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Effect of long-range interactions on the critical behavior of the continuous Ising model

E. Bayong and H. T. Diep*
Laboratoire de Physique The´orique et Mode´lisation, Universite´ de Cergy-Pontoise, 2 Avenue Adolphe Chauvin,

95302 Cergy-Pontoise Cedex, France
~Received 1 December 1998!

Critical behavior of the one- and two-dimensional general continuous Ising models with long-range ferro-
magnetic interactions decaying as 1/r d1s is studied using a histogram Monte Carlo technique. A continuous
Ising model means that a spin can take any value between21 and 1. It is found that the system exhibits a
second-order phase transition with nonstandard critical exponents which depend ons. Results for various
values ofs will be shown and compared to predictions from renormalization-group theory. Though there is an
agreement with the overall tendency predicted, there are several fundamental differences. Discussion is given.
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I. INTRODUCTION

In statistical mechanics, most models are limited
nearest-neighbor~NN! interactions. Many properties of suc
models are known with precision. In particular, critical b
haviors can be either exactly derived1 or precisely obtained
in certain limits. One can mention the solution of Onsag2

for the two-dimensional~2D! Ising model, the vertex solv
able models,1 the critical exponents for various spin mode
in 2 and 3D.3–5 It is known, however, that when long-rang
~LR! interactions are included, the situation often becom
complicated. For instance, when next-nearest-neigh
~NNN! interactions compete with the~NN! one, the system
becomes frustrated. Though much interesting physics ha
cently been discovered for such systems,6 well-established
theoretical methods often fail to predict correct behaviors

We are interested here in the effect of LR interactio
decaying with distancer as 1/r d1s, in 1 and 2D. It is known
that LR forces can induce critical behavior in 1D syste
where it would otherwise be absent. There have been s
analytical studies as well as a number of numerical results
critical behavior of these systems. The 1D Ising model w
algebraically decaying LR interactions have been extensiv
investigated during the last two decades. It is known tha
exhibits LR order at finite temperature~T! if s<1 and no
phase transition ifs.1.7–12 The detailed properties of th
spherical model with LR interactions have been discussed
Joyce.13 It is noted, however, that there is no rigorous info
mation about the critical exponents of such systems. Fis
et al. have studied the critical exponents on a general sys
with n-component order parameter14 using a
renormalization-group~RG! method. These exponents d
pend on the values ofn, s, andd. For s.2, they take the
values of short-range~SR! exponents for alld. A RG expan-
sion in 12s.0 has been done by Kosterlitz15 who obtained
1/n5@2(12s)1/2# when s→1 in 1D. In the case of the
Ising model, the critical temperatureTc and critical expo-
nents have been evaluated by Glumac and Uzelac10,11 using
the transfer matrix with a finite-range scaling. This evalu
tion has been also made by finite chain extrapolations.16 Note
that a 1D spin-glass Ising model with LR algebraically d
caying interactions has been investigated by Kotliaret al.17
PRB 590163-1829/99/59~18!/11919~6!/$15.00
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These examples show that while the Ising case has b
widely investigated, non-Ising models have not receiv
much attention. Recently, Glumac and Uzelac20 have inves-
tigated the 1Dq-state Potts model up toq564 using a
transfer-matrix method with a cutoff at 20 atomic distanc
Priest and Lubensky18 and Thumann and Gusmao19 have
used a RG expansion ine53s2d to calculate critical expo-
nents of the Potts model. Note that in the case of
d-dimensional systems, except the early work ford51 with
very small sizes~up to 15 spins!,8 Monte Carlo~MC! tech-
niques have not been used. This is partially due to the l
computing time required. The absence of reliable MC
sults, in particular in the non-Ising case, has motivated
present work.

In this paper we present simulation results for the 1- a
2D continuous Ising models using standard MC simulatio
and the MC histogram method. Our purpose is to comp
our MC results with the predictions of RG calculations.14,15,7

In Sec. II we present the results obtained for 1 and
with varyings. The values of different critical exponents a
shown and compared to RG predictions. One of our strik
results is the absence of a first-order transition unlike
case of SR standard Potts model with a largeq in 2 and 3D.
Concluding remarks are given in Sec. III.

II. RESULTS OF MONTE CARLO SIMULATIONS

The continuous Ising model in dimensiond that we shall
consider is defined as

H52(
^ i , j &

Ji j s is j , ~1!

wheres i is a classical Ising spin at sitei and takes all values
between21 and 1, andJi j 51/u i 2 j ud1s. We take into ac-
count all interactions without cutoff permitted by the pe
odic boundary conditions, i.e.,u i 2 j u,L/2 whereL is the
linear system size. In 1D, we simulated systems with lin
sizes in the rangeL5502900. In 2D, we used samples size
up to L3L5362. A MC step per site~MCS/site! for a LR
11 919 ©1999 The American Physical Society
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11 920 PRB 59E. BAYONG AND H. T. DIEP
Ising model involvesO(L2) or O(L4) operations in 1- or
2D. The system size is thus limited in order to spend a r
sonable computing time due the presence of LR interactio
The simulations of the model were carried out for many v
ues ofs.

We use first the standard MC simulations: the equilibr
ing time is from 100 000 to 200 000 MCS/spin and the av
aging time is from 500 000 to 1 000 000 MCS/spin. We u
the results of standard MC simulations to localize for ea
size the transition temperatureTc(L) where histogram mea
sures are performed. For histogram measures, we disca
million MCS/spin and measure between 3 and 5 milli
MCS/spin. The histograms21 are then used to determine crit
cal exponents. Contrary to the traditional MC calculatio
we do not need a previous knowledge ofTc with high pre-
cision. The following quantities have been calculated: m
netizationM, total energyE, specific heatCv , susceptibility
x, first-order cumulant of the energyCU , nth-order cumu-
lant of the order parameterVn for n51 and 2:

^M &5K (
i

s i L , ~2!

^E&5^H&, ~3!

Cv5
1

kBT2
~^E2&2^E&2!, ~4!

FIG. 1. Temperature and size dependences of internal enerU
for s51 ~upper! ands50.1 ~lower!. Void circles, black triangles,
white triangles, black circles, and crosses are forL550, 100, 150,
400, and 900, respectively.
a-
s.
-

-
-
e
h

1

,

-

x5
1

kBT
~^M2&2^M &2!, ~5!

CU512S ^E4&

3^E2&2D , ~6!

Vn5 K S ] ln Mn

]~1/kBT! D L 5S ^MnE&

^Mn&
D 2^E&. ~7!

FIG. 2. Temperature and size dependences of the specific
for s51 ~upper! ands50.1 ~lower!. Void circles, black triangles,
white triangles, black circles, and crosses are forL550, 100, 150,
400, and 900, respectively.

TABLE I. The 1D case. The transition temperaturesTc(L) as-
sociated with the peak position ofCv for all s studied in the 1D
case.
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The mean values may be calculated as continuous fu
tions of temperature using the histogramH(E) obtained at
Tc(L) to calculate the canonical probabilities at temperatu
T aroundTc(L) by

P~E,T!5
H~E!exp@2DbE#

(
E

H~E!exp@2DbE#

, ~8!

where Db51/kBTc(L)21/kBT. The thermal average of
physical quantityA is then calculated by

^A&5(
E

AP~E,T!. ~9!

The thermal averages are thus calculated as continuous
tions of T.

For large values ofL, physical quantities are expected
scale withL as follows:

V1
min}L21/n, V2

min}L21/n, ~10!

CU5CU@Tc~`!#1AL2a/n, ~11!

FIG. 3. Determination of the critical exponentn for s50.1
~triangles! and s51 ~circles! from the slope ofV1

min ~black! and
V2

min ~white! vs L in the ln-ln scale. Errors are smaller than the s
of data points.

FIG. 4. Determination of the critical exponentg from the slope
of xmax vs L in ln-ln scale fors50.1 ~black circles! ands51 ~void
circles!. Errors are smaller than the size of data points.
c-

s

nc-

MTc(`)}L2b/n, ~12!

Cv
max5C01C1La/n, ~13!

xmax}Lg/n, ~14!

and

Tc~L !5Tc~`!1CAL21/n, ~15!

whereA,C0 ,C1 ,CA are constants. We estimatedn indepen-
dently fromV1

min andV2
min . With these values we calculate

g from xmax. We estimatedTc(`) by using the last expres
sion for each observable. Using this value ofTc(`), we cal-
culated b from MTc(`) . The Rushbrooke scaling lawa

12b1g52 allows us to obtaina. Finally, using the hyper-
scaling relationship, we can estimate the effective dimens
of this modeldeff5(22a)n21 and the exponenth from the
scaling lawg5(22h)n.

FIG. 5. Determination ofb from the slope ofM @T`# vs L in
ln-ln scale fors50.1 ~black circles! ands51 ~void circles!. Errors
are smaller than the size of data points.

FIG. 6. Tc at differentL versuss. See text for comments.
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TABLE II. The 1D case. Critical exponents from the MC histogram method~see text for comments!.

s n g b a h deff Tc

0.1 1.41~1! 0.53~1! 0.39~1! 0.69~1! 1.62~1! 0.93~1! 3.30~2!

0.44~1! 0.59~1!

0.3 1.62~1! 0.73~1! 0.35~1! 0.52~1! 1.55~1! 0.93~1! 2.11~2!

0.43~1! 0.41~1!

0.5 1.72~1! 0.99~1! 0.34(1)

0.37(1)

0.34(1)

0.28(1)

1.43~1! 0.96~1! 1.49~1!

0.7 1.79~1! 1.26~1! 0.29(1)

0.26(1)

0.16(1)

0.21(1)

1.30~1! 1.03~1! 1.08~1!

1 2.42~1! 2.26~1! 0.084(1)

0.077(1)

20.34(1)

20.41(1)

1.08~1! 0.97~1! 0.72~2!

1.1 2.80~1! 2.82~1! 0.99~1! 0.63~1!

0.011~2! 20.80(1)
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A. The 1D case

The values ofs were chosen in the nonclassical regim
0.5,s<1 where critical exponents are expected to dep
not only ons but also onn andd as well as in the case o
classical regime (0,s,0.5).14 In addition, we have also
made calculations fors.1 to see if there exists a phas
transition at finiteT for the continuous Ising model studie
here since it has been shown7 in the Ising case that there i
no transition at finiteT for s.1.

We performed first the standard MC simulations whe
the magnetization per sitem, energy per siteU, specific heat
Cv , and susceptibilityx were measured as functions of th
temperatureT. The results ofU versusT present a single
inflection point suggesting the occurence of a continu
transition. Examples are shown in Fig. 1 with several latt
sizes fors50.1 and 1. Fors51 a very small size depen
dence is observed, while smaller values ofs have very
strong size dependence. Table I shows the critical temp
ture Tc(L) for several values ofs. In Fig. 2, we showCv
calculated from energy fluctuations as a function ofT for s
50.1 and 1, each with several lattice sizes.

We next performed MC histogram calculations forL
550,100,150,400,900. Between 3 and 5 million MCS/s
were performed for each lattice size. The results show
the transition is clearly of second order. The asympto
value of CU tends to 2/3 for largeL ~not shown!. Figure 3
presents the minima ofV1 and V2 as functions ofL in the
ln-ln scale. The data lie nicely on a straight line whose slo
is 1/n. We obtainn51.41(1) andn52.42(1) for s50.1
and 1, respectively. The errors were estimated from the l
fitting procedure. Systematic errors from estimates ofTc(L)
were much smaller. The maximum ofx versusL is shown in
Fig. 4 for s50.1,1. The slope of each line yields the val
of g/n. Using the values ofn one obtainsg. Now, with the
values of Table I we obtain by scalingTc(`). Plotting
MTc(`) versusL2b/n in the ln-ln scale, one obtains directl

b/n. Examples are shown in Fig. 5. Using the Rushbroo
relationship, one obtainsa. The scaling relationship the
gives the effective dimensionalitydeff . Criticals exponents
are resumed in Table II where the values in the second l
of b anda are those obtained by using firsta522dn with
d51 and then calculatingb with b5(22g2a)/2. Though
d

e

s
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c
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es

the orders of magnitude and the sign of these deduced va
are in a qualitative agreement with those in the first lines,
think, however, that the latter values are more reliable du
the fact that only one scaling relation is used.

Several remarks are in order:

FIG. 7. The 2D case. Temperature and size dependences o
specific heat for two extreme casess50 ~upper! ands52 ~lower!
s50. Void circles, black triangles, white triangles, black circle
crosses, and diamonds are forL58, 10, 12, 20, 30, and 36, respe
tively.
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~i! The very small size dependence whens>1 explains
the large value ofn.

~ii ! We do not however find the divergence ofn when
s51 as it was predicted for the 1D Ising case.15

~iii ! Thouless7 has showed that in the Ising case withs
51 the transition is either of first order orb50. Our result
shows that the transition is of second order withb
50.084(1) for the continuous Ising spins studied here.
addition, fors51.1 on still has the transition at finiteT ~see
Fig. 6!, contrary to the discrete Ising case. Note, howev
that we have made calculations fors52 and we did not find
a finite-T transition. There may thus be a difference betwe
discrete and continuous Ising models.

~iv! Our results forn are far from those obtained by Glu
mac and Uzelac20 for the standard Potts model: forq564
they obtainedn51 wheres51, and forq516 they gave
n50.22 fors50.7. The continuous Ising model shown he
is thus different from the standard large-q Potts model.

~v! In the so-called classical regime (s,0.5), our results
are different from those of Fisheret al.14 Note thatg given

FIG. 8. The 2D case. Determination of the critical exponenn
for s52 ~circles!, s50.5 ~diamonds!, ands50 ~triangles! from
the slope ofV1

min ~black! andV2
min ~white! vs L in ln-ln scale. Errors

are smaller than the size of data points.
n

r,

n

by Nagle and Bonner16 in the Ising case in the classical re
gime is also different from ours. In the nonclassical regim
our results are in agreement with the values by Fisheret al.
for h and g with a very small correction to the expressio
h522s ~see values ofh), and with MC results of Nagle
and Bonner for the 1D Ising case.16

B. The 2D case

We consider the continuous Ising model on the squ
lattice. As in the 1D case, we performed first standard M
simultions to locateTc(L) for each linear lattice size for a
givens. Then, we employed the MC histogram technique
calculate critical exponents.

Note that our MC programs are very efficient: the test
the SR Ising model up toL550 gives the critical exponent
within 0.5% of the exact values. Let us add that our resu
for the continuous Ising model with only nearest-neighb
interactions agree within 1% with the exact values of the
Ising model.

Now, for the present LR continuous Ising model, we ha
studied the following values ofs: 0, 0.5, 1, 1.5, 2, and 3, fo
a systematic comparison. For each value, variousL up to 36

FIG. 9. The 2D case. Determination of the critical exponeng
from the slope (g/n) of xmax vs L in ln-ln scale fors52 ~white
circles!, 0.5~black circles!, and 0~triangles!. Errors are smaller than
the size of data points.
TABLE III. The 2D case. Critical exponents from the MC histogram method. For comparison, values forshort-rangeIsing, three-state
Potts, and continuous Ising models are also displayed. See text for comments.

Systems Interactions n g a b h Tc

Ising (q52) SR ~exact! 1 1.75 0 0.125 0.25 2.27
Potts (q53) SR 0.83~1! 1.46~1! 0.34~1! 0.10~1! 0.23~1! 0.99~1!

Ising (q5 infinite) SR 1.02~1! 1.78~1! 20.04(1) 0.13~1! 0.25~1! 0.90~1!

LR (s53) 0.99~1! 1.64~1! 20.02(1) 0.18~1! 0.35~1! 1.28~1!

LR (s52) 0.92~1! 1.34~1! 0.16~1! 0.25~1! 0.54~1! 1.65~1!

LR (s51.5) 0.88~1! 1.13~1! 0.23~1! 0.32~1! 0.73~1! 2.03~1!

LR (s51) 0.84~1! 0.90~1! 0.32~1! 0.39~1! 0.92~1! 2.75~1!

LR (s50.5) 0.76~1! 0.68~1! 0.48~1! 0.42~1! 1.12~1! 4.20~1!

LR (s50) 0.44~1! 0.64~1! 1.12~1! 0.12~1! 1.34~1! 7.74~1!



n

n

av

to

the
the
-

ith
ing
nd
us

el-
in

ons
del
ase

re-

SR

l
n,
us
nted

11 924 PRB 59E. BAYONG AND H. T. DIEP
are used. We show in Fig. 7 the specific heat as a functio
L for two extreme casess52 and 0, for comparison. As
seen, the smallers is the stronger the size effect has o
Tc(L). Histograms have been taken atTc(L) at every size
for eachs. The ln-ln plot ofV1

min andV2
min versusL givesn,

and the ln-ln plot ofxmax versusL yieldsg/n. Examples are
shown in Figs. 8 and 9 fors52, 0.5, and 0. Table III shows
all calculated critical exponents. Though all exponents h
a tendency toward their SR values whens is increased, we
observe that fors52, their values are not yet very close
the values of the SR Ising~and continuous Ising! model. This

FIG. 10. The 2D case.n ~void circles! and g ~black circles!
versuss. Short-range value ofn(g) is drawn by horizontal contin-
ued ~discontinued! line. The values fors50 which are not on the
fitted lines are not shown. See text for comment.
of

e

finding shows that the prediction of Fisheret al.14 for the
discrete Ising model, according to which fors.2 critical
exponents take the SR values, should be modified for
present continuous Ising model. We show in Fig. 10
values ofn and g versusg where the SR values are ap
proached only ats53.

III. CONCLUDING REMARKS

We have studied the general continuous Ising model w
LR interactions decaying as a power law of distance, us
the MC histogram method and finite-size scaling in one a
two dimensions. We found the transition to be continuo
with critical exponents obtained systematically for all r
evant s. Though the general aspects of our results are
agreement with the tendency predicted by RG calculati
for the Ising model, the details of our continuous Ising mo
are somewhat different. For instance, in 1D, for the c
wheres51, our result shows a large value ofn but far from
the divergent value predicted for the Ising model.15 In addi-
tion, unlike in the case of the discrete Ising model, our
sults indicate that there is a phase transition at finiteT even
for s51.1. The finiteT transition disappears at highers. In
2D, our critical exponents indicate that they take the
values only whens>3, instead ofs.2 given by the RG
calculations for the Ising case.14 Moreover, in the classica
regime our results do not verify RG results. In conclusio
we think that it would be interesting to reconsider previo
theories for the case of the continuous Ising model prese
in this paper.
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