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Critical exponents of the three-dimensional Ising universality class from finite-size scaling
with standard and improved actions
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We compute an improved action for the Ising universality class in three dimensions that has suppressed
leading corrections to scaling. It is obtained by tuning models with two coupling constants. We studied three
different models: thet 1 Ising model with nearest-neighbor and body diagonal interaction, the spin-1 model
with states Gt 1, and nearest-neighbor interaction, aﬁ’dtheory on the latticéLandau-Ginzburg modglThe
remarkable finite-size scaling properties of the suitably tuned spin-1 model are compared in detail with those
of the standard Ising model. Great care is taken to estimate the systematic errors from residual corrections to
scaling. Our best estimates for the critical exponentsyar®.6298(5) andp=0.036648), where the given
error estimates take into account the statistical and systematic uncertdiafi@63-182609)06317-]

[. INTRODUCTION The removal of leading corrections to scalifigough not
in the context of finite-size scalingvas first proposed and
In Monte Carlo simulations the system size is limited byinvestigated by Fisher and co-workéreduction of correc-
the memory of the computer and by the available CPU timetions to finite-size scaling was investigated by ®let al.’
Therefore, in many instances, finite-size scdliisghe key to  however, without a clear description of the principle and
a precise determination of properties of statistical systems dpethod used to obtain the improved scaling properties.
criticality. Finite-size scaling laws are affected by corrections !N the present work, we are able to reduce the corrections

to scaling. These corrections cause systematic errors in tH@ Scaling in various quantities dramatically. This is achieved
results for universal quantities one is interested in. With im- y tuning the two coupling constants of a generalized Ising

proving statistical accuracy of the Monte Carlo data it be—mOOIeI in the proper way. Especially the Binder cumulant and

: . : its derivatives, and also the susceptibility, can be fitted to
comes important to dgal properly W'.th systematic errors. On caling laws without corrections topscalir){g terms, yielding
way to proceed is to include corrections to scaling into the fn'v '

.. . ery precise estimates of the three-dimensiof3®) Ising
Ansdzewhen analyzing the data. Another, more fundamen- 4| exponents.

tal way is to remove corrections already from the system to |1 5 argued in Refs. 9 and 10 that the improvement
be studied. o mentioned above does not lead to reduced error estimates for
Renormalization QFOLﬁXRG) offers (at least in principl®  ¢ritical exponents. The authors claimed that our error esti-
a way to achieve this goal. RG fixed points are free of cormates are underestimated, since we do not take into account
rections to scaling. Such actions, however, contain in genergbsidual leading corrections to scaling. Such corrections
an infinite number of COUplingS. In praCticaI applications Onemight well be present, because the parameters of our im-
is forced to truncate the action to a finite number of termsproved model are computed numerically. However, this is
which in fact is an uncontrolled approximation. For an ap-not the full story as we shall explain in this paper. Our argu-
plication of this strategy to asymptotically free models seement is based on the fact that ratios of correction to scaling
the work on perfect actiorfsNote that we follow Euclidean amplitudes are universal.
field theory convention. In statistical mechanics language |n this paper, we describe in detail our method, the nu-
one would say Hamiltonian instead of action. merical results, and the fitting procedures. We confront the
A different approach was pioneered by Symarizik. results from the improved action with high-precision data
Higher order terms are added to the action. By imposingrom simulations of the standard Ising model, estimating
certain conditions on observables leading corrections to scalyith a well-defined procedure systematic errors for both ac-
ing are eliminated. While Symanzik formulated his methodijgns.
in the framework of perturbation theory, recently there have  The interested reader can access a more detailed version
been attempts to apply this method in a nonperturbative, i.eef this paper(including further tables of Monte Carlo and fit

numerical, setting. _ _ _ _results in the internet:
Our present approach is closer to this latter point of view
than to the block-spin renormalization-group-inspired frame- Il. IMPROVING THE SCALING BEHAVIOR

work. The idea is to improve the scaling properties of Ising
models by moving to models with generalized actions and A. The models

tuning the coupling constants as to obtain reduced correc- Usually, Monte Carlo studies of the Ising model are done
tions to scaling. using what in field theory is called standard action,
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S:—,BZ S Sj - N R,=Q=-——. (6)
(i.J) (m®)

Thes; take valuest 1, and the spin-spin interaction is a sum Here,m denotes the magnetization per spin,
over all nearest-neighbor paifs,j). A precise estimate for
the critical coupling was obtained in Ref. 118, m=L 3> s,
=0.221654(3)(3). o

In the following, we will introduce and study three differ- _
ent models in the 3D Ising universality class, each of theml N€R; areL dependent and, of course, functions of the cou-

governed bytwo coupling constants. In all three cases thePling parameters in the action. For the two-coupling models
Boltzmann factor is given by exp(S). defined above, we define “flows(lines of constant physi¢s

(K41(L),K5(L)) by requiring that

)

Spin-1 model
Ri(L,Ky(L),Kp(L)=Rf . ®

K; and K, represent the two coupling constants of the

model. In the next subsection we shall demonstrate that with

increasingL the flows of K,,K,) converge towards a criti-

The s; take values G; 1, and the spin-spin interaction is a cal point that has no leading order corrections to scaling.
sum over all nearest-neighbor pairs. This model was consid-

S=-B2 ss5+DX . 2
(ihj) [

ered in Ref. 8. ThereD was fixed to In2. The criticaBB C. RG analysis of the matching condition
corresponding to this particular value BDfwas estimated in h it fth i | .
Ref. 8 to beB,=0.393 422 4(10). The main features of the two-coupling models can be dis-

cussed in the framework of the renormalization group. The
scaling properties can be derived from the linearized RG
transformation at the fixed point.

We consider general actions with couplings,, where
S=—pB12 SiS— B2, S (3 a=1.2,.... An RGtransformation, realized, e.g., by a

(i) (] block-spin transformation, changes these couplings accord-

ing to K—»K'(K)=R(K). A fixed point K* is defined
through R(K*)=K*. The linearized transformation at the
fixed point can be represented by a matrix

Next-nearest neighbor (NNN) model

Thes; take valuest 1, and the spin-spin interaction is a sum
over all nearest-neighbor paifs j) and third-neighbor pairs
(body diagonals[i,j]. Blote et al. fixed 8,/8,=0.4 and
obtainedB; .=0.128 003 €5). K,

ap™ : 9
¢* model K g | e

One introduces “normal coordinateg’scaling fields by

S=—B<Z> bid+ X PN (E-12 (4
i i i

u=ui(K)=2> @i o(Ka=K3), (10)
The variablesp assume real values. In the limit—c one
recovers the standard Ising model. where ¢; denotes theth (left) eigenvector of the matriX,
The three two-coupling models have a second-order criti-
cal line in the space spanned by the two coupling constants. T o=\ 11
We shall exploit the degree of freedom of moving on the ; Ploalap™Riip: 1

critical line to find models with reduced corrections to scal-

ing. The u; transform under RG transformations like— \;u; .

In Ising-type models the leading eigenvalues are given by
B. Matching of phenomenological couplings A= b, Ao=b7® Ng=b7% (12)

We study two independent phenomenological COUpIing%Nherex>w. Note thatx=2 for the Gaussian model. From

of the 3D Ising model, to be callel,, i=1,2 in the follow- leading ordere expansion one expects thats close to 2 at

|ng Both quan'titi'es are universal, i.e., at criticality their in- \p o \Wilson-Fisher fixed poinb denotes the scale factor of
finite volume limit R does not depend on details of the o RG transformation.

action.R; is the ratio of partition functions with antiperiodic

‘119 & ! We now assume that we have only two nonvanishing cou-
and periodic boundary conditions, respectively,

plings K; and K, in our action. Let us then write down
explicitly the condition for being criticall;=0) and elimi-
Ri=Z,1Z,. (5 nating the leading corrections to scaling,&0). The first

The lattices will always be cubical, with extensibrin each condition reads

of the three directions. Antiperiodic boundary conditions are K. —K*)+ Ko—K*)=x 13
imposed only in one of the three lattice directioRs.is the eraKam KD+ 01K — K5 ) = ka, 13
Binder cumulant, whereas the condition,=0 translates to
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(Ki—K*)+ Ko— K%)= ky 3. (14) TABLE I. Flows of couplings defined such that for all lattice
_ P21 ! _ 24K, 2 23 sizes the two quantitieR,=Z,/Z, andR,=Q match(to the given
Fori=1,2, thek; 3 are given by statistical precisionwith their fixed point valuesR} =0.5425(10)

andR% =0.6240(10).

= . *
Ki3 ;3 ¢i,oKG - (15 Spin-1 model

L B D 2,1z, Q
Let us now study how our matching procedure with the
two quantitiesR;=Z,/Z, and R,=Q works. TheRy are 3 0.35737 0.4401 0.542(80)  0.6244721)
functions of the bare couplings and the lattice size 4 0.37250 0.5510 0.542425)  0.6234719
5
6

0.37794 0.5883 0.542019) 0.6242115)
0.38210 0.6169 0.542p49) 0.6242635)
0.38419 0.6311 0.543280) 0.6236622)
0.38320 0.6241 0.542037) 0.6243027)
9 0.38320 0.6241 0.542550) 0.6240344)

Rie=Ri(L,Ky1,Kp). (16)

We express these quantities as functions of the scaling fields 7
defined above, 8

Re(L,K,Ky) =R(LY"ul™ L= ulV). (17 10  0.38320  0.6241  0.54268)  0.6243142)
Here, the upper indeX") indicates that the scaling field is NNN model
taken at the scale of the lattice spacing. The prefactor pro- L B 3 217 9
motes the scaling field to its value at the schleTaylor ! 2 a e
expansion of thdR, around their fixed point values yields 4 0.12266 0.05406 0.54P9 0.62382)
B 5 0.12928 0.05028 0.5421) 0.62412)
Re=Ry + 1L Ui+ 1y oL ugt. (18) 6 013431 004734  0.540B 0.624418)
The matching condition®,=R? are thus equivalent to 7 013800  0.04518 0.5429 0.62422)
8 0.14069 0.04361 0.542H 0.62431)
Nl uM+r L eust=0, (19) 9 014292  0.04231 0.548D) 0.62371)
, , ) N 10  0.14406  0.04165 0.54%% 0.62422)
for k=1,2. We obtain, as desired, the solutmffl =0 (criti- 11 0.14590 0.04059 0.5400 0.6238%8)
cality) and u(21)=0 (no leading order correctiopsincluding 12 0.14724 0.03981 0.5408 0.62351)
higher order corrections in the scalimgsatz governed by 13 0.14808 0.03933 0.54@1 0.62361)
U3 and exponenk s, one can convince oneself that fixify
andR, to their fixed point values leads to convergence to the 4* model
critical line u;=0 with corrections that decay like™ >/, L B N 717 Q
Theu,=0 condition is approached with a much slower rate, i
namely likeL = **e, 3 0.35303 1.5248 0.5429) 0.62442)
4 0.36338 1.3282 0.542%) 0.62432)
D. Computing the matching flows 5 0.36908 1.2188 0.5428 0.62411)
For the three two-coupling models specified above, we set S 8':;;?8 1'122? g'gjg 8'2?2:1{3
up a procedure to determine the flows of couplings 8 0'37308 1'1410 0.5421) 0.62451)
K1(L),K,(L h that E was fulfilled. To this en : : : '
(Kq(L),Ky(L)) such that Eq(8) was fulfilled. To this end, 9 0.37273 1.1479 0.5418 0.62472)

we used estimates forR}=0.5425(10) and R}
=0.6240(10), which were an outcome of a preliminary

analysis of data obtained using the standard action, cf. Sefeeq renormalization to a larger scale in order to come close

IVB. . ) ) to the flow line connecting the Gaussian with the Wilson-
The matching couplings were searched for using a Newgisnher fixed point.

ton iteration, based on the inversion of a matrix made up Plotting the second coupling vs the first one, one finds

from Monte Carlo estimates of the derivatives of Rewith ¢ with very good precision the critical line can be approxi-
respect to the two couplings. Typically, three to four itera- j5ieq by a straight line

tions were sufficient to find couplings such tizgt/Z, andQ
attained the prescribed values within the given statistical pre- Ko(L)=a;+a,K,(L), (20)
cision. The results are given in Table I.

A first look at the table reveals that both for the spin 1 andwith a;=—2.04, 0.1253, 8.29, and,=—6.95, —0.5804,
the ¢* model, the flow converges to a fixed point quickly, —19.17 for the spin-1, the NNN and thg* model, respec-
whereas it keeps moving strongly in the case of the NNNively. For the spin 1 and the NNN model, our estimates for
model. A rough explanation of this could be the following: the critical lines can be compared with results bytBlet al.

In order to remove the leading corrections to scaling, one haghey are in good agreement. Fitskf(L) with a power law

to move efficiently between the Gaussian mo@euivalent K,(L)=c,+c,L~* yielded good fits in all cases, with expo-
to the ¢* model with vanishing\) and the Wilson-Fisher nents of order 3 in the cases of spin-1 aptimodels. Note
fixed point. Moving between these two fixed points is mostthat this exponent is much larger thar- w, which is ex-
efficiently done using @&*-type coupling, which is implicitly  pected to be around 1. A possible explanation for this is that
present also in the spin-1 model. The NNN model seems tthe amplitudes in front of the correction term with an expo-
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nentx~2 are of negligible size, while corrections with an x10° for L=19. The update algorithm is local. Hence one
exponentx~4 have a very large amplitude. For the NNN expects a dynamical critical exponemt 2. However, due to
model, « is of order 1. the multispin coding implementation a single sweep can be

The slow convergence of the NNN flow motivated our done substantially faster than with the cluster algorithm.
decision to discard this model from further investigation. TheTherefore, one expects a better performance for the demon
behavior of the¢* and spin-1 models appears to be veryypdate on such small lattices.
similar. Since the spin-1 model is faster to simulate than the ' For a subset of the smaller lattices, and for bigger lattices
¢* model we concentrate in the following on the spin-1p to size 128, cluster update was performed, using a new
model, and leave the* model for later study. , Vvariant of the algorithm, thavall-cluster algorithm Note

Note that our result for the optimal~1.145 of the¢ that there is quite a lot of freedom in the selection of clusters,
model is consistent with the observation in Ref. 10 that the,ich are flipped during one update step. In the wall-cluster
optimal A should be close to one. algorithm, one flips all clusters that intersect with a given

o ) lattice plane. Sequentially one takes lattice planes -1
E. Identification of the u,=0 line 1-3, and 2- 3 direction. The position is chosen randomly.

Next, we determined an approximation of the=0 Let us call the procedure to generate and flip all the clusters
manifold. This was done by looking at the derivatives of theconnected to the selected plane a wall-cluster update step.
R; at criticality. From the RG analysis of Sec. 1l C one infers The motivation for choosing this type of update was that the
construction of all clusters that have elements in a lattice
plane is needed for the measuremenZgtZ, anyway.

In order to test the performance of the new algorithm we
performed runs on lattices of site=6 up toL=96 with at

The left-hand side of the equation can be determined b : .
Monte Carlo simulation and will therefore be assumed a;(east 300 000 measurements for each lattice size. The aver-

known. Taking into account that without loss of generalitya‘,ge sum of the sizes of the cluste)r(s ber volume that are
one can seb, ;=1, the equations can be solvéat fitted) if fllpped in one step behaves 88/=CL”*. Fitting our data to
the left-hand side is known at least for two different latticethiS 1aw, discarding the results froh<24, yields S/V
sizes. We performed Monte Carlo simulations @) = 1.008(4L.~ %)) (y?/dof=0.4). The integrated autocor-
=(0.3832, 0.6241) for lattice sizes 10, 12, 16, 20, and 3orelation times of the energy, the susceptibility, and of the
Fixing the exponents=0.63 andw=0.81(Ref. 12 we ob-  Za/Z, measurementésee below were also fitted to power
tained that the scaling fielgh, , should be approximately laws, 7=cL? using data from all lattice sizes. Only fo,
—1/3. This result is quite stable under small variations of thehe L=6 data were discarded. The results are1.042),
fixed parameters and w. 1.30(3), 0.6Q02), andz=0.035§7), —0.0447), —0.028(8)
Plugging this into EqQ.(14), one obtains that 3—D for the energy, the magnetic susceptibility, and the boundary
should be kept constant. We used our simulation poinvariable, respectively.
(0.3832,0.6241 to fix this constant. In conclusion, one  These numbers should be compared with the correspond-
should approach criticality by varying while adjustingD ing ones from the single-cluster algoriththHere the inte-
according to grated autocorrelation times increase frem 1.36(2) tor
=1.97(5) for the energy and fronr=1.01(2) to 7
D=3(5-0.3833+0.6241. (22 =1.20(3) for the magnetic susceptibility when the lattice

Of course, a precise estimate 8f along this line still has to  size is increased frorh =16 to L =64. Theser's are fitted
be determined. This will be discussed in the next section. by L2282 and 7, oc|0-14(2)

The fit result fore, , can be used to perform a consistency Note that we obtain for the wall cluster=1.17(2) for
check. Ignoring higher couplings, one should haye ( L=16 and r=1.26(2) for L=64 for the energy andr
—B*)+¢1(D—D*)=0. Solving forD and plugging inthe =1.19(2) forL=16 andr=1.10(2) forL =64 for the mag-
values g* =0.3832, D* =0.6241, ande; ,=—0.1439 one netic susceptibility.
obtains with good precision the critical-line approximation  \We conclude that the exponertof the wall-cluster al-
D= —2.04+6.953. We remark that errors in the precise es-gorithm are smaller than those of the single-cluster algo-

timation of theu,=0 line affect results for the critical expo- rithm. For the lattice sizes in question, however, the actual
nents only weakly. E.g., the effect on the exponers of 5 are of similar size.

&Rk &Rk (9Ui Ll/V n Lo 21
K, 4 8_ui_aKa_rk'1 PraTlk2 ®2q- (21)

orderL 1", For the measurements &f,/Z, we employed a variant of
the boundary flip algorithm® where the cluster is not flipped
. SIMULATION PARAMETERS AND STATISTICS but instead used to construct an observable.
A Standard action We simulated the lattice sizés=4, 6, 8, 10, 12, 14, 16,
) 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, and 128. The

Monte Carlo simulations of the 3D Ising model with stan- number of measurements ranges from B for L=4 to
dard action were performed #=0.2216545, which is a 6x10° for L=128. The total CPU consumption of the stan-
good approximation of the critical couplifg! dard action runs was about 1.1 years on a 200 MHz Pentium

For cubical lattices of size=2,3,4 ... ,19 weperformed  Pro PC for the wall-cluster simulations. All simulations with
simulations with the multispin demon updafe* The num-  the demon algorithm for the standard Ising model took about
ber of measurements ranges from>6H4> for L=2 to 1.4  half a year on a 200 MHz Pentium Pro PC.
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0.660 T T T T T T
0.655 I, .
0.650 [« 7
" FIG. 1. R,=Q as function of lattice size for
0.645 x i both models. The upper datstar$ are from the
Q 0640 | % ] standard action. The bafflat data belong to the
' * improved action. Crosses are used to show stan-
0.635 | x‘k - dard action results corrected with the leading cor-
. rection to scaling contribution. The final estimate
0.630 | *wo T obtained from the fit analysis is plotted by dotted
¥ Oox o= < lines.
0625 *.'5_5(';_ "‘I d-."!'!’i‘.'sﬁ*.;jiiii?ﬁi:iijlii:iiill;Ziii;"iiiZijiiiii*iiliiiilijii"’ljiiiijiiiiiijliiiiﬂl;&
0.620 1 1 1 1 1 _ '
20 40 60 80 100 120
L
B. Improved action order 16. In Fig. 1 we have in addition plotted the standard

A first estimate for3, was obtained by locating the cross- action result with the contribution of the leading order cor-
: ; y : i rection to scaling subtracted, namepy—0.105L ~ %82
ings of R;(L) with R;(2L). We used lattices of sizé& 9 ' ' .

—4,8,16,32 and obtained,=0.383 245(10), witD given The improved action data outperform the corrected stan-
by Eq (éZ) ie. Dc=0.62§1 235 Note that this was still a dard action data. This is due to the fact that our improvement

preliminary estimate to be refined later. procedure not only eliminates correction terms of the form

Monte Carlo simulations were then performed At L~¢, but also higher order corrections of the fram"®, n

—0.383 245, fixingD according to Eq(22). We simulated integer, which are generated byighe same scaling fielgl. In
on cubic lattices with linear extensidnranging from 4 to  Particular, corrections of the tyde™““ should be present in

56, using the single-cluster algorithm in alternation with athe observables of the standard Ising model. Interestingly,

Metropolis procedure to maintain ergodicity. Two measure-SUch corrections have not been taken into account, e.g., in

. 1 8 . . .
ments were separated by three single-cluster updates and offf¢ analysis by Bl et al.” in spite of the fact that @ is

Metropolis sweep. As for the standard action we used clusSMmaller than other exponents taken into account in the fit
ters built with the boundary flip algorithm to obtain estimatesAANsdze . . . .

for Z,/Z,. After each growth of the corresponding cluster, Because of their importance in ext-racpng the critical ex-
the work done was also exploited to perform one wall-clustePOnents» and », we plot also the derivatives @ and the

step as described for the standard action above. The numbgySceptibilitiesy, see Fig. 3. In order to check for a residual
of measurements ranges fronx@0 for L=6 to 2x 10° for L dependence and to be able to compare the samples of the

L=56. The runs for the determination 6f took about three W0 models, the data have beenirsosgéaled. Qrderivatives
months of CPU on Pentium 166-MMX PCs, while the final N@ve been multiplied by a factar ™" and normalized to

production runs consumed a total of one year CPU on thé&heir value atL =56 andL =128 for the improved and the
same type of PC. standard action, respectively. Anticipating some results

which will be presented below, thg’'s have been trans-
formed by y—(x—c) L7 2d" %, wherec, #, andd are fit
IV. ANALYZING THE DATA parameters.

Our aim is to test the improvement which can be reached The authors of Refs. 9 and 10 claim that the apparent

in the estimates for the phenomenological coupliRgand

the critical exponents using the improved spin-1 action in- 0.552

stead of the standard action. 0550 I
We shall present results obtained from fitting our data to ’ .

various finite-size scaling laws. It will turn out that the esti- 0548 | *

mates obtained from the standard action are always compat-&, "

ible with those extracted from the improved action. N 0546 =, i
To give a first impression of the degree of improvement sy i

: - ; 0.544 F. 1

we plot various quantities as a function bffor the two p I X

actions. In Fig. 1, the Binder cumular@sare plotted for the os4r [P EE bl 1

two actions, while in Fig. 2 the critical ratiog,/Z, are 8

given. In both figures, the final values obtained from our fit 0.540
analysis are also given, together with error lines indicating

the range of the estimated statistical plus the systematic er-

ror. Clearly the improved samples are much more stable and FIG. 2. R,=Z,/Z, as function of lattice size for both models.
reach their asymptotic regime for very small lattice sizesStandard action: crosses, improved action: bars. The final estimate
while the standard samples hardly get there on lattice sizes @btained from our fit analysis is also plotted with an error interval.

20 40 60 80 100 120
L
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1.030 - - - - - - finite-size scaling with quantities taken @tvalues where a
1025 | phenomenological coupling is kept to a fixed value is in-
i spired by Ref. 18.0Optimal here means that the relative sta-
1020 F, tistical error of the leading correction to scaling amplitude is
1.015 _2‘ | the smallest. We computé@datZ,/Z,=0.5425. This means
Q % that first the function3(L) is determined, which gives for
1.010 ¢ ‘s‘{ 1 each lattice sizé the value of 8 such thatZ,/Z, equals
1.005 + ! iy } | 0.5425. TherQ is computed for thesg(L). In the following
1000 beessstt . Iiif ,,,,, %1 ,,,,,,,,,,,,,,,,,,,,,,,, {l ,,,,,,,,,,, } we useQ to denote this quantity. In principlg,/Z, could
U be fixed to any value. For practical reasons, however, it is
0.995 . . : . . - preferable to take a good approximation &,(Z,)*. To
20 40 60 L 80100120 leading orderQ should behave as
1.01
1.00 Eeztwerssr ez 22 2. F.. e o = % w
099 | T Q=Q%+rL “+---. (25
0.98 L ox 1
097 | * 1 We first fitted the data obtained with the improved action,
X 096 | " . 1 using as inputw=0.81 from Ref. 12. The fits were done on
095 | a sequence of data sets obtained by discarding datalwith
09a b ¥ 1 <Lmin- We obtained Q*=0.62369(12), 0.623§24),
093 | 7 1 0.623 7116) andr =0.0040(11), 0.00423), 0.003616) for
092 | J 1 Lmin=8, 10, and 12, respectively. All fits have yf/dof
091 L—— - - L L ) close to 1.
20 40 60 80 100 120 There is still a small amplitude for corrections to scaling
L visible. The value oD where the leading order corrections
FIG. 3. Rescaleg derivatives ofQ and rescaleg at fixedQ as }[ﬁgiz?uggac“y should be slightly larger than the one used in

function of lattice size for both modelsee text . . . .
In order to quantify the improvement that is achieved we

improvement in the scaling behavior that we demonstrate§@ve to compare with the data fro*m the standard Ising model.
with our plots does not lead to reduced errors in final resultd © OPtain a consistent result f@* from small lattices we
for critical exponents. Taking the data of the improved hfid7;[0 /include a subleading correction to scaling term
model by itself they are in fact right. Since the coupling” L~ in the Ansatz
parameters of the model are determined numerically one has We  obtained Q*=0.62326(12),  0.623434),
to expect some small residual @ corrections, which lead to  0-6232918), r=0.1131(19), 0.10927), 0.112843 and
systematic errors when not taken into account in théit r’=0.0825(_67), 0-10@2)’ 0.08%24) for Lmin=8, 10, and
sdaze 12, respectively. Starting from,;,=8 the fits have a small
However, we shall demonstrate that it is well possible tox’/dof. The result forQ* obtained fromL y,= 10 is consis-
estimate the effects of residual corrections to scaling in 4€nt with the results from the improved action. There is a
systematic way. We shall exploit the fact that ratios of cor-clear signal for the leading order corrections to scaling. The

rection to scaling amplitudes are universal. Given the parancorresponding amplitude is stable whiep;, is varied. Also
etrization subleading corrections are well visible.

From the comparison of the two models we conclude that
R(L)=Rf+r L+, (23) leading corrections to scaling in the improved model are re-
duced by a factor of about 0.11/0.0628. In order to com-
and pute systematic errors due to neglecting® corrections in
the analysis of the data obtained from the improved model
ﬁ=c-L1’”(1+b-L‘“’+ ) 24y We assumetaking into account the statistical errors in the
dg ™ : ' amplitude$ that the leading corrections to scaling are re-

) ) duced at least by a factor of 22.
the ratiosr; /r; %”dbi /rj do not depend on the details of the j5ing the universality of ratios of corrections to scaling
models chosen. In particular, they are the same for the o)t des this reduction has to be the same for all quanti-

standard and improved action. These ratios can be obtaingfls ‘Hence, we can take the correction amplitudes obtained
from the analysis of the standard Ising model data and theR ., the standard action and divide it by 22 to obtain a
used in order to estimate the residual correction to scaling, ndq on the leading order corrections that are to be ex-
amplitudes in the improved action results. pected in the case of the improved model.

A. R, at fixed R

Analyzing the standard model data, it turns out that the B. Fitting R, and R,
Binder cumulanQ evaluated at a fixed value &f,/Z, is the We first fitted theR; in order to obtain estimates for the

*

optimal quantity to detect corrections to scalin@@oing  phenomenological coupling®’ , and, in addition, for the
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TABLE Il. Fitting Ry with Eq. (26), fixing ©=0.81. cepted by us as a reliable estimate. It seems that the fit pa-
rameter compensates for the lack of subleading correction
Standard action terms in theansatz
L min RI Be r x*Idof We also tried to fitR; and R, together(forcing them to

take the same value ¢, and the same values for the expo-
nents. For sake of simplicity we assumed in these fits that
R; andR, are statistically uncorrelated. We useds a free
parameter. FOR, we added a subleading correction term
r,L™*. We checked the two possibilities to either fix the
exponentx to some value or subject it to fitting in order to
assume some effective value. Indeed, beyond the leading
correction to scaling exponent, there are several exponents

10 0.5427614){49 0.2216544616){21} 0.034710) 1.81
14 0.5430423){44} 0.2216543(19)/{15* 0.031822) 1.88
16 0.5433426){27)* 0.2216541718){11} 0.028126) 1.69
20 0.5426840)1{24} 0.2216544R1){7} 0.036950) 1.43

critical couplingB.. Here, and in the following, we use as
an estimate of the leading correction to scaling exporent

~0.81(2) from Ref. 12. that could enter the game, like for instance,2x~2, or
1/v+ w. In Table Il we present the fit results.
1. Standard action, fit R Notice that the amplitude of the leading correction to scal-

ing is much smaller foR;, as expected, and fd®, also the
r};\mplitude of the next-to-leading correction to scalirigis
significantly different from zero. The effective next-to-
dR leading exponent is of order two, and actually compatible
_ _pxg ] -o with that appearing in the improved case.

Rilk.Buc) =Ri+ dag (LBuc)ABtriL 2. (26 The errors of this fit are smaller than tiigafe) errors
obtained from the fits with fixedv. However, as a conse-
quence of the limited number of lattice sizes available, the fit
with many parameters cannot be checked for stability with
respect to varyind. i -

Finally, we tried to estimate the systematic errors of the
fits discussed in the first part of this section that are caused
y missing subleading correction to scaling terms. For this
urpose we used the results obtained above. Table Il shows
at the value of ;, does not depend strongly enThe same
olds forr;, which is estimated to be of order 0.02 obtained
from a four-parameter fit witlw=0.81, x= 2.3 fixed.

We fitted separatelyas in the first part of this sectipmo
Eq. (26) the quantities defined by

In the case of the standard action we fitted our data wit
the Ansatz

In addition to a correction to scaling term of the forph =,

we included a term thdto first ordej corrects for deviations
from criticality. A is the difference between the critical
and 8=0.2216545. FittingR; to this law, we fixedw
=0.81. The results for the fit parameters as functioh gf,
are given in Table Il. The procedure used to compute th
estimates of the systematic erraicurly brackets will be
discussed later. In the table we mark with an asterisk th
value ofL ., where the systematic error estimate become:?1
equal to or smaller than the statistical estimate.

The fits are reasonably stable. Redoing the fits with
=0.78 andw=0.83, we found that the dependence on the
choice of w is negligible compared to the statistical errors
and the systematic errors quoted in Table II.

Next, we applied the same analysis to the Cumulagt R(L)=R/(L)—r/L (27)

The correction to scaling amplitude B, comes out consid-

erably larger than that d®,, namelyr,~0.1. We made also

fits with w as free parameter. E.g., for,,=8 we obtain whereR;(L) are the origina(Monte Carlg data, and'/ and
0=0.980(9) withy?/dof=0.89. This value ofw is signifi-  x have fixed values determined by the fits discussed above,
cantly larger than 0.81, the latter value being presently achnamelyr;=0.02,r,=0.184, andk=2.3. Roughly speaking,

TABLE lll. Fitting togetherR; and R, for L,;,=8. For R; we used Eq(26), while for R, also an
effective next-to-leading correctiar} L ™ was added.

Standard action

X Ry R> Be w
1.62 0.5412Q19 0.62295%25) 0.2216551611) 0.670437)
2.0 0.5425615) 0.6226125) 0.2216544811) 0.77431)
2.4 0.5430613) 0.62325%24) 0.2216543711) 0.86527)
2.3041) 0.5428%31) 0.6226129) 0.2216542814) 0.80058)

Final 0.5433426){27} 0.6229231){21} 0.2216543(19){15}

X ry ry r X/ dof
1.62 0.032420) 0.05811) 0.16819) 4.40
2.0 0.033019) 0.090787) 0.15225) 1.60
2.4 0.037817) 0.115172) 0.13636) 1.31

2.3041 0.033428) 0.10432) 0.18425) 1.63




11478 M. HASENBUSCH, K. PINN, AND S. VINTI PRB 59
TABLE IV. Fitting separately theR; with Eq. (28). The num- For estimates obtained from the improved action we give,
bers in square and curly brackets are estimates of the systematig addition to the usual error bars, for each fit parameter two
errors(see text systematic errors. They should be understood as estimates of
the uncertainty due to corrections to scaling terms. The first

one, in square brackets, estimates the error made neglecting a

Improved action

L min RY Be x?Idof leading correction scaling term. The second one, in curly

8 0.542188)[24](66) 0.38324708)[8}(36} 1.78 brackets, estimates the error induced by neglecting sublead-
10 0'5424010)[19]{32} 0'38324539)[5]{15} 0'79 ing corrections to scaling. The error estimates were obtained
12 0542501[17121  0.38324479)[4}{}* 0.49 in a well defl_ned way to be described belqw.

. We also fitted all theR; data together with three param-
16 0.54260L9[16]{15"  0.383244211[4](5} 0.46 eters R} , R; , andB.). The results are presented in Table
’ H c/-

20  0.5425R5)[13]{10;  0.383244614)[2{3} 0.55 v
L R 8 2ldof Let us look at the results from a simultaneous fitRyf

min 2 c

and R, with the law

8  0.624476)[76}{30}
10 0.624297)[621{15}
12 0.624148)[57H11
16  0.6240512)[5017}
20  0.6239818)[43K4}

0.383249910)[46}{29}  2.22 dR
0.383247912)31}{12 139 Ri(L.Buc) =R + 55 (L.BucAB+TL ™ (29
0.383246511)[26){9} 0.42 B

0.383245714) 2015} 0.31 X represents an effective exponent. Enforcivg »=0.81,
0.383244718[17){3*  0.28 we observed thay?/dof is a little larger than for the other
values ofx. The correction amplitudes are very small. The

~ o ) _main problem of this fit is that the ratio, /r, is completely

the Ri(L) are the original data after subtraction of an esti-inconsistent with that found for the standard Ising action.
mate of the subleading correction to scaling contamination.,_eavingx free, it tends to choose a value around 2.5. The

The absolute values of the differences betweenRfie results are consistent with those obtained from (itith a
and,Bc obtained in this way and those obtained from fitting |arger|_min) without corrections to Sca“ng_ Thgz/dof val-
Ri(L) with the same equation are the estimates of the sysses do not allow to discriminate between the different values
tematic errors giverinside curly brackesin Table II. of the exponent. Obtaining estimates frortrelatively) large

In summary, from Table I{and from fit results not pre- |attice limit of fits without correction to scaling is, in this
sented in a tabjewe obtain the following final estimates case, a safer procedure compared to a multiparameter fit on
(labeled wih a * in thetable all lattice sizes.

Finally we estimate systematic errors due to neglecting
the leading correction to scaling term as well as subleading
correction to scaling terms. For the estimates of errors due to
leading corrections to scaling we used the following proce-
dure(analogously used also in the following sectiprisrom
Table 1l we know with good precision the leading correction
amplitudesri(s) for the standard action. From the universality
argument discussed in the introductory part of Sec. IV, we
assume that the corresponding amplitudes for the improved
action are given by(9/22. We define the tilde quantities

RY =0.5433426){27},

standard action: R5 =0.622 9231){21}
B.=0.221654 3119){15} from R,
B.=0.221 654 0623){25} from R,.

2. Improved action, fit R
We fitted the data to

dR;
Ri(L.Buc) =R + 5 (L. Buc) AB. (28) - (S

p R(L=R(L)~ 5L "
Again, we included a term which corrects for deviations
from criticality. Byc is our simulation coupling 0.383245. Fitting R, andR; with Eq. (28) and taking the absolute value
The fit parameters ar&* and 3., entering throughAB  of the differences of the outcome parameters gives the esti-
= Buc— B.- We first fitted separatelR; andR, in order to  mates reported in square brackets.
compare their scaling behavior. The results are reported in The information from the fits according to EQ9) with
Table IV. the extra exponent is used(as in the previous sectiprno

(30

TABLE V. Fitting simultaneously thdR; with Eq. (28).

Improved action

L min RY R} Be x4/ dof
8 0.542067)[11]{65} 0.624415)[64]{32} 0.38324816)[13]{34} 2.19
10 0.542319)[7]{32 0.624216)[51]{16} 0.38324687)[8]{14} 1.21
12 0.5424511)[7]{22} 0.624087)[46]{11} 0.38324583)[6]{9} 0.51
16 0.5425414)[6]{14}* 0.623998)[40]{7} 0.3832448)[6]{5}* 0.42
20 0.542522)[4]{9} 0.6239313)[35}{5} 0.383244611)[4){3} 0.41
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TABLE VI. Fitting dR;/dB (top) anddR,/dg (bottom) with TABLE VII. Fitting dR,/dB with Eq. (33) and fixedw=0.81.
Eqg. (32).
Standard action
Standard action L min a, v b, x?/dof
L min a; v x2/dof
0.841820) 0.62999(25)93}(20) 0.110359) 0.48
10 —1.47237) 0.629817)[102] 5.38 10 0.839629) 0.62973(36)61}(17) 0.118195  0.47
20 —1.479826) 0.6304521)[85] 1.00 12 0.839%36) 0.62973(43)46}(14* 0.11913)  0.52
28 —1.474736) 0.6300827)[69] 0.88 14 0.8338348) 0.62908(55)37}(16) 0.14719  0.35
40 —1.475779) 0.6301454)[55]* 0.96
48 —1.469913) 0.6297788)[48] 1.09
5 The derivative ofR, suffers from stronger systematic ef-
L min & v x“/dof fects than theR; derivative. Therefore, we include the
14 0.8705071) 0.63311)[31] 3.35 correction into the filansatz[.namely, we fit with Eq.(33)]
24 0.859229) 0.63154)[18] 0.66 and compute the systematic error made neglecting .furth_er
40 0.850176) 0.63059)[13] 0.26 subleading corrections to scaling. The fit results are given in
48 0.85012) 0.630413)[11]* 0.31 Table VI {ind_m Fig. 4, where also theexponents_obtalned
56 0.84814) 0.630315)[11] 0.39 from the fit with Eq.(32) are reported for comparison.

In the table we have included as a third error bar( )
bracket$ estimates of the systematic effect from varyiag

estimate in a systematic way the effect of ignoring the corfrom 0.77 through 0.85. This covers as2interval around

responding corrections. We define the w value 0.812). Again, the systematic error estimates in
curly brackets take into account the omission of next-to-
R(L)=R;(L)—r;L™X, (31) leading corrections to scaling. We fitted with taesatz
wherex andr; are parameters obtained by fitting with Eq. IR
(29), namelyr,=—0.15, r,=0.07, andx=2.46. Repeating £=aiL1’”(1+ biL™“+b{L™), (35)
the steps followed above, one obtains the estimates given in
curly brackets. and defined the tilde quantities subtracting a contribution

Using the fit estimates marked with an asterisk, i.e., where,b,L*”~2, with an estimaté,=—0.1.
statistical and systematic error estimates are of the same or- We quote as our final estimates
der, we obtain our final estimates
standard actiony=0.630 1454)[ 55] (from Table VI

Ry =05425414[61{14) v=0.629 7343){46}(14) (from Table VI)).

improved action: R} =0.623 9313)[35]{5}

B.=0.38324489)[6]{5}. 2. Improved action, fitdR;/dB
We fitted our data for the derivatives of tlig with re-
C. Fitting the derivatives of the R; spect toB, according to Eq(32). The results are given in

Table VIII. The v estimates of this table are plotted in Fig. 5.
Obviously, the derivatives of the cumulant scale better
We first fitted thedR;/d8 without correction to scaling, than those oZ,/Z,: while the cumulant’s derivative gives a
small y?/dof already for_,,= 6, for theR;’s derivative one
needsl,i,= 18 in order to have a smayl?/dof and to reach

1. Standard action, fit dR/dB

a—Riza-Ll’V (32
B ! '
The corresponding results are summarized in Table VI. As
expected, both quantities suffer from strong corrections to  0.636 [ .

0.638 T T T T r T

scaling. Let us first estimate the systematic error due to the *—,_
leading correction. We made fits with ta@satz T 0634 1 “w 1
5 i S |

aRi — Ll/v 1+bL~® 33 g 0632 e, III ..... I { ............................................ [ ,,,,,,,,
(93 =q; ( i ) ( ) >VJ 0.630 | %iﬁﬁ% . } J' l i

Then. we defined sl Hﬂﬁ ___________________________________________________________________ |
9R, IR, oL - ) 0.626 | 1
—=———ab v w,
B B 064 b

and finally we fitted the tilde quantities to E32), fixing 10 20 0 L4O 0 60 70

»=0.81. The differences in the exponents are given in the
square brackets of Table VI. The leading amplitude correc- FIG. 4. v resulting from fittingd R, /d 3, standard action, with-
tions b; can be found in Table VII. out correction to scalingbarg and with o =0.81 (diamonds.
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TABLE VIII. Fit of dR;/dB (top) and IR, /JB (bottom) with 0.633 — T T T T T T T T T
Eqg. (32). 0632 | |
Improved action 0.631 | i
L. a v Xz/dof B e } ........ {lJ .....................
o . 5 0630 531 ; { 1
10 —1.141912) 0.6285014)[32]{152 3.08 ._‘% Y g T 1 111]1_
16 —1.148723 0.6292425)[27K74 0.90 = 1
20 —1.154339) 0.6297939)[26]{43} 0.32 0.628 .
24 —1.155251) 0.6298851)[32]{51* 0.40 0.627 t ¥ |
L min a, v x*/dof 0.626 | 1
6 0.6616042  0.6296911)[22{41} 0.79 0605 Lo ...,
8 0.6624763)  0.6298714)[18}{26} 0.57 6 8 10 12 14 16 18 20 22 24
10 0.662211) 0.6298222)[16}{15\* 0.60 Linin
12 0.662612) 0.6298924)[24K11} 0.64

FIG. 6. Fits ofdR,/dB, improved action, with Eq(32) (barg
and with Eq.(37) andx=2.4 fixed (diamonds.

stability of the result. However, also in this case the leading

correction to scaling is strongly suppressed. Note that th@nd then defined the tilde quantities by subtracting

range of lattice sizes considered here is relatively small: th@;biL*”~? from the Monte Carlo data.

difference in scaling behavior is actually due to a bigger We observed that including very small lattice sizes, the

amplitude of the next-to-leading correction to scaling, as disR; derivative’s deviations from E¢32) are strong enough to

cussed below. allow for a fit with a free effective exponent, which turns out
The systematic error estimates due to neglecting leadintp be 2.3828), i.e., again of order 2. Again we find that

order correction to scaling are given, as before, in squarenforcingx=0.81 does not prevent the fit from giving an

brackets. We defined tilde quantities by acceptabley?. We have to rely on the universality of the
ratios of correction amplitudes, as discussed before, to rule
IR, IR, b(® out this fit.
B ﬁ—aiZLl’V*O-S{ (36) In Fig. 6 we plot the fits ofJR,/dB using Eq.(37) for

various values of_,;, with fixed exponenk=2.4, together

where thea; are given in Table VIl and the leading correc- with the fits without correction to scaling of Table VIII. This
tion ampIitlljdesb-(S) of the standard action are taken from 'S Sufficient to demonstrate the nice scaling behavior of the
I

Table VII. The error estimates are the absolute differences Oﬁierlva;[_lve OfR; oncte a;n e;fecgvr? neg(t-to-l_ea?llgg dcprrfhctlc;_?
the v’s obtained by fitting the tilde and the original Monte 0 scaling exponent of order 2 has been inciuded in the nt.
Carlo data, respectively, to E(B2). In the case ofaRz_/a,B the corrections are too small to
The systematic error estimates due to subleading corre(‘:;lIIOW for a free effective exponent fit. Therefore we fix bhe
tions are given in curly brackets values between 2.0 and 2.8, as suggested by the fits on
To estimate them. we used a.zﬁnsatz dR1/dB. Thev results are nicely stable within these bounds
’ and consistent with the values obtained without scaling cor-
R rections.

Q =aiL1’V(1+ biL %), (37 These fits show clearly that the better scaling behavior of
Ip the Binder cumulant derivative is due to a smaller amplitude
of the next-to-leading corrections to scaling compared to that
0.632 ' ' ' ' of the Z,/Z, derivative.
0631 - il Finally, we checked also for the systematic dependence
___________________________________________________________________________ ¥¥} on the location ofg. for R, which is giving the most ac-
g 0630 U S, - } 1 % b 1 curate result. We repeated the fits for tQederivative on
B ;o % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ data from five shiftedd values ranging from 0.383 243 to
E‘ 0629 I, 1 i | 0.383 247 in steps of 0.000 001, covering thus two standard
> 0628 | 1 deviations around ouB. estimate. The effect of this varia-
z tion is negligible compared with the errors of Table VIII.
0.627 | 1 We thus quote as our final estimate for
0.626 .
0,625 E . . . improved action:v»=0.629 8851)[ 32]{51} from JR,/38,
5 10 L15 20 25 v=0.6298222)[16]{15} from JR,/JpB.
min

FIG. 5. Fit results forv from fitting dR; /33, improved action, ~ The final estimate ofv appears with dotted error lines in
with Eq. (32). The data with better scaling behavior belong to Figs. 5 and 6. The statistical and systematic errors were
IR, 13B. added up.
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D. Fitting the susceptibility fit ansatz Since the corrections are smaller in the case of
The magnetic susceptibility is defined through fixed Z,/Z,, we quote the corresponding result as our final
estimate.

x=L¥m?) (38) The systematic error due to the omission af &’ term in

’ the ansatzis computed in the same way as in the previous
with m being the normalized magnetization. sections. Namely, we defined the tilde quantities as
o ©)
1. Standard action, fity }(L) =X(L)—df2—2L2_"_o'811 (42)

It turns out that the estimate af from fits of the suscep-
tibility x taken atg. depends quite strongly on the value of where f(® are taken from the fits with Eq39). Then we

Bc. Taking the susceptibility at a fixed value of & phenom-c,mnare the results obtained fitting frewith Eq. (40) and
enological coupling removes this problem, as discussed ithe y, both at fixedQ and fixedZ,/Z,. The absolute differ-

Ref. 18. One defines a funcitiq@(L) by requiring that for o caq of they obtained in this way are the estimates of the
anyL the relationRj[ L, (L) ] = const holds. The susceptibil- gy stematic errors. Notice that in this case the next-to-leading

ity is then computed g8(L ). We performed this analysis for . rrection to scaling enters with an exponent of order 2,
the two cases of fixingQ=0.6240 and fiXingZ,/Z,  \yich is already taken into account with the analytical con-
=0.5425. Note that in principle any value frandZ,/Z,  yipytion denoted by in our fit Ansaze Therefore, we only
that can be taken by the phenomenological couplings woulgyote the systematic error due to the leading correction.
work. However, for practical purposes it is the best to take ' \ye haven chosen the result bf,,=8c= — 0.532(62)

good approximations aRY . d=0.9543(20), andp=0.03657(60) withZ,/Z,=0.5425
We fitted our data to thansatz fixed as our final estimate, since it is consistent with the
. B result obtained front,;,=4 andL,,,=6. Hence, our final
x[L,Bc(L)]=c+dL"7(1+fL™), (39  estimate is
wherec is the leading analytic part of, and fL™“ gives improved action: 7=0.03666)[2].

leading order corrections. In both cases an accepigtstéof

is reached atlL,;,=10. For L,,,=10 we obtainedc It is consistent with the estimate obtained from the standard
=—0.515(83), d=1.5600(44), »=0.03751(62), andf action.

=—0.585(12) withQ=0.6240 fixed andc—0.78(14),d

=1.5536), »=0.036€8), and f=—0.130(19) withz,/ V. COMPARISON WITH OTHER ESTIMATES

Z,=0.5425 fixed. . . . .
It is interesting to see that the correction to scaling ampli- It Is interesting to compare our estimates W'th other ones
tudef is considerably smaller in the case of fixgg/Z,. available from the literature. Note that extensive tables with

Therefore it seems reasonable to assume thatlal@ cor-  Many data from literature and experiment can be found in

rections are smaller for fixed,/Z,. We thus taken from Regs. 8, 12f' ﬁnd 19. . for thand
fixed Z,/Z, at Ly,=10 as our final result. As estimate of ome of the more recent estimates for thand » expo-

the systematic error we quote the difference to the figged ngnts, together with the critical coupling of th? standard
result atlL .= 10 Ising model are collected in Table IX. Our estimates are
min

given in the last two lines: the upper one gives the estimates
obtained with the standard acti@®A) while the lower one
those from the improved spin-1 actigi®). The underlined
estimates are obtained by choosing our best estimate from
the improved action and adding the statistical and systematic
error estimates in order to obtain the overall uncertainty.
The value we obtained for the Binder cumulant from the

improved actionQ=0.62393(13)35]{5} can be compared
with the estimateQ=0.6233(4) of Ref. 8. It is reassuring
that the high-precision estimates of the recent years seem to

) ) ) be nicely consistent with each other.
Also in the case of the improved action we computed the

magnetic susceptibility at fixedd=0.6240 and at fixed
Z,1Z,=0.5425. We fitted our data with trensatz

standard action: 7=0.0368){9}.

We have checked that the uncertainty in the estimate of
leads to negligible errors ip. We also performed fits of the
magnetic susceptibility without a constant term in #msatz

It is reassuring that the results fgrare consistent with those
found above, whelh,;,= 20 is taken.

2. Improved action, fity

VI. CONCLUSIONS

By performing a detailed comparison with high-precision

x[L,B(L)]=c+dL2". (400 results of the standard action, we have demonstrated that the
spin-1 Ising model with suitably tuned coupling constants
Here, we have skipped the ternt ©. has remarkably improved finite-size scaling properties. We

From the Ising model with the standard action we knowobtained estimates of very high precision for the critical ex-
that the amplitude of the ™ “ correction is much smaller for ponentsv and » and two other universal quantities, the
x atfixedZ,/Z, than at fixedQ (see below Therefore, the Binder cumulantQ and the ratio of partition functions
comparison of both results gives a nice check of the systeni,/Z,,.
atic errors introduced by the omission oLa® term in the All estimates from the two different actions are consistent
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TABLE IX. Results of the present study from standd8A) and improved(IA) actions are compared
with other estimates: frona expansion(EPS, field-theory calculations in three dimensiof@D FT), high-
temperature expansiornsiT), and Monte Carlo simulationdVC). The underlined estimates for the critical
exponents are our best estimates together with error estimates, which give the overall uncertainty, including
systematic effects.

Ref. Method v 7 Be

12 EPS 0.62926) 0.0366)

12 3D FT 0.630413) 0.033525)

20 3D FT 0.63015) 0.0355%9)

19 HT 0.63105)

21 MC 0.630810

8 and 11 MC 0.630B) 0.0313) 0.22165443)[3]

9 MC 0.62945)[5] 0.03746)[6] 0.2216545615)[5]
SA MC, R; 0.6301454){55} 0.2216543(19){15}
SA MC, R; 0.6297343){46}(14) 0.2216540823){25}
SA MC, x 0.03668){9}

IA MC, R, 0.6298222)[16]{15}

IA MC, Ry 0.6298(5)

IA MC, R; 0.6298851)[32]{51}

IA MC, x 0.03666)[2]

IA MC, x 0.0366(8)

with each other. In spite of the higher statistics and the bigof physical quantities not discussed in this paper and to
ger lattice sizes of the standard action data, the estimatesheck to what extent the improved scaling behavior helps to
from the improved action are by far more precise. In particuget better estimates.
lar, cf. Table IX, the systematic errors are smaller for the An interesting question is whether and to what extent the
improved action than for the standard action. improvement that we have achieved can be further enhanced.
The authors of Refs. 9 and 10 claim that an improvementft seems tempting to study models with even more couplings
of the action as discussed in this paper and in Ref. 10 dogf order to systematically reduce the effects from next-to-
not allow for more precise estimates of universal quantitie§eading corrections to scaling. However, little is known
such as the critical exponents. In their argument they ignorgy, ¢ these higher order corrections, and one does not really

tge fatcr': that rt’c_1t|os of correcttlt()jnf arPhplltutde(sj a(rjel L_m|versgl now how many parameters would be necessary to remove
nce these ratios are computed for the standard 1SiNg MGG, o +tjons of ordet "%, with x~2. Note that at that level of

where the corrections are large, they allow for powerful.

bounds in the case of the improved action. E.qg., leading Orl_mprovement also the question of improved observables

der corrections to scaling of the Binder cumulant are muchfOmes Into alay. WE.”;]US behevfe thatdthe er:mrovgf\melntﬂ\]mth
stronger than those of the derivative of the Binder cumulant™W0 Parameters, which we performed 1S the optimal thing
Therefore it is quite clear that we can safely igndre®  ©N€ can QO in a systemgtlc way. Note that our @provement
corrections in the analysis @' obtained from the improved /SO eliminates subleading corrections of the type”.

model. Last but not least, application of the ideas underlying the

It would be worthwhile to use the present model in studies®resent analysis to other models seems very promising.

*Electronic address: hasenbus@physik.hu-berlin.de be found in P. Hasenfratz, Prog. Theor. Phys. Sup®l, 189

"Electronic address: pinn@uni-muenster.de (1998.

*Electronic address: vinti@uni-muenster.de 5K. Symanzik, Nucl. Phys. B26, 187 (1987); 226, 205(1987).

IM. Hasenbusch, K. Pinn, and S. Vinti, hep-lat/9806Qagpub- 6See, e.g., the various contributions to th&TTICE 97 Sympo-
lished. sium, Parallel Session Improvement and Renormalizdtiarc!.

2V. Privman, inFinite Size Scaling and Numerical Simulations of Phys. B(Proc. Supp). 63, 847 (1998].
Statistical Systemedited by V. PrivmarfWorld Scientific, Sin- 7J.-H. Chen, M. E. Fisher, and B. G. Nickel, Phys. Rev. L&8.

gapore, 199D 630(1982; M. Barma and M. E. Fisherbid. 53, 1935(1984;
3K. G. Wilson and J. B. Kogut, Phys. Rep., Phys. L&2C, 75 Phys. Rev. B31, 5954(1985; M. E. Fisher and J.-H. Chen, J.

(1974; K. G. Wilson, Rev. Mod. Physt7, 773(1975); ibid. 55, Phys.(Pari9 46, 1645(1985.

583(1983. 8H. W. J. Blae, E. Luijten, and J. R. Heringa, J. Phys28, 6289

4The first article on this issue is P. Hasenfratz and F. Niedermayer, (1995.
Nucl. Phys. B214, 785(1994. An up-to-date reference list can 9H. G. Ballesteros, L. A. Fefmalez, V. Marin-Mayor, A. Muroz



PRB 59

Sudupe, G. Parisi, and J. J. Ruiz-Lorenzo, J. Phys32A1
(1999.

04, G. Ballesteros, L. A. Fermalez, V. Marin-Mayor, and A.
Munoz Sudupe, Phys. Lett. B41, 330(1998.

A, L. Talapov and H. W. J. Ble, J. Phys. A29, 5727 (1996.

2R, Guida and J. Zinn-Justin, J. Phys.34, 8103(1998.

13M. Creutz, Phys. Rev. Let50, 1411(1983.

K. Rummukainen, Nucl. Phys. B90, 621 (1993.

15y, Wolff, Phys. Lett. B228 379(1989.

18\, Hasenbusch, Physica 297, 423(1993.

17A. Aharony, P. C. Hohenberg, and V. Privman,Rhase Transi-

CRITICAL EXPONENTS OF THE THREE-DIMENSIONA . ..

11 483

tions and Critical Phenomenaedited by C. Domb and J. L.
Lebowitz (Academic, New York, 1991 Vol. 14.

184, G. Ballesteros, L. A. Fermalez, V. Martn-Mayor, A. MUz
Sudupe, G. Parisi, and J. J. Ruiz-Lorenzo, Phys. Le#f0® 346
(1997).

19p. Butera and M. Comi, Phys. Rev. 5, 8212(1997. An esti-
mate forn may be obtained using=1.2385(5) and the relation
n=2—vylv.

20Results by Murray and Nickel, taken from Table 10 of Ref. 12.
Errors from uncertainty of* are not taken into account.

2IM. Hasenbusch and K. Pinn, J. Phys34, 6157(1998. In this
work, alsoa=0.1115(37) is obtained.



