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First-principles calculations of the vacancy formation energy in transition and noble metals
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The vacancy formation energy and the vacancy formation volume of the 3d, 4d, and 5d transition and noble
metals have been calculated within the local-density approximation. The calculations employ the order-N
locally self-consistent Green’s-function method in conjunction with a supercell approach and include electro-
static multipole corrections to the atomic sphere approximation. The results are in excellent agreement with
available full-potential calculations and with the vacancy formation energies obtained in positron annihilation
measurements. The variation of the vacancy formation energy through a transition-metal series and the effects
of crystal and magnetic structure are investigated and discussed.@S0163-1829~99!07717-6#
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I. INTRODUCTION

The existence of vacancies in metals and intermeta
compounds plays an important role for the kinetic and th
modynamic properties of materials. In this connection
energy of formation of a monovacancy is a key concep
the understanding of the processes that occur in alloys du
mechanical deformation or heat treatment. Over the last
cade studies have succeeded in determining energie
monovacancy formation from positron annihilatio
experiments1–3 as well as fromab initio full-potential ~FP!
calculations for simple metals4–6 and for some transition an
noble metals.7–10The most recent work even includes stud
of vacancy-vacancy and vacancy-solute interactions in
Ni, Ag, and Pd~Refs. 11–14! and in Al ~Ref. 15! by means
of the full-potential Korringa-Kohn-Rostoker~KKR!
Green’s-function method.

In spite of the importance, to our knowledge, noab initio
study of the behavior of the vacancy formation energy alo
a transition-metal series has been performed so far, altho
a number of theoretical predictions based on simplified m
els of bonding in transition metals may be found in t
literature.16–18On the other hand, there are many experim
tally observed and theoretically expected correlations c
necting the vacancy formation energy to other physical pr
erties such as cohesive and surface energies,9,10,19–21melting
and Debye temperatures,3,22,23and elastic constants.24 There-
fore, the goals of the present work are to perform a syst
atic ab initio study of vacancy formation energies in all th
3d, 4d, and 5d transition metals, to analyze the observ
trends along the rows of the Periodic Table, and to inve
gate the effects of crystal and magnetic structure on the
cancy formation energies.

The number of vacancies in an elemental metal at e
librium conditions is usually small. Even close to the melti
point it is much less than 1 at. %. Thus, in order to stud
realistic metal-vacancy system, it is necessary to cons
either a single vacancy in the bulk using the Green
function method,7,8 or a large supercell in which the vaca
cies are well separated. To calculate vacancy-vacanc
PRB 590163-1829/99/59~18!/11693~11!/$15.00
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vacancy-solute interaction energies in alloys or to stu
complex thermal defects in some intermetallics, very la
supercells are necessary. Since the computational effo
conventional band-structure methods grows asN3, whereN
is the number of atoms in the unit cell, such methods beco
extremely inefficient for large supercells. However, recen
a new generation of electronic structure methods in wh
the computer time scales linearly withN has emerged.25–28

One most efficient so-called order-N method is the locally
self-consistent Green’s-function~LSGF! method by Abriko-
sov et al.27,28 that may be used to treat ordered, disorder
and partially ordered systems on the same footing and w
an accuracy comparable to that of conventional ba
structure methods. The high efficiency of this method
achieved by the choice of a self-consistent effective med
that allows for a particularly small local interaction zon
~LIZ !.

The original implementation of the LSGF method27 is
based on the atomic-sphere approximation~ASA! that may
be expected to overestimate the vacancy formation energ
as much as a factor of 2 similar to all the previous vacan
calculations performed within the ASA.29–31This large error
arises as a result of an inadequate treatment of the elec
charge depletion around the vacancy caused by the sphe
averaging of the electron density over each atomic sph
and would clearly invalidate the calculations. However, t
vacancy formation energy is a physical quantity of the sa
kind ~and order of magnitude! as the surface energy and on
would expect to be able to determine it by means of
LSGF method provided the spherical approximation to
electron charge density is lifted7,8 similar to the surface en
ergy calculations for simple and transition metals32 and to
the surface segregation calculations in metallic alloys.33,34 In
the present work we therefore keep the spherically symm
ric potential but go beyond the ASA for the electron dens
by an electrostatic multipole expansion and we show tha
this formulation the LSGF method has the accuracy nec
sary to calculate the vacancy formation energy in transit
metals.
11 693 ©1999 The American Physical Society
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II. METHOD OF CALCULATIONS

A. Thermodynamic definitions

Let us consider a bulk crystal of an elemental metal c
tainingNa atoms andNv vacancies at zero temperature. T
number of vacancies in the system is allowed to cha
while the number of atoms is kept constant. We then de
the vacancy concentration ascv5Nv /N, where N5Na
1Nv is the total number of lattice sites and evaluate
vacancy formation quantities in the dilute limitcv→0.

At constant pressurep, corresponding to the experiment
conditions, the vacancy formationenthalpymay be defined
as

H1V
F 5S ]E~Nv!

]Nv
U

Nv50
D

p,Na

1pS ]V~Nv!

]Nv
U

Nv50
D

p,Na

,

~1!

whereE(Nv) is the total energy andV(Nv) the volume of
the system. The pressure dependence of the vacancy fo
tion enthalpy is commonly characterized by the first deri
tive at zero pressure, the so-called vacancy formation
ume,

V1V
F 5

]H1V
F

]p
U

p50

5S V01
]V0

]cv
D U

cv50

, ~2!

whereV05V0(cv)/N is the equilibrium volume per site. A
constant volumeV the vacancy formationenergy may be
defined as

E1V
F 5S ]E~Nv!

]Nv
U

Nv50
D

V,Na

. ~3!

The vacancy formation energy, Eq.~3!, evaluated at the cal
culated equilibrium volumeV0 and the vacancy formation
enthalpy, Eq.~1!, determined at zero external pressure co
cide.

The volume dependence of the vacancy formation ene
may be described by a partial contribution to the crys
pressure,35

p1V5S ]p

]cv
U

cv50
D

V0

52
]E1V

F ~V!

]V
U

V5V0

, ~4!

connected to the vacancy formation volume~2! through the
thermodynamic relationship

p1V5BS V1V
F

V0
21D 5Bd, ~5!

whereB is the bulk modulus of the host andd is the volume
misfit

d5
1

V0

]V0

]cv
U

cv50

. ~6!
-
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B. Supercell calculations for vacancies

To calculate the physical quantities relevant for vacan
formation we use a supercell approach in which the me
vacancy system is modeled by a bulk crystal in which
number of lattice sitesN5Na1Nv is fixed by construction.
Following the definitions~1! and ~2! the vacancy formation
enthalpy and the vacancy formation volume may be cal
lated from the expressions

H1V
F 5E~1,Ṽ!2

N21

N
E~0,V!1p@NṼ2~N21!V# ~7!

and

V1V
F 5NṼ02~N21!V0 , ~8!

whereE(Nv ,Ṽ) is the total energy of a supercell containin
Nv vacancies at a volumeṼ corresponding to an externa
pressurep. For the perfect crystal with no vacancies prese
the volume corresponding to the common external press
is V.

If the size of the supercell is large, the effect of volum
relaxation on the energy is negligible since the total ene
of the supercell has a minimum at the appropriate equi
rium volumes. In that case the vacancy formation ene
may be calculated at a fixed volume close to the equilibri
volumeV0 as

E1V
F ~V!5E~1,V!2

N21

N
E~0,V!, ~9!

while the partial vacancy pressure may be estimated from
first derivative using Eq.~4!. Due to the superior conver
gence of Eq.~7! asN→`, we have used this expression
zero external pressure instead of Eq.~9! to calculate the va-
cancy formationenergyas is common practice in superce
calculations for vacancies.5,10,30,36

C. Locally self-consistent Green’s-function method

To eliminate vacancy-vacancy interactions one needs
percells with about 30 to 50 lattice sites and since we wan
perform total-energy calculations for close to 30 elemen
metals in two crystal structures, bcc and fcc, we will he
take advantage of the LSGF method,27,28 the computational
efforts of which scale linearly with the number of lattic
sites. This favorable order-N scaling is achieved by solving
the multiple-scattering problem exactly inside the so-cal
local interaction zone that surrounds each atom in the su
cell whereby one may obtain locally self-consistent values
the Green’s function for the central site of each LIZ. T
LSGF method employs a judiciously chosen effective m
dium to describe the crystal beyond the LIZ and theref
one may obtain highly accurate total energies for a minim
LIZ size. In fact, the method typically becomes more ef
cient than conventional order-N3 methods for supercells with
more than 20 atoms and is ideally suited for the pres
purpose. A detailed description of the method and some
plications may be found in Ref. 28.

The LSGF method is based on the linear muffin-tin orb
als ~LMTO! theory of Andersen37–42 and employs the ASA
in which one includes only the electrostatic monopole co
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tribution to the atomic-centered spherically symmetric pot
tials. This approximation has proved to be accurate
highly symmetric and close-packed systems, such as o
nary metallic crystals, but the neglect of higher multipo
makes the ASA fail, for instance, in surface calculations. F
the same reason Braunet al.30 find vacancy formation ener
gies for Fe that in the ASA are 2.5 times larger than
experimental value. Clearly, to obtain reliable vacancy f
mation energies one needs to go beyond the ASA.

D. Corrections to the ASA

Similar to the LMTO Green’s-function method for su
face calculations32 we include in the present work the mon
pole contribution to the ASA potential from the higher mu
tipoles of the charge density, i.e., go beyond the ASA for
charge density but keep the ASA for the potential. For w
of a better name we call this approximation, which is the fi
step towards the full charge-density technique,43 ASA1M.

The monopole (L5s) contribution to the effective one
electron potential is evaluated from the monopole and m
tipole moments,QR

L , of the valence electron charge by th
multipole expansion

VR
s 5

1

S (
R8,L8

MR,R8
s,L8 QR8

L8 , ~10!

where L is shorthand for the (l ,m) quantum numbers an

MR,R8
L,L8 is the multipole Madelung matrix that is equivalent

the conventional~unscreened,a50) LMTO structure con-
stants for theentire supercell. A corresponding Madelun
contribution given by

EM5
1

2S (
R,L

QR
L (

R8,L8
MR,R8

L,L8 QR8
L8 ~11!

is added to the total energy. A description of the proced
including expressions for the Madelung matrices and
multipole moments may be found in Ref. 32 where it is a
shown that only when the multipole contributions to t
ASA potential are included does one obtain accurate sur
energies.

The number of multipoles included in theL summations
in Eqs. ~10! and ~11! is determined by the angular mome
tum cutoff l max used in the Green’s-functions calculations.
the present calculationsl max53 and due to the properties o
the Gaunt coefficients the multipole moments of the cha
density have nonzero components up tol 52l max. As a re-
sult the Madelung contributions to the potential and to
energy include angular momenta up tol 56.

In Table I we show the monopole Madelung potential
the atomic spheres at and around a vacancy in Cu as a f
tion of l max together with the corresponding self-consiste
net charge and contribution to the total energy. It is seen
the multipole terms lower the potential by 30% and lead t
substantial reduction of the Madelung energy. In fact, t
reduction brings the calculated vacancy formation energy
Cu in complete agreement with the results of full-poten
calculations.13

As a minor correction we also include the muffin-tin44 or
Ewald45 correction to the ASA Madelung energy
-
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EM
corr5

1

2
e2~1.82aM !

^q~S!&2

S
. ~12!

Here,e is the electron charge (e252 in Rydberg units!, S the
radius of the atomic sphere~it is assumed that all the atomi
spheres have equal radii!, andaM the Madelung constant fo
the underlying lattice. The effective charge^q(S)& is the
average interstitial electron density in the crystal multipli
by the atomic sphere volume. In the present case it beco

^q~S!&5
4

3
pS3

1

N (
R

nR~S!, ~13!

where the summation runs over all of theN atomic positions
R of the supercell.

For closed-packed underlying latticesaM is close to 1.8,
which is the value ofaM in the ASA, and for most metals a
their equilibrium volume, the Ewald correction is typically i
the range from 10 to 40 mRy/atom. The correction has b
included in a number of calculations,46–48 where it tends to
increase the calculated equilibrium lattice parameter tha
usually underestimated within the ASA. The importance
this term in the vacancy problem comes from two fac
First, the vacancy formation energy is very sensitive to
atomic volume and, second, a vacancy lowers the interst
electron density that enters Eq.~12!. The latter effect is much
stronger than in normal alloys, say, between two transit
metals, which havenR(S) of the same order for all the alloy
components.

E. Convergence with respect to LIZ and supercell size

To test the convergence of the LSGF in the ASA1M we
have calculated the vacancy formation energy in Cu vary
the LIZ and supercell sizes. The result of this converge
test is summarized in Table II. In general we find that t
net charge of the vacancy, i.e., the empty sphere, show
attenuated oscillatory behavior with increasing LIZ size, th
the Madelung shift on the vacant site converges mono
nously, and that the resulting value of the vacancy format
energy is insensitive to an increase of the LIZ size beyo
the first coordination shell~1 c.s.!. The difference between
the vacancy formation energies calculated using a 32-sit
a 108-site (33333) fcc supercell is found to be 0.01 eV

TABLE I. Madelung potential, net charge, and partial Madelu
energy of the atomic spheres belonging to thei th coordination shell
around the vacancy site in fcc Cu forRWS52.58 bohrs calculated
using a 32-site supercell without (l max50) and with (l max56)
multipole Madelung terms. The vacancy site is ati 50 and the LIZ
size is two coordination shells.

Coordination Multipole VR
s (R) QR

s (R) EM(R)
shell number l max ~Ry! (ueu) ~Ry/site!

0 0 20.4387 0.9022 20.1979
6 20.6495 1.0299 20.3346

1 0 0.0897 20.0873 20.0039
6 0.0797 20.0894 20.0078

2 0 20.0120 20.0083 0.0000
6 20.0097 0.0003 0.0000
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This indicates that the interaction of vacancies at long d
tances is repulsive and rather small.

As a further indication of the accuracy of the method
have calculated the formation energy of divacancies in
using 64-site (23234) supercells in which the two vacan
cies are first and second neighbors, respectively. The m
mum separation between the vacancies in a 64-site supe
corresponds exactly to the separation of the vacancies
32-site supercell with a single vacancy, and this allows u
extract the vacancy-vacancy interactions in Cu. Our ca
lated divacancy binding energy is shown in Table III and
compares well the results of the full-potential studies.13

It is seen that the interaction between two vacancie
small and attractive when they are first neighbors but rep
sive when they are second neighbors. Despite the fact
the divacancy binding energy is of the same order of mag
tude as the energy of the local lattice relaxations aroun
single vacancy, the relaxation effects cancel to a large de
in the final expression for the binding energy of a divacan
and the residual contribution to the divacancy binding ene
due to local relaxation effects should be one order of m
nitude smaller.

F. Details of calculations

Based on the convergence tests we have used the L
method27 in conjunction with the ASA1M to performed
scalar-relativistic total-energy calculations of monovacanc
in the 3d, 4d, and 5d transition metals. For the magnetic 3d
metals we included the effect of spin polarization. To an
lyze the variation of the vacancy formation energy along
rows of the Periodic Table all the metals were calculated
the fcc as well as bcc crystal structures. We assumed e
atomic radii for metal atoms and vacancies and included

TABLE II. Net charge inside the empty sphere, Madelung p
tential and energy of the vacancy site, and the vacancy forma
energy in Cu calculated using different supercell and LIZ sizes

Supercell LIZ Multipole Qvac
s Vvac

s EM
vac H1V

F

size size l max (ueu) ~Ry! ~Ry/site! ~eV!

32 2 c.s. 0 0.9022 20.4387 20.1979 2.90
32 1 c.s. 6 1.0312 20.6504 20.3354 1.33
32 2 c.s. 6 1.0299 20.6495 20.3346 1.33
32 3 c.s. 6 1.0306 20.6491 20.3346 1.33
108 2 c.s. 6 1.031220.6403 20.3302 1.32

TABLE III. The monovacancy formation energy,H1V
F , and the

binding energies of two vacancies which are first,E2V
B (1), andsec-

ond, E2V
B (2), neighbors in fcc Cu. All energies are given in eV

Negative sign of the binding energy means attraction. LS
ASA1M refers to the present calculations for a 32-site super
with one vacancy and a 64-site supercell with two vacancies.
results of the full-potential calculations by Klemradtet al. ~Ref. 13!
are labeled FP-KKR-GF.

H1V
F E2V

B (1) E2V
B (2)

LSGF ASA1M 1.33 20.096 0.080
FP-KKR-GF 1.41 20.076
-
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gular momenta up tol max53. Thus, we treated valences, p,
d, and f electrons self-consistently within the local-dens
approximation for which we used the Perdew, Burke, a
Ernzerhof49 parametrization of the many-body results b
Ceperley and Alder50 for the nonmagnetic metals and fo
ferromagnetic bcc Fe, fcc Co, and Ni and antiferromagne
fcc Mn and bcc Cr.

The core states were recalculated at each self-consist
loop using the soft-core approximation. Semicore states
Sc, Ti, Y, Zr, and Hf were treated using two energy pane
while Lu was calculated in the frozen core approximation
avoid problems with its 4f states.

The Brillouin zone integration was performed by mea
of the special point technique, including 240k points in the
1/48 irreducible wedge of the Brillouin zone for the fcc la
tice and 285 points for the bcc lattice. The moments of
state density were evaluated by a 16-point Gaussian inte
tion on a complex energy contour enclosing the occup
states.

Test calculations for 32- and 108-site fcc supercells sh
that a 32-site supercell is sufficient to calculate vacancy
mation energy in the fcc structure. This follows from the fa

-
n

F
ll
e

FIG. 1. Experimental data for the monovacancy formation en
gies in the 3d, 4d, and 5d transition and noble metals~crosses!.
Recommended medium-temperature values are shown as
squares. The broken line represents the vacancy formation ene
given by theTM/1000 rule, while the dot-dashed line shows t
vacancy formation energies predicted by Miedema’s theory.
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TABLE IV. Vacancy formation energy in eV for the transition metals in the fcc and bcc crystal struct
LSGF ASA1M refers to the present calculations and FP to previous full-potential calculations.

Metal fcc bcc
LSGF ASA1M FP LSGF ASA1M FP

Sc 1.52 1.85a 1.21
Ti 1.67 2.13a 1.63
V 2.03 2.20 3.06b

Cr(p) 2.12 2.70 2.86b

Cr(a) 2.80
Mn(p) 2.51 1.51
Mn( f ) 2.51
Fe(p) 2.65 1.30
Fe(f ) 2.25
Co(p) 2.18 2.18a 1.52
Co(f ) 2.15
Ni( p) 1.67 1.76,a 1.77b 1.65
Ni( f ) 1.78
Cu 1.33 1.41,a 1.33b 1.23

1.29c

Y 1.51 1.74a 1.12
Zr 1.70 1.77a 1.68
Nb 2.00 2.32 2.92b

Mo 2.17 2.50 3.13,b 2.90d

Tc 2.46 2.56a 1.45
Ru 2.76 2.78a 1.02
Rh 2.16 2.08,a 2.26c 1.32
Pd 1.43 1.57,a 1.65b 1.43
Ag 0.96 1.20,a 1.24b 0.87

1.06c

Lu 1.54 1.08
Hf 1.69 1.56
Ta 2.42 2.41 3.49b

W 2.49 3.04 3.27b

Re 2.89 1.27
Os 3.19 0.66
Ir 2.27 0.68
Pt 1.21 1.45b 1.42
Au 0.77 0.82b 0.81

aFP-KKR-GF, Refs. 7 and 8.
bFP-LMTO, Ref. 10.
cFP-LMTO, Ref. 9.
dPseudopotential, Ref. 36.
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that the total-energy change caused by vacancy-vacanc
teraction, see Table III, is one order of magnitude sma
than the vacancy formation energy even when two vacan
are nearest neighbors, and decreases further with increa
distance. For the bcc structure the difference in vacancy
mation energies calculated using a 27-site (33333 rhom-
bohedral! and a 54-site (33333 cubic! supercell was found
to be larger, e.g., 0.03 eV for Cr, 0.12 eV for Mo, and 0.
eV for W, and therefore we used the 54-site supercells in
case.

The local interaction zone was chosen to contain two
ordination shells around each atom for the fcc supercells
three coordination shells for the supercells with an unde
ing bcc lattice. Further increase of the LIZ size did not le
to any significant change in the vacancy formation ener
in-
r

es
ing
r-

is

-
nd
-

d
y.

Thus, for fcc Cu the difference was found to be less th
0.01 eV~see Table II!. The Madelung potential and energ
were calculated by means of Eqs.~10! and ~11! with sum-
mation up tol 56.

For each pure metal and metal-vacancy system we
formed three self-consistent calculations at three differ
lattice parameters close to the equilibrium. The total energ
at equilibrium were calculated using a parabolic fit to t
results of the self-consistent calculations. Thus, volume
laxation of the crystal lattice was taken into account in t
calculations of the vacancy formation energies although
course, its effect was very small especially in the case of
54-site supercell. The effect of local lattice relaxations tha
known to be relatively small for vacancies in transitio
metals7,8,51,36was neglected.
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III. MONOVACANCY FORMATION ENERGY

A. Experimental results

Before we present the results of our calculations it is u
ful to analyze the experimental data, and to this end we sh
in Fig. 1 most of the available experimental vacancy form
tion energies for the three transition-metal series. In the
ure one immediately observes a substantial scatter in the
and it appears that in some important cases, such as Fe
results obtained using different experimental techniques v
too much to be useful in a quantitative comparison with fir
principles calculations. For Fe, part of the uncertainty ste
from the strong interaction of the vacancies with carb
impurities.52 Similarly, problems with sample purity preven
the determination of the vacancy formation energy in3

However, recently the situation has improved and based
positron annihilation experiments a consensus has b
reached as to the vacancy formation energies in a numb
transition metals,2 and these have been tabulated as ‘‘reco
mended values for medium temperatures’’ with estima
errors of60.05 eV.3

FIG. 2. Calculated monovacancy formation energies for thed,
4d, and 5d transition and noble metals~filled circles connected by
a solid line! compared with the experimental results of Fig. 1. T
fcc and bcc metals have been treated in their low-temperature c
tal structures while Mn and the hcp metals have been treated as
For the magnetic 3d metals the calculations were spin polarized
-
w
-
-

ata
the
ry
-
s

n

n
en
of
-
d

In the past Miedema’s ‘‘macroscopic atom’’ model17 has
been fitted to the experimental data and the result of
procedure is shown in Fig. 1 as the dot-dashed line. T
values given by the Miedema theory are sometimes e
referred to as experimental data,18 although they only repre-
sent a fit to a very limited number of the old experimen
data, as may be seen in the figure. A similar fit based on
empirical correlation with the melting temperatureTM in the
form H1V

F 5TM/1000, where the value of the denominator
1000 K/eV has been determined on the basis of the n
positron annihilation data.3 The TM/1000 rule has been
shown to work well not only for transition metals3 and can
therefore be used in a few casesin lieu of experimental data.

B. Theoretical results

The calculated zero-temperature vacancy formation e
gies @Eq. ~7!# for the 3d, 4d, and 5d transition and noble
metals are presented in Table IV and Fig. 2 together w
experimental data including the recommended values. In
calculations all the metals have been treated in their lo
temperature equilibrium crystal structure except for Mn a
the hcp metals that were treated as fcc. For the magneticd
metals we included the effect of spin poplarization. As t
figure shows, the trends are well described by the calc
tions and in those cases where recommended experim
data exist the agreement between theory and experime
excellent.

As seen in Fig. 2 there exist a number of cases, nota
Ti, Cr, Fe, Nb, Mo, and Re, where the agreement betw
theory and experiment is rather poor. To determine whet
these discrepancies may be a result of the approximation
our approach, we compare in Fig. 3 the present vacancy
mation energies with those obtained in previous fu

s-
cc.

FIG. 3. The monovacancy formation energies for the 4d metals
calculated in the two cubic crystal structures and compared w
available full-potential calculations. The present calculations w
performed with two different sets of basis functions so as to co
pare with previous full-potential results. The captions in the figu
apply to both panels.
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potential calculations.7–10 From this comparison we find tha
provided we includes, p, d, andf orbitals in our calculations
the agreement with the full-potential KKR Green’s-functio
results7,8 is excellent for all the fcc 4d metals. In contrast
the agreement with the FP-LMTO results of Korhon
et al.10 for the bcc 4d metals is unsatisfactory except whe
we use thespdbasis also used in the FP-LMTO calculation
We conclude that the present approach including anspdf
basis yields vacancy formation energies with an accur
similar to that obtained in the most accurate full-poten
methods.

C. General trends

For a transition-metal series the vacancy formation ene
plotted as a function of thed occupation number exhibit
roughly a parabolic variation with a maximum close to t
middle of the series. This is similar to the more well-know
cases of the cohesive and surface energies that are us
explained using Friedel’s rectangular state-density mode
the tight-binding approximation.53 When the Friedel model is

FIG. 4. The monovacancy formation energies for the 3d, 4d,
and 5d transition and noble metals calculated in the fcc and
structures showing the effect of the crystal structure. All calcu
tions including those for the magnetic 3d metals were non-spin
polarized.
.

y
l

y

ally
in

applied to the formation of vacancies9 it does lead to a maxi-
mum at the center of a transition series but the absolute
ues of the energies obtained in the model are;50% too
large. The simple approach may be corrected by a pair
tential and one then arrives at a model the parameter
which may be found by a fit to the measured vacancy f
mation energies.9,10 Thereby one confirms the empirica
correlation,19

E1V
F '

1

3
Ecoh8 , ~14!

c
-

FIG. 5. State density for Ru in the fcc and bcc structures p
jected onto a vacancy site~broken line!, onto an atomic site that is
the nearest neighbor of the vacancy~thin line!, and onto a distant
bulk site ~heavy line!.

FIG. 6. bcc-fcc vacancy formation energy difference for thed
metals as calculated within the LSGF ASA1M method, filled
circles. The solid line shows the one-electron energy contribu
obtained in a canonical band model, see text. The broken line sh
the calculated structural energy difference curve.
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between the cohesive energyEcoh8 relative to a non-spin-
polarized atomic state and the vacancy formation ene
SinceEcoh8 varies parabolically with thed occupation num-
ber, see Ref. 54, so does the vacancy formation energy.

D. Crystal structure effects

In Fig. 4 we show the monovacancy formation energ
for the transition and noble metals calculated in the param
netic state assuming two cubic crystal structures. In the
structure each of the three series exhibits the parabolic
havior predicted by the Friedel model but with the maximu
displaced to ad-band filling of 70%, while in the bcc struc
ture the monovacancy formation energy shows a pronoun
minimum at the same 70%d-band filling. We note that in the
extreme cases, i.e., Fe, Ru, and Os, the structural cont
tion is a sizable fraction of the monovacancy formation e
ergy and approximately a factor of 3 larger than the cor
sponding structural energy differences.48

To understand the origin of this large structural contrib
tion we may use the local bond picture55 to construct the
following simple model. Assume that the cohesive ene
per atom may be written in the form

«coh
a 5«coh

Fried1«str
a , ~15!

where«coh
Fried is the energy of a reference state that we take

be the one-electron energy corresponding to Friedel’s rec
gular state density and«str

a is the structural contribution cor
responding to the difference between the reference state
sity and the actuala-structure state density.

At the formation of a vacancy the atoms next to it a
perturbed and, as a result, the corresponding local state
sities arerescaled, i.e, their bandwidths are reduced, a
reshaped. Both effects are clearly seen in Fig. 5, where w
show the relevant state densities for Ru in the two cu
crystal structures. For simplicity we will assume that on
the atoms closest to the vacancy are perturbed and, he
that only these atoms contribute to the vacancy forma
energy. As will be shown below by means of Anderse
canonical band picture56 this assumption leads to an accura
description of the vacancy formation energy for ad
transition-metal series.

In a tight-binding picture the decrease in thed bandwidth
caused by the reduction in the effective coordination num
gives rise to a factor ofA(z21)/z, wherez is the bulk co-
ordination number, in all the contributions to Eq.~15!. This
means that each of thez perturbed atoms contributes@1
2A(z21)/z#«coh

a to the vacancy formation energy due
the rescaling of the state density. In addition, the lowering
the local symmetry around a vacancy tends to wash out s
of the prominent features found in the local state density
the ideal crystal. This reshaping effect gives rise to an ad
tional contribution to the vacancy formation energy th
stems from«str

a and has the prefactorA(z21)/z.
With the above assumptions the final expression for

vacancy formation energy becomes
y.

s
g-
c
e-

ed

u-
-
-

-

y
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Evac
a 5zS 12Az21

z D «coh
a 1zAz21

z
D«str

a . ~16!

Here, the first term is, in fact, Eq.~14! and it includes a
structural contribution that will add to the difference in th
vacancy formation energy of the fcc and bcc structures. T
structural contribution is, however, greatly reduced on
count of its coordination number dependent prefactor, a
cannot explain the structural effects seen in Fig. 4.

The second term in Eq.~16! represents the effect of re
shaping the state density for a given crystal structure, i.e
is the change in the stuctural contribution to the cohes
energy that is caused by the vacancy formation. Although
value ofD«str

a is not known in general, it is clear that in th
‘‘featureless’’ limit, where the reshaping effect is so stro
that the atoms next to the vacancy have a rectangular s
density, one hasD«str

a 52«str
a . Further, in contrast to the

first term in Eq.~16!, this structural contribution isenhanced
by a factor of the order of the coordination numberz. It can
therefore lead to a large difference in the vacancy format
energy of the fcc and bcc structures.

We may now use our model to explain the vacancy f
mation energies shown in Fig. 4. For a transition-metal se
we find that the first term in Eq.~16! represents essentially
parabolic variation with thed occupation number leading t
only a small structural difference in the vacancy formati
energies for the two cubic structures while the second te
leads to the large reduction in the vacancy formation en
gies seen in the~paramagnetic! bcc metals Mn, Fe, Co, Tc
Ru, Rh, Re, Os, and Ir. It follows from the outline of th
model that the origin of this effect is the reduction of th
pseudogap of the bcc state density upon vacancy forma
that is the prominent feature responsible for the stability
the bcc structure for a half-filledd band.

The onset of magnetism leads to a reduction in the surf
energy of the magnetic 3d metals described, for instance, b
a spin-polarized Friedel model.57 As a result, one might ex-
pect a similar reduction for the vacancy formation energy
ferromagnetic Fe. However, in this case one finds an incre
of about 0.95 eV when going from paramagnetic to fer
magnetic bcc Fe, cf. Figs. 2 and 4, and Table IV. The rea
for this increase is easily traced to the structural contribut
given by the second term in Eq.~16!. In the paramagnetic
case bcc Fe has a low vacancy formation energy as a re
of the large structural contribution ford occupation numbers
close to 7. However, in the completely saturated sp
polarized case bcc Fe is described by a minority-spind oc-
cupation number close to that of bcc Cr where the structu
contribution is small and therefore ferromagnetic bcc Fe
predicted to have a vacancy formation energy close to tha
Cr, as indeed it has. The increase may therefore be viewe
a structural effect.

The simple analysis above may be quantified if we ap
the canonical band approach to the total supercell Ru st
densitiesDi and calculate the first-order energy moments

Ei5EEF
~«2Ci !Di~«!d« ~17!
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TABLE V. Calculated equilibrium atomic volumeV0 in units of bohrs3, calculated and experimenta
relative vacancy formation volume,V1V

F /V0.

Metal fcc bcc
V0 V1V

F /V0 V0 V1V
F /V0

This Experiment or This Experiment or
work FP calculation work FP calculation

Sc 155 0.73 160 0.69
Ti 111 0.68 110 0.69
V 87 0.67 83 0.64
Cr(p) 75 0.64 72 0.79
Cr(a) 72 0.71
Mn(p) 68 0.68 67 0.59
Mn( f ) 68 0.72
Fe(p) 64 0.70 65 0.63
Fe(f ) 69 0.55 0.95a

Co(p) 64 0.70 0.95a 65 0.67
Co(f ) 67 0.66
Ni( p) 66 0.71 0.80a 66 0.70
Ni( f ) 67 0.72
Cu 72 0.70 0.75,a 0.70b 72 0.71
Y 206 0.76 212 0.81
Zr 151 0.70 0.95a 146 0.78
Nb 120 0.60 113 0.74
Mo 103 0.60 100 0.65 0.90,a 0.60c

Tc 94 0.66 93 0.66
Ru 89 0.71 90 0.66
Rh 89 0.73 91 0.66
Pd 96 0.68 95 0.70
Ag 108 0.76 107 0.78
Lu 190 0.80 196 0.72
Hf 140 0.76 136 0.78
Ta 120 0.71 114 0.76
W 106 0.63 103 0.72
Re 97 0.66 96 0.66
Os 93 0.72 94 0.66
Ir 94 0.67 96 0.67
Pt 100 0.69 99 0.75
Au 113 0.73 0.85a 111 0.72

aExperiment, Ref. 3.
bFP-KKR-GF, Ref. 51.
cPseudopotential, Ref. 36.
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for i corresponding to the fcc and bcc supercells with a
without vacancies as functions of the zeroth-order ene
moments,

ni5
1

Na
EEF

Di~«!d«, ~18!

i.e., the one-electron energies as functions of the occupa
numbers per atom. Thereby, we obtain four one-electron
ergies whose proper combination yields the vacancy for
tion energy as a function of the zeroth-order moment, i
the d occupation number.

In Fig. 6 we show the results of the canonical proced
where the first-order moments have been obtained relativ
the centers of gravityCi corresponding to the total state de
sity of Ru occupied by 11 electrons per atom for each of
d
y

on
n-
a-
.,

e
to

e

four cases involved. The comparison with the results of
full calculation and the analysis above shows that the str
tural contribution to the vacancy formation energy can
traced to the well-known structural energy difference cu
for d-band metals.

IV. VACANCY FORMATION VOLUME

The calculated equilibrium atomic volumes and vacan
formation volumes are presented in Table V. We find tha
all cases the vacancy formation volume is smaller than
atomic volume by approximately the same amount, i
V1V

F /V0'0.7, independent of crystal structure.
There is a dearth of experimental data on the vaca

formation volumes in transition metals. Moreover, even
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the same metal-vacancy system the existing experime
data for the vacancy formation volumes are typically sc
tered within the range from 0.5V0 to V0. However, what
appears to be the most reliable low-temperature data for
volume misfits as obtained by positron annihilation expe
ments have been tabulated in the Landolt-Bo¨rnstain refer-
ence series book3 from which the values of vacancy forma
tion volumes can be deduced~see Table V!.

Since the vacancy formation volume is a thermodynam
quantity, it reflects the overall relaxation of the volume of
crystal containing vacancies. This global volume relaxati
of the crystal lattice is included in our calculations. It
clear, that any additional lattice relaxation, such as local
laxations around a vacancy site, will decrease the abso
value of the partial vacancy pressure and the volume mis
Accordingly, the vacancy formation volume should approa
V0 if local relaxations are present in the system. As a res
the present calculations, which neglect such relaxations, t
to underestimate the vacancy formation volumes in transit
metals, and the small difference between our results and
periment may be attributed to the effects of local relaxatio

To our knowledge, there exist only two first-principle
calculations of vacancy formation volumes. Papanikolaouet
al.51 used the FP-KKR Green’s-function method for an is
lated vacancy in Cu and calculated the volume misfit throu
the Kanzaki forces. The result of our calculation for the v
cancy formation volume in fcc Cu is in agreement with the
result,d520.3 ~see Table V!. The vacancy formation vol-
ume for bcc Mo was calculated by Meyer and Fa¨hnle36 using
a 54-site supercell by means of a mixed-basis pseudopo
tial method. The difference between their result,V1V

F /V0

50.660.1, and our result~see Table V! is within the ex-
pected error limits of both calculations.
tal
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V. CONCLUSIONS

We have used the order-N LSGF method in conjunction
with an electrostatic multipole correction to the atom
sphere approximation, ASA1M, to study the monovacancy
formation energies in the 3d, 4d, and 5d transition and
noble metals. The results are in excellent agreement with
available full-potential calculations and with the recen
‘‘recommended’’ monovacancy formation energies for N
Cu, Ag, Pt, and Au. For the remaining transition metals
calculations describe the trends observed experimentally,
owing to large uncertainties in the experimental values
appears that the calculated results at present form the m
consistent estimate of the monovacancy formation ener
in the three transition-metal series.

Note added.Since the completion of the present man
script we have become aware of three recent publicati
related to the present paper:~i! a critical review of experi-
mental results~Ref. 58!; ~ii ! a study of the effect of the
generalized gradient approximation on the vacancy form
tion energy~Ref. 59!; ~iii ! an ab initio calculation of the
vacancy formation and migration energy in W~Ref. 60!.
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19T. Górecki, Z. Metallkd.65, 426 ~1974!.
20P. R. Couchman, Phys. Lett.54A, 309 ~1975!.
21J. P. Perdew, Y. Wang, and E. Engel, Phys. Rev. Lett.66, 508

~1991!.
22J. A. Alonso and N. H. March,Electrons in Metals and Alloys

~Academic Press, London, 1989!.
23G. Grimvall and S. Sjo¨din, Phys. Scr.10, 340 ~1974!.
24C. L. Reynolds, Jr. and P. R. Couchman, Phys. Lett.50A, 157

~1974!.
25D. M. C. Nicholson, G. M. Stocks, Y. Wang, W. A. Shelton, Z.

Szotek, and W. M. Temmerman, Phys. Rev. B50, 14 686
~1994!.



.

n,

H

ys

.

n,

m
re

he

n

d

D.

. B

on,

ns,

d J.

v.

hs,

PRB 59 11 703FIRST-PRINCIPLES CALCULATIONS OF THE . . .
26Y. Wang, G. M. Stocks, W. A. Shelton, D. M. C. Nicholson, Z
Szotek, and W. M. Temmerman, Phys. Rev. Lett.75, 2867
~1995!.

27I. A. Abrikosov, A. M. N. Niklasson, S. I. Simak, B. Johansso
A. V. Ruban, and H. L. Skriver, Phys. Rev. Lett.76, 4203
~1996!.

28I. A. Abrikosov, S. I. Simak, B. Johansson, A. V. Ruban, and
L. Skriver, Phys. Rev. B56, 9319~1997!.

29T. Beuerle, R. Pawellek, C. Elsa¨sser, and M. Fa¨hnle, J. Phys.:
Condens. Matter3, 1957~1991!.

30P. Braun, M. Fa¨hnle, M. van Schilfgaarde, and O. Jepsen, Ph
Rev. B44, 845 ~1991!.

31M. Sinder, D. Fuks, and J. Pelleg, Phys. Rev. B50, 2775~1994!.
32H. L. Skriver and N. M. Rosengaard, Phys. Rev. B43, 9538

~1991!.
33A. V. Ruban, I. A. Abrikosov, D. Ya. Kats, D. Gorelikov, K. W

Jacobsen, and H. L. Skriver, Phys. Rev. B49, 11 383~1994!.
34I. A. Abrikosov, A. V. Ruban, H. L. Skriver, and B. Johansso

Phys. Rev. B50, 2039~1994!.
35Here we consider the vacancy formation energy at a fixed volu

per site. The thermodynamically consistent definition requi
that not only the total volume of the systemV but also the
number ofatoms Na be kept fixed. Under these constraints, t
partial vacancy formation pressure may be defined asp1V

F

5(]p/]cv)V0
5BV1V

F /V0. This pressure is always positive, i
contrast top1V .

36B. Meyer and M. Fa¨hnle, Phys. Rev. B56, 13 595~1997!.
37O. K. Andersen, Phys. Rev. B12, 3060~1975!.
38O. Gunnarsson, O. Jepsen, and O. K. Andersen, Phys. Rev. B27,

7144 ~1983!.
39H. L. Skriver, The LMTO Method~Springer-Verlag, Berlin,

1984!.
40O. K. Andersen and O. Jepsen, Phys. Rev. Lett.53, 2571~1984!.
41O. K. Andersen, O. Jepsen, and D. Glo¨tzel, in Highlights of

Condensed-Matter Theory, edited by F. Bassani, F. Fumi, an
.

.

e
s

M. P. Tosi ~North-Holland, New York, 1985!.
42O. K. Andersen, Z. Pawlowska, and O. Jepsen, Phys. Rev. B34,

5253 ~1986!.
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