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Effect of long-range interactions on the critical behavior of the continuous Ising model

E. Bayong and H. T. Diep
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(Received 1 December 1998

Critical behavior of the one- and two-dimensional general continuous Ising models with long-range ferro-
magnetic interactions decaying as“/” is studied using a histogram Monte Carlo technique. A continuous
Ising model means that a spin can take any value betwetrand 1. It is found that the system exhibits a
second-order phase transition with nonstandard critical exponents which dependResults for various
values ofo will be shown and compared to predictions from renormalization-group theory. Though there is an
agreement with the overall tendency predicted, there are several fundamental differences. Discussion is given.
[S0163-18299)02718-9

[. INTRODUCTION These examples show that while the Ising case has been
widely investigated, non-Ising models have not received
In statistical mechanics, most models are limited tomuch attention. Recently, Glumac and Uzé&fauave inves-
nearest-neighbaiNN) interactions. Many properties of such tigated the 1Dg-state Potts model up tg=64 using a
models are known with precision. In particular, critical be- transfer-matrix method with a cutoff at 20 atomic distances.
haviors can be either exactly deriear precisely obtained Priest and Lubensk§ and Thumann and Gusmédohave
in certain limits. One can mention the solution of Ons&ger used a RG expansion i+ 30 —d to calculate critical expo-
for the two-dimensiona(2D) Ising model, the vertex solv- nents of the Potts model. Note that in the case of LR
able modelg, the critical exponents for various spin models d-dimensional systems, except the early workder1 with
in 2 and 3D%~° It is known, however, that when long-range very small sizegup to 15 sping® Monte Carlo(MC) tech-
(LR) interactions are included, the situation often becomesiques have not been used. This is partially due to the long
complicated. For instance, when next-nearest-neighbotomputing time required. The absence of reliable MC re-
(NNN) interactions compete with thé&NN) one, the system sults, in particular in the non-Ising case, has motivated the
becomes frustrated. Though much interesting physics has rgresent work.
cently been discovered for such systéinsell-established In this paper we present simulation results for the 1- and
theoretical methods often fail to predict correct behaviors. 2D continuous Ising models using standard MC simulations
We are interested here in the effect of LR interactionsand the MC histogram method. Our purpose is to compare
decaying with distanceas 1977, in 1 and 2D. Itis known our MC results with the predictions of RG calculatidfi$>’
that LR forces can induce critical behavior in 1D systems In Sec. Il we present the results obtained for 1 and 2D
where it would otherwise be absent. There have been somwith varyingo. The values of different critical exponents are
analytical studies as well as a number of numerical results oahown and compared to RG predictions. One of our striking
critical behavior of these systems. The 1D Ising model withresults is the absence of a first-order transition unlike the
algebraically decaying LR interactions have been extensivelgase of SR standard Potts model with a lagge 2 and 3D.
investigated during the last two decades. It is known that iConcluding remarks are given in Sec. lIl.
exhibits LR order at finite temperatu(@) if o<1 and no
phase transition ib’>l.7_12 The detailed properties of the 1. RESULTS OF MONTE CARLO SIMULATIONS
spherical model with LR interactions have been discussed by
Joyce®® It is noted, however, that there is no rigorous infor- ~ The continuous Ising model in dimensiarthat we shall
mation about the critical exponents of such systems. Fishegonsider is defined as
et al. have studied the critical exponents on a general system
with  n-component order parametér using a
renormalization-grougfRG) method. These exponents de-
pend on the values af, o, andd. For ¢>2, they take the
values of short-rangéSR) exponents for alt. A RG expan-
sion in 1— ¢>0 has been done by Kosterfitavho obtained
1/v=[2(1-0)*?] when o—1 in 1D. In the case of the whereq; is a classical Ising spin at siteand takes all values

H:_UED Jijo'io-jl (1)

Ising model, the critical temperaturE, and critical expo- between—1 and 1, andJi]-=1/|i —j|9te. We take into ac-
nents have been evaluated by Glumac and UZ&ldaising  count all interactions without cutoff permitted by the peri-
the transfer matrix with a finite-range scaling. This evalua-odic boundary conditions, i.e|j —j|<L/2 wherelL is the

tion has been also made by finite chain extrapolatifSiote  linear system size. In 1D, we simulated systems with linear
that a 1D spin-glass Ising model with LR algebraically de-sizes in the rangk =50-900. In 2D, we used samples sizes
caying interactions has been investigated by Kotiaall’ up toLxXL=36". A MC step per sitgMCS/site for a LR

0163-1829/99/5@.8)/119196)/$15.00 PRB 59 11919 ©1999 The American Physical Society



11 920

E. BAYONG AND H. T. DIEP

PRB 59

TABLE I. The 1D case. The transition temperatuiieglL) as-

U o & sociated with the peak position &, for all o studied in the 1D
02F o=t c00°?® case.
04y L 50 100 150 400 900
0.6 o
0.8}
0.1 1.75 2.12 2.35 2.81 3.18
-y " 03 135 1.48 1.58 1.80 2.05
-L2r g 8 0.5 1.10 1.20 1.25 1.35 1.425
14b g 0.7 0.94 0.95 0.96 1.02 1.06
16 &8 . . 1 0.71 0.71 0.71 0.71 0.71
0 0.5 1 T 15 1.1 0.66 0.66 0.66 0.66 0.66
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FIG. 1. Temperature and size dependences of internal etkrgy A(1kgT) (M™)
for o=1 (uppe) ando=0.1 (lower). Void circles, black triangles,
white triangles, black circles, and crosses arelfer50, 100, 150, 35 : — : :
400, and 900, respectively. a 1
o=
3
Ising model involvesO(L?) or O(L*) operations in 1- or Cv
2D. The system size is thus limited in order to spend a rea- 25
sonable computing time due the presence of LR interactions. ‘&)
. . . 2 4
The simulations of the model were carried out for many val- ig >§
ues ofo. 1.5 & o
We use first the standard MC simulations: the equilibrat- 2 ¥ S 'S
ing time is from 100 000 to 200 000 MCS/spin and the aver- Ies % ]
aging time is from 500 000 to 1 000 000 MCS/spin. We use 0.5 a ]
the results of standard MC simulations to localize for each LT
size the transition temperatuiig(L) where histogram mea- 0 : . : Xoaa
sures are performed. For histogram measures, we discard 1 04 0.8 12 1.6 T 2
million MCS/spin and measure between 3 and 5 million 3 . . , .
MCS/spin. The histograrisare then used to determine criti- Cv
cal exponents. Contrary to the traditional MC calculations, 25F Qf( o=0.1 ]
we do not need a previous knowledgeTof with high pre- > AP%A ox
cision. The following quantities have been calculated: mag- 2 §° rq » ]
netizationM, total energ\E, specific heaC,, susceptibility Sho ey X
x, first-order cumulant of the enerdy,, nth-order cumu- 15F @O: PR ]
lant of the order parametéf, for n=1 and 2: QAQA‘ ° x
1[0 ok ° ]
o a
05f 4 .
(My=( 2 ai), @) .
i R YN
0 L L [ W) X X
0 1 2 3 4 5
(E)=(M), ® T
FIG. 2. Temperature and size dependences of the specific heat
1 for =1 (uppey ando=0.1 (lower). Void circles, black triangles,
C, ((E?—(E)?), (4)  Wwhite triangles, black circles, and crosses arelfer50, 100, 150,

 KgT2

400, and 900, respectively.
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FIG. 3. Determination of the critical exponemt for o=0.1
(triangles and =1 (circles from the slope ofvi"" (black and
Vo' (white) vs L in the In-In scale. Errors are smaller than the size
of data points.
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—o— 0=1, BIv=0.0197
— o -0=0.1, p/v=0.279

041 |

100
L

are smaller than the size of data points.

The mean values may be calculated as continuous func-
tions of temperature using the histograt{E) obtained at
T.(L) to calculate the canonical probabilities at temperatures

1000

FIG. 5. Determination of3 from the slope ofM[T..] vsL in
In-In scale foro= 0.1 (black circles ando =1 (void circles. Errors

T aroundT,(L) by

H(E)exd —ABE]
; H(E)exd — A BE]

P(E,T)= 8

where AB=1/kgT (L) —1/kgT. The thermal average of a

physical quantityA is then calculated by

<A>=; AP(E,T). (9)

Mo ()L 2", (12)
Cl™=Co+CyL", (13)
X" LY, (14)
and
To(L)=Tg()+CpaL ™, (15)

whereA,C,,C,,C, are constants. We estimatedndepen-
dently fromV™" andVJ". With these values we calculated
v from ™ We estimatedl';(«) by using the last expres-
sion for each observable. Using this valuelgf), we cal-
culated 8 from Mt () - The Rushbrooke scaling law

The thermal averages are thus calculated as continuous fung;—zﬁur y=2 allows us to obtair. Finally, using the hyper-

tions of T.

For large values oF, physical quantities are expected to ¢ ihic"modeld =(2—a)v~
€

scale withL as follows:

VTi”ocl__llV, Vrzni”ocl__lh’, (10)

Cy=Cy[Te()]+AL™ ", 11

max —e— o=, yv=09272

—e— ¢=0.1, ¥v=0.3756

1000

100 L
FIG. 4. Determination of the critical exponesptfrom the slope

of xmaxVSL in In-In scale foro=0.1(black circles ando=1 (void
circles. Errors are smaller than the size of data points.

scaling relationship, we can estimate the effective dimension
1 and the exponeny from the
scaling lawy=(2— n)v.
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FIG. 6. T, at differentL versuso. See text for comments.
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TABLE Il. The 1D case. Critical exponents from the MC histogram metfseg: text for commenks

o v Y B a Y et Te
0.1 1.411) 0.531) 0.391) 0.691) 1.621) 0.931) 3.302)
0.441) 0.591)
0.3 1.621) 0.731) 0.351) 0.521) 1.551) 0.931) 2.112)
0.431) 0.41(1)
0.5 1.721) 0.991) 0.34(1) 0.34(1) 1.431) 0.961) 1.491)
0.37(1) 0.28(1)
0.7 1.791) 1.261) 0.29(1) 0.16(1) 1.301) 1.031) 1.081)
0.26(1) 0.21(1)
1 2.421) 2.261) 0.084(1) —-0.34(1) 1.041) 0.971) 0.722)
0.077(1) —-0.41(1)
1.1 2.8Q1) 2.821) 0.991) 0.631)
0.0112) —-0.80(1)
A. The 1D case the orders of magnitude and the sign of these deduced values

The values ofs were chosen in the nonclassical regime &€ in a qualitative agreement with those in the first lines, we
0.5< o<1 where critical exponents are expected to depen(ﬂhink’ however, that the latter values are more reliable due to
not only ono but also onn andd as well as in the case of thesfact thlat onlykone sgallngdre!atlon is used.
classical regime (&0<0.5)* In addition, we have also everal remarks are in order.
made calculations forr>1 to see if there exists a phase

transition at finiteT for the continuous Ising model studied S T ]
here since it has been sholin the Ising case that there is [ o X& 6=0 ]
no transition at finiteT for o>1. 2.5 b oa . XS B

We performed first the standard MC simulations where o OA % !’)gz(é’ ]
the magnetization per sitg, energy per sité), specific heat 2r Anby ® X ° 7
C,, and susceptibilityy were measured as functions of the E A §; x e X
temperaturel. The results ofU versusT present a single 1.5 ¢ Ny o e x 7
inflection point suggesting the occurence of a continuous [ o%a e A ° ]
transition. Examples are shown in Fig. 1 with several lattice 100 o 8 R . ° .
sizes forc=0.1 and 1. Foro=1 a very small size depen- oo R . ]
dence is observed, while smaller values @fhave very 05 [ AA o ° -
strong size dependence. Table | shows the critical tempera- %OA 1
ture T.(L) for several values of. In Fig. 2, we showC, o L 1w Ofan 2 0%ex x x o ]
calculated from energy fluctuations as a functiorirdbr o 0 2 4 6 8 10
=0.1 and 1, each with several lattice sizes. T

We next performed MC histogram calculations for 6 T T T
=50,100,150,400,900. Between 3 and 5 million MCS/site Cv i o2
were performed for each lattice size. The results show that 5 [ © 1
the transition is clearly of second order. The asymptotic i o ]
value of C tends to 2/3 for largd (not shown. Figure 3 4 L o ]
presents the minima df, andV, as functions ofL in the ; 1
In-In scale. The data lie nicely on a straight line whose slope a3 [ §; ]
is 1/v. We obtainy=1.41(1) andv=2.42(1) foro=0.1 [
and 1, respectively. The errors were estimated from the line- o L h
fitting procedure. Systematic errors from estimate3 gL)
were much smaller. The maximum gfversusL is shown in ] a , 1
Fig. 4 for 0=0.1,1. The slope of each line yields the value r ;
of y/v. Using the values of» one obtainsy. Now, with the 0 o %qz. ‘ 3

values of Table | we obtain by scalin§.(e). Plotting
M1 () versusL "#'” in the In-In scale, one obtains directly

Blv. Examples are shown in Fig. 5. Using the Rushbrooke T

relationship, one obtaing. The scaling relationship then k|G, 7. The 2D case. Temperature and size dependences of the
gives the effective dimensionalitye;. Criticals exponents  specific heat for two extreme cases-0 (uppej ando =2 (lower)

are resumed in Table Il where the values in the second lines=0. Vvoid circles, black triangles, white triangles, black circles,
of B anda are those obtained by using firgt=2—dv with  crosses, and diamonds are fo= 8, 10, 12, 20, 30, and 36, respec-
d=1 and then calculating with 8=(2—y—«a)/2. Though tively.

0 0.5 1 1.5 2 2.5 3 3.5
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FIG. 9. The 2D case. Determination of the critical expongnt

8 9 10 20 L 30

FIG. 8. The 2D case. Determination of the critical exponent
for =2 (circles, =0.5 (diamond$, ando=0 (triangleg from
the slope ofv]"" (black) andVv3"™ (white) vsL in In-In scale. Errors
are smaller than the size of data points.

(i) The very small size dependence wher 1 explains
the large value ob.

(i) We do not however find the divergence nfwhen
o=1 as it was predicted for the 1D Ising cdse.

(iii) Thoules$ has showed that in the Ising case with
=1 the transition is either of first order @=0. Our result
shows that the transition is of second order with

from the slope ¢/v) of Y™ vs L in In-In scale foroc=2 (white
circles, 0.5(black circles, and O(triangles. Errors are smaller than
the size of data points.

by Nagle and Bonné? in the Ising case in the classical re-
gime is also different from ours. In the nonclassical regime,
our results are in agreement with the values by Figtexl.

for » and y with a very small correction to the expression
n=2— o (see values ofp), and with MC results of Nagle
and Bonner for the 1D Ising cad.

B. The 2D case
We consider the continuous Ising model on the square

=0.084(1) for the continuous Ising spins studied here. Inattice. As in the 1D case, we performed first standard MC

addition, foro=1.1 on still has the transition at finife (see

simultions to locateT (L) for each linear lattice size for a

Fig. 6), contrary to the discrete Ising case. Note, howevergiven o. Then, we employed the MC histogram technique to

that we have made calculations f@= 2 and we did not find

calculate critical exponents.

a finite-T transition. There may thus be a difference between Note that our MC programs are very efficient: the test for

discrete and continuous Ising models.

(iv) Our results forv are far from those obtained by Glu-

mac and Uzel&® for the standard Potts model: for=64
they obtainedv=1 wherec=1, and forq=16 they gave

the SR Ising model up tb =50 gives the critical exponents

within 0.5% of the exact values. Let us add that our results
for the continuous Ising model with only nearest-neighbor
interactions agree within 1% with the exact values of the SR

v=0.22 fore=0.7. The continuous Ising model shown herelsing model.

is thus different from the standard largePotts model.
(v) In the so-called classical regime € 0.5), our results
are different from those of Fishet all* Note thaty given

Now, for the present LR continuous Ising model, we have
studied the following values af: 0, 0.5, 1, 1.5, 2, and 3, for
a systematic comparison. For each value, varloup to 36

TABLE lll. The 2D case. Critical exponents from the MC histogram method. For comparison, valugsoftirangelsing, three-state
Potts, and continuous Ising models are also displayed. See text for comments.

Systems Interactions v Y a B 7 T,
Ising (q=2) SR (exac} 1 1.75 0 0.125 0.25 2.27
Potts (g=3) SR 0.831) 1.461) 0.341) 0.101) 0.231) 0.991)
Ising (g=infinite) SR 1.021) 1.781) —0.04(1) 0.1381) 0.251) 0.901)
LR (o=3) 0.991) 1.641) —0.02(1) 0.181) 0.351) 1.281)
LR (o=2) 0.921) 1.341) 0.161) 0.251) 0.541) 1.651)
LR (oc=1.5) 0.881) 1.131) 0.231) 0.321) 0.731) 2.031)
LR (o=1) 0.841) 0.901) 0.321) 0.391) 0.921) 2.751)
LR (0=0.5) 0.761) 0.681) 0.481) 0.421) 1.121) 4.201)
LR (o=0) 0.441) 0.641) 1.121) 0.121) 1.341) 7.741)
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[ T T ‘ ] finding shows that the prediction of Fishet all* for the
ot . discrete Ising model, according to which fer>2 critical
I 4 exponents take the SR values, should be modified for the
P present continuous Ising model. We show in Fig. 10 the
P values of v and y versusy where the SR values are ap-
15T e ] proached only atr=3.

o’ [Il. CONCLUDING REMARKS

T - | We have studied the general continuous Ising model with
< LR interactions decaying as a power law of distance, using
the MC histogram method and finite-size scaling in one and
05 L ] two dimensions. We found the transition to be continuous
1 with critical exponents obtained systematically for all rel-
‘ ‘ L , ] evanto. Though the general aspects of our results are in
agreement with the tendency predicted by RG calculations
for the Ising model, the details of our continuous Ising model
Y are somewhat different. For instance, in 1D, for the case
FIG. 10. The 2D casev (void circley and y (black circles whereo=1, our result shows a large value ebut far from
versuso. Short-range value of() is drawn by horizontal contin-  th€ divergent value predicted for the Ising motfeln addi-
ued (discontinued line. The values forr=0 which are not on the 10N, unlike in the case of the discrete Ising model, our re-
fitted lines are not shown. See text for comment. sults indicate that there is a phase transition at fifiieven
for o=1.1. The finiteT transition disappears at highet In

are used. We show in Fig. 7 the specific heat as a function fD; 0Ur critical exponents indicate that they take the SR
L for two extreme cases=2 and 0, for comparison. As Values only whenr=3, instead ofo>2 given by the RG
seen, the smaller is the stronger the size effect has on c@lculations for the Ising casé.Moreover, in the classical
T.(L). Histograms have been taken B{(L) at every size '€9ime our resuilts do not verify RG resuits. In conclusion,
for eacho. The In-In plot of V™ andVT" versusL givesy, W€ think that it would be interesting to reconsider previous

1 2 . . .
and the In-In plot ofy™® versusL yields y/v. Examples are it:et(r)]ir;e;;gre:he case of the continuous Ising model presented

shown in Figs. 8 and 9 for=2, 0.5, and 0. Table IIl shows
all calculated critical exponents. Though all exponents have
a tendency toward their SR values wheris increased, we
observe that forr=2, their values are not yet very close to  Laboratoire de Physique Theque et Modésation is as-
the values of the SR Isin@nd continuous Isingnodel. This  sociated with CNRSEP 0127.
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