
PHYSICAL REVIEW B 1 MAY 1999-IIVOLUME 59, NUMBER 18
Phase transition between quantum and classical regimes for the escape rate
of a biaxial spin system

Gwang-Hee Kim*
Department of Physics, Sejong University, Seoul 143-747, Republic of Korea

~Received 17 December 1998!

Employing the method of mapping the spin problem onto a particle one, we have derived the particle
Hamiltonian for a biaxial spin system with a transverse or longitudinal magnetic field. Using the Hamiltonian
and introducing the parameterp@[(Umax2E)/(Umax2Umin)# whereUmax(Umin) corresponds to the top~bot-
tom! of the potential andE is the energy of the particle, we have studied the first- or second-order transition
around the crossover temperature between thermal and quantum regimes for the escape rate, depending on the
anisotropy constant and the external magnetic field. It is shown that the phase boundary separating the first-
and second-order transition and its crossover temperature are greatly influenced by the transverse anisotropy
constant as well as the transverse or longitudinal magnetic field.@S0163-1829~99!04117-X#
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In recent years, quantum classical escape rate transitio
the spin system has emerged as good candidates to di
first- or second-order transition~FST!.1–4 Such a system is a
single domain ferromagnetic particle with the magnetizat
M whose direction is subject to the magnetocrystalline

isotropy. In this situation the directionM̂ has at least two
equivalent stable orientations separated by an energy ba
U. Even thoughM is initially directed along one of thes

equivalent orientations,M̂ can be changed by thermal ac
vation whose rate is proportional to exp(2U/kBT) at high
temperature, and by quantum tunneling at a temperature
enough to neglect the thermal activation. In general, si
the tunneling rate is dominated by exp(2U/\v) where v
characterizes the width of the parabolic top of the bar
hindering the tunneling process, there is a crossover temp
ture T0 from the thermally activated to the quantum tunn
ing process. Whether the transition about the crossover t
perature is a first- or second-order one is determined by
external magnetic field and the magnetic anisotropy const
By controlling the field and choosing the anisotropy const
in an appropriate way, we expect that there exists the cr
over temperatureT0

(c) at the phase boundary between fir
and second-order transition.

Theoretical studies of the transition have been around
some time. Affleck5 and Larkin and Ovchinnikov6 demon-
strated that a second-order transition from thermal to qu
tum regimes can occur at the crossover temperature by u
the standard instanton technique. Later, Chudnovsky7 dis-
cussed the criterion to determine FST based on the beha
of the period of oscillations in the inverted potential. Sin
then, based upon the mapping of a spin problem onto a
ticle one,8 Chudnovsky, Garanin, and Martı´nes1–3 suggested
the spin system with the uniaxial crystal symmetry whi
shows FST in the presence of a transverse and longitud
field. A biaxial spin model without an applied field has be
considered by J.-Q. Lianget al.4 who demonstrated that FS
is determined from the ratio of the transverse to the long
dinal anisotropy constant by using the periodic instan
method. Even though they presented the analytical res
without field, their approach could not be simply extended
PRB 590163-1829/99/59~18!/11847~5!/$15.00
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the situation in the presence of field.9 Very recently, in an
effort to treat FST of the biaxial spin system with a longit
dinal field, Garanin and Chudnovsky12 used a perturbation
approach and obtained the phase boundary between the
and second-order transition which is numerically correc
by the Lianget al.’s exact value in the absence of the fiel
Thus a relevant approach to treat a biaxial spin system w
a transverse or longitudinal field has been highly required
FST. In fact, complete analytical solution of the proble
seems to be considerably important for the possibility of F
in molecular magnetic systems as well as a single dom
ferromagnetic particle with many spins. In this paper, e
ploying the method of mapping a spin problem onto a p
ticle one, we obtain the particle Hamiltonian of the biax
spin problem with a transverse or longitudinal field.4,7 Actu-
ally, such a mapping is not a regular procedure and its fo
strongly depends on the form of the spin Hamiltonian. Us
the Hamiltonian and introducing the dimensionless ene
variablep, we will study the first- or second-order transitio
around the crossover temperature between thermal and q
tum regimes for the escape rate, depending on the anisot
constant and the external magnetic field, and present the
lytic form of the phase boundary separating first- fro
second-order transition and the crossover temperature a
phase boundary.

Consider the biaxial spin model in a transverse fieldHx
described by the Hamiltonian

H52K uuSz
21K'Sy

22HxSx , ~1!

whereK uu andK' are the longitudinal and transverse anis
ropy constants, respectively. This Hamiltonian can
mapped onto a particle problem8 which describes the exac
correspondence between the spin-wave function

c5 (
M52S

S

aMF ~S1M !! ~S2M !!

~2S!! G1/2

uSM&, ~2!

whereuSM& are the eigenstates ofSz , and the particle wave
function C(x)5 exp@2g(x)#(M52S

S aM exp(Mx) where
11 847 ©1999 The American Physical Society
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11 848 PRB 59GWANG-HEE KIM
dg~x!

dx
5

S̃hx~12k!sinh~x!1~S̃21!k sinh~2x!

11k cosh~2x!
, ~3!

S̃5S11/2, k5kt /(21kt), kt5K' /K uu, and hx5Hx /
(2S̃K uu). The particle Hamiltonian is

H52
1

2m~x!

d2

dx2 1U~x!, ~4!

where 1/m(x)5K uu(21kt)@11k cosh(2x)#, U(x)
5S̃2K uuu(x), and

u~x!5$1/~12k!@11k cosh~2x!#%„hx
2 sinh2~x!~12k!2

22hx~12k! cosh~x!2k$2hx~12k! cosh~x!21

1cosh~2x!2@5 cosh~2x!21#/~4S̃2!%

1k2$cosh~2x!211@cosh2~2x!2 cosh~2x!

14#/~4S̃2!%…. ~5!

Here we notice that the potential and the mass without tra
verse anisotropy are reduced to the results in Ref. 8. E
thoughS̃ appears in the potential, the terms associated witS̃
can be neglected in the largeS limit including S510. So, we
will not include the terms with 1/(4S̃2) in the subsequen
consideration.13

In the quasiclassical approximation the transition rate
comes

G;E dEW~E!exp@2~E2Umin!/T#, ~6!

whereW(E) is the probability of tunneling at an energyE.
Since this is defined via the imaginary-time actionW(E)
;e2S(E), the transition rate is approximately given by

G; exp~2Fmin /T!, ~7!

whereFmin is the minimum of the effective ‘‘free energy’
F[E1TS(E)2Umin with respect to E. Then, writing
F(E)/T5*21/2T

1/2T dt@(m(x)/2)(dx/dt)21U(x)2Emin#, the
imaginary time action is given by1,2

S~E!52E
2x1~E!

x1~E!

dxA2m~x!AU~x!2E, ~8!

where 6x1(E) are the turning points for the particle wit
energy2E in the inverted potential2U(x). We note that
the mass is coordinate dependent, which is crucial in cha
ing the boundary between first- and second-order transit
as will be seen. In order to determine FST in the crosso
regime, we need to consider the behavior ofS(E) near the
top of the barrier. Since the potential in Eq.~5! is even, we
expand the integrand in Eq.~8! nearx50 which corresponds
to the top of the barrier. Introducing dimensionless ene
variable1,3 p@[(Umax2E)/(Umax2Umin)# where
Umax(Umin) corresponds to the top~bottom! of the potential,
the action becomes near the top of the barrier:

S~E!5
pDU

AU2~K uu1K'!
@p1bp21O~p3!#, ~9!
s-
n

-

g-
n,
er

y

whereU252S̃2K uuu
(2)(0)/2, U45S̃2K uuu

(4)(0)/4!, and

b5
3

8 S U4DU

U2
2 D F12

2

3 S k

11kD S U2

U4
D G . ~10!

HereDU5Umax2Umin , and the second term in the brack
comes from the coordinate dependence of the mass. U
the analogy with the Landau theory of phase transitions
the general conditions for first- and second-order quan
classical transition of the escape rate discussed in Refs. 6
7, the factor in front ofp2 in Eq. ~9! determines the boundar
between the first- and second-order transition.

For the model without transverse field we haveU2

52S̃2K uuk/(11k) and U4522S̃2K uuk(125k)/@3(11k)2#
from Eq. ~5!. If the mass does not depend on the coordina
the sign of the factor ofU4 determines whether the syste
becomes the first- or the second-order transition due to
anharmonicity of the potential. However, as has been alre
noticed from Eq.~4!, the mass is a function ofx. So, we
cannot simply obtain the phase boundary from the anhar
nicity of the potential near the top of the barrier. Now, usi
DU5S̃2K uu , the action~9! is given by

S~E!5~pS̃/Akt!@p1bp21O~p3!#, ~11!

where b5(121/kt)/8. Thus the critical value ofkt is 1
implying that smaller values ofkt lead to the first-order tran
sition which is consistent with the result in Ref. 4.14

In case of the second-order transition the crossover oc
at temperatureT0

(2)5v0 /(2p) wherev0 is oscillation fre-
quency near the bottom of the inverted potential. To estim
the frequency, we set up the Euclidean Euler-Lagrange eq
tion m(x) ẍ1m8(x) ẋ2/22U8(x)50, and insertx5xb1dx
into the equation, wherexb is x coordinate of the barrier
Expanding to second order indx, we haved ẍ1v0

2dx50,
wherev05AuU9(0)u/m(0). This yields the crossover tem
perature given byT0

(2)5S̃AK uuK'/p, which leads to the

crossover temperature at the phase boundary,T0
(c)5S̃K uu(2

1kt)/(3p).
For the first-order transition the approximate form of t

crossover temperature for smallk can be analytically calcu-
lated from the relationT0

(1).DU/S(Emin). At the bottom of
the barrier,S(Emin) can be calculated directly from the inte
gral expression~8! or following from4

S~E!54S̃A2k2E
12k

@K~q!2~12a2!P~a2,q!#, ~12!

which is derived from Eqs.~5! and ~8!. HereE5E/@S̃2(K i
1K'/2)#, andK andP are complete elliptic integrals of th
first and third kind withq25(z121)/(z111), a25q2(1
2k)/(11k), and z15@k(k21)1E#/@k(k21)2kE#. This
yields T0

(1).(S̃K uu/2)/ln@(11A12k2)/k#, which is approxi-
mate form for the first-order transition in the region of sm
k.

We now consider the model with a transverse magn
field. Expanding the potential~5! in powers ofx, we obtain

U25@S̃2K uu /~11kt!#~hx1kt!~12hx!, ~13!
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FIG. 1. hx
2 as a function of

kt . Inset:hx
1 as a function ofkt .
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U45$S̃2K uu /@12~11k!2#%@4~125k!~12k!hx
2

1~21138k257k2!hx28k~125k!#, ~14!

and DU5S̃2K uu(12hx)
2. It is noted that the condition in

which the barrier does not vanish isU2.0, i.e., hx,1.
Then, the action near the top of the barrier becomes, f
Eq. ~9!,

S~E!5pS̃
~12hx!

3/2

~kt1hx!
1/2

@p1bp21O~p3!#, ~15!

where

b5
~12kt!

8~hx1kt!
2 ~hx2hx

1!~hx2hx
2!, ~16!

hx
6~kt!5

1214kt1kt
26~11kt!A1134kt1kt

2

8~12kt!
. ~17!

As is shown in Fig. 1, the behavior ofhx
6 shows thatb is

negative forkt,1 and hx,hx
1 which corresponds to the

first-order transition. As is shown in Fig. 2, in the absence
the transverse anisotropy,hx51/4 is the critical value for
FST,1 and in the presence of very small transverse anisotr
we havehx

1.(117kt/2)/4 in which the boundary become
wider for 0<kt,0.2. Askt continues to increase, the regio
where a first-order transition occurs, is smaller for the biax
model than for the uniaxial model. This is intuitively unde
stood that, since the transverse anisotropy drives the dec
the metastable state, it plays the role of the transverse fie
the uniaxial case and so, for a given small transverse field
region for the first-order transition decreases as the tra
verse anisotropy increases. It is also noted thathx

1 decreases
linearly for kt&1, i.e., just ashx

1.(12kt)/3.
m

f

y

l

of
in

he
s-

Continuing in the present case as without transverse c
we have the crossover temperature for the second-order
sition

T0
~2!~kt ,hx!5~S̃K uu /p!A~kt1hx!~12hx!. ~18!

Using Eq. ~17! for hx
1 , the crossover temperature at th

phase boundary between the first- and second-order tra
tion is written as

T0
~c!5@A3/~2p!#S̃K uu~11kt!Ahx

1~kt!/~12kt!, ~19!

which is illustrated in Fig. 3. We note thatT0
(c)

.S̃Kuu@A3/(4p)#(113kt) for small kt and T0
(c)

.@S̃K uu /(2p)#(11kt) for k&1.

FIG. 2. Boundary between the first- and the second-order t
sitions, where~a! hx

1(kt), ~b! hx
max(kt) which gives the maximal

crossover temperature in the quantum classical transition, and~c!
the boundary whether the barrier vanishes or not.
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In the case of the first-order transition the crossover te
perature as a function ofkt for small hx is approximately
estimated from the ground-state tunneling exponent given
Eq. ~8! or the direct integral expression15 andDU considered
above, which gives

T0
~1!~kt ,hx!.S̃K uu~12hx!

2/@2g~kt ,hx!#, ~20!

where

g~kt ,hx!5 lnS A11kt1A12hx
2

A11kt2A12hx
2D

2
2hx

Akt

arctan~Akt /~11kt!A1/hx
221!. ~21!

Simple analysis for the crossover temperature shows
there exists a maximum of the crossover temperatureT0

max in
the regime of the second-order transition, which from E
~18! givesT0

max5@S̃K uu /(2p)#(11kt) at hx5(12kt)/2. It is
noted that this is the asymptotic form ofT0

(c) for kt&1, as
discussed previously. As the transverse anisotropy increa
hx

max for the maximal crossover temperature decreases,~Fig.
2! while T0

max increases linearly~Fig. 3!. As is summarized in
Table I and shown in Fig. 3, askt increases, the differenc
betweenT0

max and T0
c decreases and becomes zero atkt51

which is the critical value in the fieldless case.
In the presence of a longitudinal field of the spin mod

H52K uuSz
21K'Sy

22HzSz , we can proceed similarly, an
we will briefly discuss the essential points. In order to obt
the relation betweenhz@5Hz /(2S̃K uu)# and kt at the phase
boundary, we need to have the coefficient ofp2 in the action,
i.e.,b includingU3 andm8(xb) as well asU2 andU4 where
xb is the position of the barrier, because the potential giv
by

FIG. 3. Dependence of~a! the crossover temperatureT0
(c) at the

phase boundary and~b! the maximum crossover temperatureT0
max

on the scaled anisotropy constantkt whereT̄0
(c)5T0

(c)/(S̃K uu/2p).
-

y

at

.

es,

l

n

n

u~x!5
1

~12k!@11k cosh~2x!#
„hz

2~12k!2

2k$2hz~12k! sinh~2x!211 cosh~2x!

2@5 cosh~2x!21#/~4S̃2!%1k2@cosh~2x!21

1@cosh2~2x!2 cosh~2x!14#/~4S̃2!%…, ~22!

is not an even function. Following the procedure discus
previously, we have the boundary between first- and seco
order transition

kt5~12hz
2!/~112hz

2!. ~23!

The ratio of two anisotropy constants,kt decreases paraboli
cally for hz!1, askt.123hz

2 , and linearly forhz&1, as
kt.(2/3)(12hz). This can be understood from the fact tha
since the height of barrier decreases ashz increases, the first-
order transition is expected for the larger width of the barr
which comes from the smaller value of the trasverse ani
ropy. The crossover temperatureT0

(c) at the phase boundar
can be obtained by using Eq.~23! and T0

(2)(kt ,hz)
5(1/2p)AuU9(xb)u/m(xb) in the second-order transition
which leads to

T0
~c!5~S̃K uu /p!~12hz

2!/A112hz
2. ~24!

Simple analysis shows that our results are consistent with
ones deduced from the correction of the perturbative ca
lation performed in Ref. 12 up to the numerical factors. Ev
though the perturbative approach is less justified at la
value of the transverse anisotropy constant, its boundary
crossover temperature are strikingly the same trend as
analytical results obtained from the quasiclassical metho

In this paper we have considered the quantum class
escape rate transition of a biaxial spin system in the prese
of a transverse or longitudinal field by using the partic
Hamiltonian mapped from the spin system. The coordin
dependence of the particle mass was crucial in changing
boundary between the first- and second-order transition
its boundary was greatly influenced by the transverse ani
ropy constant and external field, whose effect is expecte
be observed in future experiments including Fe8 molecular
magnet.16

I am indebted to E. M. Chudnovsky for many useful d
cussions. This work was supported by the Basic Science
search Institute Program, Ministry of Education, Project N
015-D00118.

TABLE I. Summary of~a! the maximum crossover temperatu
and~b! the crossover temperature at the phase boundary at two
points in Fig. 3.

kt hx T0 /(S̃K uu/2p)

0 1/2 1 (a)
1 0 2 (a)
0 hx

151/4 A3/2 (b)
1 hx

150 2 (b)
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