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Landau theory of bicriticality in a random quantum rotor system

Denis Dalidovich and Philip Phillips
Loomis Laboratory of Physics, University of Illinois at Urbana-Champaign, 1100 West Green Street, Urbana, Illinois 61801-30

~Received 25 November 1998!

We consider here a generalization of the random quantum rotor model in which each rotor is characterized
by anM-component vector spin. We focus entirely on the case not considered previously, namely when the
distribution of exchange interactions has nonzero mean. Inclusion of nonzero mean permits ferromagnetic and
superconducting phases forM51 andM52, respectively. We find that quite generally, the Landau theory for
this system can be recast as a zero-mean problem in the presence of a magnetic field. Naturally then, we find
that a Gabay-Toulouse line exists forM.1 when the distribution of exchange interactions has nonzero mean.
The solution to the saddle point equations is presented in the vicinity of the bicritical point characterized by the
intersection of the ferromagnetic (M51) or superconducting (M52) phase with the paramagnetic and spin
glass phases. All transitions including the ferromagnet–spin-glass transition are observed to be second order.
At zero temperature, we find that the ferromagnetic order parameter is nonanalytic in the parameter that
controls the paramagnet-ferromagnet transition in the absence of disorder. Also forM51, we find that replica
symmetry breaking is present but vanishes at low temperatures. In addition, at finite temperature, we find that
the qualitative features of the phase diagram, forM51, areidentical to what is observed experimentally in the
random magnetic alloy LiHoxY12xF4. @S0163-1829~99!00418-X#
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I. INTRODUCTION

Transport in granular metals is mediated by activa
transport among the metallic grains. In granular superc
ductors composed of spatially separated metallic grains, s
single particle charging events ultimately lead to a destr
tion of phase locking between the grains. This state of aff
obtains because the particle numbern and phaseu associated
with each grain are conjugate variables. If two grains ph
lock, the resultant infinite uncertainty in the particle numb
leads necessarily to single particle charging. Should
single particle charging energy sufficiently exceed the
sephson coupling energy between grains, superconduct
is quenched.1

The simplicity of the physics underlying the quantu
phase transition in an array of superconducting islands
plies that the resultant Hamiltonian

H52EC(
i

S ]

]u i
D 2

2(
^ i , j &

Ji j cos~u i2u j ! ~1!

is characterized by only two parameters:~1! a charging en-
ergyEC and~2! a Josephson coupling energyJi j . In writing
Eq. ~1!, we assumed that the islands occupy regular sites
a two-dimensional~2D! lattice and only nearest neighbo
^ i , j & Josephson coupling is relevant. For the ordered cas
which J^ i , j &5J0, the superconductor-insulator transition
well studied2 as the parameterEC /J0 increases. In suffi-
ciently disordered systems, however, the Josephson ene
are not all equal and in fact can be taken to be random.

We are concerned in this paper with the case in which
Josephson energies are random and characterized
Gaussian distribution

P~Ji j !5
1

A2pJ2
expF2

~Ji j 2J0!2

2J2 G ~2!
PRB 590163-1829/99/59~18!/11925~11!/$15.00
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with nonzero meanJ0. While random Josephson system
have been treated previously,3–5 such studies have focuse
predominantly on the zero mean case in whichJ050. This
limit differs fundamentally from the nonzero mean case, b
cause the superconducting phase exists only whenJ0Þ0.
Hence, forJ050, there is an absence of an ordering tran
tion. Nonetheless, the zero-mean case is still of physical
terest because as Read, Sachdev, and Ye~RSY!3 as well as
Miller and Huse4 have shown, a zero temperature transiti
from a quantum spin glass to a paramagnet occurs as
strength of the quantum fluctuations increases. To put
random Josephson model in the context of the work of RS
it is expedient to introduce the change of variables

Si5~cosu i ,sinu i !. ~3!

The resultant Josephson Hamiltonian

H52EC(
i

S ]

]u i
D 2

1(
^ i , j &

Ji j Si•Sj ~4!

is recast as a two-component (M52) interacting spin prob-
lem with random magnetic interactions. This model is eas
generalizable to describe interactions among a
M-component spin operator~or quantum rotor! in the group
O(M ). M51 corresponds to Ising spins and is relevant
random magnetic6 systems such as LiHo0.167Y0.833F4
whereas theM53 limit is applicable to spin fluctuations in
the cuprates.7 In this paper we focus primarily on theM
51 andM52 cases in which the ordered phases corresp
to a ferromagnet and a superconductor, respectively.

Two types of fluctuations control the transitions betwe
the phases:~1! dynamic quantum fluctuations arising from
the charging energy and~2! static fluctuations induced by th
disorder. For nonzero mean, three phases@spin-glass, para-
magnet, ferromagnet (M51), or superconductor (M52)#
are expected to meet at a bicritical point. Experimentally
11 925 ©1999 The American Physical Society
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11 926 PRB 59DENIS DALIDOVICH AND PHILIP PHILLIPS
bicritical point is anticipated wheneverJ0 , J, andEC are on
the same order of magnitude. It is the physics at this bic
cal point that we focus on in this paper. To discrimina
between these phases, we distinguish between thermal
ages^•••& and averages over disorder@•••#. In the super-
conductor (M52) or ferromagnetic phases (M51), the dis-
order and thermal average of the local spin opera
@^Sin&#Þ0 is nonzero. In the spin glass phase, the ther
average^Sin&Þ0, while @^Sin&#50. At zero temperature
quantum fluctuations and static disorder conspire to lead
vanishing of the static moment in the paramagnetic pha
that is,^Sin&50. RSY have performed an extensive study
the spin-glass–paramagnetic boundary using the rep
formalism8 in the case of zero mean in which the pure
ordered phase is absent. We adopt this formalism here in
analysis of the bicritical region. The only prior study on t
nonzero mean case is that of Hartman and Weichman9 who
studied numerically the spherical limitM→` of the quan-
tum rotor Hamiltonian. In their study, they found that th
spin-glass phase is absent in theM→` limit for d52. In the
present work, we will not address the issue of dimensiona
because we limit ourselves to a mean-field description
which all fields are homogeneous in space. Our results t
are valid above some upper critical dimension that can o
be determined by including fluctuations around the me
field solution.

This paper is organized as follows. In Sec. II, we use
replica formalism to average over the disorder explicitly a
obtain the effective Landau free-energy functional. We sh
that the leading terms in the Landau action resulting from
nonzero mean are analogous to those arising from an e
nal magnetic field in the zero-mean problem. As a result,
appropriate saddle-point equations can be solved using
rect analogy to the zero-mean problem in the presence
magnetic field. Explicit criteria are presented in Sec. III f
the stability of each of the phases in the vicinity of bicri
cality. We construct the phase diagram at finite tempera
and find excellent agreement with the experimental result
Reichet al.6 on the magnetic system LiHoxY12xF4. The ex-
plicit solution for M>2 is presented in the last section wi
a special emphasis on the Gabay-Toulouse10 line. In Sec. IV
we analyze the possibility of replica symmetry breaki
along the de Almeida–Thouless11 line in theM51 case.

II. LANDAU ACTION

Central to the construction of a Landau theory of the
critical region is the free-energy functional. For a quantu
mechanical system, this is obtained by explicitly including
the partition function

Z5Tr~e2bH!5TrH e2bH0T̂ expF2E
0

b

H1~t!dtG J ~5!

the time evolution according to a reference system. For
problem, the Hamiltonian for free quantum rotors

H052EC(
i

S ]

]u i
D 2

~6!

describes our reference system. The perturbation
i-
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H1~t!5eH0t(
^ i , j &

Ji j Si•Sje
2H0t ~7!

corresponds to the random magnetic interactions. The t
in the partition function is evaluated over the complete se
quantum rotor states. A primary hurdle in evaluating the p
tition function is the average over the random spin inter
tions. It is now standard to perform this average5 by replicat-
ing the spin systemn times and using the identity

ln@Z#5 lim
n→0

@Zn#21

n
~8!

to obtain the partition functionZ. We first must then evaluate
^Zn&. Formally, the replicated partition function is define
through Eq.~5! by replacingH0 andH1 by their replicated
equivalents

Hi
eff5 (

a51

n

Hi
a , ~9!

where the superscript indexes the individual replicas ani
50,1. Within the replica formalism, the average over t
random interactions with the Gaussian distribution gives r
to a quartic spin interaction. This quartic spin interaction
easily reduced to a quadratic interaction by use of
Hubbard-Stratanovich transformation. Let us define the F
rier transforms

Sa~k,t!5
1

AN
(

i
Si

a~t!eik•Ri ~10!

of the local spin operator for each site and the correspond
transform of the nearest-neighbor interaction

J~k!5J(̂
i j &

ek•r i j 52J(
i 51

d

coskia ~11!

The replicated partition function now takes on the form

@Zn#5Z0
nE DCDQe2Feff@C,Q# ~12!

where the effective free energy

Feff@C,Q#5(
a,k

E
0

b

dtCm
a ~k,t!@Cm

a ~k,t!#*

1 (
a,b,k,k8

Qmn
ab~k,k8,t,t8!@Qmn

ab~k,k8,t,t8!#*

2 lnF K T̂ expS 2E
0

b

dt(
a,k

AJ0~k!Cm
a ~k,t!

3Sm
a ~2k,t!1 (

a,b,k,k8
E

0

bE
0

b

dtdt8

3A2J~k!J~k8!Qmn~k,k8,t,t8!

3Sm
a ~k,t!Sn

b~2k8,t8!D L
0
G ~13!
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is now a functional of the auxilliary fieldsQ and C which
appear upon use of the Hubbard-Stratanovich transforma
to decouple the quartic spin term proportional toJ2(k) and
the quadratic term scaling asJ0(k), respectively. In writing
this expression, we used the Einstein convention where
peated spin~but not replica! indices are summed overZ0
5Tr@exp(2bH0)# and

^A&05
1

Z0
n

Tr~e2bH0
eff

A!. ~14!

The fieldsQ and C play fundamentally different roles
The proportionality of theC field to the mean of the distri
bution implies that this field determines the ordering tran
tion ~superconducting forM52 or ferromagnetic forM
51). This can be seen immediately upon differentiating
free energy with respect toC. The self-consistent condition
is that

Cm
a ~k,t!5^Sm

a ~k,t!&. ~15!

Hence, a nonzero value ofCm
a (k,t) implies ordering. It is

for this reason thatC functions as the order parameter f
the ferromagnetic or superconducting phase within Lan
theory. Likewise, differentiation of the free energy with r
spect toQ reveals that

Qmn
ab~k,k8,t,t8!5^Sm

a ~k,t!Sn
b~k8,t8!& ~16!

is the self-consistency condition for theQ matrices. For
quantum spin glasses, it is the diagonal elements of thQ
matrix
d
ly
in
.
ris
co
on

e-

i-

e

u

D~t2t8!5 lim
n→0

1

Mn
^Qmm

aa ~k,k8,t,t8!& ~17!

in the limit that ut2t8u→` that serves as the effectiv
Edwards-Anderson spin-glass order parameter3,5 within the
Landau theory. A disclaimer is appropriate here asD is non-
zero in the spin-glass as well as the paramagnet pha
However, its behavior is sufficiently different in the thre
phases: in the paramagnetic and ferromagnetic~supercon-
ducting! phases, as we will show,D(v) still has the form
Av21D2. The gapD vanishes at the transition to the spi
glass phase giving rise to the long-time behavior ofD(t).

Before we analyze the form of the gap, we must obt
the effective Landau action. The goal here is to obtain
polynomial functional ofQ andC from which a saddle point
analysis can be performed. We proceed in the standard
and perform a cumulant expansion on the free energy.
the case of zero mean, this procedure is documented q
closely in RSY. In addition to the terms containing theQ
matrices studied by RSY, the nonzero mean case will con
powers ofCm

a as well as cross terms. The resultant acti
must contain, of course, only even powers ofCm

a . For an
analysis of the bicritical point, it is sufficient to retain qu
dratic and quartic terms inCm

a . Terms of this kind are com-
pletely analogous to those derived previously by Doniac2

Of the cross terms, the simplest are of the formCm
a Cn

bQmn
ab ,

Cm
a Cn

aQmn
aa , andCm

a Cm
a Qnn

aa . We have confirmed explicitly
that retension of the latter two terms in which only one re
lica index occurs leads only to the renormalization of vario
coupling constants and minor modification of the pha
boundaries near the bicritical region. Hence, we do not c
sider such terms. Likewise, we do not retain terms of
form QaaQbb because this term vanishes in the limitn→0.

We find then that the effective action
A5
1

t E ddxH 1

kE dt(
a

S r 1
]

]t1

]

]t2
DQmm

aa ~x,t1 ,t2!ut15t25t1
1

2E dt1dt2(
a,b

@¹Qmn
ab~x,t1 ,t2!#2

2
k

3E dt1dt2dt3 (
a,b,c

Qmn
ab~x,t1 ,t2!Qnr

bc~x,t2 ,t3!Qrm
ca ~x,t3 ,t1!1

1

2E dt(
a

@uQmn
aa~x,t,t!Qmn

aa~x,t,t!

1vQmm
aa ~x,t,t!Qnn

aa~x,t,t!#J 1
1

2gE ddxH dt(
a

Cm
a ~x,t!F2g2

¹2

2 GCm
a ~x,t!

1E dt(
a

]

]t1
Cm

a ~x,t1!
]

]t2
Cm

a ~x,t2!ut15t25t1
z

2E dt(
a

@Cm
a ~x,t!Cm

a ~x,t!#2J
2

1

ktgE ddxE dt1dt2(
a,b

Cm
a ~x,t1!Cn

b~x,t2!Qmn
ab~x,t1 ,t2!1••• ~18!
rm
on

the

n for
d

contains three types of terms.~1! The terms that depen
purely on theQ matrices, as in the terms in the first cur
bracket in Eq.~18!, have been studied previously by RSY
the context of quantum spin-glass–paramagnet transition~2!
TheC-dependent terms in the second curly bracket give
to the ferromagnet or superconducting phases. They are
trolled by the parameterg. ~3! The competition between
e
n-

these two transitions is mediated by the last term in Eq.~18!.
To reiterate, other cross terms exist—for example, the te
noted previously. However, such terms have no bearing
the critical region. It suffices then to truncate the action at
level of Eq. ~18!. The last term in Eq.~18! bears a strong
resemblance to the term that appears in the Landau actio
the zero-mean problem in the presence of a magnetic fielh.
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11 928 PRB 59DENIS DALIDOVICH AND PHILIP PHILLIPS
In fact, we can obtain the corresponding term from Eq.~18!
by the transformationCm

a→hdm,1Akg/2t. This mapping is
not unexpected. In the nonzero mean problem, ordered s
create an effective ‘‘magnetic field’’ that acts as a sou
term for theQ matrices. This analogy is particularly powe
ful and serves as a useful check as to the validity of
saddle-point equations. Further, this mapping is true eve
the classical case.

A word on the coupling constants is in order. The para
etrization of the action in terms of the coupling constantsk,
t, andg was obtained by appropriately rescaling the fieldsQ
andC as well as the space and time coordinates. Fundam
tally, g is a function ofEC andJ0, while k and t are func-
tions ofEC andJ only. u, v, andz are related to a four-poin
spin correlation function evaluated in the long-time limit
discussed by RSY. In the zero-mean case, the phase dia
demarcating spin glass and paramagnetic stability is de
mined by the parameterr which determines the strength o
the quantum fluctuations. When these fluctuations exce
critical value, that isr .r c , a transition to a paramagnet
phase occurs.3 In the problem at hand, two parameters,r and
g, determine the phase diagram. The coupling constantg is
directly related to the parameterEC /J0 and EC /J as well.
The latter dependence arises as a result of the removal o
quadratic term

E ddxdt1dt2(
a,b

@Qmn
ab~x,t1 ,t2!#2, ~19!

by the transformation3 Q→Q2Cdabdm(t12t2). From mi-
croscopic considerations, it follows thatk2t/251. This is an
important simplification because we will show that t
ferromagnet-paramagnet boundary is determined by the
g52D/k2t5D.

III. SADDLE POINT ANALYSIS: PHASE DIAGRAM

In terms of the frequency-dependent order parameter

Cm~k,v!5
1

bE0

b

dtCm
a ~k,t!e2 ivt ~20!

and

Qmn
ab~k1 ,k2 ,v1 ,v2!

5
1

b2E0

bE
0

b

dt1dt2Qmn
ab~k1 ,k2 ,t1 ,t2!e2 iv1t12 iv2t2,

~21!

the three phases in our problem form under the follow
conditions. For the paramagnetic phase near the bicrit
point, the saddle-point equations are satisfied whenCm

a 50
but as RSY have shown

Qmn
ab~k,v1 ,v2!5~2p!dbdmndabdd~k!dv11v2,0D~v1!.

~22!

We have retained the ansatz for theQ matrix used by RSY
for the paramagnetic phase. Similarly, the ordering para
eter also vanishes in the spin-glass phaseCm50 and for the
replica-symmetric solution
ins
e

r
in

-

n-

am
r-

a

the

e

g
al

-

Qmn
ab~k,v1 ,v2!5~2p!ddd~k!dmn@bD~v1!dv11v2,0d

ab

1b2dv1,0dv2,0q
ab#. ~23!

The possibility of a replica broken-symmetry solution w
also be explored by including terms ofO(Q4) in the Landau
action. In the ordered phase~that is ferromagnetic or super
conductor! both C and Q are nonzero. As ferromagnetism
has generally been studied with a frequency-independen
der parameter, we explore a static ansatz of the form

Cm
a ~k,v!5~2p!ddd~k!bdv,0dm,1c ~24!

for Cm
a and

Qmn
ab~k,v1 ,v2!5~2p!ddd~k!dmn@bD̄~v1!dv11v2,0d

ab

1b2q̃dv1,0dv2,0d
ab1b2dv1,0dv2,0q

ab#

~25!

for the Q matrices. Our explicit inclusion ofq̃ as thev50
diagonal element of theQ matrices implies that we can re
define D(v)5D̄(v)1bq̃dv,0 . Consequently, we can se
D̄(v)50 and assume thatqab is purely off-diagonal. The
replica-symmetric solution corresponds toqab5q for all a
Þb. Initially, we will explore only this case.

A. M 51: Ferromagnetic order

We now specialize to theM51 ferromagnetic case a
crucial differences can occur with the analysis forM.1. If
we substitute Eqs.~24! and ~25! into the Landau action, we
obtain a free-energy density of the form

F
n

5
1

bkt (
vÞ0

~v21r !D̄~v!1
rq̃

kt
2

k

3bt (
vÞ0

D̄3~v!

1
u1v

2t S q̃1
1

b (
vÞ0

D̄2~v! D 2

1
1

2g S 2gc21
zc4

2 D

2
kb2

3t S q̃313q̃
Tr q2

n
1

Tr q3

n D2
bc2

kgt
S q̃1

(
ab

qab

n
D .

~26!

Formally, the free-energy density as defined here is
disorder-averaged free energy per replica per spin com
nent. The last term in Eq.~26! arises from the cross term an
generates off-diagonal components of theQ matrix. For c
50, this term is absent and we generate the solution of R
We obtain the saddle point equations by differentiating E
~26! with respect toq, q̃, D̄, andc in then→0 limit. All of
these quantities can be simplified once the appropriate
parameter

D25r 1k~u1v !S q̃1
1

b (
vÞ0

D̄~v! D ~27!

is identified. The difference with the corresponding quant
in the work of RSY is the presence of theq̃ term in the gap
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which includes the contribution arising from the cross te
in the Landau action. From the derivative equation with
spect toD̄(v), we find that

D̄~v!52
1

k
Av21D2. ~28!

The constraintD>0 is crucial for the stability of the free
energy density and the minus sign in the above expres
ensures thatD(t).0. The saddle-point equations forq and
q̃ yield that

q5
c2

2kgD
~29!

and

q̃5
c2

2kgD
2

D

kb
. ~30!

As expected, these equations form the basis for the bul
our analysis and are identical to the RSY saddle-point eq
tions withh replaced byc. Despite this mapping,h andc do
serve different roles in the zero and nonzero mean theo
In the former, h is an external adjustable scalar quant
without any critical properties, whereasc plays the role of
an order parameter in the nonzero mean case and mu
treated on equal footing withQ.

The saddle-point equation forc

c@2g1D1zc2#50 ~31!

implies that aside from the trivial solutionc50, the non-
trivial solution corresponds to

c25
1

z
~g2D!. ~32!

In obtaining this equation, we used the fact thatk2t/251. If
we specialize to low temperatures, that is low relative to
gap (T,D), the sum in the gap equation can be evaluate

1

b (
v

Av21D25
Lv

2

2p
1

D2

4p
ln

Lv
2

D2
~33!

and the resultant self-consistent equation takes the form

D25r 2r c2
u1v
4p

D2 ln
Lv

2

D2
1

u1v
2gz S g

D
21D . ~34!

We have introduced

r c5~u1v !
Lv

2

2p
~35!

and the cutoffLv is determined by the energy scale at whi
zero-point quantum fluctuations become important. T
natural cutoff for such fluctuations in this problem isEC , the
charging energy.

The essential physics of the bicritical point is contained
Eqs. ~32! and ~34!. From Eq.~32!, it is clear that the ferro-
magnetic phase exists only wheng>D. This ensures tha
c2.0 in the ferromagnetic phase. The vanishing of the or
-

on

of
a-

s.

be

e

e

r

parameterc signifies a termination of the ferromagnet
phase. ForgÞ0 and DÞ0, the only line along whichc2

50 corresponds tog5D. If we substitute this condition into
the gap equation, we find that the critical line separating
ferromagnet from the paramagnet at low temperaturesT
!D) is given by

g5D5S 4p~r 2r c!

~u1v !ln@Lv
2 /~r 2r c!#

D 1/2

~36!

and is depicted in Fig. 1. In obtaining this equation, we
sumed thatur 2r cu!1 andg!1. The bicritical point corre-
sponds tor 5r c andg50. At this point, the gap vanishes a
doesc. The essential nontrivial nature of this result is t
nonanalytic dependence ofg on the quantum fluctuation pa
rameterr 2r c .

In the vicinity of the bicritical point, distinct regimes par
tition the ferromagnetic phase that are determined by
magnitude ofD andc. This behavior is shown in Fig. 1. Th
regionsO1 andO2 are distinguished by their distance fro
the line g5D. The transition betweenO1 and O2 occurs
when

g2S 4p~r 2r c!

~u1v !ln@Lv
2 /~r 2r c!#

D 1/2

'
~r 2r c!

3/2

ln@Lv
2 /~r 2r c!#

.

~37!

Becauser 2r c is much less than unity, algebraic dependen
in Eq. ~59! of the form (r 2r c)

3/2 implies that theO2 region
is quite narrow. Within this narrow region, the gap is we
approximated by Eq.~36! and the value ofc is given by

c25
1

z Fg2S 4p~r 2r c!

~u1v !ln@Lv
2 /~r 2r c!#

D 1/2G region O2.

~38!

In the bulk of the ferromagnetic phase, regionO1, the
g-dependent terms must be retained in Eq.~34! to accurately
describe the gapD5g2zc2 with the ordering paramete
given by

FIG. 1. Zero-temperature phase diagram demarcating the
gions of ferromagnetism, paramagnetism, and spin-glass beha
for M51. The parametersg andr are determined by the dynamica
quantum fluctuations and the static disorder. The curve separa
the ferromagnet from the paramagnet scales roughly asg
'Ar 2r c up to logarithmic factors. RegionsO2 andO1 are distin-
guished by the magnitude of the spin-wave gapD as well as the
magnitude of the order parameterc, which is nonzero only in the
ferromagnetic phase. The transition between these two regions
curs wheng2gc'(r 2r c)

3/2, wheregc and r c are determined by
Eqs.~36! and ~35!, respectively.
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c25
2g

u1v Fu1v
2p

g3 ln
Lv

g
2g~r 2r c!G region O1.

~39!

Hence, at the pointr 5r c , we find a strong nonanalytic de
pendencec}g3/2Aln Lv /g on the coupling constantg. This
is particularly important because it signifies that even at
mean-field level, deviations from the standard square-r
dependence are present in the current theory. This resu
fundamentally tied to the logarithmic dependence induced
the frequency summations and is caused by the zero-p
quantum fluctuations. However, if we extrapolate our res
to the regimer 2r c'O(1), the second term in Eq.~39!
dominates and we do recover thatc}g1/2 in agreement with
the expectation from standard mean-field Landau theor
Paramagnetic~PM! and spin-glass~SG! behavior obtain
wheneverg,D. In this regime, the nontrivial solution forc
no longer holds andc50 is the only valid solution. In this
limit, our solution forD is identical to that of RSY and all o
their results are recovered. For example, consider the
energy density~in units of k2t/251)

F
n

5
Lv

4

2p S 1

6
1

u1v
8p D2

Lv
2 ~r 2r c!

4p
2

~r 2r c!
2

4~u1v !
1

g2~r 2r c!

2~u1v !

2
g4

8p
ln

Lv

g
1•••

5F02
g4

8p
ln

Lv

g
1

g2~r 2r c!

2~u1v !
1••• ~40!

in regionO1. This quantity is obtainable from Eq.~26! once
the saddle-point solutions for regionO1 are used and only
the leading terms ing and the cross term are retained. Wh
g50, this expression is identical to that of RSY in the sp
glass phase. As anticipated, the leadingg dependence in the
free-energy density is nonanalytic. This behavior origina
from the nonanalytic behavior of the order parameterc on g.
We will see that this nonanalyticity does not survive forM
.1 above and below the Gabay-Toulouse line.

Another result which we can obtain immediately is t
nature of the ferromagnetic~FM!-SG transition. As indicated
in Fig. 1, a transition from the FM to the SG occurs wh
r ,r c and g→0. In this limit, bothc2 and D tend to zero.
However, their ratio is finite. Consequently, the order para
eterq is given by

q5
r c2r

k~u1v !
. ~41!

This expression is identical to that of RSY and hen
coupled with our earliear result for the PM-FM transition, w
find that all order parameters associated with the bicrit
point are continuous at the phase boundaries, thereby
cating that all transtions are second order.

Extending these results to finite temperaturesT@D sim-
ply requires the evaluation of the frequency summation o
frequencies in the gap equation forT@D. Using the result in
Eq. ~2.l3! of RSY, we obtain a self-consistent condition f
the gap
e
ot
is
y

int
s

s.

ee

-

s

-

e

l
di-

r

D25r 2r c~T!2~u1v !TD2
u1v
2p

D2 ln
Lv

T

1
u1v
2gzD

~g2D! ~42!

in the regimeT@D where we have definedr c(T)5r c2(u
1v)pT2/3. Recall that the transition between the ferroma
netic and paramagnetic phases occurs wheng5D. Hence, in
the units chosen here, this condition simplifies tog5D(T).
For T!Ar 2r c(T), the boundary for the paramagneti
ferromagnetic state remains unchanged from theT50 results
discussed above. However, forT@D, two distinct regimes

g5D~T!55
r 2r c~T!

A~u1v !T
Ar 2r c~T!!T region O3,

A2p2T2

3 ln
Lv

T

Ar 2r c!T region O4

~43!

emerge depending on the magnitude of the thermal fluc
tions. These regimes are depicted in Fig. 2~a!. The crossover
between these two regions occurs wheng}Ar c2r . In Fig.
2~a!, r c2r .0. The temperature

T05A3~r c2r !

p~u1v !
~44!

is denoted explicitly in Fig. 2~a! as this is the lowest tem
perature at which regionO3 obtains. Immediately below re
gion O3 whereg2D0(T)}@r 2r c(T)#2/T and to the right of
O4 whereg2D0(T)}T3/Aln Lv /T, a transition to a new
region occurs in which the gap takes the form

D5g2
2gz

u1v F ~u1v !g3

2p
ln

Lv

T
1~u1v !g2T2@r

2r c~T!#gG5g2zc2~T!. ~45!

In this region, denoted asO5 in Fig. 2~a!, as well as in
regionsO3 andO4, classical thermal fluctuations dominat
These regions can be construed as being quantum crit

FIG. 2. M51 finite-temperature phase diagrams for~a! r c2r
.0 and ~b! r 2r c.0. RegionsO3 andO4 lie close to the para-
magnet boundary and hence haveg'D(T). Thermal fluctuations
dominate in regionO5 as well as inO3 andO4. In regionO1,
thermal fluctuations are negligible. The key difference betwe
noted whenr c2r changes sign from positive to negative is th
absence of the spin-glass phase forr .r c .
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Further away in regionO1, the ferromagnetic phase is im
pervious to thermal fluctuations. The crossover to this reg
occurs wheng'O(T). This partition is the dashed line sep
rating regionO5 from O1. In Fig. 2~b!, the corresponding
phases are shown forr 2r c.0. The key difference with the
r 2r c,0 regime is the absence of the spin-glass phase.

Experimentally, the phase diagram has been measure
the random Ising spin system LiHoxY12xF4 at finite tem-
perature. This system possesses all three phases disc
here. It then serves as a bench mark test of the phenom
logical theory we have developed. While the overall featu
of the experimentally-determined phase diagram are sim
to that shown in Fig. 2~a!, it is worth looking closely at the
form of the boundaries between the three phases. Particu
striking in the experimentally determined phase diagram6 is
the close to linear dependence of the PM-FM phase bou
ary away from the bicritical region but a nonlinear depe
dence on the doping level in the vicinity of the bicritic
region. This dependence mirrors closely the behavior of
PM-FM finite temperature phase boundary shown in F
2~a!. While a quantitative comparison cannot be made
cause of the phenomenological nature of the coupling c
stants used in this model, the agreement with experimen
sufficiently striking and serves to justify the applicability
the model used here.
e
s-

e

e

for

sed
no-
s
ar

rly

d-
-

e
.
-

n-
is

B. M>1

We consider now explicitlyM.1. For the problem at
hand, the ordered phase forM52 corresponds to a supe
conductor. Analogous isotropic solutions can be obtained
M.1 with the transformationsu1v→u1Mv. However,
because nonzero mean generates spontaneously an effe
magnetization, there exists a possibility that the differe
spin components of the replicaQ matrices might acquire
fundamentally different values as first proposed by Gab
and Toulouse.10 In the zero-mean case, this happens o
when a magnetic field is present. However, in this case,
Gabay-Toulouse~GT! line exists for allM.1 as a result of
the spontaneously-generated magnetization.

To explore the possibility of a GT line, we must genera
ize the ansatz for theQ matrices to explicitly break the sym
metry between the spin components ofQ. The simplest way
of doing this is to divide the spin components of theQ ma-
trix into longitudinal,m5n51 and transverse,m5nÞ1 sec-
tors. Hence, in Eq.~25!, we introduce the parametersqL

ab ,
q̃L , and D̄L(v) for the longitudinalm5n51 component
and qT

ab , q̃T , and D̄T(v) for the transverse componentsm
.1. At the replica-symmetric level, bothqL

ab and qT
ab are

constants independent of the matrix labelab. We will call
these constantsqL and qT , respectively. The resultant ex
pression for the free energy
F
n

5
1

bkt (
vÞ0

~v21r !D̄L~v!1
M21

bkt (
vÞ0

~v21r !D̄T~v!1
r

kt
q̃L1~M21!

rq̃T

kt
2

k

3bt (
v

@D̄L
3~v!1~M21!D̄T

3~v!#

1
u

2t H F q̃L1
1

b (
vÞ0

D̄L~v!G2

1~M21!F q̃L1
1

b (
vÞ0

D̄T~v!G2J 1
v
2t H q̃L1~M21!q̃T

1
1

b (
vÞ0

@D̄L~v!1~M21!D̄T~v!#J 2

2
kb2

3t
~ q̃L

323q̃LqL
212qL

3!2~M21!
kb2

3t
~qT

323q̃TqT
212qT

3!

2
bc2

kgt
~ q̃L2qL!1

1

2g S 2gc21
zc4

2 D ~46!
is a generalization of Eq.~26! to an anisotropic system. Th
explicit factor ofM21 arises from the separation into tran
verse and longitudinal components.

If we approach the GT line from below, we find that th
relevant saddle-point equations are

DL
25r 1~u1v !kF q̃L1

1

b (
vÞ0

D̄L~v!G
1~M21!vkF q̃T1

1

b (
vÞ0

D̄T~v!G , ~47!

D̄L~v!52
1

k
~v21DL

2!1/2,
D̄T~v!52
1

k
uvu,

qL5
c2

2kgDL
,

q̃L5
c2

2kgDL
2

DL

kb
,

05c~2g1zc21DL!,

qT5q̃T5
1

k H 1

b (
v

uvu1
1

u1~M21!v

3S v
b (

v
Av21DL

22r 2
vc2

2gDL
D J
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which are a direct generalization of theM51 equations to
the anisotropic system. We are particularly interested in
solution in theg-r plane whereqT50. This demarcates th
GT line. Below the GT line,q̃T5qTÞ0, while above, the
transverse replica off-diagonal component ofQ vanishes.
Note this state of affairs does not occur unlesscÞ0. If we
substitute the nontrivial solution forc into the expression for
DL

2 , we find that within logarithmic accuracy at zero tem
perature, we recover the result obtained previously forM
51 but with u1v→u1Mv. The phase diagram hence
identical to that shown in Fig. 1. However, a new regio
Õ1, appears. This is illustrated in Fig. 3~a!. To find the line
demarcating this region we must solve for the transverse
lica off-diagonal component ofQ. After several manipula-
tions of the set of equations in Eq.~47!, we find that

qT5
1

k~u1Mv ! F r c2r 2
v
u

DL
2G . ~48!

If we use the fact thatDL'g, we find that the GT line occurs
when

g5Au

v
~r c2r !. ~49!

The phase diagram depicting this line at zero temperatur
shown in Fig. 3~a!. In the region labeledÕ1, qTÞ0 and
qLÞ0, whereas inO1 only qLÞ0. Hence, we have identi
fied the zero-temperature GT line. At finite temperature,
generalization of the Eq.~49! is simply

g5Au

v
@r c~T!2r #5Av

u F r c2r 2~u1Mv !
pT2

3 G .
~50!

Hence, the GT line is now a surface in theg, r , andT space,
a slice of which is shown in Fig. 3~b!. At the pointg50, we
recover the isotropic result that

qT5qL5
r c~T!2r

k~u1Mv !
~51!

FIG. 3. ~a! Zero and~b! finite-temperature phase diagrams f
M.1. The criteria for distinguishing regionsO1 andO2 are iden-
tical to the M51 case but exceptu1v→u1Mv. The GT line

separates regionsÕ1 from O1. This line terminates atg1

5Au(r c2r )/v. Below this line both the transverse and longitudin
components of the replica off-diagonal components of theQ matrix
are nonzero. The location of the GT line is given by Eq.~49!. ~b!
Finite temperature GT line as determined by Eq.~50!.
e

,

p-

is

e

in the spin-glass phase. This expression is the generaliza
of Eq. ~41! to M.1 and hence reflects the continuous natu
of the order parameter at the multiple phase boundaries.

We now consider the region above the GT line~see Fig.
4!. This region was not analyzed by RSY. However, th
region is of considerable interest because althoughqT van-
ishes in this region, the nonzero transverse component o
order parameter becomes gapped, significantly differen
character from the longitudinal one. This can be seen imm
diately by settingqT5q̃T50 in Eq. ~46! and differentiating
with respect toD̄T(v). From this operation, we find tha
contrary to the ungapped transverse component ofQ below
the GT line,

D̄T~v!52
1

k
~v21DT

2!1/2 ~52!

with

DT
25r 1

u1~M21!v
b (

v
Av21DL

21vS c2

2gDL

2
1

b (
v

Av21DL
2D ~53!

above the GT line. The corresponding expression forDL is
easily obtained from the first equation in Eq.~47! by setting
qT50. The ferromagnetic phase above the GT line can
divided into two regionsO1 andO2 which are now different
with respect to the relative magnitudes ofDL andDT . In the
regionO2 which is completely analogous to the correspon
ing region in theM51 case,DL andDT are almost equal and
are given by Eq.~36! with u1v→u1Mv. The condition for
crossover toO1 in whichDL andDT are somewhat differen
in magnitude is given by Eq.~37!. This conclusion is reached
by manipulating the system of equations in Eq.~47! with
qT5q̃T50 andD̄T(v) given by Eq.~52!. The resultant ex-
pression

vDL
22~u1v !DT

252ur1
u~u1Mv !

b (
v

Av21DT
2,

~54!

which is valid at any temperature, contains both the tra
verse and longitudinal gaps. Within the approximation th
DL'g, we obtain that at zero temperature inO1,

DT5S 4p@vg21u~r 2r c!#

u~u1Mv !ln$Lv
2 /@vg21u~r 2r c!#%

D 1/2

. ~55!

From this equation it is immediately clear thatDT is loga-
rithmically smaller thanDL . Also, we easily recover the GT
line g5Au(r c2r )/v, simply by solvingDT50.

At finite temperature, we can formally distinguish thre
limiting cases:~1! DL@T and DT@T, ~2! DL@T and DT
!T, and ~3! DL!T and DT!T. The regimeDL!T and
DT@T does not exist asDT is always less thanDL . Case~1!
is identical to theT50 limit whereas cases~2! and ~3! are
the high-temperature limit with respect toDT . To describe
cases~2! and ~3!, we calculate the sum in Eq.~54! in the

l
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high-temperature limit with the approximation thatDL'g.
Within logarithmic accuracy, the resultant equation

vg22u@r c~T!2r #5u~u1Mv !S DT
2

2p
ln

Lv

T
1TDTD

~56!

is similar in structure to Eq.~42!. Consequently, within case
~2! and ~3!, two distinct regimes denoted byO5 andO58
andO6 andO68, respectively, arise. These regions are illu
trated in Fig. 4. In the regions superscripted with a prim
two conditions hold

Avg22@r c~T!2r #!T,

DT5
vg22u@r c~T!2r #

T
O5 and O6. ~57!

Contrastly, in the unprimed regions

Avg22~r c2r !!T,

DT5A 2pT2

3 ln~Lv /T!
O58 and O68. ~58!

The transition between the primed and unprimed regions
curs when Avg22u@r c(T)2r #'T/ ln Lv /T, whereas the
transition between O68 and O1 occurs when
Avg22u(r c2r )'T. The difference between regionsO5
andO58 and regionsO6 andO68 is thatT!DL in the latter
whereas the opposite is true in the former. We have ta
particular care in distinguishing the primed from th
unprimed regions because they imply that the GT transi
is identical in structure to the ordinary paramagnet–sp
glass transition described by RSY. Except, only the tra
verse component ofQ is affected at the GT transition. In
fact, regionsO58 andO68 are quantum critical with respec
to the GT transition while the temperature dependence of
transverse component is ‘‘classical’’ in regionsO5 andO6.
In O1, thermal fluctuations are subservient to quantum fl
tuations for both transverse and longitudinal components
Q.

In each of these regions, a key question that can be
dressed is how does the transverse gap renormalizec and
DL . Consider first the regimeg@T. In this regime, we find
that

DL5g2zc2~T!5g2
2gz

u1Mv F g3

2p
ln

Lv

g
1~r c2r !g

2
~M21!vg

u~u1Mv !
DT

2G . ~59!

It follows immediately from Eq.~55! that the transverse con
tribution to the longitudinal gap is logarithmically small. A
a result, the order parameterc is well described by its value
given by Eq.~39! with u1v→u1Mv. Consider now the
high-temperature regime. In this case,DL is exactly given by
Eq. ~45! plus the term proportional toDT

2 in Eq. ~59!. How-
ever, we checked explicitly that in every subregime, the c
rection due toDT

2 is subdominant to the leading terms. Co
-
,

c-

n

n
-
-

e

-
of

d-

r-

sequently, the order parameterc and DL are both
unrenormalized by the transverse gap to the leading ord

Using the solutions delineated in Eq.~47!, we can calcu-
late the free-energy density below and above the GT li
Above and below the GT line, we find that the free-ener
density at zero-temperature up to the leadingg-dependent
terms

F
n

5F0~u1v→u1Mv,z!2
~M21!vLv

2 g2

4pu

1
g2~r 2r c!

2u~u1Mv ! S 12
~M21!v

u D1•••, ~60!

contains the standard analogous contribution from theM
51 analysis as well asqT- andDT-dependent terms arisin
from Eq.~46!. It is the contribution from the latter terms tha
results in a suppression of theg4 ln Lv /g as the leading
g-dependent terms whenr 5r c . At the bicritical point, we
find that in contrast to theM51 case, the leading term in th
free energy density is analytic in the coupling constantg.
This term is of the formLv

2 g2.

IV. REPLICA-SYMMETRY BREAKING

The requisite10 for a replica asymmetric solution within
Landau theory of spin glasses is the presence of aQ4th term
in the Landau action. We specialize toM51 for simplicity.
To facilitate such an analysis, we must extend the cumu
expansion of Eq.~13! to the next order in perturbation
theory. As RSY have performed such an analysis for
spin-glass phase, we focus on the ferromagnetic case. W
several types of fourth-order terms occur, the most relev
is of the form

2
y1

6tE ddxE dt1dt2(
ab

@Qab~x,t1 ,t2!#4. ~61!

This term will give rise to a (qab)4 contribution to the free
energy. Our focus is the resultant change in the free ene

DF
n

52
kb2

3t
~Tr q313q̃ Tr q2!2

bc2

kgt (
a,b

qa,b

2
y1b

6t (
ab

~qab!4. ~62!

The presence of thec2 term suggests that within th
space of ultrametric functions12 q(x) on the interval 0<x
<1, we should choose an ansatz forq,

q~s!5H q0 0,s,s0 ,

kbs

2y1
s0,s,s1 ,

q1 s1,s,1

~63!

that has two distinct plateaus. This insight is based on
analogy with the replica broken-symmetry solution in t
presence of a magnetic field. From continuity, we must h
thatq05kbs0/2y1 andq15kbs1/2y1. The constantss0 and
s1 can be determined from the saddle-point equations



n
xi

s

s

m
-
ei
he
fi-
-

hly

ak
m

k-
ak-
se.

nd-
low
ase
mo-

bi-
net.

l
the

e
are
tes
st
l
the
his

nce
hen
-
al

f
a-

cu
le

i-

in

k-
is

-

11 934 PRB 59DENIS DALIDOVICH AND PHILIP PHILLIPS
DF. Upon differentiating with respect toq1, we find thatq̃
5q12y1q1

2/kb. The corresponding equation forq0 provides
a relationship

q05S 3c2

4y1kgD 1/3

~64!

betweenq0 andc. Replica symmetry breaking occurs whe
q0,q1. To leading order in temperature, we can appro
mateq1'q̃, whereq̃ is given by

q̃5
c2

2kgD
. ~65!

Hence, the boundary demarcating the replica-symmetric
lution is determined by

c4/35S 6k2g2

y1
D 1/3

D ~66!

which we obtain upon equatingq0 andq1. If we use Eq.~39!
for c which is valid in regionO1 and use the fact that in thi
regionD'g, we obtain

g5
2y1~r c2r !2

3k2g~u1v !2
r ,r c ~67!

as the condition for replica symmetry breaking at low te
peraturesT!g. This condition for replica-symmetry break
ing extends continuously to the spin-glass phase agre
with the work of RSY. The phase diagram illustrating t
replica-broken symmetry region is depicted in Fig. 5. At
nite temperature, we use Eq.~45! for c and obtain a gener
alization

g5
2y1

3k2g
FgT1

r c2r

u1v G2

r ,r c ~68!

of the replica-breaking condition which extends smoot
over to the zero-temperature condition.

To estimate the strength of the replica-symmetry bre
ing, we define the effective broken ergodicity order para
eter

FIG. 4. Phase diagram illustrating the distinct regimes that oc
at finite temperature above the GT line denoted with solid circ
RegionsO3 andO4 are as described in Fig. 2~a! previously. Re-
gionsO58 andO68 quantum critical with respect to the GT trans
tion. The difference between regionsO5 andO58 and regionsO6
andO68 is thatT!DL in the latter whereas the opposite is true
the former.
-

o-

-

ng

-
-

Dq5q12E
0

1

q~s!ds. ~69!

If we substitute the expression forq(s) and integrate, we
obtain

Dq5
y1T

k
@q1

2~T!2q0
2~T!#. ~70!

Because bothq0 and q1 are finite at low temperatures,Dq
→0 asT→0. The weakness of the replica-symmetry brea
ing in the ferromagnetic phase is in accord with the we
symmetry breaking found by RSY in the spin-glass pha
Implicit in the replica-broken solution in Eq.~63! is the pres-
ence of many degenerate energy minima in the energy la
scape. The weakness of replica symmetry-breaking at
temperatures in this model within the ferromagnetic ph
suggests that the ferromagnetic phase is energetically ho
geneous.

V. SUMMARY

We have constructed here a Landau theory near the
critical point for a ferromagnet, spin glass, and paramag
The analogous analysis was also performed forM.1 in
which the ordered phase forM52 is a superconductor. Al
transitions were found to be second order in contrast to
work of Hartman and Weichman9 who claimed that the
FM-SG transition was first order in the spherical limit. Th
key difference between our treatments is that fluctuations
absent in the current analysis. As a result our work indica
that fluctuations might drive the FM-SG transition to a fir
order transition. A key result of this work is the forma
equivalence between the role of a nonzero mean and
presence of a magnetic field in the zero mean problem. T
observation is equally valid for classical systems. Resilie
of the ferromagnet against thermal fluctuations occurs w
T,g, whereg is the coupling constant that ultimately de
termines the rigidity of the ferromagnet phase. Addition
features of our analysis that are particularly striking are~1!
the nonanalytic dependence ofc on g, namely, c
}g3/2/ ln Lv /g, near the bicritical region, in the vicinity o
the bicritical point and~2! the subsequent leading nonan
lytic dependence of the free-energy density in regionO1 on
g for M51. We showed that this behavior ceases forM

r
s.

FIG. 5. ~a! Phase diagram illustrating replica-symmetry brea
ing for M51 in the g2r plane. The broken symmetry region
denoted RSB. RegionsO1 and O2 are as before.~b! Replica-
symmetry breaking region~shaded region! at finite temperature.
The finite temperature criterion is given by Eq.~68!. The pointg2

52y1(r c2r )2/@3k2g(u1v)# is determined by the replica
symmetry breaking condition specified in Eq.~68!.
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.1 below and above the GT line. The reason underlying
difference with theM51 case is the presence ofM21 com-
ponents ofQ that yield leading analytic contributions of o
der O(g2) to the free energy density. An additional featu
which our analysis brings out forM.1 is the similarity
between the Gabay-Toulouse transition with the spin-gla
paramagnet transition with zero mean. This similarity h
been noticed previously in the context of classical s
glasses.13 A key surprise found in the analysis of the G
transition is the subleading depdence ofc and DL on the
transverse gap andqT . This suggests that the GT line shou
have only weak experimentally detectable features in the
perconducting phase, for example. The excellent agreem
observed with the experimental results on LiHoxY12xF4 for
the case ofM51 is encouraging that similar agreement w
be found with experiments on the analogous superconduc
systems.

While we referred to the point of intersection between
pli
is

–
s
n

u-
nt

ng

ll

the phases as being bicritical, it is in fact multicritical. Th
state of affairs obtains as a result of the presence of rep
symmetry breaking and the Gabay-Toulouse instability.
in the M51 spin-glass case, we also showed that the non
godicity parameter is linear in temperature illustrating t
weakness of replica symmetry breaking in the ferromagn
phase. Though we did not treat explicitly replica-symme
breaking forM.1, such symmetry breaking is expected
this case as well when quartic terms are included in the
tion. In a future study, we will extend this analysis beyo
mean field and report on the renormalization group analy
of the ‘‘bicritical’’ region.
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