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Nonlinear ac response of spin glasses in a magnetic field
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The scaling hypothesis has been used to predict nonlinear ac properties of spin glasses in the external
magnetic field. The experimental data prompt a method which allows us to determine lines where a parameter
of the scaling function remains unaltered, and to estimate the critical temperature and three critical exponents,
needed for a test of the scaling relation. The method gives the same results for both low and high applied
magnetic-field values, even if the field is strong enough to suppress the spin-glass transition. The procedure is
applied for the case of the amorphous { 8Ny 35)75P16B6Al 3 alloy, which is a spin glass with the transition
temperaturel .~ 42 K. [S0163-18209)00618-9

I. INTRODUCTION companied both PM-SG and PM-FM transitions. For ex-
ample, the scaling functiof . (x) of the SG staté*® was
Magnetic phase transitions in systems of spins mutuallyestored in good agreement with the following approxima-
interacting through an Ising coupling with the coupling con-tions:
stants varying both in sign and amplitude have been investi-

gated extensively. It was shown that if statistical distribution lim F..(x)~x¥",

of the coupling constanty; can be approximated by Gauss- X—o

ian function with a maximum al, and widthJ,* two low-

temperature magnetic states are realized: the ferromagnet lim Fo(x)~X,

(FM) and the spin glas&SG). The SG state, in contrast to the x—0

FM state, has no spontaneous magnetic moméng .

=((S)1);=0, but nevertheless the Edwards and Anderson )'('”:) F_(x)=const, ©)

parametei=((S)3); is nonzero.
The FM state evolves from the paramagnéfd/) state  which coincided with those in the FM? provided the scal-

(Ms=q=0) when the ration=J,/J exceeds unity. This ing parameters were, respectively,
phenomenon, which is well known as the PM-FM

second-ordér® phase transition, may be qualitatively ana- H/| 7%, (FM)
lyzed using the following static scaling law: X= H2|%, (SG). 4
Mem(H,7)=|7|#F.(H/|7]?), (1 However, a direct technique, which is supposed to be applied

to deriveF .. (x), was often reduced to a separate estimation
of critical exponents with the following test of their consis-
tency. The common method, used to avoid determination of
the unknown functiorf .. (x), was usually based on assump-
tion parameterg4) to be constants, each of them corre-

For a particular casg<1, it is not yet clear whether the o :
SG state is a result of the gradual freezing of sbiosa sponded to a certain line on the experimental surfabks,
=M(H,T), x=x(H,T),.... Until recently it was known

genuine phase transition at the nonzero freezing temperatufe i
Te~J.17-17 Numerous theoretical speculatiéfis® did not ow to select only two of these linegg=0 andx,. Zero-

give an unambiguous answer, while some experimentdf€!d (Ho=0) behavior was studied fax,=0 and critical
datal®-17 supporting the phase-transition concept, have beel$0therm o=0) for xo=2c. Now, a method to determine
obtained. Also, it was found that scaling methods, develope&”o"i‘er line B<x,=const= was proposed by Williams
earlier for empirical description of PM-FMRef. 2 phase et al” They studied linear FM susceptibility, which was as-

transitions, gave consistent results when applied to th§Umed to olz).ey the following scaling relation, providgd
PM-SG transformation. Specifically, the scaling analysis=B89=8+ 7"
confirmed that the scaling relatibn

whereF. (x) is the scaling functiofsuffix +(—) refers to
the temperatures aboveelow) the critical temperaturd -
~Jol, H is the applied magnetic field value, aneET/T
—1 is the reduced temperature.

Mgy
xsa(H,7)=x(0,7) = | 7|#'F.(H¥|7|*) 2 JH

is valid in the case of a PM-SG transition and demonstratednd demonstrated that the extrema of its temperature depen-
a certain similarity between critical phenomena which ac-dences at constant magnetic fiéld+ 0,

(HIT)EXFM(HiT):|T|77FL:(X)1 (Sa)
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IXFM T 2 3 5
5y (Hou7) . =—2¢|| "7 l{gla(xof) @y=hx| x;+ ZXahz“‘ §X5h4+"' :
F B O i
+XO7‘ i(XO’r) 2= 2X2 2X4 32X6 ’
- 0,=h3 L > h?

corresponded to the samg,’s value. Proceeding from evi- 3= "X 7 Xa ggxsN™ =),
dent similarity(3) between the FM and SG scaling functions,
we suggested that similar extrema should also be expected N 3 )
for the nonlinear SG response O,=h"X| g Xat Tgxeh" |, etc. (8)

IXsG
oH

are equalwithin the constant factor of-h¥) to the deriva-
tives xx(Hge, 7). In our experiment the minimum amplitude
Here (H.) and F®(x), respectivel stand for of the exciting fieldh was Iimited'by unharmonici@y of our

0 Xk, 7. ) e p(k) Y sine-wave generator. We had to increase the exciting field up
Msg(H,7)/gH™ andd™F . (x)/dx™. Although the ex- 4 h=6 Oe, until the relative contribution of the high-order
perimental evidence for this effect could shed some light,armonics in the exciting ac fielde., the linear susceptibil-
onto the problem of the PM to SG transition, until now no ity ®,~h, multiplied by the high-order harmonic content in

thorough study was performed. The previons(H.7)’s  the exciting signal~0.1% to the nonlinear signal®,
datd* were too incomplete for the predicted extrema to be_ hk k=23 ... wasreduced to 2%. On the other hand

revealed. _ _ nonzero amplitude of results in an error, which is caused
Assuming the scaling hypothesig) to be valid, we car- by high-order terms in brackets in Eq8). We will demon-

ried out an experimental research of nonlinear phenomena ig,ate that this error disappears, as the dc magnetic Held

SG’s in magnetic field. Analysis of the experimental data,nq/or the reduced temperaturésee the Appendixbecome

resulted in a method for separate estimation of three critica‘(Lj‘rge enough.

exponents and the freezing temperature. The method was Amorphous (FgesMng 2975P16BsAl 5 alloy was prepared

applied to the case of (5eMnos9)7sPisBeAls amorphous  py the melt-spinning technique and was shaped as a long thin

alloy, which is a SG withTg~42K. (~ 20 um) flexible ribbon. Its amorphous nature was con-

firmed by x-ray diffraction. The ribbon was cut and packed
ll. EXPERIMENTAL DETAILS into a sample with a mass of 0.215 g.

Linear and nonlinear susceptibilities were measured by
the standard mutual-inductance technique. The coil setup in- . RESULTS

cluded an exciting coil, used to induce the ac component  gin o hoth PM’s and SG's have no spontaneous magnetic
(h=6 Oe, f=w/2m=75Hz), and a Helholtz pair, which ., ent  their magnetizatiots) must exhibit an inverse
suppllgd the dc comppnerhidcg200 Oe of the to.tal Mag-  symmetryM (H,7)=—M(—H, 7). Thus, the firsM(H,7)’s
netic field H=Hdc+hsm_(wt), as well as an astatic pair of derivative with respect toH, i.e., linear susceptibility
equivalent secondary pickup coils. The coils were woun L(H,7), is independent on inversidh< —H. Each further

around the same axis and registereditimgitudinal (parallel differentiation alternates these types of symmetry:
to the magnetic-field directionresponse of the studied

sample. Since the magnetization near an arbitrary point xi(—H, ) =(—= 1) Ly (H, 7). 9)
(Hge,7) may be presented as a Taylor’s series:

(H,D)=xo(H,7)=—2H|7""FL(x)  (5b)

It is worth to note that the odd harmoni€k,,,_1(H,7), m
- K =1,2... contain only the terms with odg,,_1(H,7), n
M(H’T):M(Hdc’THKZl Xi(Hae, ) (H=Ha",  (6)  =m derivatives[see Eq.(8)], whereas the even harmonics
0,,(H,7) consist only of every,,(H,7), n=m ones'® So,
the differential output voltage, induced in the secondary coil€q. (9) is also valid for the experimental signabs (H,7),

after the sample was inserted, equals and we will, hereafter, refer to the absolute values of the dc
magnetic fieldH. It is also obvious why eve®,, (H=0,7)
E—_ dENAd_M(H ) harmonics must be absent in the SG sfat&/henH 0,2
dt dt > analysis of nonlinear properties of SG’s requires in this work
o that we use the scaling hypothe& for this purpose. In the
_ ; simplest case of the second harmonjgs, we take Eq(5h)
wAkgl OHa, Disinkot+ e, @ as a starting point.

whereA is a numerical factor, which depends on the dimen-
sion of the coils and the filling facto® is the magnetic flux,
¢k are the phase shifts due to the magnetic losses. If the Except for the singular poin0,0), Eq. (5b) confirms the
exciting amplitudeh is small enough, th&th harmonic sig- previous resulty,(0,7)=0. To estimate they,(0,0) value
nals one needs:

A. Scaling analysis(H y=cons)
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(i) to dissect they,(H,7) surface on isofield Hq
=const) curves; 0.4

(i) to find whether extrema, similar to those in FM'dp =
exist; = 3

(i) if the latter is valid, to establish the relation between é 03 NQE)
the applied magnetic fieldld, and the extremum value 9 o
X2(Ho,7m); = z

(iv) to determine they,(0,0)'s value by extrapolating ;1 02 —
H0—>O. ~= H\

Since only experimental study may ansviey (while the e, 0.1 <
other issues can be resolved mathematig¢aky us suggesd & ’ e
priori that the extrema mentioned i) exist. Proceeding o g
from this assumption, namely 0.0

9 , !
Z2 (Ho,m) =2¢'Ho|rm|‘7‘1[%F;(xoT>
T=Tn
FIG. 1. The in-phase R®,(H,T)] and out-of-phase
%o F" (Xg.) Im[®,(H,T)] components of the linear ac susceptibility measured in
071 =1707 the amorphougFe, ggMng 39-5P1aBeAl 5 alloy without an external
0 10 magnetic field. The amplitude of the exciting fieldhs-2 Oe.

mental values of critical exponents and the freezing tempera-

one has the crossover lig of constant scaling parametsr !
ture Tz. So, we propose an alternative method. Let us con-

Xo =H§/|Tm|¢':const. (11)  sider the isothermg,(H, 7). Following the procedur€@)—
! (iv)
Then, the extremum amplitudes are described by the usual
power dependences X2 1 ,
, , W(H,To) =—4|r| EFi(XOH)+X0HF¢(X0H)
X2(Ho, 7m) = = 2Ho| 7| ~7'F . (%o,) ~HE” H=Hn
~ |7l . (12 =0 (19

Therefore, to find ther,(0,0) quantity correctly, it is impor- We also obtain the crossover liisg

tant to consider all possible cases .
Xou=H2/|7|#" = const, (16)
8'<2, (139
different from the previous oiig) Eq.(11) [compare the fac-
8'=2, (13b tors of F/,(x) in the brackets of Eqs(10) and (15)], but
certainly described by the same asymptotic dependences
6'>2, (130

_ _ 28 -1 | B -1
and select the suitable ofse This may, for example, be X2(Hm,70) ~Hp | 7ol : 17

performed with a reasonable condition At last, noticing thaty,/dH definitely equalsys and, there-

(14) fore, may be measured by directly detecting the total ac re-
sponsg7) at the triple exciting frequency, one can formulate

that, at once, disagrees with the assumptik8g). The mean- more general criterion. Among an infinite number of lines

field exponents’ =2 (Ref. 10 also looks unreasonable. In 0<Xp=conste, which constitutes the experimentally ac-

this case,y,(Ho,7m) becomes independent f,, which cessible surfacg,(H,T), k=2,3, ... this criterion prompts

contradicts either the restrictidi4) or the experimental evi- Us to select those, if any, where eithg(H,T) itself or any

dence for the nonzerg,(Ho= 10 Oey) signal’* As aresult, Of its partial derivatives equals zero.

the inequality(13¢) remains the only suitable approximation

that, by the way, was found to be valid in several real C. Experimental results

SG's1%7Y Hence, as the magnetic field decreases, the

x2(Ho,7n) amplitude approaches infinity and so does the To confirm our ~concept, the . amorphous
second-harmonic valug,(H— 0,7—0). (Fey.6eMng 35975P16B6sAl; alloy has been studied as an ex-

ample of a typical SG. The in-phase [®g(0,T)] and out-
_ . of-phase IM®7(0,T)] components of its linear ac suscepti-
B. Scaling analysis(7o=cons) bility (Fig. 1) agree well with ones in materials undergoing
Criterion (10), introduced in earlier works of Williams the PM to SG phase transitidf! The freezing poinTx can
et al,* seems to be the only one of a few methods to registebe approximately taken as a temperat(ineour case~42.5
the lines of constant scaling parameters. But the larger thK), at which the susceptibility real part F#,(0,T)] tem-
number of these lines, the more accurate the future experperature dependence exhibits a cusp.

X2(H01Tm)|HO—>oo_>0;
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FIG. 3. Projections of crossover lines onto the plameconst
represented in the log-log scale. TBg(H,,T) vs T dependences’

g Isg extrema are marked by circles. Squares denote the extrema of the
° o 1 ®,(H,Ty) vs H curves. The same slope/6’ —1~—0.67 of the
5 1 dotted lines corresponds to the critical exponéht 6.0.
+ 46
C 4
¢ tribution diminishes as the magnetic fiditlis increased. At
£ 142 least, it noticeably improves~H?) the ratio of the useful
& ] signal
T . , ‘ . K — r_ k_ r_ k_ — !
385 20 40 60 80  108° Xk(H,7)~HZ? ~ (D~ [T = /2 (18

Magnetic field (Oe) to the first term of the experimental errgg. ,(H, 7) (see the

FIG. 2. The nonlinea®,(H,T) susceptibility represented &  Appendi¥. Since along the studied lin¢+*~ *', the same
perspective @ plot and (b) contour curves. The amplitude of the advantage is gained as the reduced temperatui® in-
exciting field ish=6 Oe. creased. Therefore, critical indices, that describe temperature
divergences, also have to be obtained from experimental
The nonlinear susceptibilio® ,(Hy#0.T) vs T depen- POINtS. which are far enough from the singulari®0). Be-
dences have been measured after the sample was field coo%ges’ as compared with the previous log-log e Fig.

; the estimation of these indices sensitively depends on the
(FC)_ from at_emperature well abovk: . These data are sum- critical temperature choice and usually requires predefined
marized in Fig. 2 aga) 3d plot and(b) contour curves. Then, 1 The exception is the Kouvel-Fisher techniduehich
following the propose.d criterion, let us (_jlssect the presentedows estimating both the exponent afig values simulta-
surface onto a certain number of isofields(Ho,T), Se-  neously. In SG’s, where the nonlinear response is too small
lected with the stepAH=5 Oe, and isotherm®,(H,To)  for this approach to give reliable results, we propose another
(AT=0.5 K) and consider the curves connecting their ex-method that has the same advantage. Using the idea by Ge-
trema. Since®,(H,T,) dependence defines isotherms bothschwindet al,® let us rewrite Eqs(11) and(17) to linearize
above ¢>0) and below {<0) the critical temperature, two r
solutions are possible E16). Each of them satisfies Eq.
(15), provided the proper branch of the scaling function, =1—TITe~|xo(H,7) |23 =¢D~HZ4" (19
F.(x) or F_(x), is used. The curv®,(H,,T) may be con-
nected with the parametét1). Since the extremal tempera- ing at this point to test the scaling relationship=g-5’,
tureT is increased witH, (see 'Flg.. 2, this solution belon.gs should satisfy the following requirements:
to the upper branck . (x). Pro;ectmg_ these crossover lines (i) a valid exponent rescales three corresponding projec-
onto each of three mutually perpendicular planes, whkre  tions into straight lines.
or O, is of constant value, one can estimate three critical (jj) three projections intersect tfeaxis at the same point
exponents and check their relationsfSince for this pro- T=T:.
cedure a method used to select these lines has no effect on (jii) this pointT=T¢ must surely coincide for both opti-
the result, the subsymbols will be hereafter omitted. mization procedures.

At first, let us consider projections onto=const plane Because the mentioned errfsee Eq.(18)] reaches its
and findé’. WhenH>h=6 Oe, these projections are paral- maximum near the singular pointi=0,T¢), the experimen-
lel (in log-log scalg lines with the slope &' —1=-0.67 tal data®,(H,T) in the vicinity of the point were ignored.
+0.01, which corresponds #® =6.0+0.3 (Fig. 3. An evi-  So, when separating exponents, we were guided by the re-
dent departure from this behavidd &h) may be caused by quirements(ii),(iii). The best exponents and the freezing
high-order terms in Eq¥8). Fortunately, their relative con- temperature were found to be 22— ¢')=—0.95+0.05,

If chosen properly, each of both exponents in Bd), miss-
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measured in various magnetic fields The amplitude of the excit-
FIG. 4. Linearized projections of crossover lines onto the planednd field ish=6 Oe.

of equal(a) H's and(b) ®,’s values. The critical freezing tempera- . i
ture and exponents are found to He=41.4+0.2 K, 2/(28’ exceed reasonable experiment tifl@o matter whether one

—¢')=-0.95-0.05 and 2b'=0.65+0.05, respectively. The US€S dc methods with the observation titgg~10°s or ac
. . . .05, ly. ¢ )
symbols denoting the crossover lines are the same as in Fig. 3. t€chniques o~ ™7). In the former case the boundary
(H,7) line between equilibrium and nonequilibrium states is

. _ . ; usually estimated from field-cooling—zero-field cooling
214 _0'.65i 0.05, andT=41.4+0.2K (see Fig. 4. Since (FC-ZFQ curves that deviate one from another just below
the obtained exponents are bound to each other by the re'?ﬁis line™ For our case t,~10"2s) this approach seems

" S

tion (2/6'~1)=—0.67, it is a convincing proof of the scal- j,anyjicaple. We use an alternative method. To make sure
ing assumption(2). Hence, the other scaling relations are i ‘oyr ohservation time is more than SG relaxation time,
acceptable to estimate the unknown indiceé$=3.08, B’ we monitored magnetic losses, i.e., the phase apgie Eq.
=¢'16'=049, y'=¢'—p'=259 etc. (7), provided the exciting frequency remained the same
We also consider another scaling prediction that can beng g4 gig the,,.value. Indeed, if the largest relaxation time
easily checked by direct detecting the nonlinear SG responsg gy ceeded, SG's are assumed to reach the equilibrium state
at triple (3w) exciting frequency. As the squares in Figb% 540 (4 ) =0. Otherwise, e.g., at low temperatures, large
restrict the sector wheréy,/JH has an positive sign, nega- yo|avation times create a nonzero phase delay between the
tive x3(H.T) values, that are usually registered in zero-fieldg, iting field and the sample’s response. In the reported case
measurement$,™*’should be expected only outside this sec-, example, at the liquid helium poifit=4.2 K the signal- ’

tor. Shown n Fig. S, _the e_Xp_enmentaﬂ)?,(H,T) data response lag attained abnormally large valueg0f 4 angle
strengthen thls_ conclusion. Similar phenomena were Obdegrees. Results of oup,(H,T) measurements are pre-
served in the dilute alloy Au 1.5 at.% Fe. sented in Fig. 6. We have chosen the threshold critegia
=0.1[to avoid the overestimation of the equilibrium tem-
IV. DISCUSSION peraturep;(H,T) =0 induced by the experimental erf@nd
found that the equilibrium boundary depends on the applied

When the final results are obtained, it is worth answeringgc magnetic field as the de Aimeida—Thouless%ine
the question: To what extent may they be relied on? One can
name, at least, three reasons that cause some doubts. The first Te(0)—Te(H) H
of them: the exciting field amplitudé in Egs. (8) is pre- m(H)= W: -
sumed to be small enough, as it was already discussed above. F AT
This requirement sets a low-field boundary &f,¢) range  where thelongitudinal spin components are presumed fro-
for reliable measurements. The other two are related to theen. It allows us to include these data in Figh)4(open
scaling hypothesi€?) and exclude usage of too largandH squareps and to show directly that all crossover lines are in
values, respectively. an equilibrium region.

For instance, the static scaling lai®) is valid while the Equation(20) demonstrates the requirement for the ap-
sample is in equilibrium. But it is well known that the SG plied dc magnetic field to be small enough. It is resulted
magnetic state possesses a wide spectrum of relaxatidrom the scaling assumptio2), which states that the tem-
times. At temperature low enough the relaxation time mayperatureT(H) remains constant. Fortunately, the deviation

21’
: (20)
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V. CONCLUDING REMARKS

—~ E H(Oe) The experimental methods, used to check the scaling as-
B2 = ::: 2 sumption, may be roughly discerned by techniques the au-
p 2 Y 10 thors use to resolve the problem of unknown scaling function
%0 o ,L e 20 F. (x). Compared with direct calculations Bf. (x), the test
'8 \ a4 of the scaling relationships seems somewhat indirect method,
= E\' —a—380 but no less convincing. Moreover, the exponents, which
g1 :\‘ yield an optimum data collapse, strongly depend upon the
= o (H,7) range where the fit is performé8 Since in magnetic
= 5 materials near the percolation threshald=1 this range
E 5 shrinks dramatically? our approach looks preferable for
s | such cases.

0 . PP R rara. arermrer. oo Until a recent work by Williamset al? the indices were

25 30 35 40 45 50 usually extracted from the critical isotherm=0) and the

T(K) zero-field H=0) behavior. So, it was known how to select

only two, Xo=0 andxy=, of an infinite number of cross-
over lines forming the surface. Unfortunately, each of these
lines was described by a single exponent, i.e., none of them
included information about all three critical indices, which
7(H), if any, reveals the same asymptotic behavior as thare needed to check the scaling relationship. The lines with
crossover line¢11),(16). In other words, within the proposed 0<x,<« are free of this fault. Although these lines was
in Fig. 4(b) approach it changes the crossover line slopesliscovered and studied in FM’s, we expanded this concept
only, but has no influence on the exponenip2£0.65 for SG’s (and, in general terms, for any system where the
+0.05 as well as the temperatufe(H=0)=41.4+0.2K. scaling hypothesis can be applied

Since the method to extract another exponefit=6.0

+0.3, is also independent of wheth&g(H) is constant or APPENDIX

not, the obtained indices are more reliable than their values
estimated by the best-fit procedure for the scaling functior{h
F(x),?*®whenT is defined as constant. Moreover, to show
this difference, we a priori selected the sample
(Fey 6gMng 35975P16B6Al 5 that is close ~0.5) to the perco-
lation threshold =18 and is more sensitiveH oy~ (1
—17),%% to an external magnetic field. But the exponents
appear nearly the sames~=6.4+0.4¢'=3.0=0.1 (see
Fig. 7). This means that(H =100 Oe)X T barely exceeds d?x, ) .
the double experimental error forTg, ie., 2 Xa=gRz =~ W[?’F (x)+2xF"(x)]
X 0.2K=0.4K, and this fact allows us to estimate the lowest

limit for the denominatoH =10 T. In contrast to the ex- should satisfy the condition

perimental valueH,;=0.19+0.02 T, calculated from the

FIG. 6. Temperature dependences of the phase apglmea-
sured in various magnetic fields.

Here we roughly estimate the dc biasing magnetic fi¢ld

at is needed to suppress the high-order terms in @&)s.
Let us consider the equation that defines the second-
harmonic amplitud®,, and require for the first term of the
total experimental errdry;h?/2+ 15xgh*/32+---], normal-
ized to the useful signay,/2, to be less thamr, wheree

<1. In this case, the second derivative of Esp)

magnetic losses dataee Fig. §, this limit well agrees with X4, , 2x[3F"(x)+2xF"(x)] [ h\?
the theoretical prediction Har=2kgTe(1— 7)/(ug\/5) Eh - F'(x) H &
~20T2

Along the linex—« (i.e., the critical isothernr=0), where
1 the scaling function has the well-known forf(x)~x?",

10 o0 this condition may be noticeably simplified
0% b o v -0.08<1<0.25
B} 10<H(0e)<100 H> \/2 (8'=1)(8'—2)
107 F Iy AV
., <0 h € (6"
107 ¢
O Considering our casehE&6 Oe, 6'=6.0) and assuming an
w10 8'=6.4+0.4 acceptable error to be=5%, one can easily obtairt
- 10° E #'=3.0£0.1 .. >30 Oe. WithH’s amplitude constant, the experimental ac-
o ’-.\ curacy along the other line@ncluding the ones in Fig.)3
107 f Tp=41.61£0.03K turns out to be even better, since the rafith?/ , is partly
10 suppressedfr“") by the reduced temperature So, the

-8 d al n ul d o od d
3 4 5 6 7 8 9 10 11 12 . .
10" 10° 10" 10" 10" 10" 10° 10710710 smaller the scaling parameteg, responsible for a crossover

X line, the larger the distance=[H2/x,]Y*" between this line
FIG. 7. Scaling functiorF’.(x). The slope=1/8'—1~-0.84  and the critical isotherrfisee Fig. 4b)], the lower seems to
of the dotted line is consistent with the critical exponéht=6.4. be the admissible magnetic fieldl (Fig. 3.
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