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Critical behavior of the planar magnet model in three dimensions
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We study the critical behavior of the three-dimensional planar magnet model in which each spin is consid-
ered to have three components of which only xhendy components are coupled. We use a hybrid Monte
Carlo algorithm in which a single-cluster update is combined with the over-relaxation and Metropolis spin
reorientation algorithm. Periodic boundary conditions were applied in all directions. We have calculated the
fourth-order cumulant in finite-size lattices using the single-histogram reweighting method. Using finite-size
scaling theory, we obtained the critical temperature which is very different from that of the Xigualodel.

At the critical temperature, we calculated the susceptibility and the magnetization on lattices of size ip to 42
Using finite-size scaling theory we accurately determine the critical exponents of the model and find that
=0.67Qq7), y/v=1.9696(37), ang3/v»=0.5152). Thus we conclude that the model belongs to the same
universality class with th&XY model, as expectefiS0163-18209)07117-9

[. INTRODUCTION eter is not a constant of the motion. A constant of the motion

is the z component of the magnetization. Thus there is an

Our understanding of critical phenomena has been signifimportant relationship between the order parameter and the

cantly advanced with the development of thecomponent of magnetization, which is expressed by a
renormalization-grougRG) theory! The RG theory predicts Poisson-bracket relatidnThis equation is crucial for the hy-

relationships between groups of exponents and that there isdiodynamics and the critical dynamics of the system. One

universal behavior. In a second-order phase transition, thi'€refore needs to find out the critical properties of this

correlation length¢ diverges as the critical point is ap- model in order to study nonequilibrium properties of super-

proached, and so the details of the microscopic Hamiltonial\flllv uurjks \?vr Otr:‘ eﬁ SyStfnmjg ?s%”be?ibbyt;lhedmr?ﬂ rﬁ:n fIUtﬁ'[ie I
are unimportant for the critical behavior. All members of a ork, we shall use mo 0 describe the dynamical critica

given universality class have identical critical behavior andphenomena of supe_rflw_d_ helium. B_efore such a project is
critical exponents. undertaken, the static c_rltlcal properties of the planar magnet
The three-dimensional classicdlY model is relevant to model should be |nv_est|gated _accurately. .
the critical behavior of many physical systems, such as su- A!(thOUQh the statlg prop_ertles of theY model W'th.s.
perfluid “He, magnetic materials and the high-supercon- =(S 'S{) have been_llrlvestlgated by a.varlety ?(f statlgtlcal-
ductors. In the pseudospin notation, this model is defined b{"€chanical methods!" the system with§=(§,5/,S))
the Hamiltonian as been given much less attention. So far the critical behav-
ior of this model has been studied by high-temperature
expansiof? and Monte CarldMC) simulation method$>#
H=—=J 2 (S'S+99), (1) High-temperature expansion provides the value for the criti-
(i cal temperature and the critical exponents. In these recent
where the summation is over all nearest-neighbor pairs ofC calculations->* only the critical temperature is deter-
sitesi andj on a simple cubic lattice. In this model one mined. These MC calculations were carried out on small size
considers that the spin has two compone§ts:(S‘,S/) and  systems and thus only rough estimates are available.
S?+9%=1. In this paper we study the three-dimensional planar mag-
In this paper we wish to consider a three component locahet model using a hybrid Monte Carlo meth@ combina-
Spin SZ(ST(1S¥75|Z) and the same Hamiltonian as gi\/en by tion of the cluster algorithm with over-relaxation and Me-
Eq. (1) (namely, with no coupling between tzeomponents  tropolis spin reorientation algorithmin conjuction with
of the sping in three dimensions. Even though the Hamil- Single-histogram reweighting technique and finite-size scal-
tonian is the same, namely, there is no coupling between thi&g. We calculate the fourth-order cumulant, the magnetiza-
z component of the spins, the constraint for each spin idion, and the susceptibilition cubic latticed. X L XL with L
(S)2+(9)2+(S)2=1, which implies that the quantity UP to 42 and from their finite-size scaling behavior we de-
(S92+ ()2 is fluctuating. In order to be distinguished from termine the critical properties of the planar magnet model
the usualXY model, the namelanar magnet modeill be ~ accurately.
adopted for this model.
The reason for our desire to study this model is that it is
related directly to the so-called modEl (Ref. 2 used to
study nonequilibrium phenomena in systems, such as super- Let us first summarize the definitions of the observables
fluids, with a two-component order parameter and a conthat are calculated in our simulation. The energy density of
served current. In the planar magnet model, the order paranour model is given by

II. PHYSICAL QUANTITIES
AND MONTE CARLO METHOD
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1
()=ENV=g <.2,> (S'S+99), 2) 062

whereV=L? and the angular brackets denote the thermal

average. The fourth-order cumulddt (K)*° can be written 0.60 -
as
(m®) :
m E
U (K)=1- , 3 3 058
L( ) 3<m2>2 ( ) o

wherem= (1V)(MZ+MZ+M?)"? is the magnetization per
spin, M=3,;S and K=J/(kgT) is the coupling, or the re- 0.56 -
duced inverse temperature in units &f The fourth-order
cumulantU (K) is one important quantity which we use to
determine the critical coupling constaiit. In the scaling 084 — Yo 06480 55480
region close to the critical coupling, the fourth-order cumu- ’ ’ K ’ ’

lant U, (K) as function ofK for different values ofL are

lines which go through the same point. The magnetic suscep- FIG. 1. Fourth-order cumulan (K) versus couplingk for

tibility per spin y is given by lattice sized. =12, 24, and 32.
x=VK({m?)—(m)?), (4)  Therefore if we ploU, (K) versus the coupling for several
] o . different sizesL, it is expected that the curves for different
wherem is the magnetization vector per spin. values ofl cross at the critical coupling . In order to find

The three-dimensional planar magnet model with ferroyhe K dependence of the fourth-order cumulaht(K), we
magnetic interactiond>0 has a second-order phase tranSi'performed simulations for each lattice size frans6 to L
tion. In simulations of systems near a second-order phase 42 atK =0.6450 which is chosen to be close to previous
transition, a major difficulty arises which is known as critical agtimates for the critical inverse temperattf&* The U, (K)

slowing down. The critical slowing down can be reduced bycyryes were calculated from the histograms and are shown in
using several techniques and what we found as optimal fopig_ 1forL=12. 24 and 32.

our case was to use the hybrid Monte Carlo algorithm as "I gne wishes to obtain higher accurary, then one needs to
descnbgd in Ref.'16. Equilibrium conflguratlops Were Cre-gxamine Fig. 1 more carefully and to see that the points
ated using a hybrid Monte Carlo algorltg%vhlch combinesyhere each pair of curves cross are slightly different for
cluster updates of in-plane spin componehigith Metropo-  gjfferent pairs of lattices; in fact the points where the curves
I|§ and over-relaxatioff of spin reorlentatlons. After each ross move slowly to lower couplings for larger system
single-cluster update, two Metropolis and eight over-gizes. For the pair which corresponds to our largest lattice
relaxation sweeps were perform&dThe K dependence of sizes L=32 and 42, the point where they cross Ks

the fourth-order cumulanit, (K) was determined using the g 64455, In order to extract more precise critical coupling
smgle—hlstqgram reweighting methé?f_]’h[s metho.d enables K. from our data, we compare the curveslf for the two

us to obtain accurate thermodynamic information over thejitferent lattice sizes andL’=bL and then find the loca-
entire scaling region using Monte Carlo simulations per-jon of the intersection of two different curvés, andU, . .
formed at only a few different values ¢f. We have per- ag 5 result of the residual corrections to the finite-size
formed Monte Carlo simulation on simple cubic lattices Ofsca"nng the locations depend on the scale fadierL'/L.
sizeLXL XL with 6<L <42 using periodic boundary con- \ye ysed the crossing points of the=12, 14, and 16 curves
ditions applied in all directions and $04C steps. We car- with all the other ones with highet’ value, respectively.

ried out of the order of 10 000 thermalization steps and of thg ance we need to extrapolate the results of this method for
order of 20 000 measurements. After we estimated the criti(m b)~1—-0 using Uy, /U, )7_7 =1. In Fig. 2 we show the

cal couplingK., we computed the magnetization and the timate for th itical t ¢ our final estimat
magnetic susceptibility at the critical couplirg; . fosr I'Irpaise or the critical temperatufie. . Our final estimate
C

Ill. RESULTS AND DISCUSSION T.=1.55182), K.=0.64441). (6)

_Inthis section, we first hav_e to determ_ine the critical COU-cor comparison, the previous estimates Te=1.54(1)
pling K¢, and then to examine ?t’ge static behavior arounqrefs, 13 and 1pobtained using Monte Carlo simulation and
K. . Binder's fourth-order cumulamU, (K) is a convenient T.=1.552(3) (Ref. 12 obtained using high-temperature se-

quantity that we use in order to estimate the critical couplingjes The latter result obtained with an expansion is surpris-
K. and the correlation length exponent ingly close to ours.

Near the critical coupling<., the cumulant is expanded "\ order to extract the critical exponent we performed

as finite-size scaling analysis of the slopeslf versusL near
our estimated critical poiri. . In the finite-size scaling re-

+oen (5) gion, the slope of the cumulant Kt, varies with system size
like L7,

—1]* 1/v _l
U =U*+U L% 1- =

c
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FIG. 2. Estimates fol . plotted versus inverse logarithm of the
scale factob=L'/L. The extrapolation leads to an estimateTof
=1.55182).
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FIG. 4. Log-log plot of the susceptibility versus the lattice dize
at the critical couplind.,=0.6444. The slope gives an estimate for
the critical exponenty/v=1.9696(37).

Figure 4 displays the finite-size scaling of the susceptibility
x calculated atk,=0.6444. From the log-log plot we ob-

In Fig. 3 we show results of a finite-size scaling analysis fortained the value of the exponent ratjéy:
the slope of the cumulant. We obtained the value of the static

exponenty:

v=0.67Q7). (8)

For comparison, the field-theoretical estinfatés »

=0.669(2) and a recent experimental measurement gives

=0.670%6).%°

In order to obtain the value of the exponent ratio/, we
calculated the magnetic susceptibility per sgimt the criti-
cal couplingK. . The finite-size behavior foy at the critical
point is

x~L". 9
4.0 T T T
1/slope=0.670(7)
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FIG. 3. Log-log plot of the slopes dfi near the crossing point
versusL. The slope gives an estimate for the critical exponent
=0.6747).

ylv=1.969637). (10)

From the hyperscaling relatiadw= y+ 23 we get the expo-
nent ratioB/ v:
Blv=0.5152). (11
The equilibrium magnetizatiom at K. should obey the
relation

m~L A (12)

for sufficiently largerL. In Fig. 5 we show the results of a
finite-size scaling analysis for the magnetizatimnWe ob-
tain the value of the exponent rat®/v (see Table )t
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FIG. 5. Log-log plot of the magnetization versus the lattice size
L at the critical couplind,=0.6444. The slope gives an estimate
for the critical exponenB/v=0.5153).
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TABLE I. Results for the magnetization and the susceptibility. component spins using a high-precision MC method, the
single-histogram method, and the finite-size scaling theory.

L X m Our simulation results for the critical coupling and for the
12 82.3929) 0.2619555) critical exponents areK,=0.64441), »=0.67q7), y/v

14 111.8836) 0.2421943) =1.9696(37), angd/v=0.5152). Ourcalculated values for

16 145.1759) 0.2256755) the critical temperature and critical exponents are signifi-
18 182.9152) 0.2124135) cantly more accurate that those previously calculated. The
20 224.0885) 0.2007249) previous results of MC studies of the three-dimensiofl

22 272.2860) 0.1916323) model with two-component spifi$*are that the static ex-

24 322.3598) 0.1830832) ponenty=0.670(2) and the exponent ratigv=1.97§6),

32 571.04.0) 0.1583366) which are within error bars with our present estimates. This
42 972.04.9 0.1374940) comparison shows that both the system v@tk (S, ) and

the planar magnet system wigh=(S",S',S) belong to the
same universality class.
Blv=0.5152). (13)

This result agrees very closely to that of Edl) obtained ACKNOWLEDGMENT
from the susceptibility and the fourth-order cumulant.

In conclusion, we determined the critical temperature and This work was supported by the National Aeronautics and
the exponents of the planar magnet model with threeSpace Administration under Grant No. NAG3-1841.
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