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Ground-state magnetization of polymerized spin chains
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We investigate the ground-state magnetization plateaus appearing in spin-1/2 polymerized Heisenberg
chains under external magnetic fields. The associated fractional quantization scenario and the exponents which
characterize the opening of gapful excitations are analyzed by means of Abelian bosonization methods. Our
conclusions are fully supported by the extrapolated results obtained from Lanczos diagonalizations of finite
systems.@S0163-1829~99!03401-3#
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Models of low-dimensional magnets, such as stron
correlated quantum spin chains1 and ladders,2 are currently
receiving renewed and systematic attention for a variety
reasons. Amongst the most remarkable are the spin-Pe
dimerization instability,3,4 the Haldane conjecture,5 and con-
cepts such as fractional quantization and topological ene
gaps.1,6 These rather complex phenomena are largely ow
to quantum fluctuations of individual spins which tend
restore the rotational symmetry of the ground state. Depe
ing on the exchange interactions, fluctuations can mani
themselves collectively into many possible ground sta
particularly in lower dimensions where their effects are m
severe.7

A wealth of issues have been addressed experimental
confirm these expectations in a series of quasi-o
dimensional compounds.8 After a vast body of research, it i
by now well established that half-integer-spin chains
massless whereas integer ones are gapful~see, also Ref. 9!.
In spite of the availability of a number of excellent realiz
tions of one-dimensional Heisenberg antiferromagnets,4,8 de-
tailed measurements of spin excitations, however, have
mained confined within the limits of applied magnetic fiel
which are low with respect to the exchange interactions th
precluding a comparison with theory. Nevertheless,
vanced neutron-scattering experiments spanning large m
netic fields regions in relatively low exchange coupling m
terials, e.g., Cs2CuCl4, are now beginning to appear~see,
e.g., Ref. 10!.

Magnetization properties of spin chains have been
subject of intensive investigations for quite a while. Impo
tant work includes that of Parkinson and Bonner,11 and has
recently gained new interest due to the appearance of m
netization plateaus studied by several authors in a variet
systems.12–18As a contribution to the understanding of ma
sive spin excitations in high magnetic fields, here we c
sider an alternative scenario for their low-temperature re
ization. Specifically, we study the interplay between expl
breaking of full translational symmetry and applied magne
fields, say along thez direction, in spin-1/2 Heisenber
chains atT50. This can be conveniently described by a
PRB 590163-1829/99/59~1!/119~4!/$15.00
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of Heisenberg antiferromagnets in which the exchange c
pling interactionsJn are all equal but one everyp sites, i.e.,

Jn5H J~12d!, n/pP Z,

J, otherwise.
~1!

It should be stressed that periodic arrays of couplings
relevant to the study of ferrimagnetic materials19 and that
also one-dimensional dimerized and trimerized materials
known to exist.3,12

The Hamiltonians of our polymerized chains in the pre
ence of a~dimensionless! magnetic fieldh applied along the
z axis are thus given by

Hp5 (
n51

L

JnSW n•SW n112h/2(
n51

L

Sn
z . ~2!

Here, theSW n are spin-1/2 operators, whereas periodic bou
ary conditions are assumed along theL sites of the chain
@(L/p)PZ#. Despite their simplicity, we will show howeve
that these Hamiltonians entail a highly nontrivial magne
behavior controlled solely by the chain periodicityp and the
external fieldh.

As is known,20 the full translationally invariant~FTI! S
5 1

2 chain remains gapless for all magnetizations^M &
[2/L ^(nSn

z&, up to a saturation field where each of th
L individual spins becomes fully polarized. On gene
grounds however, the Lieb-Schultz-Mattis theorem14,21 indi-
cates that FTI Hamiltonians of arbitrary spinS, can be gapful
provided the magnetization per spin̂M & satisfies (S
2 1

2 ^M &)PZ. Such gapful excitations should be reflect
through the presence of magnetization plateaus, in princ
at these special values of^M &. However, notice that the
above theoremdoes not provethe existence of this quantiza
tion scenario as it refers to nonmagnetic excitations, i
modes which preserve the total magnetization. Neverthel
magnetization plateaus have been extensively conject
and observed in both Peierls dimerized3,15 and trimerized12

spin chains, as well as in frustrated,17,18 anisotropic spin-1
systems13 and ladders models.16 They all are examples of a
119 ©1999 The American Physical Society
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120 PRB 59BRIEF REPORTS
rather subtle phenomenon namely, fractional quantizatio
a macroscopic physical quantity under external vary
fields. Here, we examine this situation for the whole class
nonhomogeneous chains~2!, attempting to extend and sys
tematize aspects of quantization emphasized in those stu

Following a recent analysis discussed as in Refs. 15,16
and comprehensively accounted in Refs. 6,22, we will ap
the by now standard method of Abelian bosonization to
~2!. It is well known that the low-energy properties of th
FTI Heisenberg chain, (d50), are described by ac51 con-
formal field theory of a free bosonic field compactified
radius R for any given magnetization̂M & ~see, e.g., Ref.
23!. The functional dependence ofR can be obtained from
the exact Bethe ansatz solution by solving a set of differ
tial equations obtained in Refs. 24 and 25~for a fuller deri-
vation consult, for instance, Ref. 16!. Exploiting this knowl-
edge, the bosonized expression of the low-energy effec
Hamiltonian ~2! in the homogeneous cased50, can be
readily shown to adopt the form

H̄5E dx
p

2 H 1

R2~^M &)
(P2(x)1R2(^M &)[ ]xf(x)] 2J ,

~3!

with P5(1/p)]xf̃, and f5fL1fR , f̃5fL2fR . Here,
the effect of the magnetic fieldh enters through the radius o
compactificationR(^M &). This radius governs the conforma
dimensions, in particular the conformal dimension of a v
tex operatoreibf is given by (b/4pR)2. Within the frame-
work of the theory of Luttinger liquids, it is worth pointing
out also that the compactification radius is related to
parameterK by R25K/4p.

The bosonized expressions for the spin operators rea

Si
z~x!'

1

A2p

]f i

]x
1const:cos~2kFx1A4pf i !:1

^M &
2

,

~4!

and

Si
2~x!'e2 iApf̃ i @11const:cos~2kFx1A4pf i !:#, ~5!

where the colons denote normal ordering with respect to
ground state with magnetization̂M &. Now we apply this
methodology to compute the effective form of the intera
tion. After some algebra, in the limit of weak polymerizatio
d!1, it can be readily shown that the most relevant pert
bation term is given by

H int'd (
x851

L/p

cosF2kFS px81
1

2DA4p fG . ~6!

This operator will survive in passing from the lattice to t
continuum model, assuming that the fields vary slowly, o
when the oscillating factor exp(i2px8kF) equals one. Since
the Fermi level is given bykF5(p/2)(12^M &), this in turn
will happen when the condition

p

2
~12^M &!PZ ~7!

is satisfied.
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We can now study when a plateau will appear in the m
netization curve for the polymerized chain~2!. To do that,
we first have to see which are the values for the magnet
tion where there could be a plateau, for a given value of
periodp @i.e., solve for Eq.~7!# and then we need to evalua
the scaling dimension of the operator~6!, which at zero loop
is given by

d5
1

4pR2
, ~8!

which is in turn governed by the radius of compacti
cation as we already stressed. By virtue of the low
bound of the compactification radius,24,25 namely
R(^M &)>R(61)51/(2Ap), it follows from Eq. ~8! that
d,2 for all magnetizationsu^M &u,1. This ensures therel-
evantcharacter of the operator~6! which in turn survives in
the continuum limit whenever Eq.~7! is satisfied. Therefore
we can conclude that constraint~7! constitutes asufficient
conditionultimately responsible for the appearance of ma
netization plateaus and massive spin excitations. This is
main result.

We now turn to a numerical finite-size analysis. In Fig
1~a!–1~e! we display a variety of magnetization regimes a
function of both polymerization parametersJ8/J[12d and
applied magnetic fieldsh. This is a rather compact form o
representing conventional magnetization curves for differ
polymerization strengths. Here, each line is associated
successive values of̂M & which decrease monotonicall
from top to bottom, as they should for a nonfrustrated s
tem. The results were obtained from exact diagonalization
finite systems via a recursion type Lanczos algorithm26 ap-
plied on each magnetization subspaceSz5$0,1, . . . ,L/2%.
To avoid the formation of spurious interfaces, even multip
lengths of the lattice periodicity were taken throughout. U
ing fully isotropic chains up toL524 sites with periodic
boundary conditions, our numerical analysis supports
tirely the quantization constraint~7!.

As expected, the ground-state ‘‘phase diagrams’’ exh
bands of empty regions corresponding to the magnetiza
plateaus ofSz referred to above, while regions filled wit
magnetization lines reflect smooth magnon excitations a
ing in the thermodynamic limitL→`. It can be readily ob-
served that for chains of periodicityp.1 ~dimers, trimers,
etc.!, a plateaulike structure emerges precisely at therational
magnon densitieŝM &5122q/p, (q50,1, . . . ,p), implicit
in the general scenario of Eq.~7!. It is worth remarking on
the robustness of this topological constraint as similar res
continue to hold for anisotropic (XXZ) chains, the plateaus
always appearing at thesamevalues of^M &.

We can also predict the behavior of the mass gap~width
of the plateau!, with the polymerization strengthd by means
of a simple zero-loop computation.27 Aside logarithmic cor-
rections to the casêM &50, this yields

g}d1/~22d!, ~9!

with d given as in Eq.~8!.
To enable an independent check of this result, we n

turn to the issue of extrapolating the numerical finite-s
estimates of the mass gapsgL towards their corresponding
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thermodynamic limits. Note, on one hand, thatany extrapo-
lation procedure by necessity assumes that the asymp
behavior applies to the values ofL within reach. However, it
is known20 that finite-size corrections to the gap in the ex
tation spectrum of the homogeneous Heisenberg chain
slowly as ln(lnL)/ln2(L), thus affecting the results over
wide range of sizes. In fact, as can be seen in Fig. 2,
turns out to be the case also for weak polymerization
gimes,d→0, where finite-size effects are more pronounc
Therefore, in studying numerically the mass gap behav
obtained in Eq.~9!, we are confronted with restricting con
siderations to the noncritical region 0,udu<1, which is,
however, suitable to test independently the correctness o
bosonization approach.

To estimate the actual masses in the limitL→`, we fitted
the whole set of finite-size results~even integer multiples o
p within the range 4<L<24), using both linear, and loga
rithmic type methodologies of convergence,28 i.e.,

gL.g1Ae2BL, gL.g1A/LB. ~10!

FIG. 1. Magnetization contours of finite polymerized chains
~a! p52, L524,20,16; ~b! p53, L524,18,12; ~c! p54, L
524,20,16;~d! p55, L520,10~full and dotted lines, respectively!
and~e! p56, L524,18,12. Except for~d!, full, dashed, and dotted
lines stand, respectively, for large, medium, and small sizes. T
denote all accessible magnetizations, whereas their values dec
from top to bottom. Though numerical accuracy inh/J is bounded
by 1027, size effects become evident forJ85J, as no plateaus
~empty wide bands!, should occur in the thermodynamic limit.
tic
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Either extrapolation procedure yields basically the same
sult with at least three significant digits. This latter variati
ultimately gives an estimative idea of the lower bound of t
extrapolation error. The reliability of our results was check
also by comparing the trend arising fromsmaller systems
(L<20). When the critical region is approached howev
the accuracy differs widely, particularly forudu,0.2.

Although there are alternative extrapolation algorithm
which do not involve fits to specific forms28 we should has-
ten to add however, that their efficiency depends strongly
the abundance of data. In our case, this is translated in
availability of matching sizes, already constrained by bo
the periodicityp and the antiferromagnetism. Neverthele
we were able to find a remarkable agreement with the co
pactification radius comprehended in Eq.~8! and the expo-
nents of Eq.~9!. The results are shown in Fig. 2 where w
display, respectively, the gap openings around^M &50, 1/3,
1/2, for p52, 3, and 4. The dimerized case reproduces
well-known 2/3 exponent predicted in Ref. 3 and corrob
rated subsequently by diverse numerical studies.29 To our
knowledge however, opening exponents forp>3 ~see Fig.
2!, have not been elucidated yet by other investigations.

Finally, it is instructive to comment further on the role o
quantumfluctuations namely, the tendency of spins to spo
taneously tilt occasionally due to the Heisenberg uncerta
relations, and their relevance to our results.7 For classical
spins, e.g., Ising andn-vector models, the interplay betwee
dimensionality andstatisticalfluctuations, though crucial in
determining phase transitions, is not sufficient to entail
fractional behavior studied so far. In fact, an element
transfer-matrix calculation shows that the Ising equivalen
Eq. ~2! wipes out all but two magnetization plateaus, nam
^M &50,2/p, ~even p.2), their widths behaving linearly
with d. Thus, it is worth pointing out that Eqs.~7! and~9!, in
contrast, constitute a genuine macroscopic quantum effe

r

y
ase

FIG. 2. Extrapolated values of the gap forp52 around^M &
50, p53 for ^M &51/3 and,p54 with ^M &50,1/2. Solid lines are
guides to the eye whereas slopes of dashed lines denote the
mated opening exponents, namely~in descending order!, 0.8~1!,
0.77~10! and, 0.66~10!, (^M &50). To improve the clarity of the
figure, the uppermost curve was shifted multiplying the gap b
scale factor 2.5.
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In summary, we have presented a bosonization pic
that accounts for the fractional quantization observed i
class of nonhomogeneous Heisenberg antiferromagnets
low-energy exponents which characterize the opening
gapful excitations have been obtained and treated on
equal footing while checked with Lanczos diagonalizatio
of finite systems. Aside from these theoretical pursuits,
trust our study will help to convey a clearer understanding
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the many characteristics present inreal low dimensional
magnets. A similar analysis in polymerized ladder system
in progress.
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