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Néel temperature and magnetic phase boundary of the spin-1
2 Heisenberg antiferromagnet

in three dimensions

Kok-Kwei Pan
Physics Group, Center of General Education, Chang Gung University, No. 259, Wen-Hua 1st Road,

Kwei-San, Tao-Yuan, Taiwan, Republic of China
~Received 24 August 1998!

We obtained the eighth-order linked-cluster series for the free energy, the sublattice magnetization, and the
staggered susceptibility of the spin-1

2 Heisenberg antiferromagnet on three-dimensional bipartite lattices. The
series are analyzed using the standard extrapolation techniques with the application of a conformal transfor-
mation method to obtain the Ne´el temperature and the temperature dependence of sublattice magnetization. We
obtain a more accurate estimate of the Ne´el temperature and the magnetic phase boundary for the body-
centered cubic and the simple cubic lattices. The results are compared with related works.
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I. INTRODUCTION

The Heisenberg antiferromagnetic model has recei
considerable interest in recent years because of the wide
riety of critical phenomena exhibited in this system. Th
model has also attracted much attention recently becaus
its possible relevance to the phenomenon of hi
temperature superconductivity. The thermodynamic prop
ties and the phase transition of this model in three dim
sions have been investigated by a variety of approxim
methods which include spin-wave theory,1,2 high-density
expansion,3 the high-temperature series expansion metho4

the Green function method,5 and the variational cumulan
expansion.6 Despite these efforts the detailed analysis of
critical point and thermodynamic behavior of thre
dimensional Heisenberg antiferromagnetic model are
known. The low-temperature behavior is better described
spin-wave theory. At temperatures above the transition po
the high-temperature series expansion method has been
to obtain an estimate of the Ne´el temperature.

In this paper we study the phase transition and the m
netic phase boundary of the spin-1

2 quantum Heisenberg an
tiferromagnet using the linked cluster series expans
method. The linked cluster series expansion method has
vided the most accurate results in the study of phase tra
tion and critical phenomena in spin systems.7 This method
has been extensively used on ferromagnetic spin syste8

The method sums up all perturbation terms to a certain o
and estimates the result through a well-developed extrap
tion method. The accurate results are obtained both in
ordered phase and disordered phase. In the disordered p
the linked cluster series are identical to the high-tempera
series.

We have obtained the exact eighth-order linked-clus
series for the free energy, sublattice magnetization, and s
gered susceptibility of the spin-1

2 Heisenberg antiferromagne
in an external magnetic field9 on three-dimensional bipartit
lattices. In the present work we study the thermodynam
properties of the model in zero external magnetic field. In
disordered phase our staggered susceptibility series red
PRB 590163-1829/99/59~2!/1168~8!/$15.00
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to that of high-temperature series expansion with an addi
of two terms to the previous work.4 In the ordered phase
correlations of spin and thermal fluctuations are included
the perturbation expansion and the order parameter is fo
self-consistently from the series of the sublattice magnet
tion. The series are analyzed using standard extrapola
techniques10 with the application of a conformal transforma
tion method to obtain a more accurate estimate of the N´el
temperature and the temperature dependence of subla
magnetization.

A brief outline of the paper is as follows. In Sec. II w
discuss the linked-cluster series expansion method applie
the spin-12 Heisenberg antiferromagnetic model. The resu
of the calculations are presented in Sec. III. A comparis
with related works is also presented. A summary and con
sions is given in Sec. IV.

II. DERIVATION OF THE SERIES

The Hamiltonian of the spin-1
2 Heisenberg antiferromag

net is given as

H5(
^ i , j &

Ji j Si•Sj2hA(
i PA

Si
z2hB(

j PB
Sj

z , ~1!

wherei andj refer to the sites of two distinct interpenetratin
sublattice and the pair interaction parameterJi , j is taken to
be J.0 when i and j are nearest neighbors and zero oth
wise. hA and hB in the Zeeman energy term are stagger
magnetic fields on two sublatticeA andB for calculating the
sublattice magnetization and staggered susceptibility.
have divided the lattice sites into two distinct interpenetr
ing sublattices.

The Hamiltonian is divided into an unperturbed Ham
tonianH0 and a perturbation part asH1

H5H01H1 . ~2!

H0 includes all single-ion potentials and a self-consist
field term extracted from the two-ion interaction potenti
1168 ©1999 The American Physical Society
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The self-consistent field is characterized by two parame
MA5^SA

z & andMB5^SB
z & which minimize the free energy o

the system:

H05(
i PA

@JzMB2hA#Si
z1 (

j PB
@JzMA2hB#Sj

z

2
1

2
NJzMAMB , ~3!

wherez is the number of nearest neighbors andN is the total
number of sites in a lattice.

H1 includes the effects of correlations of the fluctuation

H15J(
^ i , j &

@Si
z2MA#@Sj

z2MB#1
J

2 (
^ i , j &

@Si
1Sj

21Si
2Sj

1#.

~4!

The eigenstates for the local site ofH0 are u1&5u↑& and
u1̄&5u↓& and the corresponding eigenenergies for sublat
A andB are

e1
A5

1

2
$JzMB2hA%, e1

B5
1

2
$JzMA2hB%, ~5!

e
1̄

A
52

1

2
$JzMB2hA%, e

1̄

B
52

1

2
$JzMA2hB%, ~6!

apart from the constant energy from2 1
2 JzMAMB . We con-

sider the symmetrical case of equal and opposite stagg
field, hA52hB5hs(hs.0). In this case MA52MB
5M 1(M 1.0). The mean-field free energy per siteF0 is

F052
1

b H lnF2 coshS 1

2
yD G J , ~7!

wherey5b$JzM0
11hs%.

The mean-field sublattice magnetization per siteM0
1 is

obtained from the free energy by taking a derivative w
respect tohs ,

M0
152

]F0

]hs
5

1

2
tanhS 1

2
yD . ~8!

The corrections of free energy toF0 due to the quantum an
thermal fluctuation correlations is expressed as11 a sum over
all connected diagrams:

DF52
1

b (
n51

`
~21!n

n! E
0

b

dt1E
0

b

dt2¯

3E
0

b

dtn^Tt@H1~t1!H1~t2!¯H1~tn!#&c , ~9!

whereb5(kBT)21.
The terms in the series expansion are often written a

sum over all connected diagrams which are composed
spin operators:

DF5(
n,gn

`

W~gn!L~gn!I ~gn!. ~10!
rs

:

e

ed

a
of

The summation is over all linked graphs wheregn indicates
an nth-order linked graph.W(gn) is the weight of the graph
or the number of topologically equivalent graphs appear
the expansion.L(gn) is the lattice constantof the graph.
I (gn) is the value of thenth-ordert integral of the cumulant
product which the graph represents. The connected gra
and the weights of the graphs are produced from the Is
graphs by an algorithm which has been implemented o
computer. For example, for the simple cubic and bod
centered cubic lattices, there are 43 distinct graphs for s
order, 82 graphs for seventh order, and 374 graphs for eig
order.

We use the following standard basis operators in orde
facilitate the calculation of the multiple integrals containin
t-ordered products of spin operators in series expansion

Lmn[um&^nu, m,n51,1̄, ~11!

wherem&, un& are eigenstates ofH0 . These operators satisf
the usual multiplication rule and the commutation relation12

for the standard basis operators.
The spin operators can be written in terms of the stand

basis operators

S15L11̄ ,

S25L 1̄1 ,

FIG. 1. The ratio of two successive coefficients of the stagge
susceptibility seriesan /an21 versus 1/n plot for the bcc lattice.

TABLE I. Exact coefficients of the staggered susceptibility s
ries of the spin-1/2 Heisenberg antiferromagnet model in the di
dered phase for the bcc and sc lattices.

an bcc sc

a0 0.25 0.25
a1 0.50 0.375
a2 0.833333 0.4375
a3 1.333333 0.46875
a4 2.024479 0.483203
a5 3.024392 0.501367
a6 4.454776 0.512950
a7 6.515440 0.512135
a8 9.455114 0.505525
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1170 PRB 59KOK-KWEI PAN
Sz5
1

2
~L112L 1̄1̄!. ~12!

The integrals containing a product oft-ordering operator
in DF are calculated by using the multiple-site Wick redu
tion theorem and the standard basis operators.12 The calcula-
tion of the multiple integrals containingt-ordered products
of standard basis operators is the most time consuming
of the computation. Since a large number of terms involv
in the calculation are beyond the fifth order, a computer c
has been developed to handle the numerous algebraic o
tions.

The free energy series per siteF of the system is obtained
as

F5F01 (
n51

`

f n~ t,y!~bJ!n, ~13!

where f n is a polynomial in the functionst5 1
2 tanh(12y) and

y5b$JzM0
11hs%. We have obtained the first nine coeffi

cients in the free energy series.
The sublattice magnetization seriesM 1 is calculated from

the free energy series by taking a derivative with respec
hs . Differentiating with respect tohs , we obtain the sublat-
tice magnetization seriesM 1

M 152
]F

]hs
5

]~bF !

]y
5t1 (

n52

`

mn~ t,t1 ,y!$bJ%n,

~14!

wheret15dt/dy51/(ey1e2y)2. The polynomials ofmn for
the bcc lattice are given in the Appendix. The coefficients
mn for the sc lattice are available upon request.

The staggered susceptibility series is calculated from
sublattice magnetization series byxs5]M 1/]hs . After cal-
culating the series for]M 1/]y, the staggered susceptibilit
series becomes

TABLE II. Singularities x̄N of the transformed staggered su
ceptibility series on the bcc lattice from Pade´ approximants to
(d/dx̄)ln xs(x̄) with a transformationx5 x̄/(12 x̄2/4).

M \L 2 3 4 5

2 0.6384 0.6484 0.6475 0.6473
3 0.6545 0.6475 0.6472
4 0.6604 0.6473
5 0.6429

TABLE III. Singularities x̄N of the transformed staggered su
ceptibility series on the sc lattice from Pade´ approximants to
(d/dx̄)ln xs(x̄) with a transformationx5 x̄/(12 x̄2/4).

M \L 2 3 4 5

2 0.8143 0.8380 0.8526 0.8606
3 c.c.n. 0.8673 0.8758
4 0.8837 0.8735
5 0.8749
-

art
d
e
ra-

to

f

e

xs5
xc

@12Jzxc#
, ~15!

where

xc5b
]M 1

]y
. ~16!

In the disordered phase, the dimensionless zero-fieldhs
50) staggered susceptibility series is given as

FIG. 2. The ratio of two successive coefficients of the sublatt

magnetization seriesM̄ 1 ~see text for the sublattice magnetizatio!
bn /bn21 versus 1/n plot for the body-centered cubic lattice wit
different values ofy.

FIG. 3. The magnetic phase boundary for the bcc lattice. S
line is the results obtained from the ratio method. The results
tained from@3

3# ~open circle!, @ 3
4# ~square!, and @4

3# ~triangle! Padé
approximants are also shown. Dashed line is the predictions of s
wave theory.TN indicates the estimate of Ne´el temperature from
high-temperature series.
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TABLE IV. Estimates ofx̄ from the poles of Pade´ approximants to@] ln M̄1(x̄,y)/]x̄#y with a transfor-
mationx5 x̄/(12 x̄2/9) for the bcc lattice.

y @2
3# @ 2

4# @ 2
5# @ 3

2# @ 3
3# @ 3

4# @ 4
2# @ 4

3# @ 5
2#

0.5 0.6964 0.7121 0.6860 0.6959 0.6939 0.6887 0.6912 0.6827 0.6
1.0 0.7182 0.7136 0.6628 0.7098 0.7092 0.7032 0.7091 0.7099 0.7
2.0 0.7912 0.7759 0.7744 0.7625 0.7717 0.7734 0.7694 0.7741 0.7
3.0 0.9009 0.9009 0.8969 0.8822 0.8927 0.8964 0.8900 0.9119 0.8
4.0 1.0520 1.0489 1.0552 1.0368 1.0493 1.0513 1.0458 1.0699 1.0
5.0 1.2081 1.2099 1.2156 1.1914 1.2099 1.2075 1.2036 1.2226 1.2
6.0 1.3508 1.3591 1.3643 1.3304 1.3607 1.3763 1.3479 1.3682 1.3
7.0 1.4743 1.4925 1.4972 1.4499 1.4991 1.4991 1.4742 1.4991 1.4
8.0 1.5784 1.6099 1.6143 1.5504 1.6293 1.6151 1.5823 1.6136 1.5
9.0 1.6651 1.7129 1.7169 1.6346 1.7638 1.7174 1.6741 1.7124 1.6
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b21xs5a01 (
n51

`

an$bJ%n. ~17!

In Table I we list the coefficientsan of high-temperature
staggered susceptibility series for the bcc and sc lattices

The coefficients of our zero-field (hs50) staggered sus
ceptibility series up to sixth order are identical to those of
high-temperature series4,13 in the disordered phase whe
M 150. The seventh- and eighth-order graphs are chec
by comparing the ferromagnetic susceptibility calcula
from these graphs with the known results in the disorde
phase. The susceptibility obtained from the seventh-
eighth-order graphs agree with those of the high-tempera
series expansions of the spin-1

2 Heisenberg model obtaine
by Bakeret al.13,14 Furthermore we calculate the free ener
and staggered susceptibility of two finite lattices by the tw
point cluster method. The results of this calculation of t
free energy and staggered susceptibility series agree with

FIG. 4. The magnetic phase boundary for the sc lattice. T
solid line is the results obtained from the average of the the@ 2

4#, @
2
5#, @3

3#, and @3
4# approximants. The results obtained from@3

3# ~open
circle!, @3

4# ~square!, and @ 4
2# ~triangle! Padéapproximants are also

shown. The dashed line is the predictions of spin-wave theory.TN

indicates the estimate of Ne´el temperature from high-temperatu
series.
e

ed
d
d
d
re

-
e
he

series calculated by the high-temperature series expansio
to eighth order by takingz51 andpnx50.

III. ANALYSIS OF THE SERIES

A. Néel temperature estimates

The staggered susceptibility series in the paramagn
phase is given a power series expansion in the form

b21xs5 (
n50

`

anxn, ~18!

wherex5J/kT. The Néel temperaturekTN /J is estimated
from the strong singularity in the paramagnetic stagge
susceptibility series by using both the ratio method and P´
approximant technique. For the bcc lattice, the ratio of t
successive coefficients of the staggered susceptibility se
an /an21 versus the 1/n plot is shown in Fig. 1. The last five
ratios lie very well on a straight line in the plot althoug
there is very small oscillation. The Ne´el temperaturekTN /J
is estimated from the extrapolation from the formu
kTN /J5m(n,n22)5@ngn2(n22)gn22#/2, where gn
5an /an21 . The Neville table10,15 estimates have been con
structed usingen

r 5@nen
r 212(n22r )en22

r 22 #/2r , where en
0

5an /an21 . With the eighth-order series the best estima
of the last four Neville extrapolantse6

1@m(6,4)#, e7
1@m(7,5)#,

e8
1@m(8,6)#, and e8

2 are 1.382, 1.384, 1.386, and 1.390, r
spectively. From the trend of the ratio plot, a conservat
estimate for the Ne´el temperature iskTN /J51.38560.005.

We have also used the Pade´ analysis of the logarithmic
derivative series to estimate the Ne´el temperature. In the ra
tio plot of an /an21 vs 1/n, there is a mild oscillation of the

e

TABLE V. A comparison of Ne´el temperature estimate for th
bcc and sc lattices obtained from different methods.

Method bcc sc

Spin-wave theory~Ref. 2! 1.455 1.105
Series~Ref. 4! 1.40 0.96
Green function~Ref. 5! 0.996
Cumulant expansion~Ref. 6! 1.464 0.863
Series~present work! 1.384~5! 0.93~2!
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TABLE VI. Coefficients for Eq.~A1!.

n i j \k 0 1 2 3 4 5 6 7 8

2 0 1 1.000
2 1 0 21.0000
2 1 1 22.0000
2 3 1 8.0000
3 1 1 0.3333 2.0000
3 2 0 22.0000
3 3 1 25.3333
3 5 1 16.0000
4 0 0 20.0312
4 0 1 20.5000 20.0625
4 1 0 0.5000 0.1875
4 1 1 20.5417 3.1250
4 2 0 23.1250
4 2 1 12.0000 1.5000
4 3 0 24.0000 21.5000
4 3 1 23.8333 226.0000
4 4 0 13.0000
4 4 1 240.0000
4 5 0 8.0000
4 5 1 54.0000
4 7 1 2120.0000
5 0 0 0.2969
5 0 1 0.0833 1.0312
5 1 0 20.0833 23.0938
5 1 1 0.4208 20.8125 23.5000
5 2 0 0.8125 7.0000
5 2 1 25.0000 24.5000
5 3 0 1.6667 4.5000
5 3 1 28.6667 41.5000 20.0000
5 4 0 220.7500 220.0000
5 4 1 46.6667 252.5000
5 5 0 29.3333 31.5000
5 5 1 35.6000 2153.0000
5 6 0 51.0000
5 6 1 2112.0000
5 7 0 16.0000
5 7 1 21.3333
5 9 1 2208.0000
6 0 0 0.4941 20.1211
6 0 1 20.1354 1.1471 20.1211
6 1 0 0.1354 23.4414 0.6055
6 1 1 20.6340 4.3255 2.8594
6 2 0 24.3255 25.7188
6 2 1 21.2500 230.4062 225.2656
6 3 0 0.4167 30.4062 42.1094
6 3 1 7.5222 8.6042 216.5625
6 4 0 24.3021 16.5625
6 4 1 86.6667 125.9375 283.7500
6 5 0 217.3333 275.5625 2283.7500
6 5 1 2112.0000 2346.6250 249.5000
6 6 0 115.5417 33.0000
6 6 1 2588.0000 284.0000
6 7 0 84.0000 36.0000
6 7 1 980.8889 972.0000
6 8 0 2243.0000
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TABLE VI. ~Continued!.

n i j \k 0 1 2 3 4 5 6 7 8

6 8 1 1080.0000
6 9 0 2120.0000
6 9 1 23586.6667
6 11 1 4544.0000
7 0 0 0.3242 21.2861
7 0 1 0.1052 21.0026 22.1353
7 1 0 20.1052 3.0078 10.6763
7 1 1 0.4498 1.4401 20.7090 6.7930
7 2 0 21.4401 241.4180 220.3789
7 2 1 27.7625 49.8437 20.5508
7 3 0 2.5875 249.8438 0.9180
7 3 1 27.8444 217.2708 2474.8281 2246.4062
7 4 0 8.6354 474.8281 369.6094
7 4 1 87.8333 2319.5833 330.4297
7 5 0 217.5667 191.7500 2330.4297
7 5 1 213.5169 553.7500 2191.9688 1900.5000
7 6 0 2184.5833 21461.3125 21900.5000
7 6 1 2211.8667 2206.5000 2873.2500
7 7 0 30.2667 88.5000 623.7500
7 7 1 515.4540 24063.3333 22456.0000
7 8 0 1015.8333 1228.0000
7 8 1 2660.0000 3006.0000
7 9 0 73.3333 21002.0000
7 9 1 21654.6666 8130.0000
7 10 0 21626.0000
7 10 1 2288.0000
7 11 0 2208.0000
7 11 1 2768.0000
7 13 1 6208.0000
8 0 0 0.4087 20.1676 0.8311
8 0 1 20.1584 20.2801 2.0886 0.5541
8 1 0 0.1584 0.8403 210.4431 23.8785
8 1 1 20.9926 1.3109 5.7298 239.5120
8 2 0 21.3109 211.4596 118.5359
8 2 1 7.5430 50.4453 43.3770 130.9893
8 3 0 22.5143 250.4453 272.2949 2305.6416
8 3 1 17.3942 45.7361 296.4277 265.9082
8 4 0 222.8681 96.4277 2398.8623
8 4 1 2177.6086 2961.3542 21932.6953 21961.6699
8 5 0 35.5217 576.8125 1932.6953 2746.337
8 5 1 2155.0471 2119.3438 337.4219 2803.4414
8 6 0 39.7812 2224.9479 22803.4414
8 6 1 2500.5556 6099.6250 13394.6093 8186.5000
8 7 0 2357.2222 22614.1250 29567.5782 28186.5000
8 7 1 76.4958 23902.0334 2132.0417 213062.0000
8 8 0 975.5083 66.0208 9796.5000
8 8 1 216898.0000 215193.1250 226365.5000
8 9 0 1877.5556 5064.3750 14647.5000
8 9 1 9272.3193 23464.9999 2672.5000
8 10 0 24693.0000 269.0000
8 10 1 51949.3333 12078.0000
8 11 0 24722.6667 23294.0000
8 11 1 264894.0351 236840.0001
8 12 0 6140.0000
8 12 1 259072.0000
8 13 0 4544.0000
8 13 1 174547.3340
8 15 1 2169111.9996
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points from a straight line. Pade´ approximants to the loga
rithmic derivative@d ln xs(x)/dx# show the the presence o
nonphysical singularities~complex poles! nearer to the origin
than the physical singularity. In order to move the physi
singularity closer the origin, we applied a conformal tran
formation method10,16,17to the series. The method rearrang
the positions of the singularities and transforms the phys
singularity to be nearest to the origin and isolates it fro
other singularities. So the transformed series represents
sentially an expansion of the physical singularity.

We use the transformation9,16

x5
x̄

~12 x̄2/b2!
, ~19!

whereb is a real number. Depending on the value forb, the
nonphysical singularities can be mapped in different re
tions to the physical singularity. However, the physical s
gularities obtained from thed-log Pade´ approximant analysis
of the transformed series usingb52 are more consistent
The Pade´ approximant analysis of the transformed series
ing b52 is given in Table II. Based on Table II, a reasona
estimate for the critical point isx̄N50.64760.002 or xN
50.72260.002. Our best estimate of the Ne´el temperature
for the bcc lattice iskTN /J51.38460.005 which is consis-
tent with the estimate given by a ratio analysis.

We now consider the analysis of the staggered susce
bility series for the simple cubic lattice. The ratio analysis
the susceptibility series shows the irregular behavior. As
the previous case, we applied a conformal transforma
method to the series. In Table III we show thed-log Pade´
approximant analysis of the transformed series usingb52.
c.c.n. denotes roots of a complex pair and a negative real
rather than a positive real root. The estimate for the criti
point is x̄N50.8760.01 or xN51.0760.02. Based on the
PadéTable II, the estimate of the Ne´el temperature for the s
lattice is kTN /J50.9360.02. We should point out that th
effects of the the interference by the scattered nonphys
singularities are still present in the transformed ser
Higher-order coefficients of the series for the sc lattice
needed to estimate Ne´el temperature more accurately.

B. The sublattice magnetization

The sublattice magnetization series of Eq.~14! is written
as

M 15 (
n50

`

mn~ t,t1 ,y!xn. ~20!

The sublattice magnetizationM 1 is equal to zero in the dis
ordered phase. In the ordered phase it is found s
consistently from the divergence of the seriesM̄ defined as18

M̄ 15
(n50

` mnxn

M 12(n50
` mnxn 5 (

n51

`

bn~ t,t1 ,y!xn. ~21!

If the self-consistently determined value ofM 1 has been
chosen then the seriesM̄ diverges as the order of the seri
M 1 goes to infinity. It can be shown that the series of E
~21! reduces to the staggered susceptibility series of Eq.~18!
asM 1 approaches zero, namely,
l
-
s
al

es-

-
-

-

ti-
f
n
n

ot
l

al
s.
e

lf-

.

lim
M1→0

(
n51

`

bnxn5Jzxs. ~22!

Our sublattice magnetization series obtained from E
~21! is identical to the staggered susceptibility series in
M 150 limit. This is also a check on the completeness of
sublattice magnetization as well as staggered susceptib
series. The sublattice magnetization as a function of temp
ture is estimated using the ratio method. For a given value
y, the series coefficients of Eq.~21! are first calculated. Then
the temperature (x21) is estimated from the divergence o
the series. Finally, the sublattice magnetization is calcula
from M 15y/xz. The ratio of two successive coefficients
the magnetization series in the ordered phasebn /bn21 versus
the 1/n plot for certain values ofy is shown in Fig. 2. The
temperature corresponding to each value ofy is estimated by
extrapolating the straight line to the 1/n50 axis. The last
five ratios lie on a straight line in the plot. The presence
small oscillation suggests the use of the extrapolation
mula kT/J5m(n,n22)5@ngn2(n22)gn22#/2, wheregn
5bn /bn21 . In Fig. 3 we show the sublattice magnetizatio
M 1 as a function of temperatureT obtained from the ratio
method for the bcc lattice. They are plotted as a solid l
which is estimated from the average of three extrapolati
m~8,6!, m~7,5!, and m~6,4!. The extrapolation shows goo
convergence in the sense that each extrapolation value di
from the average value by less than 1% except in the lo
temperature region.

We have also performed Pade´ analysis on the logarithmic
derivative of sublattice magnetization series of Eq.~21! with
a fixed value ofy. The sublattice magnetization series
transformed using the transformation of Eq.~19! in order to
get better estimates of the physical singularity. For a fix
value ofy, the roots of the denominators ofd-log Pade´ ap-
proximants (@] ln M̄1(x̄,y)/]x̄#y) to the series reflect points a
which the series is singular. Table IV shows the smallest r
roots of the denominator ofd-log Pade´ approximants to the
transformed series usingb53 for different values ofy. We
ignored a smaller real root which appears occasionally
coincides closely with a root of the numerator. For instan
for the @4

3# approximant wheny51.0, there is a smaller roo
of the denominator atx̄50.11243, but there is the same ro
of the numerator atx̄50.11243. We note that there is agre
ment between different approximants in a wide range of te
peratures. However, roots of the Pade´ approximants show
oscillatory behavior in the low-temperature region.

The magnetic phase boundaryM 1 vs T obtained from@ 3
3#,

@3
4#, and@ 4

3# Padéapproximants is also plotted in Fig. 3. It i
clear from Fig. 3 that the magnetic phase boundary estima
from the Pade´ approximants analysis is consistent with th
obtained from the ratio analysis. The results of the@4

3# Padé
approximant shows an oscillatory behavior in the vicinity
the Néel temperature, for 0.0,M 1,0.14. The predictions of
spin-wave theory1,19 are also shown in Fig. 3 for compariso
In the low-temperature region,kT/J,0.4, the convergence
of the series is slow.

For the sc lattice, the ratio analysis of the sublattice m
netization series shows the irregular behavior in the vicin
of the Néel temperature where fluctuations become large.
follow the same procedure as for the bcc lattice above.
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apply the transformation of Eq.~19! to the series. The mag
netic phase boundary is estimated from the transformed
ries with different value of the parameterb for the different
Padéapproximant. The optimum choice ofb for the @ 2

4#, @ 2
5#,

@3
3#, and @ 3

4# Padéapproximants is 2.0, 2.0, 3.0, and 1.0, r
spectively.

Compared with the Pade´ approximants for the bcc lattice
the Pade´ approximants for the sc lattice are less well co
verged. In Fig. 4, we show the magnetic phase boundaryM 1

vs T plot for the sc lattice. In this plot the solid line is draw
through the points obtained from the average of the val
given by the four successive approximants over the ra
0.2,M 1,0.42. The results of@2

5#, @ 3
3#, and@3

4# Padéapproxi-
mants are also plotted in Fig. 4 for comparison. The pred
tions of spin-wave theory1,19 is also shown for comparison
The uncertainty in each estimate ofM is the uncertainty in
the estimation of temperaturekT/J. The values ofkT/J from
different approximants near the region of the Ne´el tempera-
ture, for 0.0,M 1,0.2, are not well converged for the s
lattice. A longer series is needed to locate the phase bo
ary with greater precision in this region.

IV. SUMMARY AND CONCLUSIONS

We have calculated the exact eighth-order linked-clus
series for the free energy, sublattice magnetization, and s
gered susceptibility of the spin-1

2 Heisenberg antiferromagne
on three-dimensional bipartite lattices. In the disorde
phase our staggered susceptibility series reduces to the
temperature series. The series are analyzed by using bot
ratio method and Pade´ approximant technique. We have us
a conformal transformation method to aid in the analysis
the series. The results obtained from the analysis of the tr
formed series are consistent with the results given by
ratio analysis.

With the eighth-order series of the staggered suscept
ity we obtain more accurate estimate of Ne´el temperature for
the bcc lattice. For the sc lattice higher-order terms
l
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d
h-

the

f
s-
e

il-

e

needed to estimate the Ne´el temperature more accurately.
comparison of the present estimate of Ne´el temperature with
previous estimate obtained from different methods for
bcc and sc lattices is given in Table V.

We have also shown the magnetic phase boundary for
spin-12 Heisenberg antiferromagnetic model for the bcc a
sc lattices. A comparison with spin-wave theory in the lo
temperature region is shown. For the bcc lattice, the sub
tice magnetization series is well converged in a wide ran
of temperatures. The limiting low-temperature form of o
phase boundary agrees closely with that given by the s
wave theory. The convergence of the linked-cluster se
expansion is also slow in the low-temperature region. Lik
wise for the sc lattice the series obtained is not well co
verged. However, we present the phase boundary for th
lattice with some confidence over the range 0.2,M 1,0.4.
A longer series is needed to locate the phase boundary
greater precision.
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APPENDIX

The coefficients of the sublattice magnetization series
polynomials in the variablest, t1 , andy as

mn5(
i , j ,k

b i jk
n t i t1

j y2k. ~A1!

The coefficients in Eq.~A1! for the bcc lattice are listed in
Table VI.
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