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Critical exponents of the three-dimensional Ising universality class from finite-size scaling
with standard and improved actions
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We compute an improved action for the Ising universality class in three dimensions that has suppressed
leading corrections to scaling. It is obtained by tuning models with two coupling constants. We studied three
different models: the61 Ising model with nearest-neighbor and body diagonal interaction, the spin-1 model
with states 0,61, and nearest-neighbor interaction, andf4 theory on the lattice~Landau-Ginzburg model!. The
remarkable finite-size scaling properties of the suitably tuned spin-1 model are compared in detail with those
of the standard Ising model. Great care is taken to estimate the systematic errors from residual corrections to
scaling. Our best estimates for the critical exponents aren50.6298(5) andh50.0366(8), where the given
error estimates take into account the statistical and systematic uncertainties.@S0163-1829~99!06317-1#
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I. INTRODUCTION

In Monte Carlo simulations the system size is limited
the memory of the computer and by the available CPU tim
Therefore, in many instances, finite-size scaling2 is the key to
a precise determination of properties of statistical system
criticality. Finite-size scaling laws are affected by correctio
to scaling. These corrections cause systematic errors in
results for universal quantities one is interested in. With i
proving statistical accuracy of the Monte Carlo data it b
comes important to deal properly with systematic errors. O
way to proceed is to include corrections to scaling into the
Ansätzewhen analyzing the data. Another, more fundam
tal way is to remove corrections already from the system
be studied.

Renormalization group3 ~RG! offers ~at least in principle!
a way to achieve this goal. RG fixed points are free of c
rections to scaling. Such actions, however, contain in gen
an infinite number of couplings. In practical applications o
is forced to truncate the action to a finite number of term
which in fact is an uncontrolled approximation. For an a
plication of this strategy to asymptotically free models s
the work on perfect actions.4 Note that we follow Euclidean
field theory convention. In statistical mechanics langua
one would say Hamiltonian instead of action.

A different approach was pioneered by Symanzi5

Higher order terms are added to the action. By impos
certain conditions on observables leading corrections to s
ing are eliminated. While Symanzik formulated his meth
in the framework of perturbation theory, recently there ha
been attempts to apply this method in a nonperturbative,
numerical, setting.6

Our present approach is closer to this latter point of vi
than to the block-spin renormalization-group-inspired fram
work. The idea is to improve the scaling properties of Isi
models by moving to models with generalized actions a
tuning the coupling constants as to obtain reduced cor
tions to scaling.
PRB 590163-1829/99/59~17!/11471~13!/$15.00
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The removal of leading corrections to scaling~though not
in the context of finite-size scaling! was first proposed and
investigated by Fisher and co-workers.7 Reduction of correc-
tions to finite-size scaling was investigated by Blo¨te et al.,8

however, without a clear description of the principle a
method used to obtain the improved scaling properties.

In the present work, we are able to reduce the correcti
to scaling in various quantities dramatically. This is achiev
by tuning the two coupling constants of a generalized Is
model in the proper way. Especially the Binder cumulant a
its derivatives, and also the susceptibility, can be fitted
scaling laws without corrections to scaling terms, yieldi
very precise estimates of the three-dimensional~3D! Ising
critical exponents.

It was argued in Refs. 9 and 10 that the improvem
mentioned above does not lead to reduced error estimate
critical exponents. The authors claimed that our error e
mates are underestimated, since we do not take into acc
residual leading corrections to scaling. Such correctio
might well be present, because the parameters of our
proved model are computed numerically. However, this
not the full story as we shall explain in this paper. Our arg
ment is based on the fact that ratios of correction to sca
amplitudes are universal.

In this paper, we describe in detail our method, the n
merical results, and the fitting procedures. We confront
results from the improved action with high-precision da
from simulations of the standard Ising model, estimati
with a well-defined procedure systematic errors for both
tions.

The interested reader can access a more detailed ve
of this paper~including further tables of Monte Carlo and fi
results! in the internet.1

II. IMPROVING THE SCALING BEHAVIOR

A. The models

Usually, Monte Carlo studies of the Ising model are do
using what in field theory is called standard action,
11 471 ©1999 The American Physical Society



m

r-
em
he

a
si

m

rit
n
he
al

g

n-
e
c

r

u-
els

he
ith

.

is-
he

RG

a
ord-

e

y

f

ou-

11 472 PRB 59M. HASENBUSCH, K. PINN, AND S. VINTI
S52b(
^ i , j &

si sj . ~1!

Thesi take values61, and the spin-spin interaction is a su
over all nearest-neighbor pairs^ i , j &. A precise estimate for
the critical coupling was obtained in Ref. 11:bc
50.221 6544(3)(3).

In the following, we will introduce and study three diffe
ent models in the 3D Ising universality class, each of th
governed bytwo coupling constants. In all three cases t
Boltzmann factor is given by exp(2S).

Spin-1 model

S52b(
^ i , j &

si sj1D(
i

si
2 . ~2!

The si take values 0,61, and the spin-spin interaction is
sum over all nearest-neighbor pairs. This model was con
ered in Ref. 8. There,D was fixed to ln 2. The criticalb
corresponding to this particular value ofD was estimated in
Ref. 8 to bebc50.393 422 4(10).

Next-nearest neighbor (NNN) model

S52b1(
^ i , j &

si sj2b2(
[ i , j ]

si sj . ~3!

Thesi take values61, and the spin-spin interaction is a su
over all nearest-neighbor pairs^ i , j & and third-neighbor pairs
~body diagonals! @ i , j #. Blöte et al. fixed b2 /b150.4 and
obtainedb1,c50.128 003 6(5).

f4 model

S52b(
^ i , j &

f if j1(
i

f i
21l(

i
~f i

221!2. ~4!

The variablesf assume real values. In the limitl→` one
recovers the standard Ising model.

The three two-coupling models have a second-order c
cal line in the space spanned by the two coupling consta
We shall exploit the degree of freedom of moving on t
critical line to find models with reduced corrections to sc
ing.

B. Matching of phenomenological couplings

We study two independent phenomenological couplin
of the 3D Ising model, to be calledRi , i 51,2 in the follow-
ing. Both quantities are universal, i.e., at criticality their i
finite volume limit Ri* does not depend on details of th
action.R1 is the ratio of partition functions with antiperiodi
and periodic boundary conditions, respectively,

R15Za /Zp . ~5!

The lattices will always be cubical, with extensionL in each
of the three directions. Antiperiodic boundary conditions a
imposed only in one of the three lattice directions.R2 is the
Binder cumulant,
d-

i-
ts.

-

s

e

R25Q5
^m2&2

^m4&
. ~6!

Here,m denotes the magnetization per spin,

m5L23(
i

si . ~7!

TheRi areL dependent and, of course, functions of the co
pling parameters in the action. For the two-coupling mod
defined above, we define ‘‘flows’’~lines of constant physics!
„K1(L),K2(L)… by requiring that

Ri„L,K1~L !,K2~L !…5Ri* . ~8!

K1 and K2 represent the two coupling constants of t
model. In the next subsection we shall demonstrate that w
increasingL the flows of (K1 ,K2) converge towards a criti-
cal point that has no leading order corrections to scaling

C. RG analysis of the matching condition

The main features of the two-coupling models can be d
cussed in the framework of the renormalization group. T
scaling properties can be derived from the linearized
transformation at the fixed point.

We consider general actions with couplingsKa , where
a51,2, . . . . An RG transformation, realized, e.g., by
block-spin transformation, changes these couplings acc
ing to K→K8(K)5R(K). A fixed point K* is defined
through R(K* )5K* . The linearized transformation at th
fixed point can be represented by a matrix

Tab5
]Ka8

]Kb
U

K5K*
. ~9!

One introduces ‘‘normal coordinates’’~scaling fields! by

ui5ui~K !5(
a

w i ,a~Ka2Ka* !, ~10!

wherew i denotes theith ~left! eigenvector of the matrixT,

(
a

w i ,aTab5l iw i ,b . ~11!

The ui transform under RG transformations likeui→l iui .
In Ising-type models the leading eigenvalues are given b

l15b1/n, l25b2v, l35b2x, ~12!

wherex@v. Note thatx52 for the Gaussian model. From
leading ordere expansion one expects thatx is close to 2 at
the Wilson-Fisher fixed point.b denotes the scale factor o
the RG transformation.

We now assume that we have only two nonvanishing c
plings K1 and K2 in our action. Let us then write down
explicitly the condition for being critical (u150) and elimi-
nating the leading corrections to scaling (u250). The first
condition reads

w1,1~K12K1* !1w1,2~K22K2* !5k1,3, ~13!

whereas the conditionu250 translates to
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w2,1~K12K1* !1w2,2~K22K2* !5k2,3. ~14!

For i 51,2, thek i ,3 are given by

k i ,35 (
a>3

w i ,aKa* . ~15!

Let us now study how our matching procedure with t
two quantitiesR15Za /Zp and R25Q works. TheRk are
functions of the bare couplings and the lattice size

Rk5Rk~L,K1 ,K2!. ~16!

We express these quantities as functions of the scaling fi
defined above,

Rk~L,K1 ,K2!5Rk~L1/nu1
~1! ,L2vu2

~1!!. ~17!

Here, the upper index(1) indicates that the scaling field i
taken at the scale of the lattice spacing. The prefactor p
motes the scaling field to its value at the scaleL. Taylor
expansion of theRk around their fixed point values yields

Rk'Rk* 1r k,1L
1/nu1

~1!1r k,2L
2vu2

~1! . ~18!

The matching conditionsRk5Rk* are thus equivalent to

r k,1L
1/nu1

~1!1r k,2L
2vu2

~1!50, ~19!

for k51,2. We obtain, as desired, the solutionu1
(1)50 ~criti-

cality! andu2
(1)50 ~no leading order corrections!. Including

higher order corrections in the scalingansatz, governed by
u3 and exponentl3, one can convince oneself that fixingR1
andR2 to their fixed point values leads to convergence to
critical line u150 with corrections that decay likeL2x21/n.
Theu250 condition is approached with a much slower ra
namely likeL2x1v.

D. Computing the matching flows

For the three two-coupling models specified above, we
up a procedure to determine the flows of couplin
„K1(L),K2(L)… such that Eq.~8! was fulfilled. To this end,
we used estimates for R1* 50.5425(10) and R2*
50.6240(10), which were an outcome of a prelimina
analysis of data obtained using the standard action, cf.
IV B.

The matching couplings were searched for using a N
ton iteration, based on the inversion of a matrix made
from Monte Carlo estimates of the derivatives of theRi with
respect to the two couplings. Typically, three to four ite
tions were sufficient to find couplings such thatZa /Zp andQ
attained the prescribed values within the given statistical p
cision. The results are given in Table I.

A first look at the table reveals that both for the spin 1 a
the f4 model, the flow converges to a fixed point quickl
whereas it keeps moving strongly in the case of the N
model. A rough explanation of this could be the followin
In order to remove the leading corrections to scaling, one
to move efficiently between the Gaussian model~equivalent
to the f4 model with vanishingl) and the Wilson-Fisher
fixed point. Moving between these two fixed points is mo
efficiently done using af4-type coupling, which is implicitly
present also in the spin-1 model. The NNN model seem
ds
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need renormalization to a larger scale in order to come c
to the flow line connecting the Gaussian with the Wilso
Fisher fixed point.

Plotting the second coupling vs the first one, one fin
that with very good precision the critical line can be appro
mated by a straight line

K2~L !5a11a2K1~L !, ~20!

with a1522.04, 0.1253, 8.29, anda2526.95, 20.5804,
219.17 for the spin-1, the NNN and thef4 model, respec-
tively. For the spin 1 and the NNN model, our estimates
the critical lines can be compared with results by Blo¨te et al.
They are in good agreement. Fits ofK1(L) with a power law
K1(L)5c11c2L2a yielded good fits in all cases, with expo
nents of order 3 in the cases of spin-1 andf4 models. Note
that this exponent is much larger thanx2v, which is ex-
pected to be around 1. A possible explanation for this is t
the amplitudes in front of the correction term with an exp

TABLE I. Flows of couplings defined such that for all lattic
sizes the two quantitiesR15Za /Zp andR25Q match~to the given
statistical precision! with their fixed point valuesR1* 50.5425(10)
andR2* 50.6240(10).

Spin-1 model
L b D Za /Zp Q

3 0.35737 0.4401 0.54201~30! 0.62447~21!

4 0.37250 0.5510 0.54242~25! 0.62347~18!

5 0.37794 0.5883 0.54292~19! 0.62421~15!

6 0.38210 0.6169 0.54221~49! 0.62426~35!

7 0.38419 0.6311 0.54326~30! 0.62366~22!

8 0.38320 0.6241 0.54291~37! 0.62430~27!

9 0.38320 0.6241 0.54259~60! 0.62403~44!

10 0.38320 0.6241 0.54288~57! 0.62431~42!

NNN model
L b1 b2 Za /Zp Q

4 0.12266 0.05406 0.5429~2! 0.6238~2!

5 0.12928 0.05028 0.5427~1! 0.6241~2!

6 0.13431 0.04734 0.5425~1! 0.62441~8!

7 0.13800 0.04518 0.5425~3! 0.6242~2!

8 0.14069 0.04361 0.5426~2! 0.6243~1!

9 0.14292 0.04231 0.5430~2! 0.6232~1!

10 0.14406 0.04165 0.5425~2! 0.6242~2!

11 0.14590 0.04059 0.5429~1! 0.62385~8!

12 0.14724 0.03981 0.5426~1! 0.6235~1!

13 0.14808 0.03933 0.5431~1! 0.6236~1!

f4 model
L b l Za /Zp Q

3 0.35303 1.5248 0.5420~3! 0.6244~2!

4 0.36338 1.3282 0.5425~3! 0.6243~2!

5 0.36908 1.2188 0.5425~2! 0.6241~1!

6 0.37165 1.1689 0.5427~2! 0.6241~1!

7 0.37270 1.1481 0.5424~2! 0.6243~1!

8 0.37308 1.1410 0.5421~1! 0.6245~1!

9 0.37273 1.1479 0.5416~3! 0.6247~2!
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nent x'2 are of negligible size, while corrections with a
exponentx'4 have a very large amplitude. For the NN
model,a is of order 1.

The slow convergence of the NNN flow motivated o
decision to discard this model from further investigation. T
behavior of thef4 and spin-1 models appears to be ve
similar. Since the spin-1 model is faster to simulate than
f4 model we concentrate in the following on the spin
model, and leave thef4 model for later study.

Note that our result for the optimall'1.145 of thef4

model is consistent with the observation in Ref. 10 that
optimal l should be close to one.

E. Identification of the u250 line

Next, we determined an approximation of theu250
manifold. This was done by looking at the derivatives of t
Ri at criticality. From the RG analysis of Sec. II C one infe

]Rk

]Ka
5(

i

]Rk

]ui

]ui

]Ka
5r k,1L

1/nw1,a1r k,2L
2vw2,a . ~21!

The left-hand side of the equation can be determined
Monte Carlo simulation and will therefore be assumed
known. Taking into account that without loss of general
one can setw i ,1[1, the equations can be solved~or fitted! if
the left-hand side is known at least for two different latti
sizes. We performed Monte Carlo simulations at (b,D)
5(0.3832, 0.6241) for lattice sizes 10, 12, 16, 20, and
Fixing the exponentsn50.63 andv50.81 ~Ref. 12! we ob-
tained that the scaling fieldf2,2 should be approximately
21/3. This result is quite stable under small variations of
fixed parametersn andv.

Plugging this into Eq.~14!, one obtains that 3b2D
should be kept constant. We used our simulation po
~0.3832, 0.6241! to fix this constant. In conclusion, on
should approach criticality by varyingb while adjustingD
according to

D53~b20.3832!10.6241. ~22!

Of course, a precise estimate ofbc along this line still has to
be determined. This will be discussed in the next section

The fit result forw1,2 can be used to perform a consisten
check. Ignoring higher couplings, one should haveb
2b* )1w1,2(D2D* )50. Solving forD and plugging in the
values b* 50.3832, D* 50.6241, andw1,2520.1439 one
obtains with good precision the critical-line approximati
D522.0416.95b. We remark that errors in the precise e
timation of theu250 line affect results for the critical expo
nents only weakly. E.g., the effect on the exponentn is of
orderL21/n2v.

III. SIMULATION PARAMETERS AND STATISTICS

A. Standard action

Monte Carlo simulations of the 3D Ising model with sta
dard action were performed atb50.221 654 5, which is a
good approximation of the critical coupling.8,11

For cubical lattices of sizeL52,3,4, . . . ,19 weperformed
simulations with the multispin demon update.13,14 The num-
ber of measurements ranges from 6.43109 for L52 to 1.4
e

e

e

y
s

.

e

t

-

3109 for L519. The update algorithm is local. Hence o
expects a dynamical critical exponentz'2. However, due to
the multispin coding implementation a single sweep can
done substantially faster than with the cluster algorith
Therefore, one expects a better performance for the de
update on such small lattices.

For a subset of the smaller lattices, and for bigger latti
up to size 128, cluster update was performed, using a
variant of the algorithm, thewall-cluster algorithm. Note
that there is quite a lot of freedom in the selection of cluste
which are flipped during one update step. In the wall-clus
algorithm, one flips all clusters that intersect with a giv
lattice plane. Sequentially one takes lattice planes in 122,
123, and 223 direction. The position is chosen randoml
Let us call the procedure to generate and flip all the clus
connected to the selected plane a wall-cluster update s
The motivation for choosing this type of update was that
construction of all clusters that have elements in a latt
plane is needed for the measurement ofZa /Zp anyway.

In order to test the performance of the new algorithm
performed runs on lattices of sizeL56 up toL596 with at
least 300 000 measurements for each lattice size. The a
age sum of the sizes of the clusters per volume that
flipped in one step behaves asS/V5CLx. Fitting our data to
this law, discarding the results fromL,24, yields S/V
51.008(4)L20.527(1) (x2/dof50.4). The integrated autocor
relation times of the energy, the susceptibility, and of t
Za /Zp measurements~see below! were also fitted to power
laws, t5cLz, using data from all lattice sizes. Only fortb

the L56 data were discarded. The results arec51.04(2),
1.30~3!, 0.60~2!, and z50.035(7), 20.044(7), 20.028(8)
for the energy, the magnetic susceptibility, and the bound
variable, respectively.

These numbers should be compared with the correspo
ing ones from the single-cluster algorithm.15 Here the inte-
grated autocorrelation times increase fromt51.36(2) tot
51.97(5) for the energy and fromt51.01(2) to t
51.20(3) for the magnetic susceptibility when the latti
size is increased fromL516 to L564. Theset ’s are fitted
by tE}L0.28(2) andtx}L0.14(2).

Note that we obtain for the wall clustert51.17(2) for
L516 and t51.26(2) for L564 for the energy andt
51.19(2) forL516 andt51.10(2) forL564 for the mag-
netic susceptibility.

We conclude that the exponentsz of the wall-cluster al-
gorithm are smaller than those of the single-cluster al
rithm. For the lattice sizes in question, however, the act
t ’s are of similar size.

For the measurements ofZa /Zp we employed a variant o
the boundary flip algorithm,16 where the cluster is not flipped
but instead used to construct an observable.

We simulated the lattice sizesL54, 6, 8, 10, 12, 14, 16,
20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, and 128. T
number of measurements ranges from 33109 for L54 to
63105 for L5128. The total CPU consumption of the sta
dard action runs was about 1.1 years on a 200 MHz Pent
Pro PC for the wall-cluster simulations. All simulations wi
the demon algorithm for the standard Ising model took ab
half a year on a 200 MHz Pentium Pro PC.
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FIG. 1. R25Q as function of lattice size for
both models. The upper data~stars! are from the
standard action. The bars~flat data! belong to the
improved action. Crosses are used to show st
dard action results corrected with the leading co
rection to scaling contribution. The final estima
obtained from the fit analysis is plotted by dotte
lines.
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B. Improved action

A first estimate forbc was obtained by locating the cros
ings of Ri(L) with Ri(2 L). We used lattices of sizeL
54,8,16,32 and obtainedbc50.383 245(10), withD given
by Eq. ~22!, i.e., Dc50.624 235. Note that this was still
preliminary estimate to be refined later.

Monte Carlo simulations were then performed atb
50.383 245, fixingD according to Eq.~22!. We simulated
on cubic lattices with linear extensionL ranging from 4 to
56, using the single-cluster algorithm in alternation with
Metropolis procedure to maintain ergodicity. Two measu
ments were separated by three single-cluster updates an
Metropolis sweep. As for the standard action we used c
ters built with the boundary flip algorithm to obtain estimat
for Za /Zp . After each growth of the corresponding cluste
the work done was also exploited to perform one wall-clus
step as described for the standard action above. The num
of measurements ranges from 63107 for L56 to 23106 for
L556. The runs for the determination ofbc took about three
months of CPU on Pentium 166-MMX PCs, while the fin
production runs consumed a total of one year CPU on
same type of PC.

IV. ANALYZING THE DATA

Our aim is to test the improvement which can be reac
in the estimates for the phenomenological couplingsRi and
the critical exponents using the improved spin-1 action
stead of the standard action.

We shall present results obtained from fitting our data
various finite-size scaling laws. It will turn out that the es
mates obtained from the standard action are always com
ible with those extracted from the improved action.

To give a first impression of the degree of improveme
we plot various quantities as a function ofL for the two
actions. In Fig. 1, the Binder cumulantsQ are plotted for the
two actions, while in Fig. 2 the critical ratiosZa /Zp are
given. In both figures, the final values obtained from our
analysis are also given, together with error lines indicat
the range of the estimated statistical plus the systematic
ror. Clearly the improved samples are much more stable
reach their asymptotic regime for very small lattice siz
while the standard samples hardly get there on lattice size
-
one
s-

,
r

ber

l
e

d

-

o

at-

t

t
g
r-

nd
,
of

order 102. In Fig. 1 we have in addition plotted the standa
action result with the contribution of the leading order co
rection to scaling subtracted, namelyQ20.105L20.81.

The improved action data outperform the corrected st
dard action data. This is due to the fact that our improvem
procedure not only eliminates correction terms of the fo
L2v, but also higher order corrections of the fromL2nv, n
integer, which are generated by the same scaling field
particular, corrections of the typeL22v should be present in
the observables of the standard Ising model. Interestin
such corrections have not been taken into account, e.g
the analysis by Blo¨te et al.,8 in spite of the fact that 2v is
smaller than other exponents taken into account in the
Ansätze.

Because of their importance in extracting the critical e
ponentsn andh, we plot also the derivatives ofQ and the
susceptibilitiesx, see Fig. 3. In order to check for a residu
L dependence and to be able to compare the samples o
two models, the data have been rescaled. TheQ derivatives
have been multiplied by a factorL21/0.63 and normalized to
their value atL556 andL5128 for the improved and the
standard action, respectively. Anticipating some resu
which will be presented below, thex ’s have been trans
formed by x→(x2c) Lh22d21, wherec, h, and d are fit
parameters.

The authors of Refs. 9 and 10 claim that the appar

FIG. 2. R15Za /Zp as function of lattice size for both models
Standard action: crosses, improved action: bars. The final estim
obtained from our fit analysis is also plotted with an error interv
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improvement in the scaling behavior that we demonstra
with our plots does not lead to reduced errors in final res
for critical exponents. Taking the data of the improv
model by itself they are in fact right. Since the couplin
parameters of the model are determined numerically one
to expect some small residualL2v corrections, which lead to
systematic errors when not taken into account in the fitAn-
sätze.

However, we shall demonstrate that it is well possible
estimate the effects of residual corrections to scaling i
systematic way. We shall exploit the fact that ratios of c
rection to scaling amplitudes are universal. Given the par
etrization

Ri~L !5Ri* 1r i L2v1•••, ~23!

and

dRi

db
5ciL

1/n~11biL
2v1••• !, ~24!

the ratiosr i /r j andbi /r j do not depend on the details of th
models chosen.17 In particular, they are the same for th
standard and improved action. These ratios can be obta
from the analysis of the standard Ising model data and t
used in order to estimate the residual correction to sca
amplitudes in the improved action results.

A. R2 at fixed R1

Analyzing the standard model data, it turns out that
Binder cumulantQ evaluated at a fixed value ofZa /Zp is the
optimal quantity to detect corrections to scaling.~Doing

FIG. 3. Rescaledb derivatives ofQ and rescaledx at fixedQ as
function of lattice size for both models~see text!.
d
ts
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o
a
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ed
n
g

e

finite-size scaling with quantities taken atb values where a
phenomenological coupling is kept to a fixed value is
spired by Ref. 18.! Optimal here means that the relative st
tistical error of the leading correction to scaling amplitude
the smallest. We computedQ at Za /Zp50.5425. This means
that first the functionb(L) is determined, which gives fo
each lattice sizeL the value ofb such thatZa /Zp equals
0.5425. ThenQ is computed for theseb(L). In the following
we useQ̄ to denote this quantity. In principleZa /Zp could
be fixed to any value. For practical reasons, however, i
preferable to take a good approximation of (Za /Zp)* . To
leading orderQ̄ should behave as

Q̄5Q* 1rL 2v1•••. ~25!

We first fitted the data obtained with the improved actio
using as inputv50.81 from Ref. 12. The fits were done o
a sequence of data sets obtained by discarding data wiL
,Lmin . We obtained Q* 50.623 69(12), 0.623 62~14!,
0.623 71~16! andr 50.0040(11), 0.0047~13!, 0.0036~16! for
Lmin58, 10, and 12, respectively. All fits have ax2/dof
close to 1.

There is still a small amplitude for corrections to scali
visible. The value ofD where the leading order correction
vanish exactly should be slightly larger than the one used
this study.

In order to quantify the improvement that is achieved
have to compare with the data from the standard Ising mo
To obtain a consistent result forQ* from small lattices we
had to include a subleading correction to scaling te
r 8L22v in the Ansatz.

We obtained Q* 50.623 26(12), 0.623 43~14!,
0.623 29~18!, r 50.1131(19), 0.1092~27!, 0.1128~43! and
r 850.0825(67), 0.102~12!, 0.081~24! for Lmin58, 10, and
12, respectively. Starting fromLmin58 the fits have a smal
x2/dof. The result forQ* obtained fromLmin510 is consis-
tent with the results from the improved action. There is
clear signal for the leading order corrections to scaling. T
corresponding amplitude is stable whenLmin is varied. Also
subleading corrections are well visible.

From the comparison of the two models we conclude t
leading corrections to scaling in the improved model are
duced by a factor of about 0.11/0.004528. In order to com-
pute systematic errors due to neglectingL2v corrections in
the analysis of the data obtained from the improved mo
we assume~taking into account the statistical errors in th
amplitudes! that the leading corrections to scaling are r
duced at least by a factor of 22.

Using the universality of ratios of corrections to scalin
amplitudes this reduction has to be the same for all qua
ties. Hence, we can take the correction amplitudes obta
from the standard action and divide it by 22 to obtain
bound on the leading order corrections that are to be
pected in the case of the improved model.

B. Fitting R1 and R2

We first fitted theRi in order to obtain estimates for th
phenomenological couplingsRi* , and, in addition, for the
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critical couplingbc . Here, and in the following, we use a
an estimate of the leading correction to scaling exponenv
50.81(2) from Ref. 12.

1. Standard action, fit Ri

In the case of the standard action we fitted our data w
the Ansatz

Ri~L,bMC!5Ri* 1
dRi

db
~L,bMC!Db1r iL

2v. ~26!

In addition to a correction to scaling term of the formr iL
2v,

we included a term that~to first order! corrects for deviations
from criticality. Db is the difference between the criticalbc
and b50.221 654 5. FittingR1 to this law, we fixedv
50.81. The results for the fit parameters as function ofLmin
are given in Table II. The procedure used to compute
estimates of the systematic errors~curly brackets! will be
discussed later. In the table we mark with an asterisk
value of L min where the systematic error estimate becom
equal to or smaller than the statistical estimate.

The fits are reasonably stable. Redoing the fits withv
50.78 andv50.83, we found that the dependence on
choice ofv is negligible compared to the statistical erro
and the systematic errors quoted in Table II.

Next, we applied the same analysis to the cumulantR2.
The correction to scaling amplitude ofR2 comes out consid-
erably larger than that ofR1, namelyr 2'0.1. We made also
fits with v as free parameter. E.g., forLmin58 we obtain
v50.980(9) withx2/dof50.89. This value ofv is signifi-
cantly larger than 0.81, the latter value being presently

TABLE II. Fitting R1 with Eq. ~26!, fixing v50.81.

Standard action
Lmin R1* bc r 1 x2/dof

10 0.54275~14!$49% 0.22165446~16!$21% 0.0347~10! 1.81
14 0.54304~23!$44% 0.22165431~19!$15%* 0.0318~22! 1.88
16 0.54334~26!$27%* 0.22165417~18!$11% 0.0281~26! 1.69
20 0.54269~40!$24% 0.22165443~21!$7% 0.0369~50! 1.43
h

e

e
s

e

c-

cepted by us as a reliable estimate. It seems that the fit
rameter compensates for the lack of subleading correc
terms in theansatz.

We also tried to fitR1 and R2 together~forcing them to
take the same value ofbc and the same values for the exp
nents!. For sake of simplicity we assumed in these fits th
R1 andR2 are statistically uncorrelated. We usedv as a free
parameter. ForR2 we added a subleading correction ter
r 28L

2x. We checked the two possibilities to either fix th
exponentx to some value or subject it to fitting in order t
assume some effective value. Indeed, beyond the lea
correction to scaling exponentv, there are several exponen
that could enter the game, like for instance 2v, x'2, or
1/n1v. In Table III we present the fit results.

Notice that the amplitude of the leading correction to sc
ing is much smaller forR1, as expected, and forR2 also the
amplitude of the next-to-leading correction to scalingr 28 is
significantly different from zero. The effective next-to
leading exponent is of order two, and actually compati
with that appearing in the improved case.

The errors of this fit are smaller than the~safer! errors
obtained from the fits with fixedv. However, as a conse
quence of the limited number of lattice sizes available, the
with many parameters cannot be checked for stability w
respect to varyingLmin .

Finally, we tried to estimate the systematic errors of t
fits discussed in the first part of this section that are cau
by missing subleading correction to scaling terms. For t
purpose we used the results obtained above. Table III sh
that the value ofr 28 does not depend strongly onx. The same
holds forr 18 , which is estimated to be of order 0.02 obtain
from a four-parameter fit withv50.81, x52.3 fixed.

We fitted separately~as in the first part of this section! to
Eq. ~26! the quantities defined by

R̃i~L !5Ri~L !2r i8L
2x, ~27!

whereRi(L) are the original~Monte Carlo! data, andr i8 and
x have fixed values determined by the fits discussed ab
namelyr 1850.02, r 2850.184, andx52.3. Roughly speaking
TABLE III. Fitting together R1 and R2 for Lmin58. For R1 we used Eq.~26!, while for R2 also an
effective next-to-leading correctionr 28 L2x was added.

Standard action
x R1* R2* bc v

1.62 0.54120~19! 0.62295~25! 0.22165516~11! 0.670~37!

2.0 0.54256~15! 0.62261~25! 0.22165443~11! 0.772~31!

2.4 0.54305~13! 0.62325~24! 0.22165437~11! 0.865~27!

2.30~41! 0.54285~31! 0.62261~29! 0.22165428~14! 0.800~58!

Final 0.54334~26!$27% 0.62292~31!$21% 0.22165431~19!$15%

x r1 r 2 r 28 x2/dof

1.62 0.0324~20! 0.058~11! 0.168~19! 4.40
2.0 0.0330~19! 0.0907~87! 0.152~25! 1.60
2.4 0.0373~17! 0.1151~72! 0.136~36! 1.31
2.30~41! 0.0334~28! 0.100~32! 0.184~25! 1.63
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the R̃i(L) are the original data after subtraction of an es
mate of the subleading correction to scaling contaminatio

The absolute values of the differences between theRi*
andbc obtained in this way and those obtained from fitti
Ri(L) with the same equation are the estimates of the s
tematic errors given~inside curly brackets! in Table II.

In summary, from Table II~and from fit results not pre
sented in a table! we obtain the following final estimate
~labeled with a * in thetable!

R1* 50.543 34~26!$27%,

standard action: R2* 50.622 92~31!$21%

bc50.221 654 31~19!$15% from R1 ,

bc50.221 654 05~23!$25% from R2 .

2. Improved action, fit Ri

We fitted the data to

Ri~L,bMC!5Ri* 1
dRi

db
~L,bMC!Db. ~28!

Again, we included a term which corrects for deviatio
from criticality. bMC is our simulation coupling 0.383 245
The fit parameters areRi* and bc , entering throughDb
5bMC2bc . We first fitted separatelyR1 andR2 in order to
compare their scaling behavior. The results are reporte
Table IV.

TABLE IV. Fitting separately theRi with Eq. ~28!. The num-
bers in square and curly brackets are estimates of the system
errors~see text!.

Improved action
Lmin R1* bc x2/dof

8 0.54213~8!@24#$66% 0.3832470~8!@8#$36% 1.78
10 0.54240~10!@19#$32% 0.3832453~9!@5#$15% 0.79
12 0.54251~11!@17#$21% 0.3832447~9!@4#$9%* 0.49
16 0.54260~15!@16#$15%* 0.3832442~11!@4#$5% 0.46
20 0.54252~25!@13#$10% 0.3832446~14!@2#$3% 0.55

Lmin R2* bc x2/dof

8 0.62447~6!@76#$30% 0.3832499~10!@46#$29% 2.22
10 0.62429~7!@62#$15% 0.3832479~12!@31#$12% 1.39
12 0.62414~8!@57#$11% 0.3832465~11!@26#$9% 0.42
16 0.62405~12!@50#$7% 0.3832457~14!@20#$5% 0.31
20 0.62393~18!@43#$4% 0.3832447~18!@17#$3%* 0.28
-
.

s-

in

For estimates obtained from the improved action we gi
in addition to the usual error bars, for each fit parameter t
systematic errors. They should be understood as estimat
the uncertainty due to corrections to scaling terms. The fi
one, in square brackets, estimates the error made neglect
leading correction scaling term. The second one, in cu
brackets, estimates the error induced by neglecting subl
ing corrections to scaling. The error estimates were obtai
in a well defined way to be described below.

We also fitted all theRi data together with three param
eters (R1* , R2* , andbc). The results are presented in Tab
V.

Let us look at the results from a simultaneous fit ofR1
andR2 with the law

Ri~L,bMC!5Ri* 1
dRi

db
~L,bMC!Db1r iL

2x. ~29!

x represents an effective exponent. Enforcingx5v50.81,
we observed thatx2/dof is a little larger than for the othe
values ofx. The correction amplitudesr i are very small. The
main problem of this fit is that the ratior 1 /r 2 is completely
inconsistent with that found for the standard Ising actio
Leaving x free, it tends to choose a value around 2.5. T
results are consistent with those obtained from fits~with a
larger Lmin) without corrections to scaling. Thex2/dof val-
ues do not allow to discriminate between the different valu
of the exponent. Obtaining estimates from a~relatively! large
lattice limit of fits without correction to scaling is, in thi
case, a safer procedure compared to a multiparameter fi
all lattice sizes.

Finally we estimate systematic errors due to neglect
the leading correction to scaling term as well as sublead
correction to scaling terms. For the estimates of errors du
leading corrections to scaling we used the following pro
dure~analogously used also in the following sections!. From
Table II we know with good precision the leading correcti
amplitudesr i

(S) for the standard action. From the universali
argument discussed in the introductory part of Sec. IV,
assume that the corresponding amplitudes for the impro
action are given byr i

(S)/22. We define the tilde quantities

R̃i~L !5Ri~L !2
r i

~S!

22
L2v. ~30!

Fitting R̃i andRi with Eq. ~28! and taking the absolute valu
of the differences of the outcome parameters gives the e
mates reported in square brackets.

The information from the fits according to Eq.~29! with
the extra exponentx is used~as in the previous section! to

tic
TABLE V. Fitting simultaneously theRi with Eq. ~28!.

Improved action
Lmin R1* R2* bc x2/dof

8 0.54206~7!@11#$65% 0.62441~5!@64#$32% 0.3832481~6!@13#$34% 2.19
10 0.54231~9!@7#$32% 0.62421~6!@51#$16% 0.3832463~7!@8#$14% 1.21
12 0.54245~11!@7#$22% 0.62408~7!@46#$11% 0.3832453~8!@6#$9% 0.51
16 0.54254~14!@6#$14%* 0.62399~8!@40#$7% 0.3832448~9!@6#$5%* 0.42
20 0.54252~22!@4#$9% 0.62393~13!@35#$5% 0.3832446~11!@4#$3% 0.41
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estimate in a systematic way the effect of ignoring the c
responding corrections. We define

R̃i~L !5Ri~L !2r iL
2x, ~31!

wherex and r i are parameters obtained by fitting with E
~29!, namelyr 1520.15, r 250.07, andx52.46. Repeating
the steps followed above, one obtains the estimates give
curly brackets.

Using the fit estimates marked with an asterisk, i.e., wh
statistical and systematic error estimates are of the sam
der, we obtain our final estimates

R1* 50.542 54~14!@6#$14%

improved action: R2* 50.623 93~13!@35#$5%

bc50.383 244 8~9!@6#$5%.

C. Fitting the derivatives of the Ri

1. Standard action, fit dRi /db

We first fitted thedRi /db without correction to scaling,

]Ri

]b
5aiL

1/n. ~32!

The corresponding results are summarized in Table VI.
expected, both quantities suffer from strong corrections
scaling. Let us first estimate the systematic error due to
leading correction. We made fits with theansatz

]Ri

]b
5aiL

1/n~11biL
2v!. ~33!

Then, we defined

]̃Ri

]b
5

]Ri

]b
2aibiL

1/n2v, ~34!

and finally we fitted the tilde quantities to Eq.~32!, fixing
v50.81. The differences in then exponents are given in th
square brackets of Table VI. The leading amplitude corr
tions bi can be found in Table VII.

TABLE VI. Fitting dR1 /db ~top! and dR2 /db ~bottom! with
Eq. ~32!.

Standard action
Lmin a1 n x2/dof

10 21.4723~7! 0.62981~7!@102# 5.38
20 21.4798~26! 0.63045~21!@85# 1.00
28 21.4747~36! 0.63008~27!@69# 0.88
40 21.4757~79! 0.63014~54!@55#* 0.96
48 21.4699~13! 0.62977~88!@48# 1.09

Lmin a2 n x2/dof

14 0.87050~71! 0.6331~1!@31# 3.35
24 0.8592~29! 0.6315~4!@18# 0.66
40 0.8501~76! 0.6305~9!@13# 0.26
48 0.850~12! 0.6304~13!@11#* 0.31
56 0.848~14! 0.6303~15!@11# 0.39
-

in

e
or-

s
o
e

-

The derivative ofR2 suffers from stronger systematic e
fects than theR1 derivative. Therefore, we include thev
correction into the fitansatz@namely, we fit with Eq.~33!#
and compute the systematic error made neglecting fur
subleading corrections to scaling. The fit results are given
Table VII and in Fig. 4, where also then exponents obtained
from the fit with Eq.~32! are reported for comparison.

In the table we have included as a third error bar~in ^ &
brackets! estimates of the systematic effect from varyingv
from 0.77 through 0.85. This covers a 2-s interval around
thev value 0.81~2!. Again, the systematic error estimates
curly brackets take into account the omission of next-
leading corrections to scaling. We fitted with theansatz

]Ri

]b
5aiL

1/n~11biL
2v1bi8L

2x!, ~35!

and defined the tilde quantities subtracting a contribut
a2b28L

1/n22, with an estimateb28520.1.
We quote as our final estimates

standard action:n50.630 14~54!@55# ~ from Table VI!

n50.629 73~43!$46%^14& ~ from Table VII!.

2. Improved action, fit­Ri /­b

We fitted our data for the derivatives of theRi with re-
spect tob, according to Eq.~32!. The results are given in
Table VIII. Then estimates of this table are plotted in Fig.

Obviously, the derivatives of the cumulant scale bet
than those ofZa /Zp : while the cumulant’s derivative gives
smallx2/dof already forLmin56, for theR1’s derivative one
needsLmin518 in order to have a smallx2/dof and to reach

TABLE VII. Fitting dR2 /db with Eq. ~33! and fixedv50.81.

Standard action
Lmin a2 n b2 x2/dof

8 0.8418~20! 0.62999(25)$93%^20& 0.1103~59! 0.48
10 0.8396~29! 0.62973(36)$61%^17& 0.1181~95! 0.47
12 0.8395~36! 0.62973(43)$46%^14&* 0.119~13! 0.52
14 0.8333~48! 0.62908(55)$37%^16& 0.147~19! 0.35

FIG. 4. n resulting from fittingdR2 /db, standard action, with-
out correction to scaling~bars! and withv50.81 ~diamonds!.
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stability of the result. However, also in this case the lead
correction to scaling is strongly suppressed. Note that
range of lattice sizes considered here is relatively small:
difference in scaling behavior is actually due to a bigg
amplitude of the next-to-leading correction to scaling, as d
cussed below.

The systematic error estimates due to neglecting lead
order correction to scaling are given, as before, in squ
brackets. We defined tilde quantities by

]̃Ri

]b
5

]Ri

]b
2ai

bi
~S!

22
L1/n20.81, ~36!

where theai are given in Table VIII and the leading corre
tion amplitudesbi

(S) of the standard action are taken fro
Table VII. The error estimates are the absolute difference
the n ’s obtained by fitting the tilde and the original Mon
Carlo data, respectively, to Eq.~32!.

The systematic error estimates due to subleading cor
tions are given in curly brackets.

To estimate them, we used a fitansatz

]Ri

]b
5aiL

1/n~11biL
2x!, ~37!

TABLE VIII. Fit of ]R1 /]b ~top! and ]R2 /]b ~bottom! with
Eq. ~32!.

Improved action
Lmin a1 n x2/dof

10 21.1419~12! 0.62850~14!@32#$152% 3.08
16 21.1487~23! 0.62924~25!@27#$74% 0.90
20 21.1543~39! 0.62979~39!@26#$43% 0.32
24 21.1552~51! 0.62988~51!@32#$51%* 0.40

Lmin a2 n x2/dof

6 0.66160~42! 0.62969~11!@22#$41% 0.79
8 0.66247~63! 0.62987~14!@18#$26% 0.57

10 0.6622~11! 0.62982~22!@16#$15%* 0.60
12 0.6626~12! 0.62989~24!@24#$11% 0.64

FIG. 5. Fit results forn from fitting ]Ri /]b, improved action,
with Eq. ~32!. The data with better scaling behavior belong
]R2 /]b.
g
e
e
r
-

g
re

of

c-

and then defined the tilde quantities by subtract
aibiL

1/n22 from the Monte Carlo data.
We observed that including very small lattice sizes, t

R1 derivative’s deviations from Eq.~32! are strong enough to
allow for a fit with a free effective exponent, which turns o
to be 2.33~28!, i.e., again of order 2. Again we find tha
enforcing x50.81 does not prevent the fit from giving a
acceptablex2. We have to rely on the universality of th
ratios of correction amplitudes, as discussed before, to
out this fit.

In Fig. 6 we plot the fits of]R1 /]b using Eq.~37! for
various values ofLmin with fixed exponentx52.4, together
with the fits without correction to scaling of Table VIII. Thi
is sufficient to demonstrate the nice scaling behavior of
derivative ofR1 once an effective next-to-leading correctio
to scaling exponent of order 2 has been included in the

In the case of]R2 /]b the corrections are too small t
allow for a free effective exponent fit. Therefore we fix thex
values between 2.0 and 2.8, as suggested by the fits
]R1 /]b. Then results are nicely stable within these boun
and consistent with the values obtained without scaling c
rections.

These fits show clearly that the better scaling behavio
the Binder cumulant derivative is due to a smaller amplitu
of the next-to-leading corrections to scaling compared to t
of the Za /Zp derivative.

Finally, we checked also for the systematic depende
on the location ofbc for R28 , which is giving the most ac-
curate result. We repeated the fits for theQ derivative on
data from five shiftedb values ranging from 0.383 243 t
0.383 247 in steps of 0.000 001, covering thus two stand
deviations around ourbc estimate. The effect of this varia
tion is negligible compared with the errors of Table VIII.

We thus quote as our final estimate forn

improved action:n50.629 88~51!@32#$51% from ]R1 /]b,

n50.629 82~22!@16#$15% from ]R2 /]b.

The final estimate ofn appears with dotted error lines i
Figs. 5 and 6. The statistical and systematic errors w
added up.

FIG. 6. Fits of]R1 /]b, improved action, with Eq.~32! ~bars!
and with Eq.~37! andx52.4 fixed~diamonds!.
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D. Fitting the susceptibility

The magnetic susceptibility is defined through

x5L3^m2&, ~38!

with m being the normalized magnetization.

1. Standard action, fitx

It turns out that the estimate ofh from fits of the suscep-
tibility x taken atbc depends quite strongly on the value
bc . Taking the susceptibility at a fixed value of a pheno
enological coupling removes this problem, as discussed
Ref. 18. One defines a functionb(L) by requiring that for
anyL the relationRi@L,b(L)#5const holds. The susceptibi
ity is then computed atb(L). We performed this analysis fo
the two cases of fixingQ50.6240 and fixing Za /Zp
50.5425. Note that in principle any value forQ andZa /Zp
that can be taken by the phenomenological couplings wo
work. However, for practical purposes it is the best to ta
good approximations ofRi* .

We fitted our data to theansatz

x@L,bc~L !#5c1dL22h~11 f L2v!, ~39!

wherec is the leading analytic part ofx, and f L2v gives
leading order corrections. In both cases an acceptablex2/dof
is reached atLmin510. For Lmin510 we obtainedc
520.515(83), d51.5600(44), h50.03 751(62), andf
520.585(12) with Q50.6240 fixed andc20.78(14), d
51.553(6), h50.0366(8), and f 520.130(19) with Za /
Zp50.5425 fixed.

It is interesting to see that the correction to scaling am
tude f is considerably smaller in the case of fixedZa /Zp .
Therefore it seems reasonable to assume that alsoL22v cor-
rections are smaller for fixedZa /Zp . We thus takeh from
fixed Za /Zp at Lmin510 as our final result. As estimate o
the systematic error we quote the difference to the fixedQ
result atLmin510

standard action: h50.0366~8!$9%.

We have checked that the uncertainty in the estimate ov
leads to negligible errors inh. We also performed fits of the
magnetic susceptibility without a constant term in theansatz.
It is reassuring that the results forh are consistent with thos
found above, whenLmin520 is taken.

2. Improved action, fitx

Also in the case of the improved action we computed
magnetic susceptibility at fixedQ50.6240 and at fixed
Za /Zp50.5425. We fitted our data with theansatz

x@L,b~L !#5c1dL22h. ~40!

Here, we have skipped the termL2v.
From the Ising model with the standard action we kn

that the amplitude of theL2v correction is much smaller fo
x at fixedZa /Zp than at fixedQ ~see below!. Therefore, the
comparison of both results gives a nice check of the syst
atic errors introduced by the omission of aL2v term in the
-
in

ld
e

i-

e

-

fit ansatz. Since the corrections are smaller in the case
fixed Za /Zp , we quote the corresponding result as our fin
estimate.

The systematic error due to the omission of aL2v term in
the ansatzis computed in the same way as in the previo
sections. Namely, we defined the tilde quantities as

x̃~L !5x~L !2d
f ~S!

22
L22h20.81, ~41!

where f (S) are taken from the fits with Eq.~39!. Then we
compare the results obtained fitting thex̃ with Eq. ~40! and
thex, both at fixedQ and fixedZa /Zp . The absolute differ-
ences of theh obtained in this way are the estimates of t
systematic errors. Notice that in this case the next-to-lead
correction to scaling enters with an exponent of order
which is already taken into account with the analytical co
tribution denoted byc in our fit Ansätze. Therefore, we only
quote the systematic error due to the leading correction.

We haven chosen the result ofLmin58c520.532(62),
d50.9543(20), andh50.036 57(60) withZa /Zp50.5425
fixed as our final estimate, since it is consistent with t
result obtained fromLmin54 andLmin56. Hence, our final
estimate is

improved action: h50.0366~6!@2#.

It is consistent with the estimate obtained from the stand
action.

V. COMPARISON WITH OTHER ESTIMATES

It is interesting to compare our estimates with other on
available from the literature. Note that extensive tables w
many data from literature and experiment can be found
Refs. 8, 12, and 19.

Some of the more recent estimates for then andh expo-
nents, together with the critical coupling of the standa
Ising model are collected in Table IX. Our estimates a
given in the last two lines: the upper one gives the estima
obtained with the standard action~SA! while the lower one
those from the improved spin-1 action~IA !. The underlined
estimates are obtained by choosing our best estimate f
the improved action and adding the statistical and system
error estimates in order to obtain the overall uncertainty.

The value we obtained for the Binder cumulant from t
improved actionQ50.623 93(13)@35#$5% can be compared
with the estimateQ50.6233(4) of Ref. 8. It is reassurin
that the high-precision estimates of the recent years see
be nicely consistent with each other.

VI. CONCLUSIONS

By performing a detailed comparison with high-precisi
results of the standard action, we have demonstrated tha
spin-1 Ising model with suitably tuned coupling constan
has remarkably improved finite-size scaling properties.
obtained estimates of very high precision for the critical e
ponentsn and h and two other universal quantities, th
Binder cumulantQ and the ratio of partition functions
Za /Zp .

All estimates from the two different actions are consiste
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TABLE IX. Results of the present study from standard~SA! and improved~IA ! actions are compared
with other estimates: frome expansion~EPS!, field-theory calculations in three dimensions~3D FT!, high-
temperature expansions~HT!, and Monte Carlo simulations~MC!. The underlined estimates for the critica
exponents are our best estimates together with error estimates, which give the overall uncertainty, in
systematic effects.

Ref. Method n h bc

12 EPS 0.6293~26! 0.036~6!

12 3D FT 0.6304~13! 0.0335~25!

20 3D FT 0.6301~5! 0.0355~9!

19 HT 0.6310~5!

21 MC 0.6308~10!

8 and 11 MC 0.6301~8! 0.037~3! 0.2216544~3!@3#

9 MC 0.6294~5!@5# 0.0374~6!@6# 0.22165456~15!@5#

SA MC, R18 0.63014~54!$55% 0.22165431~19!$15%

SA MC, R28 0.62973~43!$46%^14& 0.22165405~23!$25%

SA MC, x 0.0366~8!$9%

IA MC, R28 0.62982~22!@16#$15%

IA MC, R28 0.6298(5)
IA MC, R18 0.62988~51!@32#$51%

IA MC, x 0.0366~6!@2#

IA MC, x 0.0366(8)
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with each other. In spite of the higher statistics and the b
ger lattice sizes of the standard action data, the estim
from the improved action are by far more precise. In parti
lar, cf. Table IX, the systematic errors are smaller for t
improved action than for the standard action.

The authors of Refs. 9 and 10 claim that an improvem
of the action as discussed in this paper and in Ref. 10 d
not allow for more precise estimates of universal quanti
such as the critical exponents. In their argument they ign
the fact that ratios of correction amplitudes are univers
Once these ratios are computed for the standard Ising mo
where the corrections are large, they allow for power
bounds in the case of the improved action. E.g., leading
der corrections to scaling of the Binder cumulant are mu
stronger than those of the derivative of the Binder cumula
Therefore it is quite clear that we can safely ignoreL2v

corrections in the analysis ofQ8 obtained from the improved
model.

It would be worthwhile to use the present model in stud
e

-
es
-

e

t
es
s
re
l.
el,
l
r-
h
t.

s

of physical quantities not discussed in this paper and
check to what extent the improved scaling behavior helps
get better estimates.

An interesting question is whether and to what extent t
improvement that we have achieved can be further enhan
It seems tempting to study models with even more couplin
in order to systematically reduce the effects from next-t
leading corrections to scaling. However, little is know
about these higher order corrections, and one does not re
know how many parameters would be necessary to rem
corrections of orderL2x, with x'2. Note that at that level of
improvement also the question of improved observab
comes into play. We thus believe that the improvement w
two parameters, which we performed is the optimal thi
one can do in a systematic way. Note that our improvem
also eliminates subleading corrections of the typeL2nv.

Last but not least, application of the ideas underlying t
present analysis to other models seems very promising.
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