
PHYSICAL REVIEW B 1 MAY 1999-IIVOLUME 59, NUMBER 18
Nonlinear ac response of spin glasses in a magnetic field
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The scaling hypothesis has been used to predict nonlinear ac properties of spin glasses in the external
magnetic field. The experimental data prompt a method which allows us to determine lines where a parameter
of the scaling function remains unaltered, and to estimate the critical temperature and three critical exponents,
needed for a test of the scaling relation. The method gives the same results for both low and high applied
magnetic-field values, even if the field is strong enough to suppress the spin-glass transition. The procedure is
applied for the case of the amorphous (Fe0.65Mn0.35!75P16B6Al3 alloy, which is a spin glass with the transition
temperatureTF'42 K. @S0163-1829~99!00618-9#
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I. INTRODUCTION

Magnetic phase transitions in systems of spins mutu
interacting through an Ising coupling with the coupling co
stants varying both in sign and amplitude have been inve
gated extensively. It was shown that if statistical distributi
of the coupling constantsJi j can be approximated by Gaus
ian function with a maximum atJ0 and widthJ,1 two low-
temperature magnetic states are realized: the ferroma
~FM! and the spin glass~SG!. The SG state, in contrast to th
FM state, has no spontaneous magnetic moment,MS
5^^S&T&J50, but nevertheless the Edwards and Anders
parameterq5^^S&T

2&J is nonzero.
The FM state evolves from the paramagnetic~PM! state

(MS5q50) when the ratioh5J0 /J exceeds unity. This
phenomenon, which is well known as the PM-F
second-order2–5 phase transition, may be qualitatively an
lyzed using the following static scaling law:

MFM~H,t!5utubF6~H/utuf!, ~1!

whereF6(x) is the scaling function@suffix 1~2! refers to
the temperatures above~below! the critical temperatureTC
;J0#, H is the applied magnetic field value, andt5T/TC
21 is the reduced temperature.

For a particular caseh,1, it is not yet clear whether the
SG state is a result of the gradual freezing of spins6 or a
genuine phase transition at the nonzero freezing tempera
TF;J.1,7–17 Numerous theoretical speculations1,6–9 did not
give an unambiguous answer, while some experime
data,10–17supporting the phase-transition concept, have b
obtained. Also, it was found that scaling methods, develo
earlier for empirical description of PM-FM~Ref. 2! phase
transitions, gave consistent results when applied to
PM-SG transformation. Specifically, the scaling analy
confirmed that the scaling relation7

xSG~H,t!5x~0,t!2utub8F6~H2/utuf8! ~2!

is valid in the case of a PM-SG transition and demonstra
a certain similarity between critical phenomena which
PRB 590163-1829/99/59~18!/11859~7!/$15.00
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companied both PM-SG and PM-FM transitions. For e
ample, the scaling functionF6(x) of the SG state12,13 was
restored in good agreement with the following approxim
tions:

lim
x→`

F6~x!;x1/d8,

lim
x→0

F1~x!;x,

lim
x→0

F2~x!5const, ~3!

which coincided with those in the FM’s,2,3 provided the scal-
ing parameters were, respectively,

x5H H/utuf, ~FM!

H2/utuf8, ~SG!.
~4!

However, a direct technique, which is supposed to be app
to deriveF6(x), was often reduced to a separate estimat
of critical exponents with the following test of their consi
tency. The common method, used to avoid determination
the unknown functionF6(x), was usually based on assum
tion parameters~4! to be constants, each of them corr
sponded to a certain line on the experimental surfacesM
5M (H,T), x5x(H,T),... . Until recently it was known
how to select only two of these lines,x050 andx0 . Zero-
field (H050) behavior was studied forx050 and critical
isotherm (t050) for x05`. Now, a method to determine
another line 0,x05const,` was proposed by Williams
et al.4 They studied linear FM susceptibility, which was a
sumed to obey the following scaling relation, providedf
5bd5b1g2:

]MFM

]H
~H,t![xFM~H,t!5utu2gF68 ~x!, ~5a!

and demonstrated that the extrema of its temperature de
dences at constant magnetic fieldH0Þ0,
11 859 ©1999 The American Physical Society
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]xFM

]t
~H0 ,t!U

t5tm

522futmu2g21F g

f
F68 ~x0t!

1x0tF69 ~x0t!G
50

corresponded to the samex0t’s value. Proceeding from evi
dent similarity~3! between the FM and SG scaling function
we suggested that similar extrema should also be expe
for the nonlinear SG response

]xSG

]H
~H,t![x2~H,t!522Hutu2g8F68 ~x! ~5b!

Here xk(H,t) and F6
(k)(x), respectively, stand fo

] (k)MSG(H,t)/]H (k) andd(k)F6(x)/dx(k). Although the ex-
perimental evidence for this effect could shed some li
onto the problem of the PM to SG transition, until now n
thorough study was performed. The previousx2(H,t)’s
data14 were too incomplete for the predicted extrema to
revealed.

Assuming the scaling hypothesis~2! to be valid, we car-
ried out an experimental research of nonlinear phenomen
SG’s in magnetic field. Analysis of the experimental da
resulted in a method for separate estimation of three crit
exponents and the freezing temperature. The method
applied to the case of (Fe0.65Mn0.35!75P16B6Al3 amorphous
alloy, which is a SG withTF'42 K.18

II. EXPERIMENTAL DETAILS

Linear and nonlinear susceptibilities were measured
the standard mutual-inductance technique. The coil setup
cluded an exciting coil, used to induce the ac compon
(h56 Oe, f 5v/2p575 Hz), and a Helholtz pair, which
supplied the dc componentHdc<200 Oe of the total mag
netic field H5Hdc1h sin(vt), as well as an astatic pair o
equivalent secondary pickup coils. The coils were wou
around the same axis and registered thelongitudinal~parallel
to the magnetic-field direction! response of the studie
sample. Since the magnetization near an arbitrary p
(Hdc,t) may be presented as a Taylor’s series:

M ~H,t!5M ~Hdc,t!1 (
k51

`

xk~Hdc,t!~H2Hdc!
k, ~6!

the differential output voltage, induced in the secondary c
after the sample was inserted, equals

E52A
dF

dt
;A

dM

dt
~H,t,t !

;vA(
k51

`

Qk~Hdc,t!sin@kvt1wk#, ~7!

whereA is a numerical factor, which depends on the dime
sion of the coils and the filling factor,F is the magnetic flux,
wk are the phase shifts due to the magnetic losses. If
exciting amplitudeh is small enough, thekth harmonic sig-
nals
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Q15h13Fx11
3

4
x3h21

5

8
x5h41¯ G ,

Q25h23F1

2
x21

1

2
x4h21

15

32
x6h41¯ G ,

Q35h33F1

4
x31

5

16
x5h21¯ G ,

Q45h43F1

8
x41

3

16
x6h21¯ G , etc. ~8!

are equal~within the constant factor of;hk) to the deriva-
tives xk(Hdc,t). In our experiment the minimum amplitud
of the exciting fieldh was limited by unharmonicity of our
sine-wave generator. We had to increase the exciting field
to h56 Oe, until the relative contribution of the high-orde
harmonics in the exciting ac field~i.e., the linear susceptibil-
ity Q1;h, multiplied by the high-order harmonic content
the exciting signal;0.1%! to the nonlinear signalsQk
;hk, k52,3, . . . wasreduced to 2%. On the other han
nonzero amplitude ofh results in an error, which is cause
by high-order terms in brackets in Eqs.~8!. We will demon-
strate that this error disappears, as the dc magnetic fielH
and/or the reduced temperaturet ~see the Appendix! become
large enough.

Amorphous (Fe0.65Mn0.35!75P16B6Al3 alloy was prepared
by the melt-spinning technique and was shaped as a long
~; 20 mm! flexible ribbon. Its amorphous nature was co
firmed by x-ray diffraction. The ribbon was cut and pack
into a sample with a mass of 0.215 g.

III. RESULTS

Since both PM’s and SG’s have no spontaneous magn
moment, their magnetization~6! must exhibit an inverse
symmetryM (H,t)52M (2H,t). Thus, the firstM (H,t)’s
derivative with respect toH, i.e., linear susceptibility
x1(H,t), is independent on inversionH⇔2H. Each further
differentiation alternates these types of symmetry:

xk~2H,t!5~21!k11xk~H,t!. ~9!

It is worth to note that the odd harmonicsQ2m21(H,t), m
51,2 . . . contain only the terms with oddx2n21(H,t), n
>m derivatives@see Eq.~8!#, whereas the even harmonic
Q2m(H,t) consist only of evenx2n(H,t), n>m ones.19 So,
Eq. ~9! is also valid for the experimental signalsQk(H,t),
and we will, hereafter, refer to the absolute values of the
magnetic fieldH. It is also obvious why evenQ2k(H50,t)
harmonics must be absent in the SG state.20 When HÞ0,21

analysis of nonlinear properties of SG’s requires in this wo
that we use the scaling hypothesis~2! for this purpose. In the
simplest case of the second harmonics,x2 , we take Eq.~5b!
as a starting point.

A. Scaling analysis„H 05const…

Except for the singular point~0,0!, Eq. ~5b! confirms the
previous resultx2(0,t)50. To estimate thex2(0,0) value
one needs:
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~i! to dissect thex2(H,t) surface on isofield (H0
5const) curves;

~ii ! to find whether extrema, similar to those in FM’s,4 do
exist;

~iii ! if the latter is valid, to establish the relation betwe
the applied magnetic fieldH0 and the extremum value
x2(H0 ,tm);

~iv! to determine thex2(0,0)’s value by extrapolating
H0→0.

Since only experimental study may answer~ii ! ~while the
other issues can be resolved mathematically!, let us suggesta
priori that the extrema mentioned in~ii ! exist. Proceeding
from this assumption, namely

]x2

]t
~H0 ,t!U

t5tm

52f8H0utmu2g821F g8

f8
F68 ~x0t!

1x0tF69 ~x0t!G
50, ~10!

one has the crossover line~s! of constant scaling parameter~s!

x0t5H0
2/utmuf85const . ~11!

Then, the extremum amplitudes are described by the u
power dependences

x2~H0 ,tm!522H0utmu2g8F68 ~x0t!;H0
2/d821

;utmub82f8/2. ~12!

Therefore, to find thex2(0,0) quantity correctly, it is impor-
tant to consider all possible cases

d8,2, ~13a!

d852, ~13b!

d8.2, ~13c!

and select the suitable one~s!. This may, for example, be
performed with a reasonable condition

x2~H0 ,tm!uH0→`→0, ~14!

that, at once, disagrees with the assumption~13a!. The mean-
field exponentd852 ~Ref. 10! also looks unreasonable. I
this case,x2(H0 ,tm) becomes independent ofH0 , which
contradicts either the restriction~14! or the experimental evi-
dence for the nonzerox2(H0510 Oe,t) signal.14 As a result,
the inequality~13c! remains the only suitable approximatio
that, by the way, was found to be valid in several re
SG’s.10–17 Hence, as the magnetic field decreases,
x2(H0 ,tm) amplitude approaches infinity and so does
second-harmonic valuex2(H→0,t→0).

B. Scaling analysis„t05const…

Criterion ~10!, introduced in earlier works of Williams
et al.,4 seems to be the only one of a few methods to regi
the lines of constant scaling parameters. But the larger
number of these lines, the more accurate the future exp
al
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mental values of critical exponents and the freezing temp
ture TF . So, we propose an alternative method. Let us c
sider the isothermsx2(H,t0). Following the procedure~i!–
~iv!

]x2

]H
~H,t0!U

H5Hm

524ut0u2g8F1

2
F68 ~x0H!1x0HF69 ~x0H!G

50, ~15!

we also obtain the crossover line~s!

x0H5Hm
2 /ut0uf85const, ~16!

different from the previous one~s! Eq. ~11! @compare the fac-
tors of F68 (x) in the brackets of Eqs.~10! and ~15!#, but
certainly described by the same asymptotic dependence

x2~Hm ,t0!;Hm
2/d821;ut0ub82f8/2. ~17!

At last, noticing that]x2 /]H definitely equalsx3 and, there-
fore, may be measured by directly detecting the total ac
sponse~7! at the triple exciting frequency, one can formula
more general criterion. Among an infinite number of lin
0,x05const,`, which constitutes the experimentally a
cessible surfacexk(H,T), k52,3, . . . this criterion prompts
us to select those, if any, where eitherxk(H,T) itself or any
of its partial derivatives equals zero.

C. Experimental results

To confirm our concept, the amorphou
(Fe0.65Mn0.35!75P16B6Al3 alloy has been studied as an e
ample of a typical SG. The in-phase Re@Q1(0,T)# and out-
of-phase Im@Q19(0,T)# components of its linear ac suscep
bility ~Fig. 1! agree well with ones in materials undergoin
the PM to SG phase transition.10,11The freezing pointTF can
be approximately taken as a temperature~in our case'42.5
K!, at which the susceptibility real part Re@Q1(0,T)# tem-
perature dependence exhibits a cusp.

FIG. 1. The in-phase Re@Q1(H,T)# and out-of-phase
Im@Q1(H,T)# components of the linear ac susceptibility measured
the amorphous~Fe0.65Mn0.35!75P16B6Al3 alloy without an external
magnetic field. The amplitude of the exciting field ish52 Oe.
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The nonlinear susceptibilityQ2(H0Þ0,T) vs T depen-
dences have been measured after the sample was field c
~FC! from a temperature well aboveTF . These data are sum
marized in Fig. 2 as~a! 3d plot and~b! contour curves. Then
following the proposed criterion, let us dissect the presen
surface onto a certain number of isofieldsQ2(H0 ,T), se-
lected with the stepDH55 Oe, and isothermsQ2(H,T0)
(DT50.5 K) and consider the curves connecting their e
trema. SinceQ2(H,T0) dependence defines isotherms bo
above (t.0) and below (t,0) the critical temperature, two
solutions are possible Eq.~16!. Each of them satisfies Eq
~15!, provided the proper branch of the scaling functio
F1(x) or F2(x), is used. The curveQ2(H0 ,T) may be con-
nected with the parameter~11!. Since the extremal tempera
tureT is increased withH0 ~see Fig. 2!, this solution belongs
to the upper branchF1(x). Projecting these crossover line
onto each of three mutually perpendicular planes, whereH, t
or Q2 is of constant value, one can estimate three criti
exponents and check their relationship.22 Since for this pro-
cedure a method used to select these lines has no effe
the result, the subsymbols will be hereafter omitted.

At first, let us consider projections ontot5const plane
and findd8. WhenH@h56 Oe, these projections are para
lel ~in log-log scale! lines with the slope 2/d821520.67
60.01, which corresponds tod856.060.3 ~Fig. 3!. An evi-
dent departure from this behavior (H<h) may be caused by
high-order terms in Eqs.~8!. Fortunately, their relative con

FIG. 2. The nonlinearQ2(H,T) susceptibility represented as~a!
perspective 3d plot and ~b! contour curves. The amplitude of th
exciting field ish56 Oe.
led
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l
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tribution diminishes as the magnetic fieldH is increased. At
least, it noticeably improves (;H2) the ratio of the useful
signal

xk~H,t!;H2/d82~k21!;utub82~k21!2f8/2 ~18!

to the first term of the experimental errorxk12(H,t) ~see the
Appendix!. Since along the studied linesH2;tf8, the same
advantage is gained as the reduced temperaturet is in-
creased. Therefore, critical indices, that describe tempera
divergences, also have to be obtained from experime
points, which are far enough from the singularity~0,0!. Be-
sides, as compared with the previous log-log plot~see Fig.
3!, the estimation of these indices sensitively depends on
critical temperature choice and usually requires predefi
TF . The exception is the Kouvel-Fisher technique,2 which
allows estimating both the exponent andTF values simulta-
neously. In SG’s, where the nonlinear response is too sm
for this approach to give reliable results, we propose ano
method that has the same advantage. Using the idea by
schwindet al.,16 let us rewrite Eqs.~11! and~17! to linearize
t

t512T/TF;ux2~H,t!u2/~2b82f8!;H2/f8. ~19!

If chosen properly, each of both exponents in Eq.~19!, miss-
ing at this point to test the scaling relationshipf85b•d8,
should satisfy the following requirements:

~i! a valid exponent rescales three corresponding pro
tions into straight lines.

~ii ! three projections intersect theT axis at the same poin
T5TF .

~iii ! this pointT5TF must surely coincide for both opti
mization procedures.

Because the mentioned error@see Eq.~18!# reaches its
maximum near the singular point (H50,TF), the experimen-
tal dataQ2(H,T) in the vicinity of the point were ignored
So, when separating exponents, we were guided by the
quirements~ii !,~iii !. The best exponents and the freezi
temperature were found to be 2/(2b82f8)520.9560.05,

FIG. 3. Projections of crossover lines onto the planet5const
represented in the log-log scale. TheQ2(H0 ,T) vs T dependences’
extrema are marked by circles. Squares denote the extrema o
Q2(H,T0) vs H curves. The same slope52/d821'20.67 of the
dotted lines corresponds to the critical exponentd856.0.
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2/f850.6560.05, andTF541.460.2 K ~see Fig. 4!. Since
the obtained exponents are bound to each other by the
tion (2/d821)520.67, it is a convincing proof of the sca
ing assumption~2!. Hence, the other scaling relations a
acceptable to estimate the unknown indices:f853.08, b8
5f8/d850.49, g85f82b852.59, etc.

We also consider another scaling prediction that can
easily checked by direct detecting the nonlinear SG respo
at triple ~3v! exciting frequency. As the squares in Fig. 4~b!
restrict the sector where]x2 /]H has an positive sign, nega
tive x3(H,T) values, that are usually registered in zero-fie
measurements,10–17should be expected only outside this se
tor. Shown in Fig. 5, the experimentalQ3(H,T) data
strengthen this conclusion. Similar phenomena were
served in the dilute alloy Au 1.5 at.% Fe.15

IV. DISCUSSION

When the final results are obtained, it is worth answer
the question: To what extent may they be relied on? One
name, at least, three reasons that cause some doubts. Th
of them: the exciting field amplitudeh in Eqs. ~8! is pre-
sumed to be small enough, as it was already discussed ab
This requirement sets a low-field boundary of (H,t) range
for reliable measurements. The other two are related to
scaling hypothesis~2! and exclude usage of too larget andH
values, respectively.

For instance, the static scaling law~2! is valid while the
sample is in equilibrium. But it is well known that the S
magnetic state possesses a wide spectrum of relaxa
times. At temperature low enough the relaxation time m

FIG. 4. Linearized projections of crossover lines onto the pla
of equal~a! H’s and~b! Q2’s values. The critical freezing tempera
ture and exponents are found to beTF541.460.2 K, 2/(2b8
2f8)520.9560.05 and 2/f850.6560.05, respectively. The
symbols denoting the crossover lines are the same as in Fig. 3
la-
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e

on
y

exceed reasonable experiment time,10 no matter whether one
uses dc methods with the observation timetobs;102 s or ac
techniques (tobs;v21). In the former case the boundar
(H,t) line between equilibrium and nonequilibrium states
usually estimated from field-cooling–zero-field coolin
~FC–ZFC! curves that deviate one from another just belo
this line.11 For our case (tobs;1022 s) this approach seem
inapplicable. We use an alternative method. To make s
that our observation time is more than SG relaxation tim
we monitored magnetic losses, i.e., the phase anglew1 in Eq.
~7!, provided the exciting frequencyv remained the same
and so did thetobsvalue. Indeed, if the largest relaxation tim
is exceeded, SG’s are assumed to reach the equilibrium
andw1(H,t)50. Otherwise, e.g., at low temperatures, lar
relaxation times create a nonzero phase delay between
exciting field and the sample’s response. In the reported c
for example, at the liquid helium pointT54.2 K the signal-
response lag attained abnormally large values ofw1;4 angle
degrees. Results of ourw1(H,T) measurements are pre
sented in Fig. 6. We have chosen the threshold criteriaw1
50.1 @to avoid the overestimation of the equilibrium tem
peraturew1(H,T)50 induced by the experimental error# and
found that the equilibrium boundary depends on the app
dc magnetic field as the de Almeida–Thouless line23

t~H !5
TF~0!2TF~H !

TF~0!
5F H

HAT
G2/f8

, ~20!

where thelongitudinal spin components are presumed fr
zen. It allows us to include these data in Fig. 4~b! ~open
squares! and to show directly that all crossover lines are
an equilibrium region.

Equation ~20! demonstrates the requirement for the a
plied dc magnetic field to be small enough. It is result
from the scaling assumption~2!, which states that the tem
peratureTF(H) remains constant. Fortunately, the deviati

s

FIG. 5. NonlinearQ3(H,T) susceptibility vsT dependences
measured in various magnetic fieldsH. The amplitude of the excit-
ing field is h56 Oe.
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t(H), if any, reveals the same asymptotic behavior as
crossover lines~11!,~16!. In other words, within the propose
in Fig. 4~b! approach it changes the crossover line slo
only, but has no influence on the exponent 2/f850.65
60.05 as well as the temperatureTF(H50)541.460.2 K.
Since the method to extract another exponent,d856.0
60.3, is also independent of whetherTF(H) is constant or
not, the obtained indices are more reliable than their val
estimated by the best-fit procedure for the scaling funct
F(x),24,25whenTF is defined as constant. Moreover, to sho
this difference, we a priori selected the sampl
(Fe0.65Mn0.35!75P16B6Al3 that is close (h'0.5) to the perco-
lation thresholdh51,18 and is more sensitive,HAT;(1
2h),23 to an external magnetic fieldH. But the exponents
appear nearly the same—d856.460.4,f853.060.1 ~see
Fig. 7!. This means thatt(H5100 Oe)3TF barely exceeds
the double experimental error forTF , i.e., 2
30.2 K50.4 K, and this fact allows us to estimate the lowe
limit for the denominatorHAT>10 T. In contrast to the ex
perimental valueHAT50.1960.02 T, calculated from the
magnetic losses data~see Fig. 6!, this limit well agrees with
the theoretical prediction HAT52kBTF(12h)/(mBA5)
'20 T.23

FIG. 6. Temperature dependences of the phase anglew1 mea-
sured in various magnetic fieldsH.

FIG. 7. Scaling functionF68 (x). The slope51/d821'20.84
of the dotted line is consistent with the critical exponentd856.4.
e

s

s
n

t

V. CONCLUDING REMARKS

The experimental methods, used to check the scaling
sumption, may be roughly discerned by techniques the
thors use to resolve the problem of unknown scaling funct
F6(x). Compared with direct calculations ofF6(x), the test
of the scaling relationships seems somewhat indirect meth
but no less convincing. Moreover, the exponents, wh
yield an optimum data collapse, strongly depend upon
(H,t) range where the fit is performed.24 Since in magnetic
materials near the percolation thresholdh51 this range
shrinks dramatically,25 our approach looks preferable fo
such cases.

Until a recent work by Williamset al.4 the indices were
usually extracted from the critical isotherm (t50) and the
zero-field (H50) behavior. So, it was known how to sele
only two, x050 andx05`, of an infinite number of cross
over lines forming the surface. Unfortunately, each of the
lines was described by a single exponent, i.e., none of th
included information about all three critical indices, whic
are needed to check the scaling relationship. The lines w
0,x0,` are free of this fault. Although these lines wa
discovered and studied in FM’s, we expanded this conc
for SG’s ~and, in general terms, for any system where
scaling hypothesis can be applied!.

APPENDIX

Here we roughly estimate the dc biasing magnetic fieldH
that is needed to suppress the high-order terms in Eqs.~8!.
Let us consider the equation that defines the seco
harmonic amplitudeQ2 , and require for the first term of the
total experimental error@x4h2/2115x6h4/321¯#, normal-
ized to the useful signalx2/2, to be less than«, where«
!1. In this case, the second derivative of Eq.~5b!

x45
d2x2

dH2 52
4H

tf81g8
@3F9~x!12xF-~x!#

should satisfy the condition

x4

x2
h25

2x@3F9~x!12xF-~x!#

F8~x! S h

H D 2

,«.

Along the linex→` ~i.e., the critical isothermt50), where
the scaling function has the well-known formF(x);x1/d8,
this condition may be noticeably simplified

H

h
.A2

«

~d821!~d822!

~d8!2 .

Considering our case (h56 Oe, d856.0) and assuming an
acceptable error to be«55%, one can easily obtain:H
.30 Oe. WithH’s amplitude constant, the experimental a
curacy along the other lines~including the ones in Fig. 3!
turns out to be even better, since the ratiox4h2/x2 is partly
suppressed (;tf8) by the reduced temperaturet. So, the
smaller the scaling parameterx0 , responsible for a crossove
line, the larger the distancet5@H2/x0#1/f8 between this line
and the critical isotherm@see Fig. 4~b!#, the lower seems to
be the admissible magnetic fieldH ~Fig. 3!.
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