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Employing the method of mapping the spin problem onto a particle one, we have derived the particle
Hamiltonian for a biaxial spin system with a transverse or longitudinal magnetic field. Using the Hamiltonian
and introducing the parametpf = (U nax— E)/ (U max— Umin) ] WwhereU ,.{Umin) corresponds to the toftbot-
tom) of the potential anc is the energy of the particle, we have studied the first- or second-order transition
around the crossover temperature between thermal and quantum regimes for the escape rate, depending on the
anisotropy constant and the external magnetic field. It is shown that the phase boundary separating the first-
and second-order transition and its crossover temperature are greatly influenced by the transverse anisotropy
constant as well as the transverse or longitudinal magnetic fig@l63-182009)04117-X]

In recent years, quantum classical escape rate transition ihe situation in the presence of field/ery recently, in an
the spin system has emerged as good candidates to displeffort to treat FST of the biaxial spin system with a longitu-
first- or second-order transitio@FST).}™* Such a system is a dinal field, Garanin and Chudnovskyused a perturbation
single domain ferromagnetic particle with the magnetizatiorapproach and obtained the phase boundary between the first-
M whose direction is subject to the magnetocrystalline anand second-order transition which is numerically corrected

isotropy. In this situation the directioM has at least two by the Lianget al’s exact value in the absence of the field.

equivalent stable orientations separated by an energy barrigrh us a relevant approach to treat a biaxial spin system with

o . a transverse or longitudinal field has been highly required for
U. Even thoughM is initially directed along one of these FST. In fact, complete analytical solution of the problem

equivalent orientationsyl can be changed by thermal acti- seems to be considerably important for the possibility of FST
vation whose rate is proportional to expl/kgT) at high  in molecular magnetic systems as well as a single domain
temperature, and by quantum tunneling at a temperature loférromagnetic particle with many spins. In this paper, em-
enough to neglect the thermal activation. In general, sincgloying the method of mapping a spin problem onto a par-
the tunneling rate is dominated by expd/Aw) where  ticle one, we obtain the particle Hamiltonian of the biaxial
characterizes the width of the parabolic top of the barriespin problem with a transverse or longitudinal fiéitActu-
hindering the tunneling process, there is a crossover temperatly, such a mapping is not a regular procedure and its form
ture T, from the thermally activated to the quantum tunnel-strongly depends on the form of the spin Hamiltonian. Using
ing process. Whether the transition about the crossover tenthe Hamiltonian and introducing the dimensionless energy
perature is a first- or second-order one is determined by thgariablep, we will study the first- or second-order transition
external magnetic field and the magnetic anisotropy constaniround the crossover temperature between thermal and quan-
By controlling the field and choosing the anisotropy constantum regimes for the escape rate, depending on the anisotropy
in an appropriate way, we expect that there exists the crosgonstant and the external magnetic field, and present the ana-
over temperaturd ") at the phase boundary between first-lytic form of the phase boundary separating first- from

and second-order transition. second-order transition and the crossover temperature at the
Theoretical studies of the transition have been around fophase boundary.
some time. Affleck and Larkin and Ovchinnikdvdemon- Consider the biaxial spin model in a transverse fidid

strated that a second-order transition from thermal to quardescribed by the Hamiltonian

tum regimes can occur at the crossover temperature by using

the standard instanton technique. Later, Chudnovshy- _ H= _KHS§+ Kisi_HxSxa (1)
cussed the criterion to determine FST based on the behavior

of the period of oscillations.in the inve_rted potential. SincewhereK” andK are the longitudinal and transverse anisot-
then, baged upon the mapping of a spin proglsem onto a Pafppy constants, respectively. This Hamiltonian can be
ticle one? Chudnovsky, Garanin, and Mares > suggested mapped onto a particle problénwhich describes the exact

the spin system with the uniaxial crystal symmetry ‘_’Vhi?hcorrespondence between the spin-wave function
shows FST in the presence of a transverse and longitudinal

field. A biaxial spin model without an applied field has been s
considered by J.-Q. Lianet al* who demonstrated that FST = 2 ay
is determined from the ratio of the transverse to the longitu- M=-s
dinal anisotropy constant by using the periodic instanton

method. Even though they presented the analytical resultwhere|SM) are the eigenstates &, and the particle wave
without field, their approach could not be simply extended tofunction W (x) = exf — y(X) =% —_cAy expMx) where

(S+M)1(S—M)!
(29)!
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dy(x) _ Shy(1—k)sinh(x)+(S—1)k sinh(2x)

dx 1+ k cosh2x) '
§:~s+ 112, k=k/(2+k), k=K /K, and hy=H,/
(2SK})). The particle Hamiltonian is

d2
Hz—manU(x), 4

where In(x) =K (2+k)[1+kcosh(¥)],
=K ju(x), and

U(x)

u(x)={1/(1—k)[1+k cosh2x) ]} (hZ sinkP(x)(1—k)?
—2h,(1—K) coshx) —k{2h,(1—k) coshx)—1
+cosh2x) —[5 costi2x) — 1]/(45%)}
+k2{cosh2x)— 1+[ cost(2x) — cosh2x)

+41/(43H))}). (5)
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whereU,= —S?K;,u®(0)/2, U,=S?K;,u(0)/4!, and

Here AU=U . Unin, and the second term in the bracket
comes from the coordinate dependence of the mass. Using
the analogy with the Landau theory of phase transitions and
the general conditions for first- and second-order quantum
classical transition of the escape rate discussed in Refs. 6 and
7, the factor in front op? in Eq. (9) determines the boundary
between the first- and second-order transition.

For the model without transverse field we halk
=25%Kk/(1+k) and U,=— 25K |k(1—5K)/[3(1+k)?]
from Eq. (5). If the mass does not depend on the coordinate,
the sign of the factor otJ, determines whether the system
becomes the first- or the second-order transition due to the
anharmonicity of the potential. However, as has been already
noticed from Eq.(4), the mass is a function of. So, we
cannot simply obtain the phase boundary from the anharmo-

3

8

173115k (10

U,AU
U3

Z(k

Here we notice that the potential and the mass without transicity of the potential near the top of the barrier. Now, using
verse anisotropy are reduced to the results in Ref. 8. Eveﬂu=§2K|| the action(9) is given by
thoughS appears in the potential, the terms associated @ith
can be neglected in the lar@dimit including S=10. So, we
will not include the terms with 1/(8%) in the subsequent
consideratiort?

In the quasiclassical approximation the transition rate b

S(E)=(wS/\k)[p+ Bp2+0(p%)], (12)

where B=(1—1/k;)/8. Thus the critical value ok; is 1
eimplying that smaller values d; lead to the first-order tran-

comes

I‘~f dEWE)exd —(E—Umn)/T], (6)

whereW(E) is the probability of tunneling at an ener@y
Since this is defined via the imaginary-time actid{(E)
~e 5B the transition rate is approximately given by

()

whereF i, is the minimum of the effective “free energy”
F=E+TYE)—U, with respect to E. Then, writing

'~ exp —Fmin/T),

F(E)/T=fl,’ﬂﬁdr[(m(x)IZ)(dx/dr)2+U(x)—Emm], the
imaginary time action is given
X1(E)
S(E)=2f dxy2m(x) yU(x)—E, ®
—x1(E)

where =x,(E) are the turning points for the particle with

energy — E in the inverted potential-U(x). We note that

the mass is coordinate dependent, which is crucial in chang-

sition which is consistent with the result in Refl4.

In case of the second-order transition the crossover occurs
at temperaturél'gz)=w0/(27r) where w is oscillation fre-
guency near the bottom of the inverted potential. To estimate
the frequency, we set up the Euclidean Euler-Lagrange equa-
tion m(x)x+m’(x)x%/2—U'(x)=0, and insertx=x,+ 6x
into the equation, where, is x coordinate of the barrier.
Expanding to second order ifix, we havesx+ w2éx=0,
where wy= v|U"(0)|/m(0). This yields the crossover tem-
perature given byT{?=SVK|K, /@, which leads to the
crossover temperature at the phase bound‘é&?},:éKH(Z
+k)/(37).

For the first-order transition the approximate form of the
crossover temperature for smélican be analytically calcu-
lated from the relatio{"'=AU/S(E ). At the bottom of
the barrier,S(E,,,) can be calculated directly from the inte-
gral expressiori8) or following from®

_ [2k=¢
S(E) =45\ T IK(0) - (1-a))l(a” )], (12

ing the boundary between first- and second-order transition,
as will be seen. In order to determine FST in the crossovefnich is derived from Eqs(5) and (8). Here E= E/[~SZ(KH

regime, we need to consider the behaviorSE) near the
top of the barrier. Since the potential in E§) is even, we
expand the integrand in E¢B) nearx=0 which corresponds

to the top of the barrier. Introducing dimensionless energ

variablé- Pl = (U max— E)/(Umas— Umin) ] where
Uma{Umin) corresponds to the toflbottom) of the potential,
the action becomes near the top of the barrier:

sE)=—2Y _ [pigptioed] O
U2(K|‘+Kl) p p P71,

+K,/2)], andK andII are complete elliptic integrals of the
first and third kind withg?=(z,—1)/(z;+1), «?=qg?%(1
—K)/(1+k), and z=[k(k—1)+ &)/[k(k—1)—kE]. This

¥ields T§=(SK/2)/In[(1+ V1—K?)/k], which is approxi-

mate form for the first-order transition in the region of small
k.

We now consider the model with a transverse magnetic
field. Expanding the potenti&b) in powers ofx, we obtain

U,=[S*K||/(1+k)1(h+k)(1—h,), (13
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FIG. 1. h, as a function of
02 k;. Inset:h; as a function ok;.
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U :{§2K /[12(1+K)2]}[4(1—5k)(1— k)h2 Continuing in the present case as without transverse case,
4 I X we have the crossover temperature for the second-order tran-
+(—1+38—57?)h,— 8k(1—5Kk)], (14)  sition

and AU=35K K| (1—hy)?2 It is noted that the condition in T<2>(|<t,hx):("éKH/W)w/(|<pL h)(1—h,). (18
which the barrier does not vanish 4,>0, i.e., h,<1.

Then, the action near the top of the barrier becomes, fro¥sing Eq. (17) for hy , the crossover temperature at the
Eq. (9), phase boundary between the first- and second-order transi-

tion is written as

( )3/2 B
S(E)= S—( )1,2[p+ﬁp2+0(p3)], (15 T =[\3/(2m)ISK (1 + k) Vhy (k)/(1—ky), (19
where which is illustrated in Fig. 3. We note thaff{®
=SK|[V3/(4m)](1+3k) for small k,  and T
(1—ky) - ~[SK /(2m)](1+k,) for k=1.
B= m(h ) (he=hy), (16)
1.2 r T T T T
hE ok _1- 14kt+k2+(1+kt)\/1+34kt+k2 1 No barrier
As is shown in Fig. 1, the behavior &, shows thatg is 08 %ﬁ;_
negative fork,<1 andh,<h, which corresponds to the ()
first-order transition. As is shown in Fig. 2, in the absence of < ©°8[ ——,

the transverse anisotroph,=1/4 is the critical value for
FST!and in the presence of very small transverse anisotropy 04}
we haveh, =(1+7k,/2)/4 in which the boundary becomes

wider for 0<k;<0.2. Ask; continues to increase, the region 02

where a first-order transition occurs, is smaller for the biaxial Bl ey

model than for the uniaxial model. This is intuitively under- 0 ; : : .

stood that, since the transverse anisotropy drives the decay o 0 02 04 O'ft 08 ! 12

the metastable state, it plays the role of the transverse field in
the uniaxial case and so, for a given small transverse field the g 2. Boundary between the first- and the second-order tran-
region for the first-order transition decreases as the transstions, where(a) h; (k,), (b) h™{k,) which gives the maximal
verse anisotropy increases. It is also noted Hjatlecreases crossover temperature in the quantum classical transition(@nd
linearly fork,<1, i.e., just ash, =(1—k,)/3. the boundary whether the barrier vanishes or not.
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TABLE I. Summary of(a) the maximum crossover temperature

and(b) the crossover temperature at the phase boundary at two end
points in Fig. 3.
ke hy To/(SK/2m)
s 0 1/2 1 (a)
153 1 0 2 (a)
0 h) =1/4 V312 (b)
1 hy = 2 (b)
= 2 — 2
U= Tt kcoshio] M2~k
085 02 0.4 06 08 1 _
Ky —k{2h,(1—-k) sinh(2x) — 1+ cosh2x)

22 2
FIG. 3. Dependence @) the crossover temperatufg® at the —[5 cosli2x) —1]/(4S°)} + k7 cosh(2x) — 1

phase boundary an@) the maximum crossover temperaturg® ~0
~ + - +

on the scaled anisotropy constdptwhereT{? =T{/(SK,/2m). _ [COSH(Z.X) COSKZ.X) A4S, .(22)

is not an even function. Following the procedure discussed

mpreviously, we have the boundary between first- and second-

In the case of the first-order transition the crossover te S
order transition

perature as a function df; for small h, is approximately
estimated from the ground-state tunneling exponent given by ke=(1—h2)/(1+2h2). (23
Eq. (8) or the direct integral expressibrandAU considered

above, which gives The ratio of two anisotropy constants, decreases paraboli-

cally for h,<1, as kt=1—3h§, and linearly forh,<1, as
D ~ 5 ki=(2/3)(1—h,). This can be understood from the fact that,
To (ke ,hy)=SK ) (1-hy)*/[2g(k;,ho) ], (200 since the height of barrier decreasesacreases, the first-
order transition is expected for the larger width of the barrier
where which comes from the smaller value of the trasverse anisot-
ropy. The crossover temperatuTéC) at the phase boundary

J1+k+1—h2 can be obtained by using Eq23 and T@(k,h,)
(ke,hy) = In| ————= 0
9Ky, M) =1In =(1/27) JJU"(xp)[/m(xp) in the second-order transition

\/1+kt—\/l—hx2 ; b b .

which leads to
2h ~
—Wxarctam\/kt/(1+kt)\/1/h§—1). (21) Te = (5K /m)(1—h2)/\1+2hZ (24)
t

Simple analysis shows that our results are consistent with the
nes deduced from the correction of the perturbative calcu-
) : : ation performed in Ref. 12 up to the numerical factors. Even
there exists a maximum of the crossover temperafgf&in thouah th turbati his | ustified at |
the regime of the second-order transition, which from Eq, oug € perturbalive approach Is less justiied at farge
i max_ L= ) value of the transverse anisotropy constant, its boundary and
(18) gives T ™=[SK) /(2m)](1+k,) ath,=(1—k)/2. Itis  crossover temperature are strikingly the same trend as our
noted that this is the asymptotic form @ for k<1, as  analytical results obtained from the quasiclassical method.
discussed previously. As the transverse anisotropy increases, In this paper we have considered the quantum classical
hy® for the maximal crossover temperature decreaddg, escape rate transition of a biaxial spin system in the presence
2) while Tg"® increases linearlyfFig. 3). As is summarized in of a transverse or longitudinal field by using the particle
Table | and shown in Fig. 3, dg increases, the difference Hamiltonian mapped from the spin system. The coordinate
betweenT('® and Tg decreases and becomes zerdgat 1 dependence of the particle mass was crucial in changing the
which is the critical value in the fieldless case. boundary between the first- and second-order transition and
In the presence of a longitudinal field of the spin modelits boundary was greatly influenced by the transverse anisot-
H= —K||S§+ KLS)Z/_ H,S,, we can proceed similarly, and fopy constant and external flgld, whpse effect is expected to
we will briefly discuss the essential points. In order to obtainb® observed in future experiments including; feolecular

6
the relation betweehz[=HZ/(2~SKH)] andk, at the phase magnet.
boundary, we need to have the coefficienpbfin the action, | am indebted to E. M. Chudnovsky for many useful dis-
i.e., BincludingU; andm’(x,) as well asJ, andU, where  cussions. This work was supported by the Basic Science Re-
Xy, is the position of the barrier, because the potential giversearch Institute Program, Ministry of Education, Project No.
by 015-D00118.

Simple analysis for the crossover temperature shows th
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