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Current locking in magnetically coupled long Josephson junctions
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Critical currents in a system of two magnetically coupled long Josephson junctions are studied numerically,
analytically, and experimentally. We show that the switching from static to dynamic state of one junction can
trigger switching of the other, and this process leads to current locking. A distinction is made between different
critical currents of an individual junction depending on the static or dynamic state of the other junction. Good
agreement between the experiment and numerical simulation is fp80#63-182@9)07917-5

[. INTRODUCTION simulation that experimentally found CL can be obtained and
well explained in the framework of the inductive coupling

Inductively coupled long Josephson juncticitsJ's) re-  model’® At the same time, CL cannot be derived from
ceived much attention during the past years. First, the stackgurely static equations. Our numerical investigation of two
of these junctions are promising for applications as local oscoupled LJJ's also shows that the critical currégtd) of
cillators in mm and sub-mm wave band superconductiveone LJJ strongly depends on thgnamicstate of the other
receivers: Second, stacked LJJ's serve as a good model syd-JJ. This effect leads to different critical current branches on
tem which allows us to study and understand the processés(H) dependence of the individual LJJ in a stack, as ob-
taking place in intrinsic high, Josephson junctiorfsin  served in experiment.
general, coupled LJJ’s form an interesting nonlinear physical The next section describes the experimental technique and
system where both nonlinearity and interaction between subeontains a typical dependence measured experimentally
systems play an important role. As an example, we recall afhere different characteristic regions can be seen. In Sec. Il
interesting physical phenomenon such as Cherenkov radiave use analytical approach to obtain as much information as
tion of plasma waves by fast moving fluxon which has beerpossible about the static properties of the system and, in
confirmed recently in experiment and simulatith. particular, about the characteristic values of magnetic field.

In the experiment with LJJ’s, an important step of theWe were not able to explain all system properties using ana-
sample characterization is the measurement of its static profitical approach based on static equations and, therefore, in
erties, i.e., a dependence of the critical currenbn mag-  Sec. IV we present the results of numerical simulation of
netic fieldH. The character of .(H) dependence can give |c(H) dependences for different parameters of the system
information about the presence of occasional parasitic fluased on the time dependent equations. As in the experiment,
quanta trapped in the LJJ or in the superconducting film in it$everal characteristic regions are found and the behavior of
vicinity. It also provides a technique to evaluate several imthe system in each of them is analyzed and explained in the
portant parameters of LJ&.g., the critical current density framework of inductive coupling model. Section V con-
jc, the magnetic flux penetration field,;, the effective cludes the work.
magnetic thicknesd,, etc) from experiment. Therefore un-
derstanding of the static properties aupledLJJ is impor- Il. EXPERIMENTAL TECHNIQUE
tant.

In experiments with stacked LJJ's several interesting phe- EXperimentally, we investigated stacked (Nb-Al-
nomena such as changing of modulation periodi gH)  AlOx)2-Nb LJJ's made by standard technology. Details
pattern? visibility of fluxon mode§ on I (H) dependence, about sample fabrication can be found elsewligre.
and new effect called “current locking(CL)"~°were found. Depending on the geometry of the sample under investi-
In spite of numerous experimental observations of CL, wegation, two different measurement configurations are usually
are not aware of any commonly accepted opinion about thdistinguished. If the sample has an electrical contact to the
origin of this phenomenon. First it was explained as a resulfniddle superconducting electrodsee Fig. )], the indi-
of interaction between the junctiofhich sounds reason- Vidual dependences of critical currents of LJJ's on external
able but it was not shown neither analytically nor by simu- magnetic fieldH can be measured. While the bias current is
lation how it appears from the inductive coupling motfel. Passing through the whole structure, the voltage is measured
The efforts to derive the CL from the static equations did notindependently on each LJJ. The critical currents, measured in
lead to any success. Nevirkovets and co-wofkBrpro-  this way, will be denoted at and g, while the critical
posed the idea that CL cannot be explained in the frameworkurrents of the same but uncoupled LJJ’s will be denoted as
of the inductive coupling mod#l and it is associated with 14 and!Z.
some other coupling mechanism, e.g., supercurt@€obper If the geometry of the sample does not provide a contact
pain coupling®? to the middle superconducting electrode, the dependence of

In the present worR,we show by means of numerical critical currents 2 on the external magnetic field is mea-
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FIG. 1. Two configurations to measure the dependence of criti- FIG. 3. Experimentally measured dependenée¥(H). CL re-
cal currents of two coupled LJJI§"® on magnetic fielH: (a) if the gion is clearly visible. AtH~0 there are few points which do not
contact to the middle electrode is provided, the voltage is measuredelong to CL state, in agreement with Fig. 5.
on each LJJ individually(b) otherwise, one has to measugg¢H) e . . .
andl4(H) (see Fig. 2 TheA's on the right side denote the energy easily find which LA‘]‘] swnghes af, by measuringv, and
gaps in different electrodes as discussed in the text. comparing it withVy andVy .

The typical experimentally measured dependenct &f
sured as shown in Fig.(h). The current passes through the ON Magnetic fielH is shown in Fig. 3. The region of CL is
whole structure and the voltage is measured on two junctiongleauy visible in the rang(TO.8<f:¢-.|TdOE)6 r?f €., |n.crﬁas-
connected in series. In this case, the characteristi¢lvc) "9 the current at given value of field both LJJ's switch to

looks like one shown in Fig. 2. To obtain the value of the NONZEro voltage state simultaneously. In the CL region the

critical currents of individual LJJ's, one measures the criticaIS’W'tChlng of one LJJ induces the swiiching of the other LJJ.

t ked H) in Fig. 2 and . ¢ of At larger fields junctions switch independently and it is pos-
current marked ag(H) in Fig. 2 an I maximum current ot g0 14 distinguish two characteristic critical fields denoted
the step a¥~V, marked ad 4(H). This step a¥/, accounts

Vg Il A _as HY and HY, in Fig. 3. Near the field value oH
for the state in which one junction is in the :superconductlng%2 4 Oe theICB(H) curve switches to some other branch
. , S

(statig state and another one is switched to the gap VOItagﬁ/ith lower critical field. Below we explain these features of
(Vo) state. The voltagd/, corresponds to the sum of the I2B(H) dependence in the framework of the inductive
superconducting energy gaps of two eIectrold’g@(AA*B coup?ing model

+A™/e, where A#B'™ is superconducting energy gaps of '
top, bottom, and middle electrodes, respectively, aigithe l1l. SIMPLE ANALYTICAL APPROACH

electron charge. Here we assume that=AB which well . _

corresponds to the experimental situation with thick top and ,The time dependent dynamics of the Josephson phases
bottom Nb electrodes(H) andl 4(H) account for the criti- ¢™" in two stacked LJJ's is described by. a system of two
cal currents of individual junctions, but in general there is noc@UPled perturbed sine-Gordon equations:

magnetic field (Oe)

“one to one” correspondence betweep, |, and ISA, ISB. ¢A S\/ﬁ
Only in the case of coupled LJJ's with*#AB [e.g., in S n—singt=agf—y+ Sheo (D
(Nb-AI-AIO,) ,-Pb L1J'd, V4+VE and therefore one may 1-S 1-S

20 L B B RN L N LA L BN B B D,¢Ex_ B_ Sin¢B_a¢B_ 4 S\/Fd)A (2)
15-' -' 1_82 tt J t Y 1—82 XX
10 ] where S is the dimensionless coupling const4rf (—1
| R~ <S<0), D' is the ratio of effective magnetic thicknesses of
~ 5 LD } L LI and LJ®, J is the ratio of the critical current densities
] ol e d j2/j8. The damping coefficient, normalized bias current
g ] I | y=j/j§ and specific capacitance are supposed to be the same
g -5 { J ' . in both LJJ. The coordinateis normalized to the Josephson
] | . A . .
0] B | ] penetration depti\; of uncoupled LJJ and the timet is
| I normalized to the inverse plasma frequencga’;]J The defi-
-15 1 : N nition of dimensionless units can be found in Ref. 16.
20 1 I S '.V", — 1 The system(.l_) and (2) should be solved together with
5 4 3 2 1 0 1 2 3 4 5 boundary conditions
Voltage (mV) Belx—oi=h.  delx—o;=Ah, ©)

FIG. 2. 1-V characteristics of two coupled LJJ'(H) and where A=A*/AB is the ratio of effective magnetic thick-
I 4(H) are shown by arrows. nesses of the junctions defined in Ref. 16, &nd normal-
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20] T T LI ric stack, the phase#”(x)=¢5(x) and the system of dif-

o PRGN (@ ] ferential Egs.(4) and (5) splits into two equivalent un-
2 157 - | N ] coupled equations:
CRET B | LYy ]
054~ ' ] AB
p 4 . XX

0.0 : : — . y=sin ¢A'B—1TS- (6)

2.0 P ]

_ 1.5+ P ‘ : h Lif . This equation is the time independent sine-Gordon equation
S04 - | . with characteristic lengthy =1/{1+S. Since S<0, we
054~ | ] note that)\j>)\3= 1 (in normalized units The renormaliza-

0.0 T : — tion of the Josephson penetration depth results in the change

S0z 0 ! 2 3 of the first critical field(fluxon penetration fieldfrom HZ;
J T2 T T L =@ AA A t
201 70N ® o/ (mATAG) to
154 -~ N ]
—~ 1 | . ()
& 10 | S Lt . Hc+1:—AO —=HAVITS, 7

0.5 I \ ] TARN;

0.0 - : : el _ . L

20.] BN ' ' ] where the superscript *” denotes that this quantity is re-

L5 ] P b lated to the in-phaspp”(x) = ¢B(x)] penetration of fluxons
2101 7 ' L’ ] into both LJJ’s. In the in-phase case the characteristic size of
sl g : 1 the fluxon\, increases to\ ] . Due to the fact that the flux

0'0 1 | 1 carried by each fluxon is fixed, the field in the center of

T3 a5 1 0 . 3 fluxon decreases froniZ; to HJ;. Thus the dependence
. I{(H)=12(H)=18(H) on external magnetic field in two
coordinate x S s

symmetric LJJ’s looks in the same way as that in a single

FIG. 4. The penetration of fluxons into coupled LJJ’s is shownuncoupled LJJ but scaled along the axis by the factor

schematically(a) equal parametersymmetric stack (b) different

parametergasymmetric stack

v1+S.

The above consideration is valid not in the full range of
magnetic fields, but only i#"(x) = ¢(x). This condition is

ized magnetic field, i.eh=2H/HZ, . The first critical field  satisfied only fofH|<H;, i.e., when both LJJ’s are in the

HA=do/(wAM\Y) is a field at which fluxon enters the Meissner state. At higher fields, the fluxons penetrate into

semi-infinite(uncoupled LI at y=0. It is equal to the field both LJJ’'s and form chains that are shifted relative to each

Hcenterin the center of the static fluxon. The boundary con-other by half of the period. The higher is the density of

ditions (3) correspond to a stack of overlap geometry placedluxons, the lower isp,,. As a result, the coupling term in

in the magnetic fielcdH. the equation becomes small and the periot.Gfl) becomes
For the static case, the system of coupled differential Eqsnearly equal to that in a single uncoupled LJJ. This problem

(1) and(2) with time independent phaseg B can be written is considered in detail in Ref. 5.

in the following simple form:

B. Asymmetric case

b A s\D' . In two asymmetric coupled LJJ’s the penetration of flux-
1-<? —sing”=—y+ 1-<? b ) ons takes place with some shift as shown in Figp) 4there-
fore ¢™(x) # ¢B(x). The system of Eqg4) and (5) cannot
be reduced then to the single E&). The boundary condi-
D'qSEX sin? S\/F A tions (3) become different as well. There are two main rea-
1-s2  J =—v+t 1_<? Pxx - (5 sons for the asymmetry: the difference in the electrode thick-

nesses which give®’, A#1 and affects the boundary
conditions(3) as well as\ ;; and the difference of the critical
currents)# 1, which affects\ ; and the amplitudéf 8(H) at
H=0.

A. Symmetric case

In the case of symmetric stack with identical LJJB'( , ) N ,
—A=J=1) the magnetic fieldH penetrates completely !N an asymmetric stach, 'nﬁ};ead c1 three different
symmetrically into both LJJ's as shown in Fig(at We  critical fields, denoted ald¢; , H¢;, andHc; , can be distin-
assume that the magnetic field penetrates into each LJJ in tigslished HYy <HET<H). Hej corresponds to the penetra-
form of single fluxon which is a solution of Eqg}) and(5).  tion of fluxons into one LJJ, while the other LJJ is in the
The center of the fluxon is situated outside the junction in théVieissner stateii ¢} corresponds to the penetration of fluxons
regionx<<0 in such a way that the boundary conditiq8s  into one LJJ while another LJJ already contains the chain of
are satisfied. In Fig. 4 the profiles,(x) of such fluxons are fluxons moving in the flux-flow statele-]ff1 corresponds to the
shown. In the regiox<<0 the profiles are shown by dashed penetration of fluxons into one LJJ while another LJJ is in
line because it is imaginary part of fluxons and Josephsothe resistive stateR statg. Below, it will be shown that if
phase¢ is not defined in this region. In the case of symmet-one of the LJJ's, e.g., LAJis in the R state, the critical



PRB 59 CURRENT LOCKING IN MAGNETICALLY COUPLED ... 11535

current of another LJIZ=12, i.e., H}, =HE, . The calcula- 104 T
tion of H'F for the case when one of the LJJ's contains a LT n
chain of fluxons is rather difficult task and it can be accom-
plished only numerically.

In the previous work? for the limit of |S|<1 and (1

—A)<1, it was derived that
1-A
A

3
J1+s+3s

From Eq.(8) it it clear that the correctiolH.; caused by |
the asymmetry is of the second order and therefore is very 0.0 S : ;
small. This correction should be neglected in the framework 00 05 1.0 15 20 25 3.0

of the first-order perturbation theory. This!, is a very magnetic field 4 (norm. units)

good approximation foH™ for the majority of the experi-

mentally relevant cases. FIG. 5. The dependenceg ®(h) for two coupled LJJ's aB
=-0.3 andA =2 obtained numerically. The curveg"5(h) ob-
tained for the same uncoupled LJJ's are shown by dashed lines for
comparison.

The critical field in an asymmetric coupled LJJ's has three

characteristic values discussed above. Therefore it is interest;|sted values. We repeat such iterations further increasing
ing to study! Q'B(:‘) dependences for the fields in the rangehe time interval by a factor 1.2 until the difference in dc
from 0 to abouH; . Since the solgtlon of asymmetric equa- voltages |V(1.2‘+1T)—V(1.2“T)| obtained in two subse-
tions cannot be pirgormed analytically, the most s:traughtfor-q uent iterations will become less than a given accurdy
ward way to study¢"~(H) dependences is a direct numerical _ ; 13 :

. ) . =10"". Th rticular val f the factor 1.2 was found t
simulation of Eqs(1) and(2). We take time dependent equa- 0 © pariicuar value ot e facto as found to

i : Id like also to study the d dd be quite optimal and provides fast convergence as well as
uons since we would like aiso to study the depen 30d) more effective averaging of low harmonics on each subse-
in one LJJ while the other one is in the dynamic statg.,R

qguent step. Very small value of this factor, e.g., 1(®&

statg. Another reason for this choice is our suspect that CLremind that only the values greater than 1 have meaning

is related to some time dependent interaction between th&m result in very slow convergence in the case wisét)

LJJ’s3 since the efforts to derive CL from static equations didcontains harmonics with the period comparable to or larger
not give any rgsults. . thanT. Big values of the factor, e.g., 2 or higher, will con-
The nu’merlcal procedure_works as follows. For a given ume a lot of CPU time already during the second or third
sgt of LJ_J S parameters we §|mulat§ the IVC of the system g{, otion and are not good for practical use.
givenh, i.e., VA(y) or V¥(y) increasingy from zero up. To After the voltage averaging for curremgtis complete, the
calculate the voltage¢”(y) andV®(y) in each point of IVC  currenty is increased by a small amouéity=0.005 to cal-
(for each value ofy), we simulate the dynamics of the culate the voltages in the next point of the IVC. We use a
phasesp™B(x,t) by solving Egs.(1) and (2) together with  distribution of phasegand its derivativi achieved in the
the boundary condition$3) numerically using an explicit previous point of the IVC as an initial distribution for the
method [expressings”B(t+ At) as a function of¢™B(t) current point. At some current, the LJJ for which we simu-
and ¢"B(t— At)] treating ¢, With a five-point, ¢, with a late 1. s(H) switches to the nonzero voltage state. The crite-
four-point, andg, with a three-point symmetric finite differ- - rion for nonzero voltage i¥>0.05. As it happens, we con-
ence scheme. Numerical stability was checked by doublingjder y in the previous point of the IVC as a critical current
and dividing in half the spatial and temporal discretizationfor 3 given fieldh. Then the fieldh is increased by a small
stepsAx and At and checking the influence on the fluxon gmount sSh=0.01 and the IVC is calculated for this new
profiles and on the IVC. The final values used for simulation, g e ofh until the critical currenty2(h) is found.

were Ax=0.025, At=0.00625. After simulation of the  The gifference between LJJ's can be accounted by two
phase dynamics fof =20 time units we calculate the aver- parameters: the ratio of critical currenisand the ratio of

fluxons
inLII* T
AL

R-state

AB
)y
S
oo
1

Hy~HE =Ha+AHq. (8

Critical current "

AL

IV. NUMERICAL RESULTS

age dc voltage¥® during this time interval as effective magnetic thicknessels which are functions of the
; AB AB electrode thicknesses. The paramel®t is also defined

VA,BZEI H2B(H)dt= ™ (1)~ ¢™7(0) 9) through the electrode thicknesses and therefore cannot be

TJo 't T ' considered as an additional free parameter. The simulation of

_ the dependencegs®(h)=15"8(h)/12(0) (normalized criti-
For faster convergence, we use the fact tW&t® do not g current was performed fofS|=0,0.1,0.2,0.3,0.5,0.8A
depend onx and therefore we can average the phag®8in  =11.1,1.2,1.3,1.5,1.7,2.0,2.5,3id total 54<2 curve$, J
Eqg. (9) additionally along the length of the stack. =1.05 anda=0.1. The small difference i, was chosen in

When the values o¥*B are found from Eq(9), the dy-  order to distinguish the CL region from the region of acci-

namics of the phases$”B(x,t) is simulated further during dental coincidence of the curve)é(h) and ySB(h). An ex-
1.2T time units, the dc voltageg™® are calculated for this ample of typical dependenceg ®(h) is shown in Fig. 5
new time interval and are compared with the previously caltogether with the dependences®(h)=12-8(h)/12(0) ob-
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FIG. 6. (a) and(b) show the transient proceaﬁ{\'B(x,t) of switching of both LJJ'CL) from Meissner state t® state and corresponds
to Fig. 5 ath= 0.8 after increasing of the current frops= 0.635 toy=0.640.(c) and(d) show the transient process of switching of only4.JJ
from Meissner state t® state(the absence of OQlLand corresponds to Fig. 5 ht=0.85 after increasing of the current frop=0.605 to
y=0.610.

tained forS=0, i.e., in the same but uncoupled &%) The  fluxons into LJ3. After penetration, the fluxons accelerate
latter two curves are presented for comparison. up to high velocity @¢<<1) and induce images of large am-
One may distinguish several characteristic regions omplitude in LJ¥, sometimes even creating fluxon-antifluxon
yQ'B(h) dependences. The first region is very small and appairs in LJ¥. The finite length of LJJ results in the reflection
pears as a little cusp &at=0. In this region the dependences of fluxons(and antifluxons, if anyfrom the opposite edge of
y&B(h) follow the behavior of uncoupledS=0) LJJ's the stack. This transient process looks very chaotic and its
yoB(h) and LJJ’s switch from the Meissner state indepen+esult strongly depends on the parameters of the system. In
dently. We note that this feature reproduces very well thespite of numerous simulations of this transient process for a
experimental behavior shown in Fig. 3, where a tiny regionwide range of the junction parameters, we cannot formulate
of independent switching ai~0 is also visible. any criterion which would allow to predict the final state of
At finite fields there appears a region aifirrent locking the transition. In principle, there are three possible final
which was observed experimentally in earlier wotksln  states of each LJJ: Meissner sta=0), flux-flow state
this region, shown by the dark shadow in Fig. 5, LJJ's switch(V#0), andR state ¥#0). As a result of the transient
from the Meissner state simultaneously. In CL regime, theprocess at least one of the LJJ should be at nonzero voltage
LJJ which switches first, triggers the switching of the otherstate. In the case when both LJJ’s end up in nonzero voltage
LJJ. The fact that dt=0 LJJ’s switch independently and at state, the CL takes place. In many cases the dependences
higher fields not, is consistent with the inducting coupling y2"(h) have one large region of CL at low field and, in
model. Ath%O(l)Q)’(B(O)%O and, according to Eg$l) and  addition, few smaller domains of CL may appear at higher
(2), LJJ's do not interact. At higher fields.;?(0) becomes fields.
noticeable, LJJ’s interact and may switch simultaneous. In the CL region one may observe a “break” of the curve
We investigated the profiles of the static phase gradientgt some fielch* ~0.3. The value oh* depends on the pa-
~B(x) (linearly related to the magnetic field profijest h rameters of the system. For fields<h*, the CL process is
=0.8, y=0.62 (CL) and h=0.85, y=0.59 (no CL) and driven by LJ§ (fluxon chains enters into L3Jirst) while for
found no drastic difference. In contrast, the difference ish>h* LJJ drives the CL.
found in the transient switching processes which take place At larger fieldsH~H};, one can see in Fig. 5 that there is
when y exceeds a critical current of one of the LJJIs)J  again a domain where the junctions switch independently.
with lower y at givenh). The transient process for the case Note that in this case the first critical field, related to the
of CL is shown in Figs. &) and &b) and for the case of no curve y5(h), is equal toH?Y, , which corresponds to the situ-
CL in Figs. 6c) and €d). For both values oh mentioned ation of simultaneous fluxon penetration into both LJJ’s. It is
above the transient process starts from the penetration dfiteresting that in this domaimg(h) exactly coincides with
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FIG. 7. ;/S“ (h) andy.~(h) for the same parameters as Fig. 5 .
but with a=1. voltage (norm. units)

8 ] . ) FIG. 8. 1-V characteristic ah=2.0 with the system parameters
ye(h) (of single uncoupled L), i.e., after LI switched to  corresponding to that in Fig. 5.

the nonzero voltage state, BJdoes not “see” LJJ. Such a

behavior can be understood, if one supposes thétisdd R all. This is consistent with the consideration given above

state. In this case the voltage on the junctions is equ to Since in the system with such a high viscositycas 1 the

=|R and the Josephson phase rotates fast and uniformly, i.dransient process does not develop. This behavior proves

#(t) = wt, wherew= y/ . In the presence of magnetic field that: (8 current locking is a dynamic phenomendib) it

there is an additional phase gradient so thgk,t)=hx  cannot be obtained from the static E¢®. and(5) where the

+ot. It is easy to check that such a solution satisfies thélynamics is not taken into accoufite., a=1). Second,

sine-Gordon equation without sifiterm, i.e., the equation ¥s(H)# ¥g(H). This happens since the coupling tett®)

for a superconducting transmission line without Josephsogoes not vanish and we conclude that the above proposed

properties. The influence of the term gincan be easily explanation of the range when@(h)zycB(h) is correct.

found using perturbation approach. Looking for a solution in  Another type of behavior exists at larger fieIlais~HCBl

the form (light gray areaBin Fig.}BS In this case the LJJ’'s switch inde-

. pendently butyc(h) # yc(h). This happens because £J3
¢"(x,t) = (hx+ wt) + Asin(hx+ wt) (10 not in theR state, but in flux-flow state, i.e., contains a chain

with A<1 and substituting it into the sine-Gordon Bg)  ©f fluxons moving in flux-flow mode with the velocity

without coupling termwe now want to build a solution for Smaller than the Swihart velocity. The IVC at=2.0 is

single uncoupled LJJ onlywe obtain the following expres-

sion for the phase in L33 s : — :
Sy S=-0.I
A _ T 2.0 WS:—OZ
" (x,t)=(hx+ wt) — sin(hx+ wt). (11 o o $=-03
w2_ h? E 1 M S=-0.75]
-g 1.5 4 E
This means that the term describing the influence of Lo = )
LIP in Eq. (2 is 2 o] i
g ] M—D”W——Q———Dh—o’g‘
h? 0.5
A 3 T y v T v
Dxx™ Swz_ h2' (12) 1.0 L5 20 25 3.0
. . . . . . ratio of magnetic thicknesses A
Since in conventional tunnel junctions= y/ =10 (in ex-

N
wn
n

periment=100), anch<2, we see thab?>h? and the term
describing the interaction between the junctions vanishes.
The real numbers argbl, <10 2 in simulation and g%,
=10 *in experiment.

To check the above idea of decouplingRnstate due to
low « (and therefore highn) we simulatedy.(h) depen-

M
el

first critical field H,
=D
w (=4
1 1

; _ 1.0 - -
dence for the system with the same parameters but aith |
=1, in order to have the coupling tertd2) of the order of

. ; e . 0.5 —
unity. In spite of the fact that such an assumption is unphysi- 0.0 02 04 0.6 08 10

cal, it will help us to understand the underlying physical
mechanisms in the system under questigi:®(h) and

y4B(h) for this case are shown in Fig. 7. From these curves, FIG. 9. The dependence of the smallest critical fief on|S|
two conclusions can be made. First, there is no CL here aind A in the stack of the length =20.

coupling strength |S|
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shown in Fig. 8. One can see that the A.&Wvitches to the rent locking cannot be derived from static equations. It is
flux-flow state from the Meissner state. The moving fluxonsessentially dynamical phenomenon which occur during the
apparently create a time dependent perturbation of Josephsé@mplex transient process of magnetic flux penetration into
phase in L33, which results in its switching to nonzero volt- the junctions. Since the result of the transient process
age state at lower current than in the case whefi IsJihR  strongly depends on many parametéfge to nonlinear na-
state. ture of the system it is very difficult to predict the range of
As we mention in Sec. Ill, to calculate the values ofthe current locking. CL is an interesting example of the in-
HM(A,S) we have to perform a direct numerical simulation. fluence of fluxon dynamics on the static properties of
After completing the simulations for different values 8f coupled LJJ's.
and A, we constructed a table ¢} (S,A) which is inter- We also found that when one of the LJJ, e.g., "L
esting from a practical point of view. The graphs of suchSWitched into McCumber state, another LJJ followd {(84)
dependences are shown in Fig. 9. As one can &&k,is dependence as it was uncoupled and has a critical Fg|d

nearly independent oA and thusHﬁ"legl is a good ap- = H?l. In addition, we show that in a system under investi-
proximation for experimentally relevant cases. gation there are three characteristic magnetic flux penetration
fieldsHY, , HEF, andHE, and we discuss their origin. Com-
V. CONCLUSION paring numerically calculated values ch"'l with analytical

_ _ _ _ expression, we propose a simple approximatliﬂ)[r‘i~Hc*l
We studied experimentally, numerically, and analytically which is valid for majority of experimentally relevant sys-
the dependences of critical currents of two inductivelyiems.

coupled LJJ’s on the applied magnetic field. The behavior of
the system in all points of these dependences is well under-
stood. The dependences consist of several regions. The most
interesting is the region of the current locking which is a
phenomenon characteristic for the nonlinear coupled system We are grateful to B. A. Malomed for useful discussions
under question. We found that current locking can be exand to V. V. Ryazanov for valuable comments. We thank H.
plained in the framework of the inductive coupling modfel. Kohlstedt for the sample fabrication. The work was partially
Despite that it appears on the stdti¢H) characteristic, cur- supported by the Russian Program for Basic Research.
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