
the negative group velocity

v k̄5
1

\

]E~ k̄!

] k̄
,0. ~2.7!
e

e-

s

These real wave vectors define the open scattering chan
of the structure and in the simplest case, whereH15H21,
one findsk52 k̄. All other solutions fork have finite imagi-
nary parts and they would correspond to the closed chan
in the leads. For each solutionk' the Hermitian conjugate o
Eq. ~2.4! shows thatk'

* is also a solution. Hence, to eac
‘‘right-decaying’’ solution k having a positive imaginary
part, there always exists a ‘‘left-decaying’’ solutionk̄ with a
negative imaginary part. For the purpose of constructing
Green’s function we introduce a division of the roots of E
~2.4! into two sets: the first set ofM wave vectors labeled
kl ( l 51, . . . ,M ) correspond to right-moving and right
decaying plane waves and the second set labeledk̄l ( l
51, . . . ,M ) corresponds to left-moving and left-decayin
plane waves.

Although the solutions to Eq.~2.5! can be found by using
a root tracking algorithm, for numerical purposes it is mo
convenient to map Eq.~2.4! onto an equivalent eigenvalu
problem by introducing the matrixH

H5S 2H1
21~H02E! 2H1

21H21

I 0 D , ~2.8!

whereI is theM3M unit matrix. The eigenvalues ofH are
the 2M roots eikl,eik̄l and the upperM components of the
eigenvectors ofH are the sought eigenvectorsfkl

,f k̄l
.

To construct the retarded Green’s functiongzz8 of an in-
finite lead, we note that, except atz5z8, g is simply a wave
function and hence must have the form

gzz855 (
l 51

M

fkl
eikl (z2z8)wkl

† , z>z8,

(
l 51

M

f k̄l
eik̄ l (z2z8)wk̄l

† , z<z8,

~2.9!

where theM-component vectorswkl
andwk̄l

are to be deter-

mined. Sincegzz8 is retarded both inz andz8, it satisfies the
Green’s function equation corresponding to Eq.~2.2! and is
continuous at the pointz5z8, so that one obtains

gzz855 (
l 51

M

fkl
eikl (z2z8)f̃kl

† V21, z>z8,

(
l 51

M

f k̄l
eik̄ l (z2z8)f̃ k̄l

† V21, z<z8.

~2.10!
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The matrixV is defined by

V5(
l 51

M

H21@fkl
e2 iklf̃kl

† 2f k̄l
e2 i k̄ lf̃ k̄l

†
#, ~2.11!

and the set of vectorsf̃kl

† (f̃ k̄l

† ) are the duals of the se

fkl
(f k̄l

), defined by

f̃kl

† fkh
5f̃ k̄l

†
f k̄h

5d lh , ~2.12!

from which the completeness conditions follow

(
l 51

M

fkl
f̃kl

† 5(
l 51

M

f k̄l
f̃ k̄l

†
5I. ~2.13!

Equation ~2.10! is the retarded Green’s function for a
infinite system. For a semi-infinite lead, it must be modifi
to satisfy the boundary conditions at the end of the lea
Consider first the left lead, which extends toz52` and
terminates atz5z021, so that the position of the first miss
ing slice isz5z0. To satisfy the boundary condition that th
Green’s function must vanish atz5z0, we subtract from the
right-hand side of Eq.~2.10! a wave function of the form

Dz~z8,z0!5(
lh

M

f k̄h
eik̄hzDhl~z8,z0!, ~2.14!

whereDhl(z8,z0) is a complex matrix, determined from th
condition that the Green’s function vanishes atz0, which
yields

Dz~z8,z0!5Dz8~z,z0!

5 (
l ,h51

M

f k̄h
eik̄h(z2z0)f̃ k̄h

†
fkl

eikl (z02z8)f̃kl

† V21.

~2.15!

For the purpose of computing the scattering matrix,
shall require the Green’s function of the semi-infinite le
lead g̃zz8(z0)5gzz82Dz(z8,z0) evaluated at the surface o
the lead, namely, atz5z85z021. Note that in contrast with
the Green’s function of an infinite lead, which depends o
on the difference betweenz andz8, the Green’s functiong̃ of
a semi-infinite lead for arbitraryz,z8 is, in addition, a func-
tion of the positionz0 of the first missing slice beyond th
termination point of the lead. WritinggL5g(z021)(z021)(z0)
yields for this surface Green’s function

gL5FI2(
l ,h

f k̄h
e2 i k̄hf̃ k̄h

†
fkl

eiklf̃kl

† GV21. ~2.16!

Similarly, at the surface of the right lead, which extends
z51`, the corresponding surface Green’s function is

gR5FI2(
l ,h

fkh
eikhf̃kh

† f k̄l
e2 i k̄ lf̃ k̄l

† GV21. ~2.17!

The expressions~2.16! and~2.17!, when used in conjunc
tion with Eq. ~2.8! form a versatile method of determinin
the lead Green’s functions, without the need to perfo
s.

e

y

k-space integrals or contour integration. As a consequenc
translational invariance of the infinite system, the surfa
Green’s functions are independent of the position of the s
facez0. Furthermore, as noted below, in the case of differ
vectorsfk , corresponding to the same realk, the current
operator is not diagonal. Hence, it is convenient to perform
unitary rotation in such a degenerate subspace to ensur
unitarity of theS matrix.

B. The effective Hamiltonian of the scattering region

Given the Hamiltonian of a scattering region and a mat
of couplings to the surfaces of external leads, the Gree
function of the scatterer plus leads can be computed fr
Dyson’s equation~2.21!. For structures, such as those in Fi
1 with a quasi-one-dimensional geometry and a Hamilton
which is block tridiagonal~i.e., of a finite range!, this task
can be made more efficient by first projecting out the inter
degrees of freedom of the scatterer~2.18!. This would yield
an effective Hamiltonian involving only those degrees
freedom which are at the surfaces of the external leads. T
secondly, one can calculate the Green’s function for
whole system~2.21!, comprising the scatterer and the lead
and evaluate transport coefficients of interest. In the lite
ture, depending on the context or details of implementati
this procedure is sometimes referred to as the ‘‘recurs
Green’s-function technique’’ or the ‘‘decimation method,
but is no more than an efficient implementation of Gauss
elimination.14

Consider a scatterer composed onN22M degrees of
freedom. Then the Hamiltonian for the scatter plus se
infinite leads is of the formH5HL1HR1H̃, whereHL ,HR
are the Hamiltonians of the left and right isolated leads a
H̃ a N3N Hamiltonian describing the scattering region a
any additional couplings involving surface sites of the lea
induced by the presence of the scatterer. The aim of
decimation~i.e., recursive Green’s function! method is to
successively eliminate the internal degrees of freedom of
scatterer, which we labeli, i 51,2, . . . ,N22M , to yield a
(2M )3(2M ) effective HamiltonianHeff . After eliminating
the degree of freedomi 51, H̃ is reduced to a (N21)3(N
21) matrix with elements

Hi j
(1)5H̃ i j 1

H̃ i1H̃1 j

E2H̃11

. ~2.18!

Repeating this procedurel times, we obtain the ‘‘decimated’
Hamiltonian atl th order

Hi j
( l )5Hi j

( l 21)1
Hil

( l 21)Hl j
( l 21)

E2Hll
( l 21)

, ~2.19!

and afterN22M such steps, an effective HamiltonianHeff
5HN22M of the form

Heff~E!5S HL* ~E! HLR* ~E!

HRL* ~E! HR* ~E!
D . ~2.20!

In this expression,HL* (E) @HR* (E)# describes intrasurface
couplings involving degrees of freedom belonging to the s
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face of the left~right! lead andHLR* (E)5HLR* (E)† describes
the effective coupling between the surfaces of the left and
right leads.

Since the effective Hamiltonian is energy dependent,
procedure is a particularly useful method when one wishe
compute the Green’s function at a given energy. It is a
very efficient in the presence of short range interactions,
cause only matrix elements involving degrees of freed
coupled to the decimated one are redefined. Since the p
lem now involves only (2M )3(2M ) matrices, it is straight-
forward to obtain the surface Green’s function for the wh
system ~i.e., the scattering region attached to the se
infinite leads! by solving the Dyson’s equation

G~E!5@g~E!212Heff~E!#21, ~2.21!

where

g~E!5S gL~E! 0

0 gR~E!
D , ~2.22!

with gL andgR given by Eqs.~2.16! and ~2.17!.

C. The scattering matrix and transport coefficients

To extract transport coefficients from the Green’s fun
tion, we generalize the method described in Ref. 14@in par-
ticular see Eq.~A26! of Ref. 14# to the case of nonorthogona
scattering channels. For a system of HamiltonianH, the S
matrix is defined to connect incoming to outgoing propag
ing states in the external leads. Ifk (k8) are real incoming
~outgoing! wave vectors of energyE, then an incident plane
wave in one of the leads with longitudinal wave vectork,
will scatter into outgoing plane wavesk8 with amplitudes
sk8k(E,H). If all plane waves are normalized to unit flux b
dividing by the square root of their group velocities the
provided the plane wave basis diagonalizes the current
erator in the leads, the outgoing flux along channelk8 is
usk8k(E,H)u2, andSwill be a unitary matrix. IfH is real, then
Swill be symmetric. More generally, time reversal symme
implies the propertysk8k(E,H)5skk8(E,H* ). Evidently, if
k,k8 belong to the left~right! lead, then one finds thereflec-
tion coefficients fromr k8k5sk8k (r k8k

8 5sk8k). If, however,k
andk8 belong to left and right leads, respectively, one fin
the transmissioncoefficientstk8k5sk8k (tk8k

8 5sk8k).
To find the transport coefficients for the system in Fig.

consider the probability current for an electron in the Blo
state~2.3!

Jk5nk'
vk'

, ~2.23!

wherenk'
is the probability of finding an electron in a slic

andvk'
is the corresponding group velocity. It follows th

the vector

cz5
1

Avk

eikzfk, ~2.24!

is normalized to a unit flux. To compute the group veloc
we note that if uck& is an eigenstate of Eq.~2.1!, whose
projection onto slicez is cz , then
e

is
to
o
e-

b-

i-

-

t-

,
p-

s

,

vk5
1

\

]

]k
^ckuHuck&5

1

\

]

]k
@fk

†~H01H1eik1H21e2 ik!fk#

~2.25!

5
i

\
fk

†~H1eik2H21e2 ik!fk , ~2.26!

where the last step follows from Eq.~2.4! and the normal-
ization of fk .

It can be shown that the states~2.24! diagonalize the cur-
rent operator only if they correspond to the distinctk values.
In the case of degeneratek’s, the current is in general non
diagonal. Nevertheless, it is always possible to define a r
tion in the degenerate subspace for which the current op
tor is diagonal. When the degeneracy is encountered,
assume that such a rotation has been performed. With
convention, the current carried by a state of the form

cz5(
l

al

eiklz

Av l

fkl
, ~2.27!

is simply given by( l ual u2.
It is now straightforward to generalize the analysis of R

14 to the case of nonorthogonal scattering channels. C
sider first an infinite periodic structure, whose Green’s fun
tion is given by Eq.~2.10!. For z>z8, by operating ongzz8
from the right with the following projector:

Pl~z8!5Vfkl

eiklz8

Av l

, ~2.28!

yields the normalized plane wave~2.24!. Similarly, by acting
on the Green’s functiongzz8(z0) of a semi-infinite left lead
terminating atz0, one obtains forz>z8, z0>z, an eigenstate
of a semi-infinite lead arising from a normalized incide
wave along a channelkl .

Thus the operatorPl(z8) and its left-going counterpar
P̄l(z8) allow us to project out wave functions from th
Green’s function of a given structure. For example, ifGzz8 is
the retarded Green’s function for a scattering region sa
wiched between two perfect leads whose surfaces are loc
at the pointsz50 andz5L, then, forz8<0, the projected
wave function is of the form

cz55
eiklz

Av l

fkl
1(

h

r hl

Avh

eik̄hzf k̄h
, z<0,

(
h

thl

Avh

eikhzfkh
, z>L,

~2.29!

wherer hl5r k̄h ,kl
, thl5tkh ,kl

are the reflection and the trans
mission coefficients associated with an incoming state fr
the left. In particular, forz5L, z850, one obtains

(
h

thl

Avh

eikhLfkh
5GL0Pl~0! ~2.30!

and hence
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thl5f̃kh

† GL0Vfkl
Avh

v l
e2 ikhL. ~2.31!

Since the right-hand side of Eq.~2.31! involves only the
surface Green’s function of Eq.~2.21! the transmission co
efficients~and by analogy all other transport coefficients! are
thus finally determined. Since the above analysis is valid
any choice of the HamiltoniansH0 andH1, this approach is
indeed very general.

III. RESULTS FOR Co AND Ni BASED MULTILAYERS

Using the technique developed above, we have stud
transport properties of multilayers formed from Co and Ni
magnetic layers and several 3d, 4d, and 5d transition metals
as nonmagnetic spacer layers. All of these metals have a
lattice structure with the following lattice constants listed
Table I.

It is clear that Co and Ni have a good lattice match w
Cu, while for the other metals the lattice mismatch is lar
and may introduce strain and defects at the interface.
latter produces an additional scattering at the interfaces,
glected in our present calculations. Nevertheless, we
show that large values of the GMR ratio can be obtained
agreement with experimental values, suggesting that C
GMR is a bulk effect, whose main features are contained
a ballistic quantum description of the conductance with
adequate band structure. Below we model all the metals
anspd tight-binding Hamiltonian with nearest-neighbor co
plings, whose parameters are chosen to fit the band struc
evaluated from first-principles calculations.18 The hopping
parameters at the heterojunctions between materials
been approximated by a geometric mean of the corresp
ing pure metal values. It is worth noting that different ave
aging procedures used to obtain the hopping coefficient
the heterojunctions yield small changes in the calcula
conductance of the multilayers. Nonetheless, a more real
approach to the heterojunctions between different met
based onab initio calculations, would be useful to clarify th
role of coupling across the interfaces in such structures.

A. Density of electronic states„DOS… and conductance
of the pure metals

We begin our analysis by examining the DOS and c
ductance of the pure metals. Since the Hamiltonians incl
spd hybridization, angular momentum states are not eig
states of the system. However, in order to understand

TABLE I. Lattice constants of the metals considered in the c
culation.

Metal Lattice constant~Å!

Co 3.55
Ni 3.52
Cu 3.61
Ag 4.09
Pd 3.89
Au 4.08
Pt 3.92
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relative role of the angular character interband and intrab
scattering, it is useful to project the DOS and conducta
onto an angular momentum basis. We will label as ans-like
electron~and similarly for thep andd electrons! an electron
whose s componentu^suc&u2 of the wave functionuc& is
much larger than thep andd components.

The DOS’s for the two spin sub-bands of Co and Ni a
very similar, and we show, as an example, the Co DOS
Fig. 3. As in all thed transition metals, the DOS is forme
from a localizedd band embedded in nearly parabolics and
p bands. The width of the bands is roughly the same in
and Ni, as well as the position of the majority band wi
respect to the Fermi energy. In both materials, the Fe
energy lies just above the edge of the majorityd band, while
the minority band is almost rigidly shifted with respect to t
majority band towards higher energies, the shift being lar
in Co than in Ni. In both the minority bands of Co and Ni th
Fermi energy lies well within thed band and the DOS is
completely dominated by thed electrons. A rough estimate
of the mismatch between the minorityd bands of Co and Ni
can be obtained from the on-site energies of thed electrons
in the minority band. As shown in Table II, the differenc
between the on-site energies of thed minority electrons in
Co and Ni is about 0.7 eV and it corresponds to the relat
shift of the bands~the on-site energies shown in the table a
chosen in order to have the Fermi energyEF50).

The conductance of pure Co and Ni is determined so
by the DOS. For majority electrons at the Fermi energy,

-

FIG. 3. DOS for pure Co. The vertical line denotes the posit
of EF that is chosen to be 0 eV.

TABLE II. On-site energies used in the calculations.

Metal Es ~eV! Ep ~eV! Ed majority ~eV! Ed minority ~eV!

Co 5.551 14.025 22.230 20.660
Ni 4.735 11.850 22.114 21.374
Cu 2.992 10.594 22.746 22.746
Ag 2.986 9.127 24.650 24.650
Pd 5.764 11.457 22.050 22.050
Au 0.329 10.081 23.823 23.823
Pt 1.849 11.523 22.614 22.614
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FIG. 4. DOS for pure Cu, Ag,
and Pd. The vertical lines denot
the position of the Fermi energy
which is chosen to beEF50.
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current is carried by thes, p, and d electrons, which give
almost equal contributions. On the other hand, the cur
carried by minority electrons is completely dominated by
d electrons, with the contributions froms and p electrons
being no larger than 10% of the total. If we neglect t
relative shift in energies of the minority bands, the Ni and
conductances possess the same qualitative features and,
the effective mass is proportional to the inverse of the b
width, we find that the current carried by majority electro
is formed from a mixture of lights andp electrons and heavy
d electrons, whereas the minority-electron current is carr
almost entirely by heavyd electrons.

Now consider the nonmagnetic 3d, 4d, and 5d transition
metals with fcc lattices. A glance at the DOS of these ma
rials reveals three types of band structure:~i! the DOS
closely matches the DOS of the majority spin sub-band
Co and Ni ~e.g., Cu and Au!, ~ii ! the DOS has onlysp
components at the Fermi energy, with thed component
highly suppressed~as in Ag!, and~iii ! the DOS is composed
of an almost pured component at the Fermi energy~e.g., for
Pd and Pt!. Examples of each of these cases are given in
4, which shows the DOS of Cu, Ag, and Pd and in Fig.
which displays the corresponding conductances.
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As we shall see below for ballistic structures, the m
match between the bands of the magnetic and nonmagn
metals forming the multilayer is the key feature which det
mines the conductance. Moreover, although the position
thes andp bands are the same for both spins, ford electrons
the two spin sub-bands possess a different mismatch a
interface and therefore this mismatch~potential step ford
electrons at the interface! largely determines the magnitud
of CPP GMR.

In addition to the above generic features, the on-site
ergies of thes bands of Au and Pt are small compared w
those of Ni and Co. In the Co/Au and Co/Pt multilayers, th
may induce strong scattering of thes electrons, resulting in a
strong suppression of thes-electron contribution to the tota
conductance. This effect should be weaker in the Pt-ba
than in the Au-based multilayers, because a DOS of Pl
num has mainlyd character at the Fermi energy, whic
means that the Co/Pt multilayers will be sensitive to the
fect of the larges-band mismatch only through the hybrid
ization of thes andd bands at the Fermi energy.

Figure 5 shows how these three distinct DOS characte
tics are reflected in the conductances of the normal me
and give rise to three different scenarios for charge transp
r
l

FIG. 5. The conductance fo
pure Cu, Ag, and Pd. The vertica
lines denote the Fermi energyEF

50.
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FIG. 6. GMR and spin conduc-
tance for Co/Cu and Ni/Cu sys
tems as a function of the Cu layer
thickness. The first graph is th
GMR, the second is the conduc
tance for the Co/Cu system nor
malized to the conductance o
pure Cu, and the third is the con
ductance of the Ni/Cu system with
the same normalization. To evalu
ate the conductance in units o
V21 m22, these data should be
multiplied by the conversion fac-
tor f Cu50.6131015.
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~i! the contributions to the current froms, p, andd electrons
are almost equal~e.g., in Cu and Au!, ~ii ! the current has a
strongsp character~e.g., in Ag!, and ~iii ! the current has a
strongd character~e.g., Pd and Pt!.

These different characteristics of the current carriers
the nonmagnetic metals give rise to another important so
of interface scattering. Since the majority spins in the m
netic metals are mainlysp electrons with light effective
masses and the minority spins ared electrons with heavy
effective masses, it is clear that, depending on the choic
nonmagnetic metal, different spin-dependent interband s
tering must occur at the interfaces. For example in the Co
system, a majority spin propagates in Co as a mixture ofs, p,
andd electrons, whereas in Ag it has mainly ansp character.
This means that an electron in the Ag, whose spin is in
same direction of the magnetization, can enter Co as ansp
electron without the need for strong interband scattering.
the other hand, if its spin points in the opposite direction
will undergo an interband scattering because in the mino
band the electron must propagate as ad electron. Moreover
the interband scattering involves final states with a la
DOS, and hence a scattering is expected to be strong.

The above observations suggest that the key mechan
affecting transport are~i! a strong band mismatch and~ii ! a
strong interband scattering. The best GMR multilayers m
be able to maximize electron propagation in one of the t
spin bands and to minimize it in another one. To achieve
result, the high conduction spin band should have a sm
band mismatch and weak interband scattering at the he
junctions, while the low conduction band should have a la
band mismatch and strong interband scattering.

B. A comparison between Co-based and Ni-based multilayers

To clarify how the spin polarization of the magnetic m
terial affects the properties of the GMR multilayers, we b
gin by examining GMR in Cu-based multilayers, in whic
the magnetic metals are either Ni or Co. All the multilaye
consist of ten bilayers of the formA/Cu whereA is Co or Ni,
attached to two semi-infinite Cu leads. The Fermi energ
fixed by the semi-infinite leads which is taken as zero. Af
calculating the different spin conductances in the ferrom
netic and antiferromagnetic configurations, the GMR ratio
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obtained from Eq.~1.1!. In all our calculations the curren
flows in the~110! crystalline direction and the structures a
translationally invariant within the layers. Below we co
sider 8100ki points (90390) in the plane of the layers. W
have estimated that the GMR ratio calculated with
3104 ki points on average differs by;3%, from that cal-
culated using

8100 ki points S GMR~8100!2GMR~23104!

GMR~8100!
;3%D .

Since the oscillations of the GMR ratio with respect to t
layer thicknesses are larger than 3%, the choice of 8100ki
points allows us to investigate the oscillating behavior of
conductance and the GMR, and is a good compromise
tween the accuracy of the calculation and the required c
puter time. Initially we fix the magnetic layer thickness
five atomic planes, and calculate the conductance and G
as a function of the Cu layer thickness.

We shall normalize the conductance by dividing it by t
conductance of a single spin in the pure metallic leads, wh
is a natural choice for the present work. For results shown
Fig. 6 it means the normalization to one half of the total C
conductance, because of a spin degeneracy.

From Fig. 6 it is clear that the Co-based multilayers sh
larger GMR ratios. In the ferromagnetic configuration, t
majority electrons have high conductances in both cases
flecting the good match between the majority bands of
and Ni, and the Cu band. Moreover, the better match of ths
andp majority bands of Ni with Cu, compared with those
Co, gives rise to a slightly higher conductance in major
channel for Ni than for Co. A similar argument explains t
difference in the conductances of the minority channel.
we can see from Table II, the minorityd band of Ni is a
better match to Cu than that of Co, as indicated by the
ference in the on-site energies about 0.7 eV. Hence for
minority band, the interface scattering between Co/Cu
greater for Ni/Cu. In the antiferromagnetic configuratio
both spins undergo the same scattering sequence, belon
alternately to the majority and to the minority bands. T
total spin conductance in the antiferromagnetic configurat
is found to be close to that of the minority band in the fe
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FIG. 7. GMR and spin conduc-
tance for Co/Cu and Ni/Cu sys
tems as a function of Co and N
layers thicknesses. The first grap
is the GMR, the second is the con
ductance for the Co/Cu system
normalized to the conductance o
pure Cu, and the third is the con
ductance of the Ni/Cu system with
the same normalization. See Fig.
for the conversion factor into units
of V21 m22.
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romagnetic configuration, because the minority band m
match is larger than the majority band, and dominates
scattering.

The ratioR between the conductance (G) of the AF con-
figuration and of the minority band in theF configuration
@R5G(AF)/G(F minority)# is ;0.6 for Co/Cu and;0.9
for Ni/Cu. This difference can be understood by modeli
the interface scattering through an effective step poten
whose magnitude is equal to the band mismatch, as
cussed elsewhere.19 The effective scattering potential in th
antiferromagnetic configuration will be a sequence of h
steps~for minority band! and low steps~for majority band!
with respect to a common reference.

The calculatedR ratios arise, because the perturbation
the minority steps due to the majority steps, is smaller
Ni/Cu than in Co/Cu. From this analysis the splitting b
tween the two spin sub-bands in the magnetic materials is
crucial parameter leading to large GMR ratios and, sin
such splitting is larger in Co than in Ni, Co emerges a
natural candidate for high GMR ratio multilayers. Note th
highest possible values of GMR can probably be achie
with the use of half-metallic ferromagnets with 100% sp
polarization of electrons.20

Having examined the dependence of transport prope
on the normal-metal layer thickness, we now examine
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dependence on the magnetic-layer thickness. For a fixed
layer-thickness of five atomic planes, Fig. 7 shows results
Co/Cu and Ni/Cu multilayers. A key result in this figure
that for thin magnetic layers GMR in both Ni/Cu and Co/C
multilayers is suppressed. This can be understood in term
an effective scattering potential. The large off-sets betw
the minorityd bands of the different materials create an
fective barrier in thed band, for channels with high trans
verse momentum. When the width of such a barrier is sm
tunneling across the magnetic metal within thed band is
possible, and this results in an enhancement of the con
tance in the minority spin channel and hence in a reduc
of GMR. Thus we predict a lower limit of approximatel
four atomic planes to the magnetic-layer thickness, in or
to achieve the highest possible GMR ratio. In what follow
we will only consider thicknesses larger than this value.

C. Dependence of GMR on nonmagnetic spacer material

We now consider the dependence of GMR on the cho
of nonmagnetic material in Co- and Ni-based multilayers.
all calculations we fix the Co thickness at five and ten atom
planes and vary the thickness of the nonmagnetic layers f
1 to 40 atomic planes. The material in the external lead
the same nonmagnetic material used for the multilayers~e.g.,
TABLE III. GMR ratio and GMR oscillations for different metallic multilayers.

Multilayer GMR ratio ~%! D ~%! D1 ~%! D/GMR ~%! D1/GMR ~%!

Co5 /Cu 183.7 10.0 12.4 5.4 6.7
Co5 /Ag 153.7 9.5 13.1 6.1 8.5
Co5 /Pd 102.0 13.9 16.7 13.7 13.4
Co5 /Pt 104.1 10.9 15.6 10.5 15.0
Co5 /Au 98.8 20.4 33.62 20.6 34.0
Co10/Cu 150.7 9.2 9.2 6.1 6.1
Co10/Ag 131.0 7.6 5.3 5.8 4.1
Co10/Pd 165.2 31.1 32.2 18.8 19.4
Co10/Pt 175.7 14.8 21.1 8.4 12.5
Co10/Au 138.8 20.1 26.4 14.5 17.8
Ni5 /Cu 25.9 1.5 1.8 5.8 6.9
Ni5 /Co5 66.1 4.1 6.6 6.2 10.0
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Ag in Co/Ag multilayers!. Table III shows the average valu
of the GMR ratio and the root mean square amplitude
oscillation around such value (D). To highlight the fact that
GMR is an oscillatory function of the normal-metal thic
ness with an amplitude which decreases with increas
thickness, the table also shows the mean square oscilla
calculated for nonmagnetic metal layers thicknesses betw
1–10 (D1). In the table the subscript at Co indicates t
number of atomic planes of the Co layers. The penultim
row of the table shows results for the Ni/Cu system,
which we believe that no current perpendicular to plan
~CPP! experimental results are currently available, ev
though the CIP conductance in high magnetic field has b
studied.21 We also show the hypothetical GMR values f
Co/Ni multilayers in the last row of the table. The Schulle
group at UCSD has not observed any GMR for Co/Ni m
tilayers, likely because of a strong exchange coupling
tween the layers. From Table III it is clear that the GM
ratio results depend quite sensitively on the multilayer geo
etry, i.e., on the layer thicknesses. In fact the simulatio
with the Co thickness fixed at five atomic planes seem

FIG. 8. GMR as a function of the nonmagnetic metal lay
thickness for Co/Ag and Co/Pd. The horizontal lines denote
position of the average GMR.
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suggest that thesp conductors as spacer layers~Cu, Ag!
result in larger GMR ratios in this case. The simulations w
ten Co atomic planes show that the multilayers w
d-electron spacers~Pd, Pt! correspond to relatively large
GMR. It is also evident that the Co based multilayers sh
much larger GMR ratios than the Ni based multilayers. T
table also demonstrates that the conductors dominatedd
electrons, namely, Pd and Pt, have very similar GMR rat
and amplitudes of oscillation and that Au has the larg
amplitude oscillations. As examples, Fig. 8 shows plots
the GMR ratio as a function of the nonmagnetic metal la
thickness for the Co/Ag and Co/Pd systems.

In all cases~excluding Au! the oscillations are small com
pared with the average value of the GMR ratio, suggest
that there is an additional contribution to the long range
cillations observed experimentally. This is most likely
arise from a periodic deviation from a perfect antiferroma
netic configuration, the possibility of which is neglected
our calculations. It is important to point out that a perfe
antiferromagnetic alignment of the multilayer in zero ma
netic field is a consequence of the exchange coupling of
adjacent magnetic layers through the nonmagnetic layer.
strength and phase of such coupling depend critically on
Fermi surface of the nonmagnetic metal.22 To the best of our
knowledge no experimental data are available for thed con-
ductor multilayers, for which the antiferromagnetic config
ration may be difficult to achieve. In spin valves, howev
such an antiferromagnetic configuration can always be
tained by tuning the coercive fields of the different magne
layers, for instance by an appropriate choice of the spin va
geometry, or by using some magnetization pinning te
nique. Hence our theoretical predictions for Co/Pd and Co
multilayers can, at least in principle, be tested experim
tally.

The above results for the GMR ratio somewhat obsc
the material dependence of the electrical conductance
with a view to comparing these with their band structur
we now present results for the conductances of the diffe
spin channels and of the AF configuration. In the Tables
V, and VI we present the conductance (G), the mean con-
ductance oscillation (DG), their ratio (DG/G), the maximum
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TABLE IV. Conductance and conductance oscillations for different metallic multilayers: majority b
The conductance of each multilayer is normalized to the conductance of the corresponding nonm
metal, which composes the leads. To evaluate the conductance in units ofV21 m22, see conversion factors
in the caption to Fig. 9.

Multilayer G DG DG/G ~%! DGmax DGmax/G ~%!

Co5 /Cu 0.61 3.7631023 0.61 1.1731022 1.92
Co5 /Ag 0.66 4.1031023 0.62 1.2431022 1.88
Co5 /Pd 0.35 5.3231023 1.50 1.5231022 4.29
Co5 /Pt 0.38 5.0131023 1.31 1.8731022 4.91
Co5 /Au 0.24 1.2231022 4.94 5.0731022 20.52
Co10/Cu 0.59 5.3331023 0.90 1.0631022 1.81
Co10/Ag 0.63 4.3731023 0.69 1.3131022 2.06
Co10/Pd 0.33 8.8931023 2.67 2.0531022 6.14
Co10/Pt 0.37 5.0231023 1.37 1.2531022 3.41
Co10/Au 0.24 1.0531022 4.42 3.6931022 15.53
Ni5 /Cu 0.69 3.1131023 0.45 8.3131023 1.21
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TABLE V. Conductance and conductance oscillations for different metallic multilayers: minority b
The conductance of each multilayer is normalized to the conductance of the corresponding nonm
metal, which composes the leads. To evaluate the conductance in units ofV21 m22, see the caption to Fig
9.

Multilayer G DG DG/G ~%! DGmax DGmax/G ~%!

Co5 /Cu 0.29 1.1931022 3.97 4.2131022 14.04
Co5 /Ag 0.28 1.1531022 4.08 4.0131022 14.31
Co5 /Pd 0.18 1.2331022 6.93 4.1331022 23.24
Co5 /Pt 0.19 8.5431023 4.29 2.5131022 12.65
Co5 /Au 0.20 1.0631022 5.08 3.5231022 16.86
Co10/Cu 0.32 1.0831023 3.38 2.8231022 8.80
Co10/Ag 0.32 1.7531022 5.54 5.7331022 18.15
Co10/Pd 0.16 1.5631022 9.78 3.5031022 21.14
Co10/Pt 0.19 9.0231023 4.71 2.6331022 13.73
Co10/Au 0.16 9.6031023 5.95 2.3431022 14.53
Ni5 /Cu 0.51 7.6331023 1.49 2.3931022 4.71
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of the conductance oscillations (DGmax) and its ratio with the
mean conductance (DGmax/G), respectively for the majority
electrons in the ferromagnetic configuration, the minor
electrons in the ferromagnetic configuration, and both sp
in the antiferromagnetic configuration. All conductances
normalized to the single-spin conductance of the n
magnetic-metal leads. This allows us to compare the dif
ent scattering properties arising from the electronic struc
of the multilayers independently of the material of the lea
It is possible to extract the values of the conductance per
area in units ofV21 m22 by multiplying the normalized
conductances by the following conversion factorsf: f Cu
50.6131015 V21 m22, f Ag50.4531015 V21 m22, f Au
50.4731015 V21 m22, f Pd50.7331015 V21 m22, f Pt
50.8331015 V21 m22. Note that the absolute values o
conductance per unit area are consistent withab initio calcu-
lations for infinite superlattices in the ballistic regime.7

Tables IV–VI illustrate that, with the exception of Au
materials belonging to the same class have similar norm
ized conductances. For Cu and Ag the majority~minority!
band is a high~low! transmission band, leading to a larg
GMR ratio for such materials. The majority bands of the
s
e
-
r-
re
.
it
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e

two materials match that of Co and there is little interba
scattering~even less in Ag where the electrons at the Fer
energy are completelysp). By contrast, the minority carriers
are subject to a large scattering potential due to a differe
between the on-site energies of thed band. They are also
subject to large interband scattering because of almost pud
character of the minority carriers in Co. On the other ha
for Pd and Pt, which ared metals, both sub-bands are subje
to high scattering albeit for different reasons. The on-s
energies of the majority band of Co, Pd, and Pt are roug
the same, ensuring a good band match. It is worth noting
the width of thed majority band of Co is associated wit
hybridization ofs, p, and d electrons, while the Pd and P
bands are mainlyd-like. Hence, a strong inter-band scatte
ing is present in the majority band of Co/Pd and Co/Pt
perlattices. By contrast, the minority band isd-like in Co, Pd,
and Pt, but there is a significant difference in the on-s
energies, resulting in a large effective potential step at
interface.

The Au/Co multilayers lie somewhat outside the abo
picture, because even though thed band resembles that o
Ag, the on-site energies of thes andp bands are considerabl
ura-
agnetic
TABLE VI. Conductance and conductance oscillations for different metallic multilayers: AF config
tion. The conductance of each multilayer is normalized to the conductance of the corresponding nonm
metal, which composes the leads. To evaluate the conductance in units ofV21 m22, see conversion factors
in the caption to Fig. 9.

Multilayer G DG DG/G ~%! DGmax DGmax/G ~%!

Co5 /Cu 0.16 5.3331023 3.31 1.3531022 8.40
Co5 /Ag 0.18 6.7131023 3.62 2.3431022 12.68
Co5 /Pd 0.13 7.9831023 6.04 1.5231022 15.00
Co5 /Pt 0.14 6.8731023 4.81 2.2831022 16.01
Co5 /Au 0.11 1.2531022 10.85 5.4931022 47.45
Co10/Cu 0.18 6.4031023 3.51 1.6231022 8.94
Co10/Ag 0.21 5.1031023 2.46 1.0631022 5.17
Co10/Pd 9.4131022 1.0931022 11.62 3.1531022 33.45
Co10/Pt 0.10 4.7731023 4.69 1.4331022 14.12
Co10/Au 8.4031022 6.9531023 8.27 1.6631022 19.77
Ni5 /Cu 0.47 4.8531023 1.02 1.3831022 2.91
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smaller than the corresponding bands in Co. This means
strong scattering occurs in thes andp bands and since thes
and p electrons of Au carry most of the current, there is
strong suppression of the conductance in all spin chann
From the above tables, we see that the Co/Au system
sesses a low conductance in all the spin channels and in
antiferromagnetic configuration.

Finally we note that, compared with the majority sp
channel, the oscillations are larger in the minority spin ch
nel and in the antiferromagnetic configuration. This suppr
sion of oscillations in the former occurs because of the be
band matching in the majority band. In Fig. 9 we show t
conductance of the minority band as a function of the n
magnetic layers thickness, for all the materials studied.

The oscillations that we observe never exceed 20%
their mean value~except for the Co/Au system! and they are
larger for smaller thicknesses. This is substantially sma
than the observed values for Co/Ni system.23,24 The differ-
ence may in part be related to scattering on disorder, alw
present in experimental systems, and to a simplicity o
tight-binding model that we used. In addition, actual ma

FIG. 9. Conductance of the minority spin electrons as a func
of the nonmagnetic layers thickness. The conductance of e
multilayer is normalized to the conductance of the correspond
nonmagnetic metal, which composes the leads. To eval
the conductance in units ofV21 m22, these data should be mult
plied by the following conversion factors:f Cu50.6131015,
f Ag50.4531015 V21 m22, f Au50.4731015 V21 m22, f Pd

50.7331015 V21 m22, f Pt50.8331015 V21 m22.
e
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ls.
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-
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netic configuration in those systems can be somewhat dif
ent as compared to an ideal one that we considered.
interesting to note that, generally, materials with small co
ductances (G,0.25 using the usual normalization for con
ductances! have larger oscillations, because low condu
tances indicate strong scattering potentials and, hence, la
fluctuations. A qualitative picture of these conductance os
lations has been presented in another publication,19 where
the above quantitative results are compared with a sim
Kronig-Penney model.

IV. CONCLUSION

First, we have developed a completely general Gree
function technique for elastic spin-dependent transport ca
lations, which~i! scales linearly with a system size and~ii !
allows straightforward application to general tight-bindin
(spd in the present work! Hamiltonians. This technique ca
be applied to unrestricted studies of different systems,
cluding tunneling spin valves20,25,26and magnetic multilayers
with superconducting leads. The formulas~2.16! and ~2.17!
for the surface Green’s functions of external leads are
central result of the first part. Explicit general expressions
the Green’s functions enable us to avoid using a small ima
nary part in energy.

Secondly, we have presented an extensive study of tr
port in magnetic multilayers in CPP geometry in the limit
large coherence length. Ni and Co were considered as m
rials for magnetic layers and several 3d, 4d, and 5d metals
as nonmagnetic spacers. Key parameters have been iden
as controlling a giant magnetoresistance in those syste
These are the character of electronic states at the Fermi
and a mismatch in relevant band edges across interfaces
have found that, in accordance with experiment,23,24there are
oscillations in the conductance as a function of both m
netic and spacer layer thicknesses. The magnitude of the
culated oscillations is, however, smaller than those obser
experimentally. Some reasons for this behavior have b
identified and they deserve further study. A semiquantitat
analysis of the conductance oscillations is presen
elsewhere.19
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