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Theory of roughness-induced anisotropy in ferromagnetic films: The dipolar mechanism

Rodrigo Arias and D. L. Mills
Department of Physics and Astronomy, University of California, Irvine, California, 92697

~Received 7 January 1999!

When ferromagnetic films are grown on stepped surfaces, or rough surfaces upon which there is a preferred
direction, additional magnetic anisotropy associated with the presence of the roughness is found in experi-
ments. This paper presents the theory of the contribution of one mechanism to this anisotropy, that is associ-
ated with the roughness-induced increase in magnetic dipolar energy. When the film surface profiles are
modulated, the magnetization of the film fluctuates in direction, thus generating stray dipolar fields. The energy
stored in such fields depends on the angle between the mean magnetization, and the preferred axis of the
modulated surface profile. We present explicit calculations for various models of films on stepped surfaces.
@S0163-1829~99!00218-0#
er
ti
c
nt

sc
tie
ce
co
y-

a
.
b
he
t
u
W
p
in
ch

a
f
e
ra

p
it
s

fla
p

th
e
gh
ot

ion
er
a

r-
t in
. If
ag-
at
tive

ese
age

ith
tion
To
ic-
dc
-
our

py
ess
ple

ess
IV
con-

e

,

l

r

I. INTRODUCTION

There is currently great interest in the properties of v
thin ferromagnetic films, possibly incorporated into magne
multilayers or superlattice structures. Applications of su
materials to magnetic recording have been realized rece
and such structures may possibly lead to a generation
magnetic memories. More generally, we have here a fa
nating class of magnetic materials, with unique proper
which range from the well-known giant magnetoresistan
to magnetic phase diagrams that are rich and subject to
trol through variations in the microstructure of the multila
ers.

Most theoretical studies explore the properties of ide
ized films, whose surfaces are perfectly smooth and flat
fact, the ultrathin films of current interest are grown on su
strates which themselves are not smooth. Even the hig
quality substrate has steps, for example. One thus mus
quire about the influence of steps, or more generally, of s
face roughness, on the magnetic properties of such films.
note that Slonczewski1 has argued that the presence of ste
plays a critical role in the biquadratic coupling found
Fe/Cr multilayers. It appears to be the case that this me
nism indeed dominates, for some samples.2

In the recent literature, attention has been directed tow
experimental studies of roughness-induced anisotropy,
ultrathin films grown on surfaces whose profile has be
modulated in a unidirectional manner; a stepped subst
provides an example of such a surface.3–8 Several mecha-
nisms have been invoked to explain such data. For exam
magnetic ions which reside very close to a step reside in s
of low symmetry, and thus experience anisotropy who
character and strength differs from ions which sit on a
region. Such ions transmit information about the anisotro
they experience by virtue of their exchange coupling to
magnetic species elsewhere in the film. Also, the presenc
steps will lead to strain within the magnetic film, and throu
magnetoelastic coupling this can generate magnetic anis
pies in the film.

In this paper we present the theory of a third contribut
to the anisotropy, and evaluate its magnitude for sev
models of thin films with modulated surface profiles. In
PRB 590163-1829/99/59~18!/11871~11!/$15.00
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thin film with perfectly flat surfaces, in the absence of pe
pendicular anisotropy, the magnetization will be constan
magnitude and direction, and parallel to the film surfaces
the surface profiles are modulated, the direction of the m
netization within the film will wander. A consequence is th
fields of dipolar character are generated both by the effec
volume magnetic charge density2¹•MW , and also surface
charges. There is an energy density associated with th
fields that is a function of the angle between the aver
magnetization, and the preferred direction associated w
the modulated surface profile. Thus, we have a contribu
to the anisotropy energy from this dipolar mechanism.
initiate such studies, we consider the simplest physical p
ture. We have a ferromagnetic film placed in an external
magnetic fieldHW 0 parallel to its nominal surface. We con
sider the Zeeman, dipolar, and exchange energies in
analysis.

In Sec. II, we derive the roughness-induced anisotro
energy, for the case where the amplitude of the roughn
may be assumed to be small. In Sec. III we consider a sim
example: a semi infinite medium with a surface roughn
corresponding to a single Fourier component. Section
presents a sequence of numerical studies, and Sec. V
cluding remarks.

II. THEORETICAL DISCUSSION

The geometry we consider is illustrated in Fig. 1. W
have a ferromagnetic film, of nominal thicknessD. By this
we mean we have an upper surface given byy5D/2
1j.(x,z) where the average ofj.(x,z) over the entire sur-
face is zero, i.e.,̂ j.&50. Similarly, the lowest surface is
y52D/21j,(x,z), where ^j,&50. Thus, y5D/2 is the
nominal upper surface,y52D/2 the nominal lower surface
andD is the average thickness of the film.

An external dc magnetic fieldHW 0 is applied parallel to the
z axis, located in the planey50, parallel to the two nomina
surfaces. If j.(x,z)5j,(x,z)50 everywhere, then the
magnetizationMW 0 will lie in plane, uniform in magnitude
and direction, and also parallel toHW 0. ~We neglect anisot-
ropy perpendicular to thex2z plane, save for the dipola
11 871 ©1999 The American Physical Society
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11 872 PRB 59RODRIGO ARIAS AND D. L. MILLS
anisotropy built into our analysis.! If either j.(x,z) or
j,(x,z) are nonzero, or both are nonzero, there will be s
tial variations of the magnetization direction in the film, th
MW 0 becomes a function of position,MW 0(xW ). These spatial
variations will clearly increase the Zeeman and excha
energies. In addition, there will be dipolar fields generated
the effective magnetic charge densityrM(xW )52¹•MW 0(xW )
within the film, and also by magnetic surface charges w
origin in those areas of the surface whereMW 0(xW ) has a non-
zero perpendicular component. These dipolar fields incre
the energy of the system as well. If the surface roughness
a directional character, say the film is grown on a step
surface, then this energy will clearly depend on the anglu
between the preferred direction, and that of the applied m
netic fieldHW 0.

In this section, we obtain expressions for these roughn
induced energy changes, within the framework of a per
bation theoretic scheme. We assume the deviation in
magnetizationMW 0(rW) from the nominal valueMW 05M0ẑ is
small, and may be calculated to first order inj. and j,.
With this information in hand, we may calculate the ener
change of the system to second order in these quantities.
section is devoted to the basic formulation of the theory, a
subsequent sections to applications.

In the presence of roughness, we write the magnetiza
in the form

MW ~xW !5S M02
1

2M0
@mx

2~xW !1my
2~xW !# D ẑ1mx~xW !x̂1my~xW !ŷ,

~1!

where the quantitiesmx(xW ) andmy(xW ) are of first order in the
amplitudes of the roughness. The energy of the system
then

E52H0E d3xMz~xW !2
1

2E d3xHW d~xW !•MW ~xW !

1
A

M0
2E d3x(

a
u¹W Mau2. ~2!

In these expressions,HW d(xW ) is the dipolar field generated b
nonuniformities in the magnetization, produced by t
roughness. The first term in Eq.~2! is the Zeeman energy

FIG. 1. Schematics of a rough film, with the applied fieldHW 0

5H0ẑ in the plane of the nominal film of thicknessD. The ampli-
tudesj.,,(x,z) describe the upper and lower surfaces roughne
-
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the second is the dipolar energy, and the third is the
change energy. The integrals are over the actual volum
the rough film. We ignore surface anisotropy, so when
generate expressions formx(xW ) and my(xW ), we use the
boundary conditionsn̂•¹mx50, and n̂•¹my50 on each
surface, wheren̂ is a normal to the surface. Since, in fact,mx
andmy are first order in the roughness amplitude, so long
we require these quantities only to lowest order, we m
replace the exact boundary conditions by the four statem

]mx,y

]y U
y56D/2

50. ~3!

We write the total energy of the system as

E52H0M0V1DE, ~4!

where 2H0M0V is the Zeeman energy of the uniforml
magnetized film, andDE is the change induced by the pre
ence of the roughness. For the Zeeman term,

DEZ5
H0

2M0
E

V̄
d3x~mx

21my
2!, ~5!

where, sincemx andmy are first order in the roughness, th
integral is confined to the volumeV̄ between the nomina
surfaces at6D/2. We write for the change in dipolar energ
with HW d(xW )5hx(xW ) x̂1hy(xW ) ŷ1hz(xW ) ẑ,

DED52
M0

2 E
V
d3xhz~xW !2

1

2EV̄
d3x@mxhx1myhy#. ~6!

In the second term in this expression, bothmx andhx are first
order in the roughness amplitude, so we may integrate o
over the ‘‘nominal film’’ volumeV̄. In the first term, sincehz
is first order, we must take due account of the actual rou
ened surfaces, as we shall see shortly.

In regard to the exchange energy, note that

E
V
d3xu¹W Ma~xW !u25E

V
d3x$¹W •~Ma¹W Ma!2Ma¹2Ma%

52E
V
d3xMa¹2Ma1E

S
dSMan̂•¹Ma

52E
V
d3xMa¹2Ma . ~7!

The integral over the film surfaces vanishes to all orders
the roughness, by virtue of our boundary conditionn̂•¹W Ma
50 on the surface. We then have, with

hx,y
(ex)5

2A

M0
2
¹2mx,y , ~8!

DEex52
1

2EV̄
d3xFmxhx

(ex)1myhy
(ex)2

A

M0
2
¹2~mx

21my
2!G ,

~9!

where the last term has its origin inMz¹
2Mz . We have

.
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E
V̄
d3x¹2~mx,y

2 !5E
S̄
dSn̂•¹W mx,y

2 52E
S̄
dSmx,yn̂•¹W mx,y50

~10!

by virtue of the boundary condition. Hence, the last te
vanishes. Thus,

DEex52
1

2EV̄
d3x@mxhx

(ex)1myhy
(ex)#. ~11!

Relations between various contributions noted above fol
when one realizes that for the system to be in equilibriu
we must have the zero torque condition

MW ~xW !3HW eff50, ~12!

whereMW (xW ) is given in Eq.~1!, and the effective field sense
by the magnetization is the sum of the Zeeman field,
dipole field, and the exchange field. The contributions to
local torque to first order in the roughness amplitude rea

MW ~xW !3HW eff5 x̂@H0my2M0~hy1hy
(ex)!#

1 ŷ@M0~hx1hx
(ex)!2H0mx#. ~13!

We then require the relation

mx,y5
M0

H0
~hx,y1hx,y

(ex)!. ~14!

Then notice

DED1DEex52
M0

2 E
V
d3xhz~xW !

2
1

2EV̄
@mx~hx1hx

(ex)!1my~hy1hy
(ex)!#

52
M0

2 E
V
d3xhz~xW !2

H0

2M0
E

V̄
d3x@mx

21my
2#.

~15!

Notice that the second term precisely cancels the Zee
energy, so that we have quite simply

DE52
M0

2 E
V
d3xhz~xW !, ~16!

where as we have emphasized earlier, the integration on
right-hand side of Eq.~16! is over the volume of the rea
film, with its rough surfaces.

Now in the magnetostatic approximation,

hz~xW !52
]F

]z
~17!

with F the magnetic potential, a quantity first order in t
roughness amplitude, to leading order. Thus,

DE5
M0

2 E
V

]F

]z
dzdydx. ~18!

To evaluate the integration in Eq.~18!, we must consider
various regions. Suppose first that the roughness is confi
w
,

e
e

an

he

ed

to a finite domain of the variablez, from 2L/2 to L/2. In the
end we letL→`. But for finite L, F→0 asz→1`, andz
→2`. Now supposej. has the maximum~positive! value
jM

. , and a maximum negative value2jm
. . Similarly, j,

varies from1jm
, to 2jM

, . Then in the region (D/2)2jm
.

.y.2(D/2)1jm
, . There is zero contribution to the inte

gral, since we integrate continuously from2` to `, andF
vanishes at the two limits for finiteL.

We then concentrate on the regime wherey lies between
(D/2)1jM

. , and (D/2)2jm
. , and similarly for the lower sur-

face. We examine this contribution with the aid of Fig. 2. F
fixed x andy, we imagine the contribution by integrating inz
along the solid line in the figure. We have contributions fro
only those positions of the solid line which lie within th
film. We focus attention on the contribution from the partic
lar line segment AB. The contribution to the integral in E
~18! from this segment is@F(x,y,zB)2F(x,y,zA)#dxdy.
Now let dSW be an element of~vector! surface area on the rea
film, using the usual convention thatdSW points outward from
the volume bounded. Then at point B,dSz

(B)5dxdy, while at
point A, dSz

(A)52dxdy. Hence the contribution to the inte
gral from this line segment is F(x,y,zB)dSz

(B)

1F(x,y,zA)dSz
(A) . From this argument, one concludes th

Eq. ~18! may be written as

DE5
M0

2 E
S
dSzF, ~19!

where the integral is over both surfaces of the film, upper a
lower. Indeed the result of Eq.~19! follows directly from Eq.
~18! by use of a general version of the divergence theore
*dV]F/]xi5*dSiF.

If the surfaces of the film are perfectly flat,dSz[0, and
DE50. The quantitydSz is thus nonzero only whenj.(x,z)
and/orj,(x,z) are nonzero. To lowest order in the roug
ness, it is an elementary exercise to show that on the upp
lower surface

dSz
.,,57dxdz

]j.,,

]z
. ~20!

When this is inserted into Eq.~19!, we may simply calculate
the magnetic potentialF to first order in the roughness am
plitude, evaluate it on the nominal surfacesy56D/2, and
integrate overx andz.

FIG. 2. A path of integration in the rough surface region.
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We thus arrive at a remarkably simple expression for
total change in energy of the system, to second order in
roughness amplitude:

DE52
M0

2 E dxdzFF~x,D/2,z!
]j.

]z
~x,z!

2F~x,2D/2,z!
]j,

]z
~x,z!G . ~21!

We shall Fourier transform the various quantities which
ter the above expression. For example, ifrW lies in the xz

plane, andQW 5Qxx̂1Qzẑ, we write

F~x,y,z!5 (
Qx ,Qz

F~QW ;y!eiQW •rW , ~22!

and similarly forj.,,(x,z). Then the change in energy pe
surface area is

DE

A 5
iM 0

2 (
Qx ,Qz

Qz@j.~QW !* F~QW ;D/2!

2j,~QW !* F~QW ;2D/2!#, ~23!

whereA is the quantization area@j.,,(2QW )5j.,,(QW )* #.
Our task is now to find the magnetic potentialF(xW ), for the
film with rough surfaces. For this purpose, we consider si
soidally modulated surfaces for which

j.,,~x,z!5j.,,~QW !eiQW •rW1c.c. ~24!

~c.c. represents complex conjugate!. If bW (xW )5hW (xW )
14pmW (xW )52¹F(xW )14pmW (xW ), we require ¹•bW (xW )50
everywhere within the film, or when we Fourier transform
quantities,

F ]2

]y2
2Q2GF~QW ,y!24p iQxmx~QW ,y!24p

]my~QW ,y!

]y
50.

~25!

Here Q25Qx
21Qz

2 . Two additional relations follow from
Eq. ~14!. These take the form

M0

]F

]y
~QW ,y!1FH01

2A

M0
S Q22

]2

]y2D Gmy~QW ,y!50

~26!

and

iQxM0F~QW ,y!1FH01
2A

M0
S Q22

]2

]y2D Gmx~QW ,y!50.

~27!

The three statements in Eq.~25!, and Eqs.~26! and ~27!,
allow us to determine the most general form ofF, mx and
my within the film. Outside the film, of course,mx5my50,
and also¹2F50, or

F ]2

]y2
2Q2GF~QW ,y!50. ~28!
e
e

-

-

l

We thus have fringing fields outside the film gener
ed from a magnetic potential with the spatial variati
exp(iQW •rW)exp(2Qy) above the film, and exp(iQW •rW)exp(Qy)
below the film.

Once we find the most general solution of the magne
potential andmW inside the film, we must match these to th
magnetic field outside the film, through appropriate boun
ary conditions. Four boundary conditions are stated alre
in Eq. ~3!. In addition, we must insure continuity of tange
tial components ofhW , and the normal component ofBW across
the actual surface of the film. It is well known that conse
vation of tangentialhW is assured if the magnetic potentia
inside and outside the film are continuous. The magn
potentials should be matched across the actual rough
faces. ButF is nonzero only by virtue of the roughness.
we are interested only in the contribution toF first order in
j. andj,, it suffices to match the magnetic potentials insi
and outside the film at the nominal surfacesy56D/2.

The requirement that normal components ofbW be con-
served requires a bit of discussion. Consider for the mom
the upper surface, and letn̂ be the unit normal, erected at
point. We have, in the coordinate system of Fig. 1

n̂5
1

@11~]j./]x!21~]j./]z!2#1/2F ŷ2
]j.

]x
x̂2

]j.

]z
ẑG

. ŷ2
]j.

]x
x̂2

]j.

]z
ẑ, ~29!

where the last expression is to lowest order inj.. Then just
inside the film, if only first order terms are retained,

n̂•bW 52
]F

]y
24pM0

]j.

]z
14pmy, ~30!

where the magnetic potential is evaluated at the nom
boundaryy51D/2. If the magnetic potential above the film
is F., then we conserve normalbW to first order by requiring

]F

]y U
1D/2

2
]F.

]y U
1D/2

24pmyu1D/2524pM0

]j.

]z
.

~31!

A similar statement applies at the lower surface.
We thus have a total of eight boundary conditions. Six

these, the four exchange boundary conditions, and the
quirement thatF be continuous across each surface, are
mogeneous equations. In contrast, Eq.~31! and its analog on
the lower surface are inhomogeneous equations. These a
us to obtain all quantities, to first order inj. andj,.

We can now make one general observation, before p
ceeding with an explicit calculation. Suppose, say, the s
face has steps of linear grooves, parallel to the applied m
netic fieldHW 0 and nominal magnetizationMW 0. Thenj. and
j, will depend only onx, so the right-hand side of Eq.~31!
and its partner on the lower surface vanish. All eight boun
ary conditions then become homogeneous equations. In
circumstanceF5mx5my[0. The nominal magnetization
MW 0 must be aligned so it has a nonzero projection along
line perpendicular to the steps or grooves for stray fields
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be generated. Since these stray fields necessarily increas
energy of the system, it follows that so far as the dipo
mechanism is concerned, the easy direction will always
parallel to edges of steps or grooves.

The structure of the analysis is now complete. We p
ceed by seeking solutions formx , my , and F within the
film, through use of Eqs.~25!–~27!. We seek solutions with
F, mx , and my each proportional to exp(2ay). There are
then three values found fora2. The first,a1

2 we may call a
pure exchange root:

a1
25Q21

M0

2A
H0. ~32!

When a25a1
2 , F50 so no magnetic fields are generat

by the spins. We havemy57( iQx /a)mx (a is now consid-
ered as positive!, for this case. Then

a2,3
2 5Q21

M0

4A
@B06AB0

2132pAQz
2#, ~33!

where B05H014pM0. The most general solution for th
magnetic potential in the film is then

F~QW ,y!5(
i 51

3

@F i
(2)e2a i y1F i

(1)e1a i y#, ~34!

and expressions formx and my follow from Eqs. ~26! and
~27!. Above the film, we haveF(QW ,y)5F. exp(2Qy), and
below we haveF(QW ,y)5F, exp(Qy). The eight constants
F., F,, F i

(1) , andF i
(2) follow from submitting the so-

lution just described to the boundary conditions, which
see are in the form of eight inhomogeneous equations.

We inquire into the role of the exchange in what follow
The limit A→0 describes the limit where the exchange
ignored, and only Zeeman and dipolar energies enter. AA
→0, the rootsa1

2 and a2
2 both approach infinity, and thei

contribution becomes vanishingly small. Then

lim
A→0

a3
25

H0

B0
Qz

21Qx
2. ~35!

The ‘‘dipole only’’ problem may be addressed by settinga1
and a2 aside, including only the terms exp(6a3y) in the
analysis, and employing only the boundary conditions wh
describe the conservation of tangentialhW and normalbW .

We conclude by arranging some results above in a fo
where various limiting behaviors may be perceived m
readily. In the ferromagnet, a fundamental length isLN , the
width of a domain wall of Ne´el character. In zero externa
magnetic field, in our notation,LN5(A/4pM0

2)1/2. We intro-
duce the wave vectorQN51/LN5(4pM0

2/A)1/2. When we
are considering spatial modulations whose length scal
very long compared toLN , we expect exchange to be qui
unimportant in describing the spatial modulation in the m
netization, and the ‘‘dipole only’’ theory should suffice. W
are then in the regime where the important wave vectorQ
are small compared toQN . We shall see, however, that th
expectation is only correct when the applied field is not
weak. Conversely, when we examine the response to w
the
r
e

-

e

.

h

e

is

-

o
ve

vectorsQ@QN , we must incorporate exchange, to obtain
accurate description. We have, changing notation,

a1
25Q21

QN
2

2 S H0

4pM0
D , ~36!

and

a2,3
2 5Q21

QN
2

4 S B0

4pM0
D F16A118S 4pM0

B0
D 2 Qz

2

QN
2 G .

~37!

In the next section, we explore two simple limiting e
amples.

III. AN EXAMINATION OF A SIMPLE LIMITING CASE

We have carried out a series of numerical studies of s
induced anisotropy, through use of the theory developed
Sec. II. These results will be presented in Sec. IV. Before
turn to these, it is useful to explore a simple limiting cas
where analytic expressions for various quantities which en
the theory may be obtained. This provides one with insi
into the role of the various interactions contained within i

Consider a semi-infinite ferromagnet, which resides in
lower half spacey,0. The external dc magnetic fieldHW 0 is
parallel to thez direction, so if the surface is perfectl
smooth the magnetizationMW 0 is constant in direction every
where, and parallel toHW 0. We haveMW 05M0ẑ. Now suppose
j.(x,z) depends only onz, so if we imagine the surface
contains steps,MW 0 and HW 0 are perpendicular to the ste
edges. Here, we confine our attention to the response o
system to a single Fourier component in the modulated
face profile, and furthermore the profile is ‘‘perpendicula
to the applied magnetic field, so we letj.(x,z)
5j0 exp(iQz)1c.c. If desired, Eq.~23! applied to this cir-
cumstance may be used to synthesize an expression forDE
for actual profiles.

One sees easily that for this case,mx50 so onlyF and
my are nonzero. If we seek solutions where bothmy andF
have the spatial variation exp(iQz1ay), then we find two
roots fora. We refer to these asa0 andax , respectively, for
reasons that will be clear shortly. One has

a0
25Q21

M0

4A
@B02AB0

2132pAQ2# ~38!

and

ax
25Q21

M0

4A
@B01AB0

2132pAQ2#. ~39!

Various limiting behaviors ofa0 andax are of interest. First,
suppose we ignore the influence of exchange, and we c
struct a theory where only Zeeman and dipolar energies
ter. We may do this by taking the limitA→0 in all quanti-
ties. When we do this, asA→0, ax

2→M0B0 /2A→`. We
shall see below that in this limit, the rootax vanishes from
the problem. This is thus an ‘‘exchange root,’’ that enters
analysis by virtue of the presence of exchange. Only
‘‘dipole root’’ a0 remains. One has
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lim
A→0

a05S H0

B0
D 1/2

Q, ~40!

a special case of Eq.~35!. Here we haveQx50, Qz5Q.
Notice that in zero external magnetic field,H0→0, in facta0
vanishes. If we ignore exchange, and retain only the dip
and Zeeman energies, then in weak applied magnetic fie
the disturbance produced by modulating the surface pro
penetrates very deep into the material.

However, when exchange is present, asH0→0, in facta0
remains quite well behaved and finite. One has

lim
H0→0

a0
25

pM0
2

A F11
AQ2

pM0
2

2S 11
2AQ2

pM0
2 D 1/2G . ~41!

Thus, in weak applied magnetic fields, exchange enters c
cally in the discussion of the response of the system
modulations in the surface profile.

Now suppose we consider the limitQ→`, or in the lan-
guage used at the end of Sec. II, the regimeQ@QN . One
sees easily that

lim
Q→`

a05 lim
Q→`

ax5Q. ~42!

We shall see implications of these limiting behaviors shor
It is a straightforward matter to find expressions forF

and my , regarding each as superpositions of exp(a0y) and
exp(axy), in the substrate. We have

my~y,z!5my~Q,y!eiQz1c.c., ~43!

and similarly forF(y,z). One finds, fory,0,

my~Q,y!5 iM 0j0S a02Q

a01ax2QD S ax2Q

ax2a0
D

3~axe
a0y2a0eaxy!, ~44!

and if we refer to the potential in the medium asF,(Q,y),
then

F,~Q,y!5
4p iM 0j0a0ax

~a02ax!~a01ax2Q!

3S Fax2Q

a01QGea0y2Fa02Q

ax1QGeaxyD . ~45!

Outside the material, in the regiony.0,

F.~Q,y!52
i4pM0~a01ax!a0axj0

~a01ax2Q!~a01Q!~ax1Q!
exp~2Qy!.

~46!

Notice that in all the expressions above, if we ignore e
change by taking the limitA→0, ax indeed drops out of al
the expressions, and only the ‘‘dipole root’’ remains.

Finally, the energy change per unit areaDE/A produced
by modulating the surface profile is

DE

A 5
4pM0

2Quj0u2a0ax~a01ax!

~a01Q!~ax1Q!~a01ax2Q!
. ~47!

Suppose now that we keep the magnetization pinned rig
in place, in the presence of the modulated surface pro
ar
s,

le

ti-
o

.

-

ly
e.

That is, we overlook the fact that the magnetization direct
varies in the substrate, after the surface profile is modula
Then stray magnetic fields are generated only by the m
netic charges on the surface. If we refer to the magn
potential in this picture asF (0)(y,z), and the energy chang
asDE(0), then for all values ofy we have

F (0)~y,z!52 i2pM0j0 exp~2Quyu!exp~ iQz!, ~48!

and one finds

DE(0)

A 52pM0
2Quj0u2. ~49!

Of interest is the ratioDE/DE(0); this provides us with the
error we make if we assume simply that the magnetizatio
fixed rigidly, with fields generated by the surface magne
poles. We have

DE

DE(0)
5

2a0ax~a01ax!

~a01Q!~ax1Q!~a01ax2Q!
. ~50!

On physical grounds, it is the case always thatDE/DE(0)

,1. That is, the ‘‘rigid magnetization’’ picture always ove
estimates the step-induced anisotropy. This follows beca
DE is the change in energy produced by a magnetiza
distribution that minimizes the total energy of the syste
Hence,DE,DE(0) always. Let us suppose that we igno
the influence of the exchange by allowingA to vanish. Then
as we have seen,ax→`, and if we refer to the energy
change in this case asDE(DIP), we have

DE(DIP)

DE(0)
5

2a0

a01Q
, ~51!

or with a05(H0 /B0)1/2Q in this limit, we have

DE(DIP)

DE(0)
5

2H0
1/2

B0
1/21H0

1/2
. ~52!

In the weak-field regime,H0!4pM0, we have a strongly
field-dependent step-induced anisotropy energy. WhenH0
@4pM0 , DE(DIP) does approach the rigid magnetizatio
limit.

Now we explore the full theory, with exchange include
We then encounter a characteristic length scale, the widthLN
of the Néel wall, discussion in Sec. II. We have the chara
teristic wave vectorQN5(4pM0

2/A)1/2. WhenQ@QN , we
are considering a surface with features on the length s
small compared toLN , and whenQ!QN , the length scale is
very long compared toQN .

WhenQ@QN , we have seen above thata0.ax.Q. In
this regime, we find

DE

DE(0)
.1. ~53!

As one would expect, the magnetization cannot follow fe
tures on such a small length scale, and the rigid magnet
tion picture works well.

The regimeQ!QN is a bit more complex. In this limit
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ax.
QN

A2
S B0

4pM0
D 1/2

, ~54!

while a0 is well approximated by

a05QFH0

B0
12S 4pM0

B0
D 2Q2

QN
2 G 1/2

. ~55!

Clearly ax@a0 , so to excellent approximation

DE

DE(0)
.

2a0

a01Q
, ~56!

as in Eq.~51!. If the applied external fieldH0 is very weak,
we find an additional length scale long compared toLN en-
ters the problem. This isLc5(B0 /H0)1/2LN . Associated
with this is the wave vectorQc5QN(H0 /B0)1/2. Thus,a0
can be written as

a05QF Qc
2

QN
2

12 S 4pM0

B0
D 2Q2

QN
2 G 1/2

. ~57!

WhenH0!4pM0 or Qc!QN , we have two regimes:
~i! Qc!Q!QN : Thena0.A2Q2/QN , and we have

DE

DE(0)
.2

A2Q

QN
@2S H0

B0
D 1/2

52
Qc

QN
. ~58!

While one’s first thought is that for length scales long co
pared toLN , exchange effects can be set aside, and the ‘
pole only’’ theory should be appropriate, we see excha
still enters importantly. The theory with exchange ignor
underestimates the roughness-induced anisotropy sub
tially.

~ii ! 0!Q!Qc!QN : Here a0.(H0 /B0)1/2Q, the ‘‘di-
pole only’’ result, and one may safely ignore the influence
exchange.

In any real material, of course, anisotropy will be prese
If the external fieldH0 is applied parallel to the easy axi
then one may include anisotropy by replacingH0 by (H0
1Ha), with Ha the strength of the effective anisotropy fiel
For Fe, as an example,Ha.550 G, while 4pM0521 kG.
Thus this material, in zero external magnetic field, can
characterized by the ratioH0

(eff)/4pM0.0.02. The weak-
field limit just discussed thus applies to Fe in zero exter
magnetic field, with anisotropy treated in this manner.

IV. NUMERICAL STUDIES OF DIPOLAR ANISOTROPY
INDUCED BY UNIDIRECTIONAL SURFACE

PROFILE MODULATION

We have carried out numerical studies of the dipolar
isotropy induced by unidirectional modulation of the surfa
profile, with emphasis on the case where one has a film
posited on a stepped surface. We have ultrathin~few atomic
layer! films in mind for these studies, because of the rec
experimental interest in such films grown on substrates w
steps. All of our calculations use parameters characteristi
Fe, for whichM051.73103 G, andA52.131026 erg/cm.

For a stepped surface, and the case where the step e
-
i-
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an-

f

t.

e
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-

e-

t
h
of

ges

are perpendicular to the magnetic field, we show the geo
etry we have employed in Fig. 3. Unless otherwise specifi
the nominal film thicknessD has been chosen to be 10 Å, th
step heightH52 Å, appropriate to monatomic steps, and t
applied field asH050.134pM0. We also have chosen th
offsetC52 Å, in the initial set of results to be shown below
It should be remarked that we have explored the influenc
C on the anisotropy, to find its influence rather weak. IfC
varies from 0 to 20 Å, for the anglea5H/L of one degree,
the step-induced anisotropy changes by less than 10%.

The first question is the angular variation of the stepp
induced anisotropy. We have seen in Sec. II that within
perturbation theoretic treatment, the easy axis is always
allel to the step edges. Our numerical studies showDE(u) to
vary quite accurately as cos2(u). The deviations, for the full
theory with exchange included, are in the range of 1%,
less. Thus, we have simple uniaxial anisotropy, to an ex
lent approximation, so far as we can see. Because of thi
what follows, we shall confine our attention to the ste
induced energy change for the case where the step edge
perpendicular toHW 0, where the magnetization is parallel t
the hard direction. The reader may assume the cos2 u varia-
tion applies. For this special case, it is possible to der
relatively simple expressions for the various quantiti
through a suitable extension of the discussion presente
Sec. III. We summarize the expressions in the Appendix

We first consider the variation of the step-induced anis
ropy with magnetic fieldH0. For the case where the ang
a.H/L is one degree, we show the field dependence in F
4. We show this calculated for the full theory with exchan
included, and for the case where we ignore exchange
include only the Zeeman and dipolar energies. In the la
case, we see a very strong dependence onH0 similar quali-
tatively to that contained in Eq.~52! for the semi-infinite
case. This very strong field dependence is suppressed w
exchange is included; the field dependence is then v
weak.

In Fig. 5, we show the dependence of the anisotropy
the anglea. For very small angles, we have a linear var
tion, and with increasing angle the strength of the anisotro
increases somewhat more slowly than linearly. Someth
close to linear behavior has been observed experimen
for a Co film on a curved Cu~001! substrate. In that case th
easy axis is also parallel to the step edges. The author

FIG. 3. Geometry of a film with stepped surfaces. The upper
lower steps are displaced by a distanceC, the steps height isH, the
resultant angle of ‘‘descent’’~or ‘‘ascent’’! is a.H/L, with L the
period of the steps.
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Ref. 8 propose a mechanism different than that exposed h
in their discussion of the anisotropy.

It is the case, however, that the magnitude of the ani
ropy is in the range of that found experimentally, for t
ultrathin films studied. We find, fora in the range of a few
degrees, thatDE.0.0220.04 ergs/cm2. If we expressDE
in terms of an effective magnetic field acting on the mag
tization in the film, thenDE5M0DH (eff), for a film of thick-
nessD. For Fe,M0.1.73103 G, so if D510 Å andDE
50.04 ergs/cm2, thenH (eff).240 G, in the range found ex
perimentally for stepped-induced anisotropy in ultrath
films. Thus, while other mechanisms surely contribute

FIG. 4. Change of magnetic energy per surface area as a f
tion of applied field, for a geometry with stepped surfaces. T
energy change is plotted for the applied field perpendicular to
steps and including~full theory! and excluding the exchange ter
~dipolar only!. In this caseH5C52 Å, D510 Å, and a510.
When the exchange term is included, the exchange constant c
sponds to Fe.

FIG. 5. Change of magnetic energy per surface area as a f
tion of angle of ‘‘descent’’~or ‘‘ascent’’!, for a geometry with
stepped surfaces. The energy change is plotted for the applied
perpendicular to the steps and including an exchange term c
sponding to Fe. In this caseH5C52 Å, D510 Å, andH050.1
34pM0.
re,

t-

-

s

well, the contribution explored here should play an importa
role in real materials, possibly for the Co film on Cu~001!
studied in Ref. 8.

In Fig. 6, we show the dependence ofDE on film thick-
ness, for thicknesses in the range from 10 to 100
Throughout this range, we see thatDE exhibits a very weak
dependence onD. It is common to divide the strength o
anisotropies measured in ultrathin films byD, and then plot
the result as a function ofD itself. Volume anisotropies are
independent ofD, while surface anisotropies provide a co
tribution inversely proportional toD, when the data is dis-
played in this manner. From Fig. 6, we see that despite
long-range nature of the dipolar fields, the step-induced
isotropy behaves very much like a surface anisotropy.

We conclude with information on the spatial distributio
and magnitude of both the stray fields and magnetization,
a particular profile illustrated in Fig. 7. We have a fil
whose nominal thickness is 40 Å, with upper surface ay
520 Å, and lower surface aty5220 Å. Steps are located a
z540 Å andz560 Å. The terrace length isL5100 Å, and
the step height has been adjusted so thata5H/L510.

In Fig. 8, we show the variation ofhz with z evaluated at
the center plane (y50 Å! of films of thicknessD540 Å
corresponding to case~a! andD510 Å to case~b!. We see
that in the center of the film the field can be as large as a
of 4pM0 for the thinner film ~recall that for Fe, 4pM0
521 kG). However, if one evaluateshz close to the surfaces
of the films, one sees that near the steps~located atz540 Å
andz560 Å! hz assumes very large values indeed, so with
a few Angstroms of a stephz assumes values large compar
to 4pM0.

We show the variation with the coordinatey of the com-
ponenthy in Fig. 9. Once again, near the steps, very lar
stray fields are generated. One can perceive one aspect o
field distribution, illustrated more clearly below, from the
curves. The step on the upper surface behaves as a po
line charge, out of which magnetic-field lines diverge.
contrast, the step on the lower surface acts as a nega

c-
e
e

re-

c-

eld
re-

FIG. 6. Change of magnetic energy per surface area as a f
tion of film thickness, for a geometry with stepped surfaces. T
energy change is plotted for the applied field perpendicular to
steps and including an exchange term corresponding to Fe. In
caseH5C52 Å, a510, andH050.134pM0.
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magnetic line charge. Field lines diverge outward from
former, and inward from the latter. The two steps thus ac
a magnetic dipole in two dimensions, i.e., we have a posi
line charge in near proximity to a negative line charge.

In Fig. 10, we show the variation ofmy throughout the
film, within the framework of a calculation which sets th
strength of the exchange stiffnessA to zero. We see that th
perturbation of the magnetization is confined to the near
cinity of the steps. However, inclusion of exchange alt
this picture qualitatively, as we see from the full calculati
with exchange included, presented in Fig. 11. The pertur
tion in the magnetization produced by the steps now exte
throughout the film. For any choice of the coordinatey, we
see a nearly sinusoidal spatial variation in the magnetizat

FIG. 7. Geometry of a stepped surface of periodL5100 Å, with
steps separated by a distanceC520 Å, and angle of ‘‘descent’’~or

‘‘ascent’’! a510. The field HW 0 is applied in the film plane (H0

50.134pM0), and the film thickness is 40 Å. This geometry co
responds to the plots of Figs. 8–12. The exchange constan
those plots corresponds to that of Fe.

FIG. 8. Plots of thez component of the stray field due to th
roughness of a geometry with stepped surfaces. This compone
the field is plotted along a line that goes through the middle plan
the film (Y50 Å!, for films of thicknessesD540 Å for case~a!
andD510 Å for case~b!.
e
s
e

i-
s

a-
ds

n.

If one realizes thatn̂•MW acts as an effective magnetic surfa
charge density, and notes that the outward normaln̂ is op-
positely directed on the upper and lower surface, one see
origin of the magnetic dipole discussed in the previous pa
graphs. The piecen̂•MW 0 evaluated on the step edges is t
dominant source of surface charge.

We conclude in Fig. 12 with a figure which shows th
spatial variation of the magnetic-field lines, along with eq
potential surfaces for the magnetic potential. We see fi
lines diverging from the step on the upper surface, and c
verging into that on the lower surface.

V. FINAL REMARKS

Within a continuum theory, we have presented a desc
tion of the influence of surface roughness on the distribut

or

of
of

FIG. 9. Plot of they component of the stray field due to th
roughness of a geometry with stepped surfaces. This compone
the field is plotted along vertical lines that pass close to the lo
step atZ540 Å and to the upper step atZ560 Å, and along a
vertical line separated from the steps~at Z580 Å!.

FIG. 10. Schematics of they component of the magnetizatio
induced by the roughness of a geometry with stepped surface
relative magnitude is plotted at different points of the film. Th
case corresponds to the dipolar only theory~exchange excluded!.
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of magnetization within a ferromagnetic film. Stray magne
fields are generated, and the magnetic energy per unit ar
increased by these effects. When the roughness has a u
rectional character, as is the case for a film grown on
stepped surface, the increase in the magnetic energy per
area depends on the direction between the nominal mag
zation, and the step edges. We thus have a mechanism
step-induced anisotropy.

Within our perturbation theoretic description of the dip
lar contribution to the anisotropy energy, the easy axis w
always be parallel to the step edges. Its strength varies
early with the vicinal anglea5H/L for small a, according
to our numerical studies, and increases more slowly
larger values. For the model films explored, we find anis
ropy energies fall in the range of those found experimenta
Thus, the mechanism explored here should be an impor
source of step-induced anisotropy. However, as noted in

FIG. 11. Schematics of they component of the magnetizatio
induced by the roughness of a geometry with stepped surface
relative magnitude is plotted at different points of the film. Th
case corresponds to the full theory~exchange included!.

FIG. 12. Graphic representation of the stray fields and magn
potential induced by the roughness of a geometry with stepped
faces. Lines represent equipotentials, and arrows the direction
relative magnitude of the (y,z) components of the stray fields.
is
idi-
a
nit
ti-
for

ll
n-

r
t-
.
nt
c.

I, other mechanisms surely contribute as well. Experime
show this is the case as well, since for some samples
sees a quadratic variation of the step-induced anisotropy
a. Also, the easy axis may be normal to, and not paralle
the step edges in some cases. Further study is clearly
quired to establish the conditions under which a giv
mechanism may dominate.

The theory presented here should enable one to add
other influences of interface roughness on the propertie
ultrathin ferromagnetic films, and with suitable extensions
the properties of magnetic multilayers.
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APPENDIX

Here we summarize the expressions for the perturba
of the magnetization, magnetic potential, and energy o
thin ferromagnetic film whose upper and lower surfaces h
arbitrary unidirectional roughnesses. It is also assumed
the applied fieldHW 05H0ẑ ~in the plane of the film! is per-
pendicular to the roughness features.

The roughnesses of the upper and lower surfaces of
film are written as

ju,d~z!5(
Qn

jQn

u,deiQnz ~A1!

with Qn52pn/L, n52`, . . . ,̀ , and L a quantization
length. For simplicity we will concentrate only on one wav
length, i.e., we assume

ju,d~z!5jQ
u,deiQz1c.c. ~A2!

with jQ
u,d[ujQ

u,dueicQ
u,d

@the results for an arbitrary roughnes
as that of Eq.~A1!, follow by simple superposition#. Due to
the symmetry of this geometry,mx

Q(y,z)50. The following
forms of my

Q(y,z) andfQ(y,z), valid inside the film, solve

to first order the equilibrium equationMW 3HW eff50 and the
Maxwell equation¹W •BW 50:

my
Q~y,z!5@Ax~ax

22Q2!cosh~axy!1A0~a0
22Q2!cosh~a0y!

1Sx~ax
22Q2!sinh~axy!

1S0~a0
22Q2!sinh~a0y!#eiQz1c.c., ~A3!

fQ~y,z!54p@Axax sinh~axy!1A0a0 sinh~a0y!

1Sxax cosh~axy!1S0a0 cosh~a0y!#eiQz1c.c.,

~A4!

and outside the film, in the upper and lower regions, resp
tively, the potential reads as

A

ic
r-
nd
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fQ
u ~y,z!54p@Axax sinh~axD/2!1A0a0 sinh~a0D/2!

1Sxax cosh~axD/2!

1S0a0 cosh~a0D/2!#e2Q(y2D/2)1 iQz1c.c.,

~A5!

fQ
d ~y,z!524p@Axax sinh~axD/2!1A0a0 sinh~a0D/2!

2Sxax cosh~axD/2!

2S0a0 cosh~a0D/2!#eQ(y1D/2)1 iQz1c.c.
~A6!

In these expressions the ‘‘decay constants’’a0 and ax are
the same as the exchange and dipolar decay constants o
~38! and~39!, that correspond to the analogous problem o
semi-infinite medium. The four constantsAx, A0, Sx, andS0

are obtained by applying the boundary conditions of n
normal derivatives of the magnetization at the upper a
lower surfaces, and bothHW Q

tang ~or equivalentlyFQ) and

BW Q
normal continuous at the upper and lower surfaces of

film. These constants become

Ax5
iM 0

2FQ
d0~jQ

u 1jQ
d !, A052

iM 0

2FQ
dx~jQ

u 1jQ
d !,

Sx5
iM 0

2BQ
a0~jQ

u 2jQ
d !, S052

iM 0

2BQ
ax~jQ

u 2jQ
d !

~A7!

with
s-
qs.
a

ll
d

e

a0[a0~a0
22Q2!cosh~a0D/2!,

ax[ax~ax
22Q2!cosh~axD/2!,

d0[a0~a0
22Q2!sinh~a0D/2!,

dx[ax~ax
22Q2!sinh~axD/2!, ~A8!

and

BQ[a0ax~ax
22a0

2!cosh~axD/2!cosh~a0D/2!

1ax~ax
22Q2!Q cosh~axD/2!sinh~a0D/2!

2a0~a0
22Q2!Q cosh~a0D/2!sinh~axD/2!,

FQ[a0ax~ax
22a0

2!sinh~axD/2!sinh~a0D/2!

1ax~ax
22Q2!Q sinh~axD/2!cosh~a0D/2!

2a0~a0
22Q2!Q cosh~axD/2!sinh~a0D/2!. ~A9!

The change in energy per unit surface area due to this si
Fourier component~Q! follows from use of Eq.~23!:

DEQ

A 52pM0
2Qa0ax~ax

22a0
2!H 1

FQ
@ ujQ

u u21ujQ
d u2

12ujQ
u uujQ

d ucos~cQ
u 2cQ

d !#sinh~axD/2!sinh~a0D/2!

1
1

BQ
@ ujQ

u u21ujQ
d u222ujQ

u uujQ
d ucos~cQ

u 2cQ
d !#

3cosh~axD/2!cosh~a0D/2!J . ~A10!
ev.
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