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Neel temperature and magnetic phase boundary of the spi-Heisenberg antiferromagnet
in three dimensions
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We obtained the eighth-order linked-cluster series for the free energy, the sublattice magnetization, and the
staggered susceptibility of the sp%rHeisenberg antiferromagnet on three-dimensional bipartite lattices. The
series are analyzed using the standard extrapolation techniques with the application of a conformal transfor-
mation method to obtain the ktemperature and the temperature dependence of sublattice magnetization. We
obtain a more accurate estimate of théeN®mperature and the magnetic phase boundary for the body-
centered cubic and the simple cubic lattices. The results are compared with related works.
[S0163-18299)09601-7

I. INTRODUCTION to that of high-temperature series expansion with an addition
of two terms to the previous workln the ordered phase,
The Heisenberg antiferromagnetic model has receivegorrelations of spin and thermal fluctuations are included in
considerable interest in recent years because of the wide véhe perturbation expansion and the order parameter is found
riety of critical phenomena exhibited in this system. ThisSelf-consistently from the series of the sublattice magnetiza-
model has also attracted much attention recently because 8¢n. The series are analyzed using standard extrapolation
its possible relevance to the phenomenon of |']igh_techn|que350 with the application of a conformal transforma-

temperature superconductivity. The thermodynamic properion method to obtain a more accurate estimate of thel Ne
ties and the phase transition of this model in three diment€mperature and the temperature dependence of sublattice

sions have been investigated by a variety of approximat&@gnetization.

methods which include spin-wave thedry,high-density A brief outline of the paper is as follows. In Sec. Il we

expansior the high-temperature series expansion mefhod,dlscusfs tlhe I|_nked-cluster_ser|es expansion method applied to
the Green function methatiand the variational cumulant the spins He|s_enberg antlferromagneuc model. The res_ults
of the calculations are presented in Sec. Ill. A comparison

itical . d th d i behavi ¢ th Swith related works is also presented. A summary and conclu-
critical point and thermodynamic behavior of three- o< is given in Sec. IV.

dimensional Heisenberg antiferromagnetic model are not
known. The low-temperature behavior is better described by
spin-wave theory. At temperatures above the transition point, Il. DERIVATION OF THE SERIES
the high-temperature series,expansion method has been usedtne Hamiltonian of the spig-Heisenberg antiferromag-
to obtain an estimate of the Betemperature. net is given as
In this paper we study the phase transition and the mag-
netic phase boundary of the spjrguantum Heisenberg an-
tiferromagnet using the linked cluster series expansion H=> JiiS-§— hAE S,z—hBE s, (D)
method. The linked cluster series expansion method has pro- oy TeA jeB

vided the most accurate results in the study of phase transi- . ) ) o .
tion and critical phenomena in spin systehihis method wherei andj refer to the sites of two distinct interpenetrating

has been extensively used on ferromagnetic spin sydemsublattice and the pair interaction paramelgy is taken to
The method sums up all perturbation terms to a certain ordd?€ J>0 wheni and] are nearest neighbors and zero other-
and estimates the result through a well-developed extrapoldYiS€- ha andhg in the Zeeman energy term are staggered
tion method. The accurate results are obtained both in thE'agnetic fields on two sublattiGeandB for calculating the
ordered phase and disordered phase. In the disordered phayplattice magnetization and staggered susceptibility. We
the linked cluster series are identical to the high-temperatur_Bave d|V|d_ed the lattice sites into two distinct interpenetrat-
series. ing sublattices.

We have obtained the exact eighth-order linked-cluster 1€ Hamiltonian is divided into an unperturbed Hamil-
series for the free energy, sublattice magnetization, and sta{enianHo and a perturbation part a$;
gered susceptibility of the spiiiHeisenberg antiferromagnet
in an external magnetic fieldn three-dimensional bipartite H=Hy+H;. 2
lattices. In the present work we study the thermodynamic
properties of the model in zero external magnetic field. In theH includes all single-ion potentials and a self-consistent
disordered phase our staggered susceptibility series reduckeld term extracted from the two-ion interaction potential.
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The self-consistent field is characterized by two parameters TABLE I. Exact coefficients of the staggered susceptibility se-
MA:<SZA> andMg= <SZB> which minimize the free energy of ries of the spin-1/2 Heisenberg antiferromagnet model in the disor-

the system: dered phase for the bcc and sc lattices.
a, bcc sc
Ho= 2, [JzMg—halS/+ X [IzMa—hg]S]
ieA jeB g 0.25 0.25
1 ap 0.50 0.375
— 5 NJzMMg, (3) ay 0.833333 0.4375
as 1.333333 0.46875
wherez is the number of nearest neighbors aé the total ay 2.024479 0.483203
number of sites in a lattice. as 3.024392 0.501367
H, includes the effects of correlations of the fluctuations: ag 4.454776 0.512950
as 6.515440 0.512135
ag 9.455114 0.505525

J o
H1=J<Z> [sf—lvu\][sf—MB]+E(Z> [S'S +S7S1.
i,] 1)

4
The summation is over all linked graphs wheyeindicates

The eigenstates for the local site b, are |1)=|7) and @nnth-order linked graphW(g,) is the weight of the graph
|T>=|l> and the corresponding eigeneneraies for sublattic or the number of topologically equivalent graphs appear in
AandB P 9 €9 9 She expansionL(g,) is the lattice constantof the graph.
andpb are I(g,) is the value of thenth-orderr integral of the cumulant
1 1 product which the graph represents. The connected graphs
ef=={JzMg—h,}, €2=={JzMa—hg} (5 and the weights of the graphs are produced from the Ising
1 2 B AS> 1 2 A BJS» . - ;
graphs by an algorithm which has been implemented on a
1 1 computer. For example, for the simple cubic and body-
A_ _ B_ _ _ centered cubic lattices, there are 43 distinct graphs for sixth
=—={JzMg—ha}, =—={JzMp—hg}, (6 ;
€1 2 { 5~ Mt 1 2 { h~hel, (6) order, 82 graphs for seventh order, and 374 graphs for eighth
order.
We use the following standard basis operators in order to
cilitate the calculation of the multiple integrals containing
7-ordered products of spin operators in series expansion:

apart from the constant energy from;JzM,Mg. We con-
sider the symmetrical case of equal and opposite stagger(?g
field, hy=—hg=hg(hs>0). In this case My=—Mjz
=M"(M*>0). The mean-field free energy per skg is
1 Lon=|m)(n|, m,n=1,1, (12)
Foz - = ||n J y

2 cosl’(1 y (7)
B 2 wheremy, [n) are eigenstates ¢i,. These operators satisfy
wherey={JzM; +hg. the usual muItipIicati_on rule and the commutation relatfon
for the standard basis operators.
The spin operators can be written in terms of the standard
basis operators

The mean-field sublattice magnetization per $tg is
obtained from the free energy by taking a derivative with
respect tahg,

SJr = L]_I,

=~ tan Ey .

oF, 1 1
+_ —_ =
Mo = ohg 2 "( ®

S =L,

The corrections of free energy E, due to the quantum and
thermal fluctuation correlations is expressetf assum over
all connected diagrams:

1o (=) (8 B
s B G oo

ay/ay 1

B
Xfo dro(TIH(7)H1(72) - "Hi(m)])e, (9

where 8= (kgT) L.

The terms in the series expansion are often written as a
sum over all connected diagrams which are composed of
spin operators:

0.0 0.1 0.2 0.3 0.4 0.5
1/n

AF= E W(g)L(g)!1(gn)- (10 FIG. 1. The ratio of two successive coefficients of the staggered
N.9n susceptibility series,,/a,_, versus i plot for the bcc lattice.
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TABLE II. Singularitiesxy of the transformed staggered sus- " : T T
ceptibility series on the bcc lattice from Padgproximants to i e
(d/dx)In x3(X) with a transformationx=x7(1—x2/4). L6 s

eyl N

ML 2 3 4 5 e =

2 0.6384 0.6484 0.6475 0.6473 ALl e [
3 0.6545 0.6475 0.6472 _ e y20
4 0.6604 0.6473 p B .
5 0.6429 f= 12 F *y.. ----- y=2.5 4
ey
. T .
S'=5 (Lu~Lmw). (12 e PR -l

The integrals containing a product efordering operator ~ de s =40
in AF are calculated by using the multiple-site Wick reduc- 081 , . . . N
tion theorem and the standard basis operdfofhe calcula- 0.0 0.1 02 03 04 05
tion of the multiple integrals containing-ordered products ) ) ) )
of standard basis operators is the most time consuming part 1/n

of the computation. Since a large number of terms involved FIG. 2. The ratio of two successive coefficients of the sublattice
in the calculation are beyond the fifth order, a computer code T = ) N
agnetization seriell * (see text for the sublattice magnetizajion

has been developed to handle the numerous algebraic opels:
P 9 P b,/b,_1 versus 1 plot for the body-centered cubic lattice with

tions. different val
The free energy series per skeof the system is obtained ifferent values of.
as
s Xc
o T — 15
n AN EEN (49
F=Fo+ 2 fo(t,y)(B)", (13)
n=1 where

wheref, is a polynomial in the functions=3 tanhgy) and IM*
y=B{JzMy +hs}. We have obtained the first nine coeffi- Xc=P y (16

cients in the free energy series.

The sublattice magnetization serids” is calculated from : . .
the free energy series by taking a derivative with respect to !N the disordered phase, the dimensionless zero-figld (
h,. Differentiating with respect th, we obtain the sublat- —0) Staggered susceptibility series is given as

tice magnetization serigd *

oF _ A(BF) = 05 ¢ 1

+: —_——_— — n
M ahs ﬁy t+r122 mn(t,tl,y){ﬁ\]} ’

(14) 0.4

wheret, =dt/dy=1/(e”+ e Y)?. The polynomials ofm,, for
the bcc lattice are given in the Appendix. The coefficients of M+ 03
m,, for the sc lattice are available upon request.

The staggered susceptibility series is calculated from the
sublattice magnetization series py=JdM */dhg. After cal-
culating the series fofM */dy, the staggered susceptibility
series becomes 01k

02

TABLE Ill. Singularitiesxy of the transformed staggered sus-

ceptibility series on the sc lattice from Padgproximants to 0.0 : ' @
(d/dX)In ¥*(X) with a transformatiorx=x/(1—X2/4). 0.0 0.5 1.0 T1N 15
kKT/1
M\L 2 3 4 5
FIG. 3. The magnetic phase boundary for the bcc lattice. Solid
2 0.8143 0.8380 0.8526 0.8606 line is the results obtained from the ratio method. The results ob-
3 c.c.n. 0.8673 0.8758 tained from[3] (open circle, [3] (squarg, and[3] (triangle Pade
4 0.8837 0.8735 approximants are also shown. Dashed line is the predictions of spin-
5 0.8749 wave theory.Ty indicates the estimate of Wetemperature from

high-temperature series.
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TABLE IV. Estimates ofx from the poles of Padapproximants tdd In I\W*(Y,y)/(b—(_[y with a transfor-

mationx=Xx/(1—X2/9) for the bcc lattice.

y (3] [Z] H [3] (3] H (5] E (3]

0.5 0.6964 0.7121 0.6860 0.6959 0.6939 0.6887 0.6912 0.6827 0.6879
1.0 0.7182 0.7136 0.6628 0.7098 0.7092 0.7032 0.7091 0.7099 0.7045
2.0 0.7912 0.7759 0.7744 0.7625 0.7717 0.7734 0.7694 0.7741 0.7717
3.0 0.9009 0.9009 0.8969 0.8822 0.8927 0.8964 0.8900 0.9119 0.8935
4.0 1.0520 1.0489 1.0552 1.0368 1.0493 1.0513 1.0458 1.0699 1.0499
5.0 1.2081 1.2099 1.2156 1.1914 1.2099 1.2075 1.2036 1.2226 1.2090
6.0 1.3508 1.3591 1.3643 1.3304 1.3607 1.3763 1.3479 1.3682 1.3555
7.0 1.4743 1.4925 1.4972 1.4499 1.4991 1.4991 1.4742 1.4991 1.4845
8.0 1.5784 1.6099 1.6143 1.5504 1.6293 1.6151 1.5823 1.6136 1.5959
9.0 1.6651 1.7129 1.7169 1.6346 1.7638 1.7174 1.6741 1.7124 1.6913

* series calculated by the high-temperature series expansion up
B W=ap+ >, a{BJI}". (17  to eighth order by taking=1 andp,,=0.
n=1

In Table | we list the coefficients, of high-temperature
staggered susceptibility series for the bcc and sc lattices.
The coefficients of our zero-fielch{=0) staggered sus-

ceptibility series up to sixth order are identical to those of the
high-temperature serié§® in the disordered phase when
M*=0. The seventh- and eighth-order graphs are checked
by comparing the ferromagnetic susceptibility calculated
from these graphs with the known results in the disordered
phase. The susceptibility obtained from the seventh- and

Ill. ANALYSIS OF THE SERIES

A. Neéel temperature estimates

The staggered susceptibility series in the paramagnetic

Bil)(s: 20 aan,
=

phase is given a power series expansion in the form

(18

eighth-order graphs agree with those of the high-temperaturghere x=J/kT. The Neel temperaturekTy/J is estimated

series expansions of the spjnHeisenberg model obtained

from the strong singularity in the paramagnetic staggered

by Bakeret al"**Furthermore we calculate the free energy susceptibility series by using both the ratio method and Pade
and staggered susceptibility of two finite lattices by the two-approximant technique. For the bcc lattice, the ratio of two
point cluster method. The results of this calculation of thegyccessive coefficients of the staggered susceptibility series
free energy and staggered susceptibility series agree with the /5 , versus the 1 plot is shown in Fig. 1. The last five

05+t E

04

Mmto.3

0.2

oa @
Iy

01F N 1

0-0 L f L
0.0 0.5 .10

N
kT/

FIG. 4. The magnetic phase boundary for the sc lattice. The

solid line is the results obtained from the average of the[ ffie]

2], [2], and[3] approximants. The results obtained fr¢§] (open
circle), [3] (square, and[3] (triangle) Padeapproximants are also
shown. The dashed line is the predictions of spin-wave thekygy.
indicates the estimate of Metemperature from high-temperature
series.

ratios lie very well on a straight line in the plot although
there is very small oscillation. The Metemperaturé Ty /J
is estimated from the extrapolation from the formula
kTn/I=pu(n,n=2)=[ny,—(n—2)y,_»1/2, where 1y,
=a,/a,_,. The Neville tablé®® estimates have been con-
structed usingef,=[ne, *—(n—2r)e/_3]/2r, where €2
=a,/a,_,. With the eighth-order series the best estimates
of the last four Neville extrapolant] «(6,4)], €3 «(7,5)],
e[ u(8,6)], ande are 1.382, 1.384, 1.386, and 1.390, re-
spectively. From the trend of the ratio plot, a conservative
estimate for the Nal temperature i&Ty/J=1.385+ 0.005.

We have also used the Padealysis of the logarithmic
derivative series to estimate the dléemperature. In the ra-
tio plot of a,,/a,_1 vs 1h, there is a mild oscillation of the

TABLE V. A comparison of Nel temperature estimate for the
bcc and sc lattices obtained from different methods.

Method bcc sc
Spin-wave theoryRef. 2 1.455 1.105
Series(Ref. 4 1.40 0.96
Green function(Ref. 5 0.996
Cumulant expansio(Ref. 6 1.464 0.863
Series(present work 1.3845) 0.932)
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TABLE VI. Coefficients for Eq.(A1).

n i j\k 0 1 2 3 4 5 6 8

2 0 1 1.000

2 1 0 —1.0000

2 1 1 —2.0000

2 3 1 8.0000

3 1 1 0.3333 2.0000

3 2 0 —2.0000

3 3 1 —5.3333

3 5 1 16.0000

4 0 0 —0.0312

4 0 1 —0.5000 —0.0625

4 1 0 0.5000 0.1875

4 1 1 —0.5417 3.1250

4 2 0 —3.1250

4 2 1 12.0000 1.5000

4 3 0 —4.0000 —1.5000

4 3 1 —3.8333 —26.0000

4 4 0 13.0000

4 4 1 —40.0000

4 5 0 8.0000

4 5 1 54.0000

4 7 1 —120.0000

5 0 0 0.2969

5 0 1 0.0833 1.0312

5 1 0 —0.0833 —3.0938

5 1 1 0.4208 -0.8125 —3.5000

5 2 0 0.8125 7.0000

5 2 1 —5.0000 —4.5000

5 3 0 1.6667 4.5000

5 3 1 —8.6667 41.5000 20.0000

5 4 0 —20.7500 —20.0000

5 4 1 46.6667 —52.5000

5 5 0 —9.3333 31.5000

5 5 1 35.6000 —153.0000

5 6 0 51.0000

5 6 1 —112.0000

5 7 0 16.0000

5 7 1 21.3333

5 9 1 —208.0000

6 0 0 0.4941 -0.1211

6 0 1 —0.1354 1.1471 —-0.1211

6 1 0 0.1354 —3.4414 0.6055

6 1 1 —0.6340 4.3255 2.8594

6 2 0 —4.3255 —5.7188

6 2 1 —1.2500 —30.4062 —25.2656

6 3 0 0.4167 30.4062 42.1094

6 3 1 7.5222 8.6042 —16.5625

6 4 0 —4.3021 16.5625

6 4 1 86.6667 125.9375 283.7500

6 5 0 —17.3333 —75.5625 —283.7500

6 5 1 —112.0000 —346.6250 —49.5000

6 6 0 115.5417 33.0000

6 6 1 —588.0000 —84.0000

6 7 0 84.0000 36.0000

6 7 1 980.8889 972.0000

6 8 0 —243.0000
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TABLE VI. (Continued.

n i j\k 0 1 2 3 4 5 6 7 8

6 8 1 1080.0000

6 9 0 —120.0000

6 9 1 —3586.6667

611 1  4544.0000

70 0 0.3242 —1.2861

70 1 0.1052 —1.0026 —2.1353

710 —0.1052 3.0078 10.6763

71 1 0.4498 1.4401 20.7090 6.7930

72 0 —1.4401 —41.4180 —20.3789

72 1 —7.7625 49.8437 —0.5508

73 0 2.5875 —49.8438 0.9180

73 1 —7.8444 —17.2708 —474.8281 —246.4062

74 0 8.6354 474.8281 369.6094

74 1 87.8333 —319.5833 330.4297

75 0 —17.5667 191.7500 —330.4297

75 1 —13.5169 553.7500 2191.9688 1900.5000

76 0 —184.5833 —1461.3125 —1900.5000

76 1 —211.8667 —206.5000 —873.2500

77 0 30.2667 88.5000 623.7500

77 1 515.4540 —4063.3333 —2456.0000

78 0 1015.8333 1228.0000

78 1 —660.0000 3006.0000

79 0 73.3333 —1002.0000

7 9 1 -1654.6666 8130.0000

710 O —1626.0000

710 1 2288.0000

711 0 —208.0000

711 1 —768.0000

713 1 6208.0000

80 O 0.4087 —0.1676 0.8311

80 1 —0.1584 —0.2801 2.0886 0.5541

81 0 0.1584 0.8403 —10.4431 —3.8785

81 1 —0.9926 1.3109 5.7298 —39.5120

82 0 —1.3109 —11.4596 118.5359

82 1 7.5430 50.4453 43.3770 130.9893

83 0 —2.5143 —50.4453 —72.2949 —305.6416

83 1 17.3942 45,7361 —96.4277 265.9082

84 0 —22.8681 96.4277 —398.8623

84 1 —177.6086 —961.3542 —1932.6953 —1961.6699

85 0 35.5217 576.8125 1932.6953 2746.3379

8 5 1 —155.0471 —119.3438 337.4219 2803.4414

86 0 39.7812 —224.9479 —2803.4414

86 1 2500.5556 6099.6250 13394.6093 8186.5000

87 O —357.2222 —2614.1250 —9567.5782 —8186.5000

87 1 76.4958 —3902.0334 —132.0417 —13062.0000

88 0 975.5083 66.0208 9796.5000

88 1 —16898.0000 —15193.1250 —26365.5000

89 0 1877.5556 5064.3750 14647.5000

89 1 9272.3193 23464.9999 —672.5000

810 O —4693.0000 269.0000

810 1 51949.3333 12078.0000

811 O —4722.6667 —3294.0000

8 11 1 -64894.0351 —36840.0001

812 0 6140.0000

812 1 —59072.0000

813 0 4544.0000

8 13 1 174547.3340

1

8 15

—169111.9996
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points from a straight line. Padgpproximants to the loga- *
rithmic derivative[d In x%(x)/dx] show the the presence of lim >, bx"=Jzys. (22
nonphysical singularitiecomplex polesnearer to the origin m* o "=1

than the physical singularity. In order to move the physical

singularity closer the origin, we applied a conformal trans- Our sublattice magnetization series obtained from Eq.

formation methot?*®!"to the series. The method rearranges(21) is identical to the staggered susceptibility series in the

the positions of the singularities and transforms the physicaM * =0 limit. This is also a check on the completeness of the

singularity to be nearest to the origin and isolates it fromsublattice magnetization as well as staggered susceptibility
other singularities. So the transformed series represents eseries. The sublattice magnetization as a function of tempera-

sentially an expansion of the physical singularity. ture is estimated using the ratio method. For a given value of
We use the transformationi® y, the series coefficients of E(R1) are first calculated. Then
. the temperaturex(!) is estimated from the divergence of
"= X (19 the series. Finally, the sublattice magnetization is calculated
(1-X%/b?)’ from M*=y/xz. The ratio of two successive coefficients of

. . the magnetization series in the ordered phHagd,,_, versus
whereb IS a rgal numper. Depending on the_ Va'!Je tiothe the 1h plot for certain values of is shown in Fig. 2. The
ryonphysmal smg_ularltl_es can be mapped in dn‘fergnt re.la‘[emperature corresponding to each valug if estimated by
tlons_tp the phy3|cal singularity. However, Fhe physical .S'n'extrapolating the straight line to thenk 0 axis. The last
g:ﬁ:'t'?s’ ob]tcalneddfrom_thd—log Pageapproxmant angI%/SL:, five ratios lie on a straight line in the plot. The presence of
of the transtormed Series us_lrtg= aré more consistent.  ga) oscillation suggests the use of the extrapolation for-
The Padeapproximant analysis of the transformed series UStoula KT/3= w(nn—2)=[Nys— (N—2)y._,]/2, wherey
ingb=2 is given in Table 1. Based on Table II, a reasonable_ Ny " -2, n
estimate for the critical point iy=0.647+0.002 or Xy b,/b,_1. In Fig. 3 we show the sublattice magnetization

. . M™ as a function of temperatur® obtained from the ratio
=0.722+0.002. Our best estimate of the &ldemperature : S
for the bec lattice ikTy,/J= 1.384+0.005 which is consis- method for the bcc lattice. They are plotted as a solid line

i ) . . . which is estimated from the average of three extrapolations
tent with the estimate given by a ratio analysis. g b

. . (8,6), u(7,5, and u(6,4). The extrapolation shows good
: _We now con3|der. the analy5|s O.f the stagg.ered Sus.cemgonvergence in the sense that each extrapolation value differs
bility series for the simple cubic lattice. The ratio analysis of

o . ) ) . from the average value by less than 1% except in the low-
the susceptibility series shows the irregular behavior. As 'Qemperature region y ° P

the previous case, we applied a conformal transformation We have also performed Padaalysis on the logarithmic

method_ to the selrle_s. Irf\ Lable i fwe SZOW t@dog;ade derivative of sublattice magnetization series of E21) with
approximant analysis of the transformed series USIRR. 5 fyaq value ofy. The sublattice magnetization series is

c.c.n. denotes roo_t; of a complex pair an_d a negative ree}ll ros nsformed using the transformation of Ef9) in order to
rather than a positive real root. The estimate for the critical et better estimates of the physical singularity. For a fixed

point is Xy =0.87£0.01 orxy=1.07+0.02. Based on the |, ofy the roots of the denominators dflog Padeap-
PadeTable Il, the estimate of the étemperature for the sc Y, 9 b

lattice iskTy/J=0.93+0.02. We should point out that the proximants (4 In MWZV)MYM to the series reflect points at

effects of the the interference by the scattered nonphysicéﬂ’h'Ch the series is _smgular. Table IV shows Fhe smallest real
roots of the denominator af-log Padeapproximants to the

singularities are still present in the transformed series, ‘ 4 seri . 3 for diff | W
Higher-order coefficients of the series for the sc lattice arérans ormed series usirig=3 for different values of. We

needed to estimate ktemperature more accurately. 'gr?Of?‘d a smaller r_eaI root which appears occa5|o_nally and
coincides closely with a root of the numerator. For instance,

for the[3] approximant whery=1.0, there is a smaller root
of the denominator at=0.11243, but there is the same root
The sublattice magnetization series of Ety) is written  of the numerator at=0.11243. We note that there is agree-
as ment between different approximants in a wide range of tem-
" peratures. However, roots of the Paajgproximants show
- n oscillatory behavior in the low-temperature region.
M —nZO Mi(t,t1,y)X". (20 The magnetic phase boundavy" vs T obtained fron{ 2],
_ o _ ~[2], and[%] Padeapproximants is also plotted in Fig. 3. It is
The sublattice magnetizatidd ™ is equal to zero in the dis- cjear from Fig. 3 that the magnetic phase boundary estimated
ordered phase. In the ordered phase it is found selftom the Padeapproximants analysis is consistent with that
consistently from the divergence of the seréglefined a  obtained from the ratio analysis. The results of fiEPade
. approximant shows an oscillatory behavior in the vicinity of
_ =S bty y)x" (21) the Neel temperature, for 0-0M * <0.14. The predictions of
MF—SZ_omx" &4 1LY)X spin-wave theoryy*® are also shown in Fig. 3 for comparison.
In the low-temperature regiokT/J<<0.4, the convergence
If the self-consistently determined value bf* has been of the series is slow.
chosen then the serid$ diverges as the order of the series  For the sc lattice, the ratio analysis of the sublattice mag-
M* goes to infinity. It can be shown that the series of Eq.netization series shows the irregular behavior in the vicinity
(21) reduces to the staggered susceptibility series o ).  of the Neel temperature where fluctuations become large. We
asM* approaches zero, namely, follow the same procedure as for the bcc lattice above. We

B. The sublattice magnetization
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apply the transformation of Eq19) to the series. The mag- needed to estimate the Bldemperature more accurately. A
netic phase boundary is estimated from the transformed seomparison of the present estimate oféNemperature with
ries with different value of the parameterfor the different  previous estimate obtained from different methods for the
Padeapproximant. The optimum choice bffor the[3], [2],  bcc and sc lattices is given in Table V.
[%], and[¥] Padeapproximants is 2.0, 2.0, 3.0, and 1.0, re- We have also shown the magnetic phase boundary for the
spectively. spin+4 Heisenberg antiferromagnetic model for the bcc and
Compared with the Padapproximants for the bcce lattice, sc lattices. A comparison with spin-wave theory in the low-
the Padeapproximants for the sc lattice are less well con-temperature region is shown. For the bcc lattice, the sublat-
verged. In Fig. 4, we show the magnetic phase bounlbfy tice magnetization series is well converged in a wide range
vs T plot for the sc lattice. In this plot the solid line is drawn of temperatures. The limiting low-temperature form of our
through the points obtained from the average of the valuephase boundary agrees closely with that given by the spin-
given by the four successive approximants over the rangwave theory. The convergence of the linked-cluster series
0.2<M*<0.42. The results di], [], and[¥] Padeapproxi-  expansion is also slow in the low-temperature region. Like-
mants are also plotted in Fig. 4 for comparison. The predicwise for the sc lattice the series obtained is not well con-
tions of spin-wave theofy*® is also shown for comparison. verged. However, we present the phase boundary for the sc
The uncertainty in each estimate Wf is the uncertainty in lattice with some confidence over the range<0M " <0.4.
the estimation of temperatukd/J. The values okT/J from A longer series is needed to locate the phase boundary with
different approximants near the region of theeNeempera-  greater precision.
ture, for 0.6<M*<0.2, are not well converged for the sc
lattice. A longer series is needed to locate the phase bound- ACKNOWLEDGMENTS

ary with greater precision in this region. . . _
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on three-dimensional bipartite lattices. In the disordered
phase our staggered susceptibility series reduces to the high- APPENDIX
temperature series. The series are analyzed by using both the
ratio method and Pad®pproximant technique. We have used The coefficients of the sublattice magnetization series are
a conformal transformation method to aid in the analysis ofpolynomials in the variables t;, andy as
the series. The results obtained from the analysis of the trans-
formed series are consistent with the results given by the
ratio analysis.

With the eighth-order series of the staggered susceptibil-
ity we obtain more accurate estimate ofeNleemperature for The coefficients in Eq(Al) for the bcc lattice are listed in
the bcc lattice. For the sc lattice higher-order terms arelable VI.

IV. SUMMARY AND CONCLUSIONS
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