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Current locking in magnetically coupled long Josephson junctions
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Critical currents in a system of two magnetically coupled long Josephson junctions are studied numerically,
analytically, and experimentally. We show that the switching from static to dynamic state of one junction can
trigger switching of the other, and this process leads to current locking. A distinction is made between different
critical currents of an individual junction depending on the static or dynamic state of the other junction. Good
agreement between the experiment and numerical simulation is found.@S0163-1829~99!07917-5#
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I. INTRODUCTION

Inductively coupled long Josephson junctions~LJJ’s! re-
ceived much attention during the past years. First, the sta
of these junctions are promising for applications as local
cillators in mm and sub-mm wave band superconduc
receivers.1 Second, stacked LJJ’s serve as a good model
tem which allows us to study and understand the proce
taking place in intrinsic high-Tc Josephson junctions.2 In
general, coupled LJJ’s form an interesting nonlinear phys
system where both nonlinearity and interaction between s
systems play an important role. As an example, we recal
interesting physical phenomenon such as Cherenkov ra
tion of plasma waves by fast moving fluxon which has be
confirmed recently in experiment and simulation.3,4

In the experiment with LJJ’s, an important step of t
sample characterization is the measurement of its static p
erties, i.e., a dependence of the critical currentI c on mag-
netic field H. The character ofI c(H) dependence can giv
information about the presence of occasional parasitic
quanta trapped in the LJJ or in the superconducting film in
vicinity. It also provides a technique to evaluate several
portant parameters of LJJ~e.g., the critical current densit
j c , the magnetic flux penetration fieldHc1, the effective
magnetic thicknessL, etc.! from experiment. Therefore un
derstanding of the static properties ofcoupledLJJ is impor-
tant.

In experiments with stacked LJJ’s several interesting p
nomena such as changing of modulation period ofI c(H)
pattern,5 visibility of fluxon modes6 on I c(H) dependence
and new effect called ‘‘current locking’’~CL!7–9 were found.
In spite of numerous experimental observations of CL,
are not aware of any commonly accepted opinion about
origin of this phenomenon. First it was explained as a re
of interaction between the junctions~which sounds reason
able! but it was not shown neither analytically nor by sim
lation how it appears from the inductive coupling model10

The efforts to derive the CL from the static equations did
lead to any success. Nevirkovets and co-workers8,11 pro-
posed the idea that CL cannot be explained in the framew
of the inductive coupling model10 and it is associated with
some other coupling mechanism, e.g., supercurrent~Cooper
pair! coupling.12

In the present work,3 we show by means of numerica
PRB 590163-1829/99/59~17!/11532~7!/$15.00
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simulation that experimentally found CL can be obtained a
well explained in the framework of the inductive couplin
model.10 At the same time, CL cannot be derived fro
purely static equations. Our numerical investigation of tw
coupled LJJ’s also shows that the critical currentI c(H) of
one LJJ strongly depends on thedynamicstate of the other
LJJ. This effect leads to different critical current branches
I c(H) dependence of the individual LJJ in a stack, as o
served in experiment.

The next section describes the experimental technique
contains a typical dependence measured experimen
where different characteristic regions can be seen. In Sec
we use analytical approach to obtain as much information
possible about the static properties of the system and
particular, about the characteristic values of magnetic fie
We were not able to explain all system properties using a
lytical approach based on static equations and, therefore
Sec. IV we present the results of numerical simulation
I c(H) dependences for different parameters of the sys
based on the time dependent equations. As in the experim
several characteristic regions are found and the behavio
the system in each of them is analyzed and explained in
framework of inductive coupling model. Section V con
cludes the work.

II. EXPERIMENTAL TECHNIQUE

Experimentally, we investigated stacked (Nb-A
AlOx)2-Nb LJJ’s made by standard technology. Deta
about sample fabrication can be found elsewhere.13

Depending on the geometry of the sample under inve
gation, two different measurement configurations are usu
distinguished. If the sample has an electrical contact to
middle superconducting electrode@see Fig. 1~a!#, the indi-
vidual dependences of critical currents of LJJ’s on exter
magnetic fieldH can be measured. While the bias current
passing through the whole structure, the voltage is meas
independently on each LJJ. The critical currents, measure
this way, will be denoted asI s

A and I s
B , while the critical

currents of the same but uncoupled LJJ’s will be denoted
I c

A and I c
B .

If the geometry of the sample does not provide a cont
to the middle superconducting electrode, the dependenc
critical currentsI s

A,B on the external magnetic fieldH is mea-
11 532 ©1999 The American Physical Society
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sured as shown in Fig. 1~b!. The current passes through th
whole structure and the voltage is measured on two junct
connected in series. In this case, theI -V characteristic~IVC!
looks like one shown in Fig. 2. To obtain the value of t
critical currents of individual LJJ’s, one measures the criti
current marked asI c(H) in Fig. 2 and maximum current o
the step atV'Vg marked asI g(H). This step atVg accounts
for the state in which one junction is in the superconduct
~static! state and another one is switched to the gap volt
(Vg) state. The voltageVg corresponds to the sum of th
superconducting energy gaps of two electrodesVg5(DA,B

1Dm)/e, whereDA,B,m is superconducting energy gaps
top, bottom, and middle electrodes, respectively, ande is the
electron charge. Here we assume thatDA5DB which well
corresponds to the experimental situation with thick top a
bottom Nb electrodes.I c(H) andI g(H) account for the criti-
cal currents of individual junctions, but in general there is
‘‘one to one’’ correspondence betweenI c , I g and I s

A , I s
B .

Only in the case of coupled LJJ’s withDAÞDB @e.g., in
(Nb-Al-AlO x)2-Pb LJJ’s#, Vg

AÞVg
B and therefore one ma

FIG. 1. Two configurations to measure the dependence of c
cal currents of two coupled LJJ’sI s

A,B on magnetic fieldH: ~a! if the
contact to the middle electrode is provided, the voltage is meas
on each LJJ individually;~b! otherwise, one has to measureI c(H)
andI g(H) ~see Fig. 2!. TheD ’s on the right side denote the energ
gaps in different electrodes as discussed in the text.

FIG. 2. I -V characteristics of two coupled LJJ’s.I c(H) and
I g(H) are shown by arrows.
s
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easily find which LJJ switches atI g by measuringVg and
comparing it withVg

A andVg
B .

The typical experimentally measured dependence ofI s
A,B

on magnetic fieldH is shown in Fig. 3. The region of CL is
clearly visible in the range20.8,H,0.6 Oe, i.e., increas-
ing the current at given value of fieldH both LJJ’s switch to
nonzero voltage state simultaneously. In the CL region
switching of one LJJ induces the switching of the other L
At larger fields junctions switch independently and it is po
sible to distinguish two characteristic critical fields denot
as Hc1

M and Hc1
R in Fig. 3. Near the field value ofH

'2.4 Oe, theI s
B(H) curve switches to some other branc

with lower critical field. Below we explain these features
the I s

A,B(H) dependence in the framework of the inducti
coupling model.

III. SIMPLE ANALYTICAL APPROACH

The time dependent dynamics of the Josephson ph
fA,B in two stacked LJJ’s is described by a system of t
coupled perturbed sine-Gordon equations:

fxx
A

12S2
2f tt

A2sinfA5af t
A2g1

SAD8

12S2
fxx

B , ~1!

D8fxx
B

12S2
2f tt

B2
sinfB

J
5af t

B2g1
SAD8

12S2
fxx

A , ~2!

where S is the dimensionless coupling constant14,15 (21
,S,0), D8 is the ratio of effective magnetic thicknesses
LJJA and LJJB, J is the ratio of the critical current densitie
j c
A/ j c

B . The damping coefficienta, normalized bias curren
g5 j / j c

A and specific capacitance are supposed to be the s
in both LJJ. The coordinatex is normalized to the Josephso
penetration depthlJ

A of uncoupled LJJA and the timet is
normalized to the inverse plasma frequency 1/vp

A . The defi-
nition of dimensionless units can be found in Ref. 16.

The system~1! and ~2! should be solved together wit
boundary conditions

fx
Aux50,l5h, fx

Bux50,l5Lh, ~3!

where L5LA/LB is the ratio of effective magnetic thick
nesses of the junctions defined in Ref. 16, andh is normal-

i-

ed

FIG. 3. Experimentally measured dependencesI s
A,B(H). CL re-

gion is clearly visible. AtH'0 there are few points which do no
belong to CL state, in agreement with Fig. 5.
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11 534 PRB 59E. GOLDOBIN AND A. V. USTINOV
ized magnetic field, i.e.,h52H/Hc1
A . The first critical field

Hc1
A 5F0 /(pLAlJ

A) is a field at which fluxon enters th
semi-infinite~uncoupled! LJJA at g50. It is equal to the field
Hcenter in the center of the static fluxon. The boundary co
ditions ~3! correspond to a stack of overlap geometry plac
in the magnetic fieldH.

For the static case, the system of coupled differential E
~1! and~2! with time independent phasesfA,B can be written
in the following simple form:

fxx
A

12S2
2sinfA52g1

SAD8

12S2
fxx

B , ~4!

D8fxx
B

12S2
2

sinfB

J
52g1

SAD8

12S2
fxx

A . ~5!

A. Symmetric case

In the case of symmetric stack with identical LJJ’s (D8
5L5J51) the magnetic fieldH penetrates completel
symmetrically into both LJJ’s as shown in Fig. 4~a!. We
assume that the magnetic field penetrates into each LJJ i
form of single fluxon which is a solution of Eqs.~4! and~5!.
The center of the fluxon is situated outside the junction in
regionx,0 in such a way that the boundary conditions~3!
are satisfied. In Fig. 4 the profilesfx(x) of such fluxons are
shown. In the regionx,0 the profiles are shown by dashe
line because it is imaginary part of fluxons and Joseph
phasef is not defined in this region. In the case of symm

FIG. 4. The penetration of fluxons into coupled LJJ’s is sho
schematically.~a! equal parameters~symmetric stack!; ~b! different
parameters~asymmetric stack!.
-
d

s.

the

e

n
-

ric stack, the phasesfA(x)5fB(x) and the system of dif-
ferential Eqs.~4! and ~5! splits into two equivalent un-
coupled equations:

g5sinfA,B2
fxx

A,B

11S
. ~6!

This equation is the time independent sine-Gordon equa
with characteristic lengthlJ

151/A11S. Since S,0, we
note thatlJ

1.lJ51 ~in normalized units!. The renormaliza-
tion of the Josephson penetration depth results in the cha
of the first critical field~fluxon penetration field! from Hc1

A

5F0 /(pLAlJ
A) to

Hc1
1 5

F0

pLAlJ
1

5Hc1
A A11S, ~7!

where the superscript ‘‘1’’ denotes that this quantity is re
lated to the in-phase@fA(x)5fB(x)# penetration of fluxons
into both LJJ’s. In the in-phase case the characteristic siz
the fluxonlJ increases tolJ

1 . Due to the fact that the flux
carried by each fluxon is fixed, the field in the center
fluxon decreases fromHc1

A to Hc1
1 . Thus the dependenc

I s(H)5I s
A(H)5I s

B(H) on external magnetic field in two
symmetric LJJ’s looks in the same way as that in a sin
uncoupled LJJ but scaled along theH axis by the factor
A11S.

The above consideration is valid not in the full range
magnetic fields, but only iffA(x)5fB(x). This condition is
satisfied only foruHu<Hc1

1 , i.e., when both LJJ’s are in th
Meissner state. At higher fields, the fluxons penetrate i
both LJJ’s and form chains that are shifted relative to e
other by half of the period. The higher is the density
fluxons, the lower isfxx . As a result, the coupling term in
the equation becomes small and the period ofI c(H) becomes
nearly equal to that in a single uncoupled LJJ. This probl
is considered in detail in Ref. 5.

B. Asymmetric case

In two asymmetric coupled LJJ’s the penetration of flu
ons takes place with some shift as shown in Fig. 4~b!, there-
fore fA(x)ÞfB(x). The system of Eqs.~4! and ~5! cannot
be reduced then to the single Eq.~6!. The boundary condi-
tions ~3! become different as well. There are two main re
sons for the asymmetry: the difference in the electrode th
nesses which givesD8, LÞ1 and affects the boundar
conditions~3! as well aslJ ; and the difference of the critica
currentsJÞ1, which affectslJ and the amplitudeI s

A,B(H) at
H50.

In an asymmetric stack, instead ofHc1
1 , three different

critical fields, denoted asHc1
M , Hc1

FF, andHc1
R , can be distin-

guished (Hc1
M ,Hc1

FF,Hc1
R ). Hc1

M corresponds to the penetra
tion of fluxons into one LJJ, while the other LJJ is in th
Meissner state.Hc1

FF corresponds to the penetration of fluxo
into one LJJ while another LJJ already contains the chain
fluxons moving in the flux-flow state.Hc1

R corresponds to the
penetration of fluxons into one LJJ while another LJJ is
the resistive state (R state!. Below, it will be shown that if
one of the LJJ’s, e.g., LJJA, is in the R state, the critical
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PRB 59 11 535CURRENT LOCKING IN MAGNETICALLY COUPLED . . .
current of another LJJB I s
B5I c

B , i.e.,Hc1
R 5Hc1

B . The calcula-
tion of Hc1

FF for the case when one of the LJJ’s contains
chain of fluxons is rather difficult task and it can be acco
plished only numerically.

In the previous work,15 for the limit of uSu!1 and (1
2L)!1, it was derived that

Hc1
M 'Hc1

A FA11S1
3

2
SS 12L

L D G5Hc1
1 1DHc1 . ~8!

From Eq.~8! it it clear that the correctionDHc1 caused by
the asymmetry is of the second order and therefore is v
small. This correction should be neglected in the framew
of the first-order perturbation theory. ThusHc1

1 is a very
good approximation forHc1

M for the majority of the experi-
mentally relevant cases.

IV. NUMERICAL RESULTS

The critical field in an asymmetric coupled LJJ’s has th
characteristic values discussed above. Therefore it is inte
ing to studyI s

A,B(H) dependences for the fields in the ran
from 0 to aboutHc1

R . Since the solution of asymmetric equ
tions cannot be performed analytically, the most straightf
ward way to studyI s

A,B(H) dependences is a direct numeric
simulation of Eqs.~1! and~2!. We take time dependent equ
tions since we would like also to study the dependenceI s(H)
in one LJJ while the other one is in the dynamic state~e.g.,R
state!. Another reason for this choice is our suspect that
is related to some time dependent interaction between
LJJ’s, since the efforts to derive CL from static equations
not give any results.

The numerical procedure works as follows. For a giv
set of LJJ’s parameters we simulate the IVC of the system
givenh, i.e., V̄A(g) or V̄B(g) increasingg from zero up. To
calculate the voltagesV̄A(g) andV̄B(g) in each point of IVC
~for each value ofg), we simulate the dynamics of th
phasesfA,B(x,t) by solving Eqs.~1! and ~2! together with
the boundary conditions~3! numerically using an explicit
method @expressingfA,B(t1Dt) as a function offA,B(t)
and fA,B(t2Dt)# treatingfxx with a five-point,f tt with a
four-point, andf t with a three-point symmetric finite differ
ence scheme. Numerical stability was checked by doub
and dividing in half the spatial and temporal discretizati
stepsDx and Dt and checking the influence on the fluxo
profiles and on the IVC. The final values used for simulat
were Dx50.025, Dt50.006 25. After simulation of the
phase dynamics forT520 time units we calculate the ave
age dc voltagesV̄A,B during this time interval as

V̄A,B5
1

TE0

T

f t
A,B~ t !dt5

fA,B~T!2fA,B~0!

T
. ~9!

For faster convergence, we use the fact thatV̄A,B do not
depend onx and therefore we can average the phasesfA,B in
Eq. ~9! additionally along the length of the stack.

When the values ofV̄A,B are found from Eq.~9!, the dy-
namics of the phasesfA,B(x,t) is simulated further during
1.2T time units, the dc voltagesV̄A,B are calculated for this
new time interval and are compared with the previously c
-
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culated values. We repeat such iterations further increa
the time interval by a factor 1.2 until the difference in d

voltages uV̄(1.2n11T)2V̄(1.2nT)u obtained in two subse
quent iterations will become less than a given accuracydV
51023. The particular value of the factor 1.2 was found
be quite optimal and provides fast convergence as wel
more effective averaging of low harmonics on each sub
quent step. Very small value of this factor, e.g., 1.01~we
remind that only the values greater than 1 have meani!,
can result in very slow convergence in the case whenf(t)
contains harmonics with the period comparable to or lar
thanT. Big values of the factor, e.g., 2 or higher, will con
sume a lot of CPU time already during the second or th
iteration and are not good for practical use.

After the voltage averaging for currentg is complete, the
currentg is increased by a small amountdg50.005 to cal-
culate the voltages in the next point of the IVC. We use
distribution of phases~and its derivative! achieved in the
previous point of the IVC as an initial distribution for th
current point. At some currentg, the LJJ for which we simu-
late I c,s(H) switches to the nonzero voltage state. The cri
rion for nonzero voltage isV̄.0.05. As it happens, we con
siderg in the previous point of the IVC as a critical curre
for a given fieldh. Then the fieldh is increased by a smal
amount dh50.01 and the IVC is calculated for this ne
value ofh until the critical currentgs,c

A,B(h) is found.
The difference between LJJ’s can be accounted by

parameters: the ratio of critical currentsJ and the ratio of
effective magnetic thicknessesL which are functions of the
electrode thicknesses. The parameterD8 is also defined
through the electrode thicknesses and therefore canno
considered as an additional free parameter. The simulatio
the dependencesgs

A,B(h)5I s
A,B(h)/I c

A(0) ~normalized criti-
cal current! was performed foruSu50,0.1,0.2,0.3,0.5,0.8;L
51,1.1,1.2,1.3,1.5,1.7,2.0,2.5,3.0~in total 5432 curves!, J
51.05 anda50.1. The small difference inj c was chosen in
order to distinguish the CL region from the region of ac
dental coincidence of the curvesgs

A(h) and gs
B(h). An ex-

ample of typical dependencesgs
A,B(h) is shown in Fig. 5

together with the dependencesgc
A,B(h)5I c

A,B(h)/I c
A(0) ob-

FIG. 5. The dependencesgs
A,B(h) for two coupled LJJ’s atS

520.3 andL52 obtained numerically. The curvesgc
A,B(h) ob-

tained for the same uncoupled LJJ’s are shown by dashed line
comparison.
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FIG. 6. ~a! and~b! show the transient processf t
A,B(x,t) of switching of both LJJ’s~CL! from Meissner state toR state and correspond

to Fig. 5 ath50.8 after increasing of the current fromg50.635 tog50.640.~c! and~d! show the transient process of switching of only LJA

from Meissner state toR state~the absence of CL! and corresponds to Fig. 5 ath50.85 after increasing of the current fromg50.605 to
g50.610.
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tained forS50, i.e., in the same but uncoupled LJJA,B. The
latter two curves are presented for comparison.

One may distinguish several characteristic regions
gs

A,B(h) dependences. The first region is very small and
pears as a little cusp ath'0. In this region the dependence
gs

A,B(h) follow the behavior of uncoupled (S50) LJJ’s
gc

A,B(h) and LJJ’s switch from the Meissner state indepe
dently. We note that this feature reproduces very well
experimental behavior shown in Fig. 3, where a tiny reg
of independent switching atH'0 is also visible.

At finite fields there appears a region ofcurrent locking
which was observed experimentally in earlier works.8,9 In
this region, shown by the dark shadow in Fig. 5, LJJ’s swi
from the Meissner state simultaneously. In CL regime,
LJJ which switches first, triggers the switching of the oth
LJJ. The fact that ath50 LJJ’s switch independently and a
higher fields not, is consistent with the inducting coupli
model. At h'0fxx

A,B(0)'0 and, according to Eqs.~1! and
~2!, LJJ’s do not interact. At higher fieldsfxx

A,B(0) becomes
noticeable, LJJ’s interact and may switch simultaneous.

We investigated the profiles of the static phase gradie
fx

A,B(x) ~linearly related to the magnetic field profiles! at h
50.8, g50.62 ~CL! and h50.85, g50.59 ~no CL! and
found no drastic difference. In contrast, the difference
found in the transient switching processes which take pl
when g exceeds a critical current of one of the LJJ’s~LJJ
with lower gs at givenh). The transient process for the ca
of CL is shown in Figs. 6~a! and 6~b! and for the case of no
CL in Figs. 6~c! and 6~d!. For both values ofh mentioned
above the transient process starts from the penetratio
n
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-
e
n

h
e
r

ts

s
e

of

fluxons into LJJA. After penetration, the fluxons accelera
up to high velocity (a!1) and induce images of large am
plitude in LJJB, sometimes even creating fluxon-antifluxo
pairs in LJJB. The finite length of LJJ results in the reflectio
of fluxons~and antifluxons, if any! from the opposite edge o
the stack. This transient process looks very chaotic and
result strongly depends on the parameters of the system
spite of numerous simulations of this transient process fo
wide range of the junction parameters, we cannot formu
any criterion which would allow to predict the final state
the transition. In principle, there are three possible fi
states of each LJJ: Meissner state (V50), flux-flow state
(VÞ0), and R state (VÞ0). As a result of the transien
process at least one of the LJJ should be at nonzero vol
state. In the case when both LJJ’s end up in nonzero volt
state, the CL takes place. In many cases the depende
gs

A,B(h) have one large region of CL at low field and,
addition, few smaller domains of CL may appear at high
fields.

In the CL region one may observe a ‘‘break’’ of the curv
at some fieldh* '0.3. The value ofh* depends on the pa
rameters of the system. For fieldsh,h* , the CL process is
driven by LJJB ~fluxon chains enters into LJJB first! while for
h.h* LJJA drives the CL.

At larger fieldsH;Hc1
M , one can see in Fig. 5 that there

again a domain where the junctions switch independen
Note that in this case the first critical field, related to t
curvegs

A(h), is equal toHc1
M , which corresponds to the situ

ation of simultaneous fluxon penetration into both LJJ’s. It
interesting that in this domaings

B(h) exactly coincides with
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gc
B(h) ~of single uncoupled LJJB), i.e., after LJJA switched to

the nonzero voltage state, LJJB does not ‘‘see’’ LJJA. Such a
behavior can be understood, if one supposes that LJJA is in R
state. In this case the voltage on the junctions is equal tV
5IR and the Josephson phase rotates fast and uniformly,
f(t)5vt, wherev5g/a. In the presence of magnetic fiel
there is an additional phase gradient so thatf(x,t)5hx
1vt. It is easy to check that such a solution satisfies
sine-Gordon equation without sinf term, i.e., the equation
for a superconducting transmission line without Joseph
properties. The influence of the term sinf can be easily
found using perturbation approach. Looking for a solution
the form

fA~x,t !5~hx1vt !1A sin~hx1vt ! ~10!

with A!1 and substituting it into the sine-Gordon Eq.~1!
without coupling term~we now want to build a solution fo
single uncoupled LJJ only!, we obtain the following expres
sion for the phase in LJJA:

fA~x,t !5~hx1vt !2
1

v22h2
sin~hx1vt !. ~11!

This means that the term describing the influence of LJJA on
LJJB in Eq. ~2! is

fxx
A }S

h2

v22h2
. ~12!

Since in conventional tunnel junctionsv5g/a*10 ~in ex-
periment*100), andh&2, we see thatv2@h2 and the term
describing the interaction between the junctions vanish
The real numbers arefxx

A &1022 in simulation andfxx
A

&1024 in experiment.
To check the above idea of decoupling inR state due to

low a ~and therefore highv) we simulatedgc(h) depen-
dence for the system with the same parameters but wita
51, in order to have the coupling term~12! of the order of
unity. In spite of the fact that such an assumption is unph
cal, it will help us to understand the underlying physic
mechanisms in the system under question.gs

A,B(h) and
gc

A,B(h) for this case are shown in Fig. 7. From these curv
two conclusions can be made. First, there is no CL her

FIG. 7. gs
A,B(h) andgc

A,B(h) for the same parameters as Fig.
but with a51.
e.,

e

n

s.

i-
l

s,
at

all. This is consistent with the consideration given abo
since in the system with such a high viscosity asa51 the
transient process does not develop. This behavior pro
that: ~a! current locking is a dynamic phenomenon;~b! it
cannot be obtained from the static Eqs.~4! and~5! where the
dynamics is not taken into account~i.e., a*1). Second,
gs

B(H)Þgc
B(H). This happens since the coupling term~12!

does not vanish and we conclude that the above propo
explanation of the range wheregs

B(h)5gc
B(h) is correct.

Another type of behavior exists at larger fieldsH;Hc1
B

~light gray area in Fig. 5!. In this case the LJJ’s switch inde
pendently butgs

B(h)Þgc
B(h). This happens because LJJA is

not in theR state, but in flux-flow state, i.e., contains a cha
of fluxons moving in flux-flow mode with the velocity
smaller than the Swihart velocity. The IVC ath52.0 is

FIG. 8. I -V characteristic ath52.0 with the system parameter
corresponding to that in Fig. 5.

FIG. 9. The dependence of the smallest critical fieldHc1
M on uSu

andL in the stack of the lengthL520.



n
hs
-

of
n

ch

lly
ly
o

de
m
a

te
ex
.

t is
the
into
ess
-
f
in-

sti-
tion
-

s-

ns
H.
lly

11 538 PRB 59E. GOLDOBIN AND A. V. USTINOV
shown in Fig. 8. One can see that the LJJA switches to the
flux-flow state from the Meissner state. The moving fluxo
apparently create a time dependent perturbation of Josep
phase in LJJB, which results in its switching to nonzero volt
age state at lower current than in the case when LJJA is in R
state.

As we mention in Sec. III, to calculate the values
Hc1

M (L,S) we have to perform a direct numerical simulatio
After completing the simulations for different values ofS
and L, we constructed a table ofHc1

M (S,L) which is inter-
esting from a practical point of view. The graphs of su
dependences are shown in Fig. 9. As one can see,Hc1

M is
nearly independent onL and thusHc1

M 'Hc1
1 is a good ap-

proximation for experimentally relevant cases.

V. CONCLUSION

We studied experimentally, numerically, and analytica
the dependences of critical currents of two inductive
coupled LJJ’s on the applied magnetic field. The behavior
the system in all points of these dependences is well un
stood. The dependences consist of several regions. The
interesting is the region of the current locking which is
phenomenon characteristic for the nonlinear coupled sys
under question. We found that current locking can be
plained in the framework of the inductive coupling model10

Despite that it appears on the staticI c(H) characteristic, cur-
w

v
a

s

s

C

t

s
on

.

f
r-
ost

m
-

rent locking cannot be derived from static equations. I
essentially dynamical phenomenon which occur during
complex transient process of magnetic flux penetration
the junctions. Since the result of the transient proc
strongly depends on many parameters~due to nonlinear na
ture of the system!, it is very difficult to predict the range o
the current locking. CL is an interesting example of the
fluence of fluxon dynamics on the static properties of
coupled LJJ’s.

We also found that when one of the LJJ, e.g., LJJA is
switched into McCumber state, another LJJ follows itsI c(H)
dependence as it was uncoupled and has a critical fieldHc1

R

5Hc1
B . In addition, we show that in a system under inve

gation there are three characteristic magnetic flux penetra
fieldsHc1

M , Hc1
FF, andHc1

R and we discuss their origin. Com
paring numerically calculated values ofHc1

M with analytical
expression, we propose a simple approximationHc1

M 'Hc1
1

which is valid for majority of experimentally relevant sy
tems.
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