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Ground-state magnetization of polymerized spin chains
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We investigate the ground-state magnetization plateaus appearing in spin-1/2 polymerized Heisenberg
chains under external magnetic fields. The associated fractional quantization scenario and the exponents which
characterize the opening of gapful excitations are analyzed by means of Abelian bosonization methods. Our
conclusions are fully supported by the extrapolated results obtained from Lanczos diagonalizations of finite
systems[S0163-182@9)03401-3

Models of low-dimensional magnets, such as stronglyof Heisenberg antiferromagnets in which the exchange cou-
correlated quantum spin chafnand ladderg,are currently  pling interactions],, are all equal but one evegysites, i.e.,
receiving renewed and systematic attention for a variety of
reasons. Amongst the most remarkable are the spin-Peierls _ J(1-4), nipe Zz,
dimerization instability’** the Haldane conjectureand con- g, otherwise. @

cepts such as fractional quantization and topological energ houl h L ¢ i
gaps® These rather complex phenomena are largely owingié should be stressed that periodic arrays of couplings are

to quantum fluctuations of individual spins which tend to'€l€vant to the study of ferrimagnetic materfdisnd that

restore the rotational symmetry of the ground state Depenfso one-dimensional dimerized and trimerized materials are
. 3,12

ing on the exchange interactions, fluctuations can manifesf"oWn to exist . o

themselves collectively into many possible ground states, ThefHamlltonlgnsl of our polym(;rllzed ch?lns 'T the Eres-

particularly in lower dimensions where their effects are mos"c€ Of adimensionlessmagnetic fielch applied along the

severd, Z axis are thus given by

A wealth of issues have been addressed experimentally to L L
confirm these expectations in a series of quasi-one- H.= 1&8.8 _n/2 gz 2
dimensional compoundsAfter a vast body of research, it is P nZl nShShe ngl n @

by now well established that half-integer-spin chains are R
massless whereas integer ones are gasks, also Ref.)9 Here, theS, are spin-1/2 operators, whereas periodic bound-
In spite of the availability of a number of excellent realiza- ary conditions are assumed along thesites of the chain
tions of one-dimensional Heisenberg antiferromagfiége-  [(L/p) € Z]. Despite their simplicity, we will show however
tailed measurements of spin excitations, however, have réhat these Hamiltonians entail a highly nontrivial magnetic
mained confined within the limits of applied magnetic fields behavior controlled solely by the chain periodicityand the
which are low with respect to the exchange interactions thusgxternal fieldh.
precluding a comparison with theory. Nevertheless, ad- As is known?? the full translationally invariantFTI) S
vanced neutron-scattering experiments spanning large mage; chain remains gapless for all magnetizatiofldl)
netic fields regions in relatively low exchange coupling ma-=2/L (2,S}), up to a saturation field where each of the
terials, e.g., C£LuCl,, are now beginning to appedsee, L individual spins becomes fully polarized. On general
e.g., Ref. 10. grounds however, the Lieb-Schultz-Mattis theot&fl indi-
Magnetization properties of spin chains have been theates that FTI Hamiltonians of arbitrary sgncan be gapful
subject of intensive investigations for quite a while. Impor-provided the magnetization per spitM) satisfies &
tant work includes that of Parkinson and Bonheand has —3(M)) e Z. Such gapful excitations should be reflected
recently gained new interest due to the appearance of maghrough the presence of magnetization plateaus, in principle
netization plateaus studied by several authors in a variety it these special values ¢M). However, notice that the
systems?~18As a contribution to the understanding of mas- above theorendoes not provéhe existence of this quantiza-
sive spin excitations in high magnetic fields, here we contion scenario as it refers to nonmagnetic excitations, i.e.,
sider an alternative scenario for their low-temperature realmodes which preserve the total magnetization. Nevertheless,
ization. Specifically, we study the interplay between explicitmagnetization plateaus have been extensively conjectured
breaking of full translational symmetry and applied magneticand observed in both Peierls dimerizétiand trimerized?
fields, say along the direction, in spin-1/2 Heisenberg spin chains, as well as in frustrateet® anisotropic spin-1
chains afT=0. This can be conveniently described by a setsystem$® and ladders modef€. They all are examples of a
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rather subtle phenomenon namely, fractional quantization of We can now study when a plateau will appear in the mag-
a macroscopic physical quantity under external varyingnetization curve for the polymerized chaig). To do that,
fields. Here, we examine this situation for the whole class ofve first have to see which are the values for the magnetiza-
nonhomogeneous chair®), attempting to extend and sys- tion where there could be a plateau, for a given value of the
tematize aspects of quantization emphasized in those studiggeriodp [i.e., solve for Eq(7)] and then we need to evaluate
Following a recent analysis discussed as in Refs. 15,16,18e scaling dimension of the operat®), which at zero loop
and comprehensively accounted in Refs. 6,22, we will applys given by
the by now standard method of Abelian bosonization to Eq.
(2). It is well known that the low-energy properties of the 1
FTI Heisenberg chain,§&=0), are described by @=1 con- d= —
formal field theory of a free bosonic field compactified at 47R
radius R for any given magnetizatiodM) (see, e.g., Ref. \hich is in turn governed by the radius of compactifi-

23). The functional dependence B can be obtained from ..ton as we already stressed. By virtue of the lower
the exact Bethe ansatz solution by solving a set of differenyyund  of the compactification  radié&?® namely

tial equations obtained in Refs. 24 and @5r a fuller deri- R((M))=R(+1)=1/(2\m), it follows from Eq. (8) that

vation consult, fqr instance, R.ef. L&Exploiting this knowl- _d<2 for all magnetization$(M)|<1. This ensures theel-
edge, the bosonized expression of the low-energy effect'ngantcharaCter of the operat@6) which in turn survives in

Hargj:ton;}an (2) indthe rrllon;ogeneous case=0, can be e continuum limit whenever Eq7) is satisfied. Therefore,
readily shown to adopt the form we can conclude that constraifif) constitutes asufficient
conditionultimately responsible for the appearance of mag-

®

— T 1 o . . L .
H :f dX—(Z—(HZ(X)‘F R2(<M>)[&X¢(X)]2], netization plateaus and massive spin excitations. This is our
2 |R°((M)) main result.
3 We now turn to a numerical finite-size analysis. In Figs.

; _ ~ _ ~_ g 1(a)—1(e) we display a variety of magnetization regimes as a
with 1= (1/7)dy¢p, and ¢p= ¢ + dr, d= ¢ — dr. Here, ; I -
the effect of the magnetic field enters through the radius of fUnction of both polymerization parametefyJ=1-6 and

compactificatiorR({M)). This radius governs the conformal applied magnetic f'elqh' This is a _rather compact fo”.“ of
dimensions, in particular the conformal dimension of a Ver_representlng conventional magnetization curves for different

tex operator'#? is given by (8/4wR)2. Within the frame- polymerization strengths. He_re, each line is associ_ated to
work of the theory of Luttinger liquids, it is worth pointing SUCCesSIve values ofM) which decrease monotonically
out also that the compactification radius is related to thefrom top to bottom, as they should for a no_nfrustre_lted_ Sys-
parameteK by R2= K /4. tem. The results' were obtal'ned from exact diagonalization of
The bosonized expressions for the spin operators read f|r_1|te systems via a recursion type Lanczos algorfthep-
plied on each magnetization subspae={0,1, ... L/2}.
(M) To avoid the formation of spurious interfaces, even multiple
- lengths of the lattice periodicity were taken throughout. Us-
2 ing fully isotropic chains up td.=24 sites with periodic
4 boundary conditions, our numerical analysis supports en-
tirely the quantization constraiiit).
As expected, the ground-state “phase diagrams” exhibit
— () e o INT R . - bands of empty regions corresponding to the magnetization
S (x)=e [1-+const:cog2kex+ JAm )], (5) plateaus ofS? referred to above, while regions filled with
where the colons denote normal ordering with respect to thenagnetization lines reflect smooth magnon excitations aris-
ground state with magnetizatiofM). Now we apply this ing in the thermodynamic limiL —~. It can be readily ob-
methodology to compute the effective form of the interac-served that for chains of periodicify>1 (dimers, trimers,
tion. After some algebra, in the limit of weak polymerization etc), a plateaulike structure emerges precisely argtienal
6<<1, it can be readily shown that the most relevant perturmagnon densitieéM )=1-2q/p, (q=0,1, ... p), implicit
bation term is given by in the general scenario of Ef). It is worth remarking on
the robustness of this topological constraint as similar results
continue to hold for anisotropic{X2) chains, the plateaus
Vam ). (6) always appearing at treamevalues of(M).
We can also predict the behavior of the mass @eaidth
This operator will survive in passing from the lattice to the of the plateay with the polymerization strength by means
continuum model, assuming that the fields vary slowly, onlyof a simple zero-loop computatidh Aside logarithmic cor-
when the oscillating factor exji@px'k:) equals one. Since rections to the caséM)=0, this yields
the Fermi level is given b= (7/2)(1—(M)), this in turn
will happen when the condition goc 52— d), 9

1 J¢;
SH(X)~ ——— —— + CONst:COE2KeX+ A ;) +

J2m 9

and

L/p 1
Hi~ 6 2 cos{ 2ke| px’ +§

x'=1

p with d given as in Eq(8).
5(1-(M))eZ (7 To enable an independent check of this result, we now
turn to the issue of extrapolating the numerical finite-size

is satisfied. estimates of the mass gags towards their corresponding
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FIG. 2. Extrapolated values of the gap fpr=2 around(M)
=0, p=3 for(M)=1/3 and,p=4 with (M)=0,1/2. Solid lines are
guides to the eye whereas slopes of dashed lines denote the esti-
mated opening exponents, naméip descending order 0.81),
0.7710) and, 0.6610), ((M)=0). To improve the clarity of the
figure, the uppermost curve was shifted multiplying the gap by a
scale factor 2.5.

Either extrapolation procedure yields basically the same re-
sult with at least three significant digits. This latter variation
ultimately gives an estimative idea of the lower bound of the
extrapolation error. The reliability of our results was checked
FIG. 1. Magnetization contours of finite polymerized chains for also by comparing the trend arising frosmaller systems
(@ p=2, L=24,20,16; (b) p=3, L=24,18,12; (c) p=4, L  (L=<20). When the critical region is approached however,
=24,20,16;(d) p=5, L=20,10(full and dotted lines, respectively the accuracy differs widely, particularly f¢5]<0.2.
and(e) p=6, L=24,18,12. Except fofd), full, dashed, and dotted Although there are alternative extrapolation algorithms
lines stand, respectively, for large, medium, and small sizes. Theyhich do not involve fits to specific forrfSwe should has-
denote all accessible magnetizatio_ns, whereas their_ values decreage, to add however, that their efficiency depends strongly on
from top to bottom. Though numerical accuracynifd is bounded  he gpundance of data. In our case, this is translated in the
by 1077, size effects become evident fdf=J, as no plateaus g\ 4ijapility of matching sizes, already constrained by both
(empty wide bands should occur in the thermodynamic limit. ¢ herindicityp and the antiferromagnetism. Nevertheless,
we were able to find a remarkable agreement with the com-
thermodynamic limits. Note, on one hand, tlaaly extrapo-  pactification radius comprehended in E8) and the expo-
lation procedure by necessity assumes that the asymptotients of Eq.(9). The results are shown in Fig. 2 where we
behavior applies to the values bfwithin reach. However, it display, respectively, the gap openings arogkt)=0, 1/3,
is knowrf? that finite-size corrections to the gap in the exci- 1/2, for p=2, 3, and 4. The dimerized case reproduces the
tation spectrum of the homogeneous Heisenberg chain vamyell-known 2/3 exponent predicted in Ref. 3 and corrobo-
slowly as In(InL)/In?L), thus affecting the results over a rated subsequently by diverse numerical stuéfieo our
wide range of sizes. In fact, as can be seen in Fig. 2, thiknowledge however, opening exponents for 3 (see Fig.
turns out to be the case also for weak polymerization re2), have not been elucidated yet by other investigations.
gimes, 5— 0, where finite-size effects are more pronounced. Finally, it is instructive to comment further on the role of
Therefore, in studying numerically the mass gap behavioguantumfluctuations namely, the tendency of spins to spon-
obtained in Eq(9), we are confronted with restricting con- taneously tilt occasionally due to the Heisenberg uncertainty
siderations to the noncritical region<g|<1, which is, relations, and their relevance to our restltsor classical
however, suitable to test independently the correctness of opins, e.g., Ising and-vector models, the interplay between
bosonization approach. dimensionality andstatistical fluctuations, though crucial in
To estimate the actual masses in the limit-oo, we fitted  determining phase transitions, is not sufficient to entail the
the whole set of finite-size resulfsven integer multiples of fractional behavior studied so far. In fact, an elementary
p within the range 4&L<24), using both linear, and loga- transfer-matrix calculation shows that the Ising equivalent of
rithmic type methodologies of convergertéd,e., Eq. (2) wipes out all but two magnetization plateaus, namely
(M)=0,2fp, (even p>2), their widths behaving linearly
with 8. Thus, it is worth pointing out that Eqé7) and(9), in
gi=g+Ae B, g =g+A/LE (10)  contrast, constitute a genuine macroscopic quantum effect.




122 BRIEF REPORTS PRB 59

In summary, we have presented a bosonization picturéhe many characteristics present ri@al low dimensional
that accounts for the fractional quantization observed in anagnets. A similar analysis in polymerized ladder systems is
class of nonhomogeneous Heisenberg antiferromagnets. Alh progress.
low-energy exponents which characterize the opening of
gapful excitations have been obtained and treated on an It is a pleasure to acknowledge fruitful discussions with
equal footing while checked with Lanczos diagonalizationsA. Honecker, P. Pujol, and F. A. Schaposnik. The authors
of finite systems. Aside from these theoretical pursuits, weacknowledge financial support of CONICET and Fundacio
trust our study will help to convey a clearer understanding ofAntorchas.

1For a comprehensive account, consult I. Affleck, J. Phys.: Con?°K. Totsuka, Phys. Lett. £28 103(1997.

dens. Matterl, 3047(1989. 16D, C. Cabra, A. Honecker, and P. Pujol, Phys. Rev. [#3t5126
2The current status of the field has been reviewed by T. M. Rice, (1997; Phys. Rev. B58, 6241(1998.

Z. Phys. B103 165(1997); E. Dagotto and T. M. Rice, Science 7T, Tonegawat al, Physica B246-247 368(1998; B. S. Shastry

271, 618(1996. and B. Sutherland, Phys. Rev. Letf7, 964 (1981).
3M. C. Cross and D. S. Fisher, Phys. Revi® 402(1979; M. P. 18K . Totsuka, Phys. Rev. B7, 3454 (1998.
M. den Nijs, Physica A95, 449 (1979. 195, Yamamoto, S. Brehmer, and H.-J. Mikeska, Phys. Re57,B
Recent studies of the Peierls transition in CugGe®@mpounds 13610(1998, and references therein.
have been reported by G. Castilla, S. Chakravorty, and V. J20R B Griffiths Phys. Rev133 A768(1964; C. N. Yang and C.
Emery, Phys. Rev. Letf75, 1823(1995. P. Yang,ibid. 150, 321 (1966.

SF. D. M. Haldane, Phys. Let@3A, 464 (1983.
61, Affleck, in Fields, Strings and Critical Phenomena, Les
Houches, Session XLIXdited by E. Brezin and J. Zinn-Justin 224 3. Schulz, Phys. Rev. B4, 6372(1986.

(North-Holland, Amsterdam, 1988 2E D M. Hald Phvs. Rev. Le5. 1358(198
"The role of quantum fluctuations and their particular relevance to, a. ane, Fhys. e_v. S, (1980. .
V. E. Korepin, N. M. Bogoliubov, and A. G. IzergirQuantum

massive spin phases have been stressed by M. Sigrist and A.

2LE. Lieb, T. Schultz, and D. Mattis, Ann. Phyks, 407 (1961); I.
Affleck and E. H. Lieb, Lett. Math. Phy4.2, 57 (1986.

Furusaki, J. Phys. Soc. JpB6, 2385(1996; Y. Motomeet al, Inverse Scattering Method and Correlation Functiof@@am-
ibid. 65, 1949(1996. bridge University Press, Cambridge, 1993
8G. Chaboussanét al, Phys. Rev. Lett79, 925 (1997; Phys. 25N. M. Bogoliubov, A. G. Izergin, and V. E. Korepin, Nucl. Phys.
Rev. B55, 3046(1997. B 275 687(1986.
D. C. Cabra, P. Pujol, and C. von Reichenbach, Phys. Ré8, B %6See, for example, G. H. Golub and C. F. Van Lobfatrix Com-
65 (1998. putations 3rd ed.(Johns Hopkins University Press, Baltimore,
10R. Coldeaet al, Phys. Rev. Lett79, 151(1997; J. Phys.: Con- 1996.
dens. Matter0, 7473(1996. 27|, Affleck et al, J. Phys. A22, 511(1989.
113, B. Parkinson and J. C. Bonner, Phys. Re\82B4703(1985. 28For a review, consult A. J. Guttmann, Phase Transitions and
12K. Hida, J. Phys. Soc. Jp®3, 2359(1994; K. Okamoto, Solid Critical Phenomenaedited by C. Domb and J. LebowitAca-
State Commun98, 245 (1995. demic Press, New York, 1990Vol. 13; see, also, C. J. Hamer
137, Tonegaweet al, J. Phys. Soc. Jpi&5, 3317(1996. and M. N. Barber, J. Phys. A4, 2009(1981.

14M. Oshikawa, M. Yamanaka, and I. Affleck, Phys. Rev. L&8,  2°G. Spronken, B. Fourcade, and Y’fdire, Phys. Rev. B3, 1886
1984(1997. (1986, and references therein.



