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Landau theory of bicriticality in a random quantum rotor system
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We consider here a generalization of the random quantum rotor model in which each rotor is characterized
by an M-component vector spin. We focus entirely on the case not considered previously, namely when the
distribution of exchange interactions has nonzero mean. Inclusion of nonzero mean permits ferromagnetic and
superconducting phases k=1 andM =2, respectively. We find that quite generally, the Landau theory for
this system can be recast as a zero-mean problem in the presence of a magnetic field. Naturally then, we find
that a Gabay-Toulouse line exists fidr>1 when the distribution of exchange interactions has nonzero mean.
The solution to the saddle point equations is presented in the vicinity of the bicritical point characterized by the
intersection of the ferromagnetid/(=1) or superconductingM =2) phase with the paramagnetic and spin
glass phases. All transitions including the ferromagnet—spin-glass transition are observed to be second order.
At zero temperature, we find that the ferromagnetic order parameter is nonanalytic in the parameter that
controls the paramagnet-ferromagnet transition in the absence of disorder. AMoe=fr we find that replica
symmetry breaking is present but vanishes at low temperatures. In addition, at finite temperature, we find that
the qualitative features of the phase diagramMot 1, areidenticalto what is observed experimentally in the
random magnetic alloy LiH ; _,F,. [S0163-182809)00418-X

[. INTRODUCTION with nonzero mean),. While random Josephson systems
cJ"uave been treated previously’ such studies have focused

Transport in granular metals is mediated by activate bredominantly on the zero mean case in whigh-0. This

transport among the metallic grains. In granular supercon: .~ .

; , . limit differs fundamentally from the nonzero mean case, be-

ductors composed of spatially separated metallic grains, suc . .

: : : : cause the superconducting phase exists only whghO.

single particle charging events ultimately lead to a destruc; ence. ford-— 0. there is an absence of an ordering transi

tion of phase locking between the grains. This state of affairs. ’ 0= L g trans
ion. Nonetheless, the zero-mean case is still of physical in-

obtains because the particle numbhemd phase# associated RGY)?
with each grain are conjugate variables. If two grains phas%”rﬁ;rt :ﬁga:L?:éasaSee as?;o?varllCh; i\é,r(? rt]éﬂm eratifevleilnzﬁion
lock, the resultant infinite uncertainty in the particle number ! P

X : : : rom a quantum spin glass to a paramagnet occurs as the
leads necessarily to single particle charging. Should th(I%trength of the quantum fluctuations increases. To put the

single particle charging energy sufficiently exceed the Jo: .
sephson coupling energy between grains, superconductivityndom Josephson model in the context of the work of RSY,

is quenched is expedient to introduce the change of variables
The simp_li_city_ of the physics underlying _the_quantum S =(cosé;,sing,). 3
phase transition in an array of superconducting islands im- o
plies that the resultant Hamiltonian The resultant Josephson Hamiltonian
Ak He—eS [2]'+3 3,58 @
H= ECEi (aei (ED T coL 6= 6y) @ s lag) &5

is recast as a two-componer¥l & 2) interacting spin prob-
lem with random magnetic interactions. This model is easily
eneralizable to describe interactions among any
-component spin operatgor quantum rotorin the group
Q(M). M =1 corresponds to Ising spins and is relevant to
random magnetfc systems such as LikQeY 534
whereas thévl =3 limit is applicable to spin fluctuations in
gge cuprated. In this paper we focus primarily on thi
=1 andM =2 cases in which the ordered phases correspond

is characterized by only two parametef$) a charging en-
ergy Ec and(2) a Josephson coupling energy . In writing
Eqg. (1), we assumed that the islands occupy regular sites o
a two-dimensional(2D) lattice and only nearest neighbor
(i,j) Josephson coupling is relevant. For the ordered case i
which J; jy=Jo, the superconductor-insulator transition is
well studied as the parameteEc/J, increases. In suffi-
ciently disordered systems, however, the Josephson energi
are not all equal and in fact can be taken to be random. !
We are concerned in this paper with the case in which th&° & férromagnet and a superconductor, respectively.

Josephson energies are random and characterized by ﬁTWr? typei O(fj fluctu_atlons contr<f)ll the transitions betfween
Gaussian distribution the phases(1) dynamic quantum fluctuations arising from

the charging energy an@) static fluctuations induced by the
1 332 disorder. For nonzero mean, three phasgsn-glass, para-
exp{ _ Ml ) magnet, ferromagnetM=1), or superconductorM =2)]
V27md?

2J2 are expected to meet at a bicritical point. Experimentally, a
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bicritical point is anticipated whenevép, J, andE. are on

the same order of magnitude. It is the physics at this bicriti- Hy(r)=eMo7>, J;S-Se o (7)

cal point that we focus on in this paper. To discriminate D

between these phases, we distinguish between thermal aveerresponds to the random magnetic interactions. The trace
ages(- - -) and averages over disorder- - ]. In the super- in the partition function is evaluated over the complete set of
conductor M =2) or ferromagnetic phasedl(=1), the dis- quantum rotor states. A primary hurdle in evaluating the par-
order and thermal average of the local spin operatotition function is the average over the random spin interac-
[(Si,)]1#0 is nonzero. In the spin glass phase, the thermations. It is now standard to perform this averagg replicat-
average(S;,)#0, while [(S;,)]=0. At zero temperature, ing the spin system times and using the identity

guantum fluctuations and static disorder conspire to lead to a .
vanishing of the static moment in the paramagnetic phase, In[Z]= lim [Z°]-1 ®
that is,(S;,)=0. RSY have performed an extensive study of N0

the spin-glass—paramagnetic boundary using the replica

formalisnf in the case of zero mean in which the purely to obtain the partition functio. We first must then evaluate
ordered phase is absent. We adopt this formalism here in o4£"). Formally, the replicated partition function is defined
analysis of the bicritical region. The only prior study on thethrough Eq.(5) by replacingH, andH; by their replicated
nonzero mean case is that of Hartman and Weiclimdro ~ equivalents

studied numerically the spherical limil —« of the quan- N

tum rotor Hamiltonian. In their study, they found that the Heff— Z Ha
spin-glass phase is absent in tle— limit for d=2. In the s
present work, we will not address the issue of dimensionality o o ] ]
because we limit ourselves to a mean-field description ifvhere the superscript indexes the individual replicas iand
which all fields are homogeneous in space. Our results theit 0.1. Within the replica formalism, the average over the

be determined by including fluctuations around the meantO @ quartic spin interaction. This quartic spin interaction is
field solution. easily reduced to a quadratic interaction by use of the

This paper is organized as follows. In Sec. I, we use thdlubbard-Stratanovich transformation. Let us define the Fou-

replica formalism to average over the disorder explicitly andrier transforms

obtain the effective Landau free-energy functional. We show

that the leading terms in the Landau action resulting from the (K, 7) = i 2 S’(r)e”"Ri
nonzero mean are analogous to those arising from an exter- ' IN 4

nal magnetic field in the zero-mean problem. As a result, the

appropriate saddle-point equations can be solved using a def the local spin operator for each site and the corresponding
rect analogy to the zero-mean problem in the presence of #ansform of the nearest-neighbor interaction

magnetic field. Explicit criteria are presented in Sec. Il for
the stability of each of the phases in the vicinity of bicriti-
cality. We construct the phase diagram at finite temperature
and find excellent agreement with the experimental results of
Reichet al® on the magnetic system LiH®,_,F,. The ex-  The replicated partition function now takes on the form
plicit solution forM=2 is presented in the last section with

a special emphasis on the Gabay-Touldlgre. In Sec. IV [Zn]zznf DWDQe Ferl ¥:Q) (12)
we analyze the possibility of replica symmetry breaking 0

along the de Almeida—Thoulé<dine in theM =1 case.

©)

(10

d
J(|<)=J<2> ekri=23>, cosk;a (11)
i i=1

where the effective free energy

B
Il. LANDAU ACTION Fo¥.Q]=S f dr vk, PV (k,7)]*
Central to the construction of a Landau theory of the bi- ak Jo
critical region is the free-energy functional. For a quantum-

mechanical system, this is obtained by explicitly including in + > Q¥B(kk 7, )QB(KK 7,7
the partition function a,b,k,k’
~ B
. B —In| { Tex 2f d7r>, JIo(k)¥P2(k, T
Z:Tr(eﬁH):Tr[ eﬁHOTex;{—f H,(7)d7 ] (5) < p( 0 ;( o(k) W (k,7)
0
the time evolution according to a reference system. For this X SA(—k,7)+ > fﬁfﬁdeT,
problem, the Hamiltonian for free quantum rotors abkk’ 70 JO
9 \2 XN2J(K)I(K")Q,, (KK, 7,7")
Ho=—Ec2l (5) (6)
I

xs;(k,r)s*;(—k',r'))> ] (13
describes our reference system. The perturbation 0
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is now a functional of the auxilliary field® and ¥ which _ 1 an
appear upon use of the Hubbard-Stratanovich transformation D(7—17")=Ilim W(Qw(k,k'm 7)) 17
to decouple the quartic spin term proportionalJfgk) and n—0

the quadratic term scaling dg(k), respectively. In writing  in the limit that |7— 7’| - that serves as the effective
this expression, we used the Einstein convention where reedwards-Anderson spin-glass order paramiétevithin the
peated spin(but not replica indices are summed ovet, Landau theory. A disclaimer is appropriate herédas non-
=Tr[exp(-BHy)] and zero in the spin-glass as well as the paramagnet phases.
However, its behavior is sufficiently different in the three
phases: in the paramagnetic and ferromagngtigercon-

<A>o:in Tr(e—BHSﬁA)_ (14)  ducting phases, as we will shovD(w) still has the form
0 Jw?+AZ?. The gapA vanishes at the transition to the spin-
glass phase giving rise to the long-time behavioDdfr).
The fieldsQ and ¥ play fundamentally different roles. ~ Before we analyze the form of the gap, we must obtain

The proportionality of thel' field to the mean of the distri- the effective Landau action. The goal here is to obtain a
bution implies that this field determines the ordering transi{olynomial functional oQ and¥ from which a saddle point
tion (superconducting foM=2 or ferromagnetic forM  analysis can be performed. We proceed in the standard way

=1). This can be seen immediately upon differentiating theﬁ]nd perforrp a cumulanttﬁxpansiond on t_hedfree enetrgé/. F(_)tr
free energy with respect t&. The self-consistent condition € case of zero mean, this procedure 1S documented quite

is that closgly in RSY. In addition to the terms containing tQe _
matrices studied by RSY, the nonzero mean case will contain

powers of\IfZ as well as cross terms. The resultant action

must contain, of course, only even powers‘bﬁ. For an

a . . . analysis of the bicritical point, it is sufficient to retain qua-

Hence, a nonzero value dof ,(k,7) implies ordering. Itis g atic and quartic terms i . Terms of this kind are com-

for this reason thatV functions as the order parameter for pletely analogous to those derived previously by Donfach.

the ferromagnetic or superconducting phase within Landay the cross terms. the simplest are of the foh‘f)\Panb

theory. Likewise, differentiation of the free energy with re- yayaqaa J04wawana@ \We have confirmed ex ﬁatl
spect toQ reveals that Qi iV Q- plicitly

that retension of the latter two terms in which only one rep-
lica index occurs leads only to the renormalization of various
Q2 (k.K', 7,7 )=(S}(k, T)S)K',T")) (16)  coupling constants and minor modification of the phase
boundaries near the bicritical region. Hence, we do not con-
is the self-consistency condition for th®@ matrices. For sider such terms. Likewise, we do not retain terms of the
quantum spin glasses, it is the diagonal elements ofQhe form Q22QPP because this term vanishes in the limit>0.
matrix We find then that the effective action

Wi (k,7)=(S5(k,7)). (15

1 1 a9 1
=_ Ayl — _— _ |paa - ab 2
A tf d x[KJ drg (r+ o (97_2)QMM(X,71,72)|71_72_T+ZJ drldrzazb [VQ20(X,71,72)]

K 1
-3 f dridrydrs 2 QX 71, m2) QU(x 72, ) QUL(X, 75, 7a) F 5 f dr2 [uQLL6 7 QX 7.7)

2

5 [ValoT)

1
Q@B ]| + 5 [ el 0 Wik
J J
+f dfza: a—Tl\IfZ(X,Tl)a—TZ\IfZ(X,7-2)|71272:T+ éj dr}a‘, [\I’i(x,f)\IfZ(x,r)]z]

1
~ g 9% f dradmo 2 WH0 )W 7 QX 71, 7o) F - (18)

contains three types of termgl) The terms that depend these two transitions is mediated by the last term in(E§).
purely on theQ matrices, as in the terms in the first curly To reiterate, other cross terms exist—for example, the term
bracket in Eq(18), have been studied previously by RSY in noted previously. However, such terms have no bearing on
the context of quantum spin-glass—paramagnet transi®n. the critical region. It suffices then to truncate the action at the
The ¥-dependent terms in the second curly bracket give riséevel of Eq.(18). The last term in Eq(18) bears a strong

to the ferromagnet or superconducting phases. They are coresemblance to the term that appears in the Landau action for
trolled by the parametety. (3) The competition between the zero-mean problem in the presence of a magneticHield
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In fact, we can obtain the corresponding term from Bd) Q2 (k, w1, w,)=(2m)989Kk)S,,[ BD(wy) S 5ab
. a . . . 172250 1 §73% wyt+ w2,0
by the transformationV;, —hé, 1ykg/2t. This mapping is
not unexpected. In the nonzero mean problem, ordered spins +,825w1,05w2,oqab]. (23

create an effective “magnetic field” that acts as a source
term for theQ matrices. This analogy is particularly power- The possibility of a replica broken-symmetry solution will
ful and serves as a useful check as to the validity of ourlSO be explored by including terms ©(Q?) in the Landau
saddle-point equations. Further, this mapping is true even igction. In the ordered phasthat is ferromagnetic or super-
the classical case. conductoy both ¥ and Q are nonzero. As ferromagnetism

A word on the coupling constants is in order. The paramas generally been studied with a frequency-independent or-
etrization of the action in terms of the coupling constants ~der parameter, we explore a static ansatz of the form
t, andg was obtained by appropriately rescaling the fieldls
andV as well as the space and time coordinates. Fundamen- \PZ(k,w):(277)d6d(k)35w,05%14// (24)
tally, g is a function ofEc andJo, while « andt are func- ¢, 2 gng
tions of E¢c andJ only. u, v, and{ are related to a four-point "
spin correlation function evaluated in the long-time limit as ab _ d Iy b
discussed by RSY. In the zero-mean case, the phase diagramQ“”(k’wl’wZ)_(zw) 5%(K) 8L BD(©1) 8+ 00"
demarcating spin glass and paramagnetic stability is deter-
mined by tr?e Sara?neterwhicﬁ deterlgines the strgngth of +B Zagwlvoa‘*’zoaauﬁ 25‘”1v05‘”2v°qab]
the quantum fluctuations. When these fluctuations exceed a (25)
critical value, that isr>r., a transition to a paramagnetic _
phase occurdin the problem at hand, two parametarsnd  for the Q matrices. Our explicit inclusion af as thew=0
v, determine the phase diagram. The coupling consjaist  diagonal element of th€ matrices implies that we can re-
directly related to the pa_rametErC/JO andEc/J as well.  define D(w):D(w)+ﬂa5w,o- Consequently, we can set
The latter dependence arises as a result of the removal of trg(w)zo and assume thaj®® is purely off-diagonal. The

quadratic term replica-symmetric solution corresponds q8°=q for all a

#b. Initially, we will explore only this case.

| dxomdn, 3 Q9
ab A. M =1: Ferromagnetic order

. b .
by the t_ransfor_rnaﬂo?_1Q—>_Q—C§a 8,(71— 72). From mi- We now specialize to th&1=1 ferromagnetic case as
croscopic considerations, it follows thaft/2=1. This is an crucial differences can occur with the analysis ke 1. If

important simplification because we will show that the e sypstitute Eqs24) and (25) into the Landau action, we
ferromagnet-paramagnet boundary is determined by the lingpiain a free-energy density of the form

y=2A/k*t=A.

F 1 ) — rq K —,
Ill. SADDLE POINT ANALYSIS: PHASE DIAGRAM —=—— > (0*+1)D(w)+ —— 7 > D¥w)
n Bkt 570 kt 3Bt 570
In terms of the frequency-dependent order parameters 2 4
utv~ 1 — 1 ,, SV
1 4 + q+E§OD(w) tog| TS
\I’M(k,w)=/—3jo dr¥(k,r)e " (20
ab
and kB%(~. ~Trg? Trg® pBy?| - % q
b _?q3+3qn+n T gt \ 9T T
in(klkaawLwZ) g
(26)
1 (8(8 b . . _ _ _
=—2f f drlderiV(kl,kz,rl,rz)e"“’lfl"“’ZTZ, Formally, the free-energy density as defined here is the
B=Jo Jo disorder-averaged free energy per replica per spin compo-

(21)  nent. The last term in E426) arises from the cross term and
i . generates off-diagonal components of Rematrix. For
the three phases in our problem form under the following— g this term is absent and we generate the solution of RSY.
conditions. For the paramagnetic phase near the bicriticajye optain the saddle point equations by differentiating Eq.

point, the saddle-point equations are satisfied wﬂfépzo (26) with respect tay, §, D, and in then—0 limit. Al of

but as RSY have shown these quantities can be simplified once the appropriate gap

Q(K, w1, 0) = (27)983,,0%°0%(K) 3,y 4, D(wy).  PAAMELE

(22)
We have retained the ansatz for tQematrix used by RSY
for the paramagnetic phase. Similarly, the ordering param-

eter also vanishes in the spin-glass phitse=0 and for the is identified. The difference with the corresponding quantity
replica-symmetric solution in the work of RSY is the presence of tigeterm in the gap

A?2=r+«k(u+v)

~ 1 _
q+= >, D(w)) 27)
w#0
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which includes the contribution arising from the cross term W
in the Landau action. From the derivative equation with re-

spect toD(w), we find that

»
>

_ 1 ;
D(w)z—;\/w2+A2. (28 SG | wy=0 T
v =0

The constraintA=0 is crucial for the stability of the free . ,
. : Lo . FIG. 1. Zero-temperature phase diagram demarcating the re-
energy density and the minus sign in the above expression

. - gions of ferromagnetism, paramagnetism, and spin-glass behavior
ensures thab(r)>0. The saddle-point equations fqrand for M=1. The parameterg andr are determined by the dynamical

q yield that quantum fluctuations and the static disorder. The curve separating
5 the ferromagnet from the paramagnet scales roughly yas
q= 4 (29) ~/r—r up to logarithmic factors. Regior32 andO1 are distin-
2kgA guished by the magnitude of the spin-wave gams well as the

magnitude of the order parametg#r which is nonzero only in the

ferromagnetic phase. The transition between these two regions oc-

curs wheny—y.~(r—ro)%% wherey, andr, are determined by
(30) Egs.(36) and(35), respectively.

and

~ Y A
q_ZKgA kB’

As expected, these equations form the basis for the bulk dParameterys signifies a termination of the ferromagnetic

our analysis and are identical to the RSY saddle-point equahase. Fory#0 andA+0, the only line along whichy

tions with h replaced byy. Despite this mappindy andy do =0 corresponds tg=A. If we substitute this condition into

serve different roles in the zero and nonzero mean theoried€ gap equation, we find that the critical line separating the

In the former,h is an external adjustable scalar quantity ferromagnet from the paramagnet at low temperatufes (

without any critical properties, wheregs plays the role of <A) is given by

an order parameter in the nonzero mean case and must be

treated on equal footing wittp. 4ar(r—rg)
The saddle-point equation fa¥ y=A= (36)

C\(utv)In[A%/(r—ry)]
—y+A+{P?]=0 31
o . =y gw ] . 39 and is depicted in Fig. 1. In obtaining this equation, we as-
implies that aside from the trivial solutio=0, the non-  sumed thatr —r <1 andy<1. The bicritical point corre-

172

trivial solution corresponds to sponds ta =r, and y=0. At this point, the gap vanishes as
doesy. The essential nontrivial nature of this result is the
¢2=E(y—A). (32) nonanalytic dependence ¢fon the quantum fluctuation pa-
4 rameterr —r..

In the vicinity of the bicritical point, distinct regimes par-
éition the ferromagnetic phase that are determined by the
magnitude ofA and . This behavior is shown in Fig. 1. The
regionsO1 andO2 are distinguished by their distance from

In obtaining this equation, we used the fact tkRat/2=1. If
we specialize to low temperatures, that is low relative to th
gap (T<A), the sum in the gap equation can be evaluated

A2 A2 the line y=A. The transition betwee®1 and O2 occurs

1 A2
_ —_ Y4 " =2 when
% JoZ+AZ? 2w+4w'”A2 (33

and the resultant self-consistent equation takes the form

A7(r—rg) )1/2~ (r—rg)3?
(u+v)IN[A2/(r=r¢)] NIn[Af,/(r—rc)]'

utuv A2 utu(y (37)
2y _ 2 © L
Ac=r—r, 47TA lnA2+29g(A 1). (39

Because —r is much less than unity, algebraic dependence
We have introduced in Eq. (59 of the form ( —r.)%? implies that theD2 region
is quite narrow. Within this narrow region, the gap is well
approximated by Eq(36) and the value off is given by

1/2
and the cutoffA , is determined by the energy scale at which ¢2=l v 4m(r—re)
zero-point quantum fluctuations become important. The 4 (u+v)|n[Af,/(r—rC)]
natural cutoff for such fluctuations in this problenmig, the (39
charging energy.

The essential physics of the bicritical point is contained inin the bulk of the ferromagnetic phase, regi@i, the
Egs.(32) and(34). From Eq.(32), it is clear that the ferro- y-dependent terms must be retained in 84) to accurately
magnetic phase exists only whey=A. This ensures that describe the gap\=y— ¢? with the ordering parameter
?>0 in the ferromagnetic phase. The vanishing of the ordegiven by

2
rC=(u+v)2—; (35)

region O2.
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2 29 u+uv 3| Aw i Ol a r<rc
4 U0l 27 v In 5 y(r—r¢)| region . T PM o, .
(39 -
Hence, at the point=r., we find a strong nonanalytic de- M
pendencepo y*2In A ,/y on the coupling constang. This sGl 0.
is particularly important because it signifies that even at the 27O (a)=
mean-field level, deviations from the standard square-root y

dependence are present in the current theory. This result is

fundamentally tied to the logarithmic dependence induced by FIG. 2. M=1 finite-temperature phase diagrams fay r.—r

the frequency summations and is caused by the zero-point0 and(b) r—r.>0. RegionsO3 andO4 lie close to the para-
guantum fluctuations. However, if we extrapolate our resultgnagnet boundary and hence haye:A(T). Thermal fluctuations

to the regimer —r ,~0O(1), the second term in Eq(39) dominate in regiorO5 as well as inO3 andO4. In regionO1,
dominates and we do recover thiat 71/2 in agreement with  thermal fluctuations are negligible. The key difference between
the expectation from standard mean-field Landau theoriegioted whenr.—r changes sign from positive to negative is the
ParamagneticPM) and spin-glass(SG) behavior obtain @absence of the spin-glass phaserforr..

whenevery<<A. In this regime, the nontrivial solution faf

no longer holds an@y=0 is the only valid solution. In this 2_ . _ _utu o A,
limit, our solution forA is identical to that of RSY and all of AT=r=r(M=(utv)TA 2 A% T
their results are recovered. For example, consider the free N
energy densityin units of k%t/2=1) u-~v
togm () (42
4 2
F_Ay EJF uto) ALr—ro) (r=rg? YAr—ro in the regimeT>A where we have defined,(T)=r.— (u
n 2w\6 8w 4 4(u+v)  2(u+v) +v)7T?/3. Recall that the transition between the ferromag-
4 netic and paramagnetic phases occurs wper\. Hence, in
_ 7’_|nﬁ+ o the units chosen here, this condition simplifiesyte A(T).
8wy For T<\r—r¢(T), the boundary for the paramagnetic-

4 > ferromagnetic state remains unchanged fromiTtked results

Y A, y(r—ro) : ot :

=Fp o—In— 4 — (40) discussed above. However, foB>A, two distinct regimes
87 y  2(u+tv)

r—rq(T) .
in regionO1. This quantity is obtainable from E(R6) once —C( Vr—rs(T)<T region O3,
the saddle-point solutions for regiddl are used and only Vuto)T
the leading terms iy and the cross term are retained. When y=A(T)= 27272
v=0, this expression is identical to that of RSY in the spin- A 7 <T region O4
glass phase. As anticipated, the leadindependence in the 3 In—= r=re g
free-energy density is nonanalytic. This behavior originates T 3

from the nonanalytic behavior of the order parametem v.
We will see that this nonanalyticity does not survive Mr  emerge depending on the magnitude of the thermal fluctua-
>1 above and below the Gabay-Toulouse line. tions. These regimes are depicted in Fig)2The crossover
Another result which we can obtain immediately is the petween these two regions occurs wheny/r.—r. In Fig.
nature of the ferromagneti®M)-SG transition. As indicated 2(a), r.—r>0. The temperature
in Fig. 1, a transition from the FM to the SG occurs when
r<r., and y—0. In this limit, both? and A tend to zero. [3(rc—r)
However, their ratio is finite. Consequently, the order param- To= m (44)
eterq is given by
is denoted explicitly in Fig. @) as this is the lowest tem-
perature at which regio®3 obtains. Immediately below re-
(41)  gionO3 wherey— Ay(T)x[r—r(T)]*T and to the right of
04 where y—Ao(T)xT3In A, /T, a transition to a new

This expression is identical to that of RSY and hencereglon oceurs in which the gap takes the form

re—r

q= k(u+v)’

coupled with our earliear result for the PM-FM transition, we 29¢ [(u+v)y® A,
find that all order parameters associated with the bicritical A=y— ————In =+ (u+v)¥’T—[r
- . . - utu 27 T
point are continuous at the phase boundaries, thereby indi-
cating that all transtions are second order. )
Extending these results to finite temperatufésA sim- —r(Mly|=y—{gA(T). (45

ply requires the evaluation of the frequency summation over
frequencies in the gap equation f6% A. Using the resultin  In this region, denoted a®5 in Fig. Aa), as well as in

Eq. (2.13) of RSY, we obtain a self-consistent condition for regionsO3 andO4, classical thermal fluctuations dominate.
the gap These regions can be construed as being quantum critical.
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Further away in regiorD1, the ferromagnetic phase is im- B.M>1
pervious to thermal fluctuations. The crossover to this regime \we consider now explicityM>1. For the problem at
occurs wheny~O(T). This partition is the dashed line sepa- nangd, the ordered phase ft=2 corresponds to a super-
rating regionO5 from O1. In Fig. Ab), the corresponding  conductor. Analogous isotropic solutions can be obtained for
phases are shown for-r.>0. The key difference with the M>1 with the transformationsi+v—u+Muv. However,
r—r.<0 regime is the absence of the spin-glass phase. because nonzero mean generates spontaneously an effective
Experimentally, the phase diagram has been measured fofagnetization, there exists a possibility that the different
the random Ising spin system LikM,_,F, at finite tem- spin components of the replic@ matrices might acquire
perature. This system possesses all three phases discus$andamentally different values as first proposed by Gabay
here. It then serves as a bench mark test of the phenomenand Toulousé? In the zero-mean case, this happens only
logical theory we have developed. While the overall featuregvhen a magnetic field is present. However, in this case, the
of the experimentally-determined phase diagram are similaGabay-Toulous¢GT) line exists for allM>1 as a result of
to that shown in Fig. @), it is worth looking closely at the the spontaneously-generated magnetization.
form of the boundaries between the three phases. Particularly T0 explore the possibility of a GT line, we must general-
striking in the experimentally determined phase diadraam 2€ the ansatz for th@ matrices to explicitly break the sym-
the close to linear dependence of the PM-FM phase boundl€lry between the spin components@fThe simplest way
ary away from the bicritical region but a nonlinear depen-of d.omg th's. IS to divide the spin components of Qema-
dence on the doping level in the vicinity of the bicritical [ iNto longitudinal,.=»=1 and transversey=v#1 sec-
region. This dependence mirrors closely the behavior of thd0"S- Hence, in Eq(25), we introduce the parametegs”,
PM-FM finite temperature phase boundary shown in Figdr, and D (w) for the longitudinalu=w»=1 component
2(a). While a quantitative comparison cannot be made beand q$b, Jr, andD¢(w) for the transverse componenis
cause of the phenomenological nature of the coupling con>1. At the replica-symmetric level, both®” and g2° are
stants used in this model, the agreement with experiment isonstants independent of the matrix laldd. We will call
sufficiently striking and serves to justify the applicability of these constantg, and q;, respectively. The resultant ex-

the model used here. pression for the free energy
Fo1 _ M—1 _ M. rqr K _ _
R 2 2 o gy T 3 . 3
0= Bt 2 (@PFODU@) T e 3 (0% 1)Dr(w) + GG H (M=) S F = 2 3 [D()+ (M~ 1)D¥(w)]
uff~ 1 — 2 ~ 1 — 2 v [~ ~
+ 1At 7 2 Du(w)| +(M=1)|du+ = 2 Dr(w)| [+5-1 G+ (M—1)ar
2t w#0 w#0 2t
1 — — 2 kp? . ~ Kk 32 ~
*5 2 DL(w>+<M—1>DT(w>J] — ¢ (@ 30097 + 207) —~ (M~ 1) (07— 3070+ 203)
BY? 1 , v
—K—gt(QL—QLHE(—Wﬁ 5 (46)
|
is a generalization of Eq26) to an anisotropic system. The _ 1
explicit factor ofM — 1 arises from the separation into trans- Dr(w)=— ;|w|,

verse and longitudinal components.
If we approach the GT line from below, we find that the

2
relevant saddle-point equations are qL= 4
L 2KgAL,
AZ=r+ +)~+125 ) a=¢—2—£
L—r (U U)K qL B = L((l) L 2KgA|_ K,[)),

~ 1o = 0=y(—y+{P?+A)),
HM-Duk Gt 5 3 Drlw)|, @) W=y
_ 11 1
qT:qT:F[E% AT
— 1 2
B~ a1 (53w g
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in the spin-glass phase. This expression is the generalization
of Eq. (41) to M>1 and hence reflects the continuous nature
of the order parameter at the multiple phase boundaries.
We now consider the region above the GT liisee Fig.
4). This region was not analyzed by RSY. However, this
region is of considerable interest because althogglvan-
ishes in this region, the nonzero transverse component of the
order parameter becomes gapped, significantly different in
character from the longitudinal one. This can be seen imme-

FIG. 3. (a) Zero and(b) finite-temperature phase diagrams for giately by settinggr=gr=0 in Eq. (46) and differentiating

M>1. The criteria for distinguishing regiori31 andO2 are iden- with respect tOST(w). From this operation, we find that

tical to theM=1 case but excepti+v—u+Muv. The GT line
- . . contrary to the ungapped transverse componerg below
separates region®©1 from O1. This line terminates aty, the GT line

=4u(r.—r)/v. Below this line both the transverse and longitudinal
components of the replica off-diagonal components ofQtraatrix 1
are nonzero. The Iocatlpn of the GT !lne is given by Ep). (b) Dr(w)=— Z(w?+ A$)1/2 (52)
Finite temperature GT line as determined by Exf). K

SG

which are a direct generalization of thd¢=1 equations to with

the anisotropic system. We are particularly interested in the U+ (M—1)v 2
solution in they-r plane whereg:=0. This demarcates the Al=r+ —— > Jo?+A2+y 5aA

GT line. Below the GT linegy=0q:#0, while above, the B © 93c
transverse replica off-diagonal component @fvanishes. 1

Note this state of affairs does not occur unlgssO0. If we - — 2 \/w2+Af (53

substitute the nontrivial solution fak into the expression for

A, we find that within logarithmic accuracy at zero tem- ghoye the GT line. The corresponding expressionAfpris
perature, we recover the result obtained previouslyMor  easily obtained from the first equation in H¢7) by setting
=1 but with u+v—u+Mv. The phase diagram hence is q.=0. The ferromagnetic phase above the GT line can be
identical to that shown in Fig. 1. However, a new region, givided into two region®1 andO2 which are now different
O1, appears. This is illustrated in Fig(a®. To find the line  with respect to the relative magnitudes&f andA+. In the
demarcating this region we must solve for the transverse repegionO2 which is completely analogous to the correspond-
lica off-diagonal component of. After several manipula- ing region in theM =1 caseA, andAt are almost equal and
tions of the set of equations in EG7), we find that are given by Eq(36) with u+v—u+ Mu. The condition for
crossover td1 in whichA, andA; are somewhat different
in magnitude is given by Eq37). This conclusion is reached
(48) by manipulating the system of equations in E47) with
dr=01=0 andD+(w) given by Eq.(52). The resultant ex-
If we use the fact thah | ~ y, we find that the GT line occurs pression
when

_ 1
~ k(u+Mvo)

v
2
rc—r—aAL .

ar

uutMo) s o7az,

T vAZ—(utv)A3=—ur+ 3
y=V5; e 0. (49 ! (54)

which is valid at any temperature, contains both the trans-

The phgse @agram depicting _thls line at~zero temperature Verse and longitudinal gaps. Within the approximation that
shown in Fig. 8a). In the region labeled1, q;#0 and A_~ v, we obtain that at zero temperatureQi,,
g.#0, whereas irO1 only g, #0. Hence, we have identi-

fied the zero-temperature GT line. At finite temperature, the 4oy +u(r—ry)] 12
generalization of the Eq49) is simply A= ¢ (55)
u(u+Mo)InfA2/[vy?+u(r—ro]}
u v aT? . T . .
y= \/—[rc(T)—r]z \/_ re—r—(Uu+Mo)—1|. From this equation it is immediately clear that is loga-
v u 3 rithmically smaller tham\ . Also, we easily recover the GT

G0 jine y=yu(r.—r)/v, simply by solvingA+=0.

At finite temperature, we can formally distinguish three
limiting cases:(1) A>T and A>T, (2) A>T and Ay
<T, and (3) A <T and A;<T. The regimeA,<T and
A>T does not exist ad t is always less than| . Case(1)
is identical to theT=0 limit whereas case&) and (3) are
(51) the high-temperature limit with respect to;. To describe

cases(2) and (3), we calculate the sum in Ed54) in the

Hence, the GT line is now a surface in ther, andT space,
a slice of which is shown in Fig.(B). At the pointy=0, we
recover the isotropic result that

ro(T)—r

qT:ql‘:K(u-i— Muv)
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high-temperature limit with the approximation thaf ~ v. sequently, the order parametey and A, are both
Within logarithmic accuracy, the resultant equation unrenormalized by the transverse gap to the leading order.
Using the solutions delineated in E@7), we can calcu-
late the free-energy density below and above the GT line.
+TAr Above and below the GT line, we find that the free-energy
(56) density at zero-temperature up to the leadipglependent
terms

2

vyz—u[rc(T)—r]=u(u+Mv)(iln -
is similar in structure to Eq42). Consequently, within cases

(2) and (3), two distinct regimes denoted 95 and O5’ F (M—l)vAf,y2
andO6 andO6’, respectively, arise. These regions are illus- n =Fo(u+tv—=u+Mv,{)— ——F—
trated in Fig. 4. In the regions superscripted with a prime,

two conditions hold YA(r—re) ( (M —1)v)

5 2u(u+Mv) u
oy =[re(T)—r]<T,
contains the standard analogous contribution from he

_vyz—u[rc(T)—r] =1 analysis as well ag- and At-dependent terms arising

47ru

+... (60)

A+ T O5 and 06. (57  from Eq.(46). Itis the contribution from the latter terms that
results in a suppression of thg' InA,/y as the leading
Contrastly, in the unprimed regions v-dependent terms when=r.. At the bicritical point, we
find that in contrast to tht1 =1 case, the leading term in the
Vo y?—(re—r)<T, free energy density is analytic in the coupling constant
This term is of the formA2y2,
27T? , ,
A= VN3 m ©° and 06 (59 IV. REPLICA-SYMMETRY BREAKING

The transition between the primed and unprimed regions oc- 1€ requisite’ for a replica asymmetric SOIUt'T?tg within
curs when \o 2—U[ro(T)—r]~T/In A, /T, whereas the Landau theory of spin glasses is the presence @f'aterm

transition between O6' and O1 occurs when in the Landau action. We specialize kb= 1 for simplicity.

Joy’—u(ro—r)~T. The difference between regior@5 To facilitate such an analysis, we must extend the cumulant
andO5’ anCd region'so6 andO6' is thatT<A, in the latter expansion of Eq.(13) to the next order in perturbation

whereas the opposite is true in the former. We have takeéh?r?_ryl'aSASS nge hv?/\e/efol?:irsfognmter?e ?lejfrr(])rr?g ﬁgﬁéyigséorv\mﬁe
particular care in distinguishing the primed from the pin-g P : 9 '

unprimed regions because they imply that the GT transitior_§everal types of fourth-order terms occur, the most relevant

is identical in structure to the ordinary paramagnet—spin—Is of the form

glass transition described by RSY. Except, only the trans- y

verse component of) is affected at the GT transition. In - —1f ddxf drdr,>, [Q2(x, 7y, 7m)]% (61
fact, regiond05’ andO6’ are quantum critical with respect 6t ab

to the GT transition while the temperature dependence of thehis term will give rise to a ¢2°)* contribution to the free
transverse component is “classical” in regio®% andO6.  energy. Our focus is the resultant change in the free energy
In O1, thermal fluctuations are subservient to quantum fluc-

tuations for both transverse and longitudinal components of AF K 32 - 2
- == 3—ﬁt(Trq3+ 39Trg®) - —igt > P
a,b

In each of these regions, a key question that can be ad-

dressed is how does the transverse gap renormglizaad y18
A, . Consider first the regimg=T. In this regime, we find Bt Eb (g*0)%. (62
that é

3 The presence of the/® term suggests that within the
2 29¢ | v Ao space of ultrametric functiofsq(x) on the interval G<x
A=y={p(M=vy- 5=In 7+(rc—r)7 P q

u+Mv |27 <1, we should choose an ansatz pr
(M-=1jvy ,
7 q 0<s<sy,
u(u+Mo) " Tl ®9 K(,)BS ’
It follows immediately from Eq(55) that the transverse con- a(s)= 2y, S0=8=81, 63

tribution to the longitudinal gap is logarithmically small. As
a result, the order parametgris well described by its value
given by Eq.(39) with u+v—u+Mv. Consider now the that has two distinct plateaus. This insight is based on an
high-temperature regime. In this cadg, is exactly given by  analogy with the replica broken-symmetry solution in the
Eq. (45) plus the term proportional td% in Eq. (59). How-  presence of a magnetic field. From continuity, we must have
ever, we checked explicitly that in every subregime, the corthatqy= x8sy/2y; andq; = x8s,/2y,. The constants, and
rection due tcA% is subdominant to the leading terms. Con-s; can be determined from the saddle-point equations for

a1 51<s<1
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FIG. 5. (@) Phase diagram illustrating replica-symmetry break-

) ) ) . ) ing for M=1 in the y—r plane. The broken symmetry region is
FIG. 4. Phase diagram illustrating the distinct regimes that 0CCU{anoted RSB. Region®1 and O2 are as before(b) Replica-

at finite temperature above the GT line denoted with solid circles,Symmetry breaking regiorishaded regionat finite temperature.

Regions?S and 0,4 are as de_sgribed_ in Fig(& previously. Re- . The finite temperature criterion is given by H8). The pointy,
gionsO5’ andO6’ quantum critical with respect to the GT transi- =2y, (r.—r)2/[3x%g(u+v)] is determined by the replica-

tion. The_difference bgtween regio®b andO5’ and re_gio_n&)G _ symmetry breaking condition specified in H68).
andO6’ is thatT<<A, in the latter whereas the opposite is true in
the former. 1

- Aq=q1—f q(s)ds. (69)
A F. Upon differentiating with respect tq;, we find thatq 0

=0, — Y105/ xB. The corresponding equation fqs provides  |f we substitute the expression fai(s) and integrate, we
a relationship obtain

3y? |18
4Y1K9>

betweenq, and zﬁ Replica §ymmetry breaking occurs When Because botly, and g, are finite at low temperatured,
Jo<<gi. To leading order in temperature, we can approxi-—0 asT— 0. The weakness of the replica-symmetry break-

Jo=

.
(64 A= [G(T) ~aB(T)]. (70

mateq,~q, whereq is given by ing in the ferromagnetic phase is in accord with the weak-
symmetry breaking found by RSY in the spin-glass phase.
~ 2 Implicit in the replica-broken solution in E¢63) is the pres-
a= 2kgA’ (69 ence of many degenerate energy minima in the energy land-

) ] ~ scape. The weakness of replica symmetry-breaking at low
Hence, the boundary demarcating the replica-symmetric sQemperatures in this model within the ferromagnetic phase

lution is determined by suggests that the ferromagnetic phase is energetically homo-
61267 13 geneous.
Y= (— A (66)
Y1 V. SUMMARY
which we obtain upon equatirgy andq;. If we use Eq(39) We have constructed here a Landau theory near the bi-
for .zﬂWhICh is valid |n.reg|or01 and use the fact that in this qyitical point for a ferromagnet, spin glass, and paramagnet.
regionA~y, we obtain The analogous analysis was also performed Nor-1 in
) which the ordered phase fddl =2 is a superconductor. All
_2y4(re—r) transitions were found to be second order in contrast to the

r<fe 67) work of Hartman and Weichmdnwho claimed that the

FM-SG transition was first order in the spherical limit. The
as the condition for replica symmetry breaking at low tem-key difference between our treatments is that fluctuations are
peraturesT <. This condition for replica-symmetry break- absent in the current analysis. As a result our work indicates
ing extends continuously to the spin-glass phase agreein@at fluctuations might drive the FM-SG transition to a first
with the work of RSY. The phase diagram illustrating the order transition. A key result of this work is the formal
replica-broken symmetry region is depicted in Fig. 5. At fi- equivalence between the role of a nonzero mean and the
nite temperature, we use E@5) for ¢ and obtain a gener- presence of a magnetic field in the zero mean problem. This
alization observation is equally valid for classical systems. Resilience
of the ferromagnet against thermal fluctuations occurs when
T<y, where vy is the coupling constant that ultimately de-

Y= 3k2g u+u r<re (68) termines the rigidity of the ferromagnet phase. Additional
features of our analysis that are particularly striking ére
of the replica-breaking condition which extends smoothlythe nonanalytic dependence af on vy, namely, ¢
over to the zero-temperature condition. «y¥In A, /vy, near the bicritical region, in the vicinity of
To estimate the strength of the replica-symmetry breakthe bicritical point and(2) the subsequent leading nonana-
ing, we define the effective broken ergodicity order paramdytic dependence of the free-energy density in regiiih on
eter v for M=1. We showed that this behavior ceases Kbr

7_ 3k%g(u+v)?

2

2 re—r
yl [’yT-ﬁ- c
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>1 below and above the GT line. The reason underlying thishe phases as being bicritical, it is in fact multicritical. This
difference with theM =1 case is the presence df—1 com-  state of affairs obtains as a result of the presence of replica
ponents ofQ that yield leading analytic contributions of or- symmetry breaking and the Gabay-Toulouse instability. As
der O(y?) to the free energy density. An additional featurein the M =1 spin-glass case, we also showed that the noner-
which our analysis brings out foM>1 is the similarity godicity parameter is linear in temperature illustrating the
between the Gabay-Toulouse transition with the spin-glassweakness of replica symmetry breaking in the ferromagnetic
paramagnet transition with zero mean. This similarity hagphase. Though we did not treat explicitly replica-symmetry
been noticed previously in the context of classical spinbreaking forM>1, such symmetry breaking is expected in
glasses? A key surprise found in the analysis of the GT this case as well when quartic terms are included in the ac-
transition is the subleading depdence ypfand A, on the tion. In a future study, we will extend this analysis beyond
transverse gap ang; . This suggests that the GT line should mean field and report on the renormalization group analysis
have only weak experimentally detectable features in the suwsf the “bicritical” region.
perconducting phase, for example. The excellent agreement
observed with th_e expenmeqtal result_s on LiMe_,F, for _ ACKNOWLEDGMENTS
the case oM =1 is encouraging that similar agreement will
be found with experiments on the analogous superconducting We thank S. Sachdev for useful comments during the
systems. early stages of this project. This work was funded by the
While we referred to the point of intersection between allDMR of the NSF and the ACS petroleum research fund.

1p. W. Anderson, irLectures on the Many Body Problerdited ’F. D. M. Haldane, Phys. LetB3A, 464 (1983.
by E. R. Caianiello(Academic, New York, 1964 Vol. 2, p. 8s. Kirkpatrick and D. Sherrington, Phys. Rev1g, 4384(1978.

127. 9J. W. Hartman and P. B. Weichman, Phys. Rev. Le#. 4584
23, Doniach, Phys. Rev. B4, 5063(1981); E. Simanekjbid. 22, (1995.

459 (1979. 10K, H. Fischer and J. A. HertSpin Glasse$Cambridge Univer-
3N. Read, S. Sachdev, and J. Ye, Phys. Re%2B384 (1995; J. sity Press, Cambridge, 1991

Ye, S. Sachdev, and N. Read, Phys. Rev. [2814011(1993.  J.R. L. de Almeida and D. J. Thouless, J. Phy4.1A983(1978.
4J. Miller and D. A. Huse, Phys. Rev. Left0, 3147(1993. 12M. Mezard, G. Parisi, N. Sourlas, G. Toulouse, and M. Virasoro,
SA. ). Bray and M. A. Moore, Phys. Rev. Lefit3, L655 (1980. J. Phys.(Parig 45, 843 (1984; M. Mezard, G. Parisi, and M.

6D. H. Reich, B. Ellman, J. Yang, T. F. Rosenbaum, G. Aeppli, Virasoro, J. Phys(France Lett. 46, L217 (1985.
and D. P. Belanger, Phys. Rev.42, 4631(1990. 13K. Binder and A. P. Young, Rev. Mod. Phy58, 801 (1986.



