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Magnetic anisotropy and low-energy spin waves in the Dzyaloshinskii-Moriya
spiral magnet Ba2CuGe2O7
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Neutron-diffraction and inelastic-scattering experiments are used to investigate in detail the field dependence
of the magnetic structure and low-energy spin-wave spectrum of the Dzyaloshinskii-Moriya helimagnet
Ba2CuGe2O7. The results suggest that the previously proposed model for the magnetism of this compound~an
ideal sinusoidal spin spiral, stabilized by isotropic exchange and Dzyaloshinskii-Moriya interactions! needs to
be refined. Both recent and previously published data can be quantitatively explained by taking into account
the Kaplan-Shekhtman-Entin-Wohlman-Aharony term, a special magnetic anisotropy term that was predicted
to always accompany Dzyaloshinskii-Moriya interactions in insulators.@S0163-1829~99!01017-6#
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I. INTRODUCTION

The recently discovered spiral magnet Ba2CuGe2O7 is
one of many materials known to have incommensurate m
netic structures.1,2 A fortunate combination of properties
however, make Ba2CuGe2O7 a particularly useful model sys
tem for both experimental and theoretical studies of inco
mensurate magnetism:~1! Unlike the extensively studied
rare-earth compounds,3 Ba2CuGe2O7 is an insulator, and
thus can be conveniently described in terms of localiz
spins.~2! Helimagnetism in Ba2CuGe2O7 is caused by the
somewhat exotic Dzyaloshinskii-Moriya off-diagonal e
change interactions4,5 that involve only nearest-neighbo
spins. This is in contrast with such well-known systems
MnO2 ~Ref. 6! and NiBr2 ~Refs. 7 and 8!, where the mag-
netic incommensurability results from a competition betwe
exchange interactions for different neighbor pairs~geometric
frustration!. ~3! Compared to such classic Dzyaloshinsk
Moriya helimagnets as MnSi~Refs. 9 and 10! and FeGe
~Ref. 11!, Ba2CuGe2O7 has a rather low~tetragonal! crystal
symmetry. The result is a much richer field-temperat
phase diagram. In particular, in Ba2CuGe2O7 a magnetic
field applied along the unique tetragonal axis induces a
culiar Dzyaloshinskii-type12 incommensurate-to
commensurate transition.13,14 Applying a magnetic field in
the tetragonal plane does not change the length of the m
netic propagation vector, but leads to its reorientation.15 ~4!
The spin arrangement in Ba2CuGe2O7 is a perfect square
lattice. This fact allowed us previously to describe the sta
properties of this remarkable system using a simple and
PRB 590163-1829/99/59~17!/11432~13!/$15.00
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egant macroscopic free energy functional.13–15 ~5! Last but
not least, the scale of energies and wave numbers that c
acterize magnetic interactions in Ba2CuGe2O7 are very con-
venient for neutron-scattering measurements. Magnetic fi
in which the most interesting magnetic phase transformati
occur are also readily accessible using standard equipm

As described in detail elsewhere~Refs. 1 and 14!, the
principal feature of Ba2CuGe2O7 is a square-lattice arrange
ment of Cu21 ions in the (a,b) plane of the tetragonal non
centric crystal structure ~space group P4̄21m, a
58.466 Å , c55.445 Å ). Nearest-neighbor in-plane an
ferromagnetic exchange coupling@along the~1,1,0! direc-
tion# is by far the strongest magnetic interaction in the s
tem (J'0.96 meV per bond16!. The interaction between Cu
spins from adjacent planes is much weaker and ferrom
netic (J''20.026 meV per bond!. The magnetic structure
can be described as an almost-antiferromagnetic spiral~Fig.
1, inset!, with spins confined in the (1,1,̄0) plane and the
magnetic propagation vector (11z,z,0),z'0.0273, ~1,0,0!
being the Ne´el point. It was previously demonstrated that t
helimagnetic state is stabilized by nearest-neigh
Dzyaloshinskii-Moriya interactions that for two interactin
spinsS1 and S2 can be written as (S13S2)•D(1,2). For the
Cu-Cu bond along the~1,1,0! direction (x axis! the Dzy-
aloshinskii vectorD is pointing along (1,1̄,0) (y axis!, in-
ducing a relative rotation of the interacting spins in the (x,z)
plane ~the z axis is chosen along thec axis of the crystal!.
The rotation anglef ~relative to a perfect antiparallel align
ment! is related to the magnetic propagation vector byf
52pz'0.172. Obviously, two types of domains, wit
11 432 ©1999 The American Physical Society
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PRB 59 11 433MAGNETIC ANISOTROPY AND LOW-ENERGY SPIN . . .
equivalent propagation vectors (11z,z,0) and (11z,
2z,0) will always be present in a macroscopic sample.

By now, a large amount of experimental and theoreti
work has been done on Ba2CuGe2O7, mainly dealing with
the phase transitions and static magnetic properties. S
important issues remain unresolved, however. For exam
it was predicted that applying a magnetic field along
unique axis should give rise to a distortion of the ideal sp
structure.13,14This so-called soliton phase is characterized
the appearance of higher-order magnetic Bragg harmon
To date these additional Bragg reflections have not been
served directly in an experiment. As far as the spin dynam
is concerned, only the near-zone-boundary spin-wave dis
sion relations were studied. For the physics of the inco
mensurate state, it is the the low-energy, small-Q spin exci-
tations that are most relevant. In the present work
continue our studies of Ba2CuGe2O7, investigating the field
dependence of higher-order magnetic Bragg peaks and
low-energy spin-wave spectrum in both the incommensu
and commensurate states. We find that even in the absen
an external magnetic field the spiral structure is distorted

FIG. 1. Typical elastic scans along the~1,1,0! direction in the
vicinity of the antiferromagnetic zone center~1,0,0!, measured in
Ba2CuGe2O7 at T50.35 K in zero field~top! and in aH51.6 T
magnetic field applied along the~0,0,1! direction~bottom!. Note the
logarithmic scale on they axis. The solid lines are guides for th
eye. The arrows show the positions of the principal magnetic Br
reflections at (11z,z,0), characteristic of a spiral spin structur
and the third harmonic at (113z,3z,0), a signature of a sligh
distortion of the helicoid. Inset: a schematic of the magnetic str
ture showing a single Cu plane in Ba2CuGe2O7 .
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the presence of previously disregarded magnetic anisotr
Our results are consistent with the theoretical predictions
Kaplan17 and Shekhtman, Entin-Wohlman, and Aharony,18,19

who demonstrated that a generic anisotropy term must in
tably accompany Dzyaloshinskii-Moriya interactions. T
understanding of the physics of Ba2CuGe2O7 enables us to
refine our interpretation of previously obtained experimen
data. A brief report on some of our results is publish
elsewhere.20

II. EXPERIMENT

Neutron diffraction and inelastic neutron-scattering me
surements were performed in two series of experiments
the IN-14 3-axis spectrometer at the Institut Laue Langev
~ILL ! in Grenoble, and the SPINS spectrometer at the C
Neutron Research Facility at the National Institute of Sta
dards and Technology~NIST!. Single-crystal samples o
Ba2CuGe2O7 rarely survive more than one cooling to lo
temperatures. Two different crystals, prepared by
floating-zone method, were used in the two experimen
runs. Sample A, a cylindrical single crystal of dimensio
434320 mm3 was used in experiments at IN-14, but spo
taneously disintegrated during subsequent storage. Samp
was used in the second experiment on SPINS and was
proximately 636350 mm3. The crystal mosaic was aroun
0.35° full width at half maximum~FWHM! for sample A
and 1.2° FWHM for sample B, as measured in the (a,b)
crystallographic plane. The mosaic spread in the perpend
lar direction was measured for sample B and found to
around 2° FWHM. The samples were mounted on the sp
trometers with theirc axes vertical, making (h,k,0) wave
vectors accessible for measurements. In both experiment
magnetic field was produced by standard split-coil superc
ducting magnets. The alignment of thec axis of the crystal
with the direction of the magnetic field, previously shown
be crucial for high-field measurements,14 was around 1.4° in
both runs, as measured at low temperatures. The mea
ments were performed in the field range 0–2.5 T. T
sample environment was a pumped-4He cryostat for the ILL
experiment and a cryopump-driven3He cryostat at NIST.
The data were collected at temperatures in the range 0.3
K. As observed previously, cooling the sample throughTN in
an H'1 T magnetic field always resulted in a singl
domain magnetic structure.

The spin-wave dispersion was measured in constanQ
scans in the range of energy transfers 0–0.8 meV. Neut
of 3.5 or 2.5 meV fixed incident energy were used in m
cases. Alternatively, a 3.5 meV fixed final-energy setup w
exploited. A Be filter was positioned in front of the sample
eliminate higher-order beam contamination. 4082S2
4082A2408 collimations were utilized in both runs. Th
typical energy resolution with 3.5 meV incident energy ne
trons was 0.075 meV FWHM, as determined from measu
ments of incoherent scattering from the sample.

III. RESULTS

A. Higher-order Bragg reflections

In previous studies the only magnetic elastic peaks
served in Ba2CuGe2O7 were those corresponding to an ide
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sinusoidal spiral structure with propagation vectors (16z,
6z,0). These reflections, whose intensity seems to acco
for almost 100% of the expected magnetic diffraction inte
sity appear belowTN'3.2 K around antiferromagnetic zon
centers (h,k,0), h, k integer,h1k odd. In the present study
careful elastic scans along the (11x,x,0) line in reciprocal
space revealed the presence of additional extremely w
peaks at (163z,63z,0), as shown in Fig. 1. These pea
are clearly of magnetic origin, as the temperature dep
dence of their intensity is similar to that of the princip
magnetic reflections at (16z,6z,0). The additional third-
order peak was observed in all magnetic fields in the ra
0–1.9 T, and always appears at (163z,63z,0), wherez,
defined by the position of the principal magnetic Bragg pe
is itself field dependent.13,14 For 0,H,1.7 T the measured
field dependence ofz is in total agreement with previou
studies. For the purpose of convenience we shall de
Qp,p5(1,0,0) ~antiferromagnetic zone center!, and q0
5(z,z,0). In this notation the first- and third-order magne
reflections correspond to momentum transfersQp,p6q0 and
Qp,p63q0, respectively.

As observed previously, atH5H1'1.7 T ~at T
50.35 K) the system goes through a magnetic transition
a different phase that is characterized by the appearance
new peak at the commensurate~1,0,0! reciprocal-space posi
tion. As discussed previously, this phase may or may no
a result of the slight misalignment of the magnetic field re
tive to thec axis of the crystal. In the present work we d
not investigate this ‘‘intermediate’’ phase in detail, perform
ing most measurements in the field ranges 0,H,H1 and
H.Hc'2.2 T, whereHc is the magnetic field at which th
structure becomes commensurate.13,14

In scans along the~1,1,0! direction, shown in Fig. 1, the
widths of both first- and third-order peaks are resolution li
ited. This is not the case for transverse scans along (1,1,̄0),
where the first, and especially the third harmonic are visi
broader than the experimental resolution~Fig. 2!. The ob-
served peak width pattern is consistent with both peaks h
ing a zero longitudinal and a 20° transverse intrinsic wid
as seen from theQp,p reciprocal-space point. The transverse
intrinsic Q width of the third harmonic is thus three times

FIG. 2. Transverse elastic scans through the first-order~a! and
third-order ~b! magnetic Bragg reflections measured
Ba2CuGe2O7 at T51.3 K andH51.6 T. Solid lines are Gaussia
fits to the data. The shaded Gaussian represents the calculate
perimentalQ resolution. The intrinsic angular width of both pea
is '20° as seen from the~1,0,0! antiferromagnetic zone center.
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large as that of the first harmonic. This result does not app
to depend on the applied magnetic field or the history of
sample. The large observed transverse width is likely to
related to the previously established fact that the spiral st
tures propagating in any direction in the~001! plane have
almost identical energies. The~1,1,0! direction is only
slightly energetically preferable.15 Due to pinning or even
thermal fluctuations, in a macroscopic sample an entire
semble of spiral structures with propagation directions f
ning out around~1,1,0! will therefore be realized, producing
substantial transverse peak widths.

The field dependence of the integrated peak intensi
was measured in both field-cooling and zero-field cool
experiments. Consistent results were obtained in both ty
of measurement, and no signs of hysteresis were observe
the ILL experiment the propagation direction of the spir
always along~1,1,0! at H50, was found to deviate by a
much as several degrees from this direction in higher fie
This effect is clearly due to a slight misalignment of th
magnetic field relative to thec axis, and the possibility to
almost freely rotate the magnetic propagation vector in
(a,b) crystallographic plane.15 In the NIST experiment such
a deviation was not observed, thanks to a slightly differ
and more ‘‘fortunate’’ setting of the sample. The field depe
dence of the peak intensities was therefore measured in
second experimental run, but, just in case, at each field, b
the first- and third-order peaks were centered in a serie
transverse and longitudinal scans. The measured integr
intensity of the first and third-order reflection, as well as th
of the commensurate peak at~1,0,0!, are plotted against mag
netic field applied along thec axis in Fig. 3. The total inten-
sity of all three features is field independent within expe
mental error.

As seen in Fig. 3, the intensity of the (11z,z,0) magnetic
reflection is almost field independent in the range 0,H
,H1. This appears to be in contradiction with previous me
surements@Ref. 14, Fig. 3~d!#, where a gradual decrease
the intensity of the first harmonic was observed with incre
ing magnetic field. However, we now know what was wro
with these previous measurements: the possibility of
propagation vector deviating from the~1,1,0! direction was
not taken into account. In a slightly misaligned sample
field-induced drift of the magnetic reflections away from t
line of the elastic scan was incorrectly interpreted as a
crease of peak intensity. Note that in the present study
centering of the peaks at each field ensures that this prob
even if present, does not influence the measurements.

B. Spin waves

All inelastic measurements were done in the vicinity
the ~1,0,0! antiferromagnetic zone center (Q'Qp,p). The
spin-wave dispersion was measured along the (11e,e,0) di-
rection (x axis!. In most cases the sample was field cooled
eliminate the need to deal with inelastic signal coming fro
the two magnetic domains. All scans atQ5Qp,p were re-
peated using zero-field cooling to ensure that no hyster
effects influence the measurements. The most important
iting factor in these inelastic studies is the presence of in
herent scattering and magnetic Bragg tails, centered at
energy transfer. This undesirable contamination is absen

ex-
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FIG. 3. ~a! Measured field dependence of the magnetic Bragg peak intensities in Ba2CuGe2O7 at T50.35 K. Solid and open circles show
the behavior of the first-order and third-order incommensurate Bragg peak integrated intensities, respectively. The intensity of the
surate peak at the antiferromagnetic zone center is plotted in open triangles.~b! Square root of the ratio of intensities of the third and fi
harmonic plotted against the square of the applied magnetic field. The solid and dashed lines show the theoretical prediction for the
and DM1KSEA models.~c! Measured intensity of the third harmonic plotted against the normalized incommensurability parameterz. The
solid line shows the prediction of the DM1KSEA model.
a

si
th
s
ly

nc
a
fe
y

h

p
ter

in
e
lity

eld
spin-

n

e

.

energy transfers (\v)*0.15 meV, where reliable dat
could be collected. Typical constant-Q scans obtained in the
ILL and NIST experiments are shown in Fig. 4. Peak po
tions were determined by fitting Gaussian profiles to
data. All the inelastic peaks studied were found to be re
lution limited. The focusing conditions are considerab
more favorable atQ5(11e,e,0), e.0, where most of the
measurements were performed.

1. Zero field

The dispersion relation measured in zero applied field
plotted in symbols in Fig. 5. One clearly sees three disti
branches of the spectrum. These we shall label by the w
vectors to which they extrapolate at zero energy trans
Qp,p6q0 andQp,p , correspondingly. An obvious and ver
interesting feature is the ‘‘repulsion’’ between theQp,p
6q0 branches at their point of intersectionQ5Qp,p . Its
magnitude is given by the splitting 2dp,p'0.12(1) meV.
This effect again manifests itself atQp,p12q0, where it is
seen as a discontinuity in theQp,p6q0 branch. Simple em-
pirical fits to the data~not shown! allow us to estimate the
spin-wave velocityc0'5.21(3) meV Å . This value is in
reasonable agreement with the estimatec05Ja/A2
'5.75 meV Å , obtained using the classical formula~3! in
Ref. 1 and the exchange constantJ'0.96 meV, previously
determined from measuring the spin-wave bandwidth. T
-
e
o-

is
t

ve
r:

e

main characteristic of theQp,p branch is the energy ga
Dp,p'0.18(1) meV at the antiferromagnetic zone cen
Qp,p .

2. Field dependence in the incommensurate phase„H<H 1…

In Fig. 6 we show the spin-wave dispersion measured
Ba2CuGe2O7 in a H51 T magnetic field applied along th
c axis of the crystal. In this case the incommensurabi
parameterz(H51 T)50.0252(5). The Qp,p6q0 disper-
sion curves are very similar to those measured in zero fi
and appear to be adequately described by the same
wave velocity and splitting parameter 2dp,p . Compared to
the zero-field case however, atH51 T the centralQp,p
branch is visibly flattened at its minimum. The gapDp,p in
this mode is equal to'0.24 meV. Comparing this toDp,p
50.18 meV atH50, we find that, to a good approximatio

Dp,p~H !25Dp,p
2 1~2gcSmBH !2, ~1!

where gc52.474 is thec-axis diagonal component of th
gyromagnetic ratio for Cu21 in Ba2CuGe2O7 ~Ref. 21!, S
51/2 is the spin of Cu21 ions andmB is the Bohr magneton
At H51 T the measured dispersion curve for theQp,p
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FIG. 4. Typical inelastic scans measured in Ba2CuGe2O7 in the
two experimental runs, at ILL~top! and NIST ~bottom!, respec-
tively. The heavy solid line is a multiple-Gaussian fit to the da
and the shaded curves represent the individual Gaussians. The
area in the top panel shows the position of a ‘‘Bragg-tail’’ spurio
peak.

FIG. 5. Spin-wave dispersion curves measured in Ba2CuGe2O7

in zero magnetic field. The data collected atT50.35 K andT
51.5 K are combined in this plot. The solid lines are parame
free theoretical curves as described in the text. Dashed lines
guides for the eye and the solid circles on the abscissa show
positions of the observed magnetic Bragg peaks.
,
ray

r-
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he

FIG. 6. Spin-wave dispersion curves measured in Ba2CuGe2O7

in a H51 T magnetic field applied along the~001! direction atT
50.35 K. Solid lines are guides for the eye. Dashed lines are a
Fig. 5.

FIG. 7. Spin-wave dispersion curves measured in Ba2CuGe2O7

in a H51.5 T magnetic field applied along the~001! direction at
T50.35 K. The lines and symbols as in previous figures. Note
additional branch in the spectrum.
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branch has a different feature, namely a discontinuity
Qp,p1q0. This splitting, that we shall denote as 2dq0

, is
roughly 0.05 meV.

In a magnetic fieldH51.5 T.Hc1 (z50.0232) the
spectrum becomes substantially more complex~Fig. 7!. The
two Qp,p6q0 modes remain essentially unchanged. T
Qp,p gap in the central branch isDQp,p

(H)'0.28 meV,

which is consistent with Eq.~1!. The discontinuity atQp,p
1q0 is clearly visible inH51.5 T data: 2dq0

'0.11 meV.
Another feature of the spectrum that is not visible in low
applied fields is the presence of a different excitation bra
that at Qp,p is seen at (\v)'0.45 meV. The shortage o
beam time prevented us from following this branch to low
energy transfers~where its intensity should increase! at wave
vectors where it would appear focusing: all measureme
were done atQ5(11e,e,0), e.0. The limited data that we
have at this stage is totally consistent with the new bra
being a replica of theQp,p mode, but centered atQp,p
62q0, as shown by the corresponding solid lines in Fig.

3. High field: commensurate phase

The dispersion relations measured atH52.5 T, well
aboveHc'2.2 T, are shown in Fig. 8. As expected for th
commensurate state, only two branches are present. Two
culiarities are to be noted here. First, the measured spin-w
velocity c054.83(3) meV Å is significantly smaller tha
that seen atH,Hc . Second, the gap in the higher-ener
branch ('0.45 meV) is too large to be accounted for by t
effect of magnetic field alone (2gcSmBH50.36 meV). If
for this branch we can write

~\v!25Dc
21~2gcSmBH !21c0

2q2, ~2!

FIG. 8. Spin-wave dispersion curves measured in Ba2CuGe2O7

in a H52.5 T magnetic field applied along the~001! direction at
T50.35 K ~commensurate spin-flop phase!. The upper solid line is
a fit to Eq.~2!. The lower line is a linear fit.
t
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r
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r
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h
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for the ‘‘additional’’ gap in the commensurate phase we o
tain Dc50.28(1) meV~solid lines in Fig. 8!.

IV. THEORY

Most of the magnetic properties of Ba2CuGe2O7 reported
to date appeared to be rather well described by a simple
Hamiltonian that included only nearest-neighbor Heisenb
antiferromagnetic exchange interactions and
Dzyaloshinskii-Moriya cross-product terms. For reasons t
will shortly become apparent we shall refer to this constr
as the ‘‘DM-only’’ model for Ba2CuGe2O7. For a single Cu
plane in Ba2CuGe2O7 the Hamiltonian takes the form

H5H ~H!1H ~DM!

5(
n,m

$J~Sn,m•Sn11,m1Sn,m•Sn,m11!1D@~Sn,m

3Sn11,m!y1~Sn,m3Sn,m11!x#%. ~3!

Here the indexesn and m enumerate the Cu21 spins along
the x and y axes, respectively,Sn,m are the site spin opera
tors,J is Heisenberg exchange constant, andD is the norm of
the Dzyaloshinskii vector. Microscopically, the Heisenbe
term H (H) represents the Anderson superexchan
mechanism.22 It arises from virtualnon-spin-flophopping of
two electrons onto a nonoccupied orbital, where they inter
via Pauli’s exclusion principle. As shown by Moriya,5 the
cross-product termH (DM) originates fromspin-flophopping,
which is made possible by spin-orbit interactions.

The classical ground state of the DM-only model is
ideal sinusoidal spin spiral. The experimental observation
higher-order magnetic reflections in zero magnetic field te
us that this model is not a fully adequate description
Ba2CuGe2O7: something is missing from the Hamiltonia
~3!. To understand what is going on we first note that for tw
spinsS1 and S2, interacting via isotropic exchange and th
Dzyaloshinskii-Moriya term, the interaction energy is min

mized at2AJ21D2S2 when both spinsS1 andS2 are per-
pendicular to D, forming the angle p1a, where a
5arctan(D/J). Therefore, the Dzyaloshinskii-Moriya cross
product termH (DM) lifts the local O~3! symmetry of the
Heisenberg Hamiltonian and creates an effective easy-p

anisotropy of strengthAJ21D22J.D2/2J.
Relatively recently Kaplan17 and Shekhtman, Entin

Wohlman, and Aharony18 ~KSEA! argued that in most real
izations of Moriya’s superexchange mechanism this appa
easy-plane anisotropy is an artifact of the omission of ter
quadratic inD in the expansion of the true Hamiltonian o
the system. If such terms are properly included, the O~3!
symmetry of a single bond is restored by an additional te
(AJ21D22J) / D2 (S1•D) (S2•D) . (1/2J) (S1•D) (S2•D).
Note that this additional interaction has the form of easy-a
two-ion anisotropy and its strength is such that itexactly
compensates the easy-plane effect of the Dzyaloshins
Moriya cross product. With this term included, the grou
state of the two-spin Hamiltonian has full O~3! symmetry.
The energy of two interacting spins pointing parallel a
antiparallel toD, respectively, is exactly equal to that of tw
spins perpendicular toD and forming the anglep1a be-
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tween themselves. We shall refer to this ‘‘hidden symmetr
term as the KSEA anisotropy term or KSEA interaction. F
a recent discussion of this subject see Ref. 23.

To properly account for KSEA interactions in our mod
of Ba2CuGe2O7, whereD!J, the spin Hamiltonian can be
rewritten as follows:

H5H ~H!1H ~DM!1H ~KSEA!

5(
n,m

FJ~Sn,m•Sn11,m1Sn,m•Sn,m11!

1D@~Sn,m3Sn11,m!y1~Sn,m3Sn,m11!x#

1
D2

2J
~Sn,m

y Sn11,m
y 1Sn,m

x Sn,m11
x !G . ~4!

Can this Hamiltonian~the ‘‘DM1KSEA’’ model! account
for both recent and previously published experimental d
on Ba2CuGe2O7? In the following sections we shall system
atically investigate the effect of the KSEA term on static a
dynamic properties of a DM helimagnet, and show that
deed it can.

A. Static properties

1. Free energy in the continuous limit

As the period of the spiral structure in Ba2CuGe2O7 is
rather long ('36 lattice spacings!, we can safely use the
continuous approximation to describe it.14,15 In this frame-
work the magnetic free energy is expanded as a functiona
a slowly rotating unitary vector fieldn(r). At each point in
spacen(r) is chosen along the local staggered magnetizat
The Hamiltonian~3! then gives rise to the following free
energy functional:

F ~DM!5E dx dyH rs

2 F S ]xn2
a

L
ey3nD 2

1S ]yn2
a

L
ex3nD 2G

2
a2

2L2
rsnz

21
~x'2x i!~H•n!2

2
2

x'H2

2 J . ~5!

In this formulars is the spin stiffness, that in the classic
model atT50 is given byrs5S2AJ21D2'S2J, a as be-
fore is the equilibrium angle between two spins defined
a5arctan(D/J), L is the nearest-neighbor Cu-Cu distanc
x i andx' are the local longitudinal and transverse magne
susceptibilities, respectively. Their classicalT50 values are
x'5(gmB)2/(4JL2) andx i50, correspondingly. In Eq.~5!
we have included the Zeeman term that represents inte
tion of the system with an external magnetic fieldH.

The term2a2rsnz
2/2L2 in Eq. ~5! deserves some com

ment. It has the form of a magnetic easy-z-axis anisotropy
and represents the combined effect of the effective (xz) and
(yz) easy planes produced by DM interactions on they and
x bonds, respectively. This term iseliminatedby KSEA in-
teractions that modify Eq.~5! as follows:
’
r

ta

-

of

n.

s
,
c

c-

F ~DM1KSEA!5E dx dyH rs

2 F S ]xn2
a

L
ey3nD 2

1S ]yn2
a

L
ex3nD 2G

1
~x'2x i!~H•n!2

2
2

x'H2

2 J . ~6!

This equation is in agreement with Eq.~3! in Ref. 15. Com-
paring Eqs.~3! and~6! one concludes thatin the continuous
limit for the square-lattice spin arrangement found
Ba2CuGe2O7, KSEA interactions~two sets of easy axes, fo
x and y bonds, respectively! are indistinguishable from an
overall easy-(xy)-plane anisotropy of relative strengthd
5a2/2.

In this work we are mostly concerned with the effect of
magnetic field applied along the@001# crystallographic direc-
tion, i.e., along thez axis. Under these conditions the prop
gation direction of the spin spiral in Ba2CuGe2O7 is either
along thex or y axis ~two domain types are possible!. More-
over, as we shall prove rigorously while discussing the s
waves in the system, the magnetic structure remainsplanar
despite the two types of Dzyaloshinskii vectors, along thx
and y axes~for the y and x bonds, respectively!. This fact
allows us to write the components of vectorn(r) as
@sinu(x),0,cosu(x)#, whereu(x) is the angle between loca
staggered momentn(r) and thez axis, for a helix propagat-
ing along thex direction. The free energy can be then rewr
ten in terms of theu(x) as

F ~DM1KSEA!5E dx dyFrs@]xu2~a/L!#2

2

1S a2rs

2L2
1

~x'2x i!H
2

2 D cos2 u2
x'H2

2 G .

~7!

This is exactly Eq. ~1! of Ref. 13 modified to include the
effects of an easy (xy) plane anisotropyrsa

2nz
2/2L2

5const2rsa
2 cos2 u/2L2, coming from the KSEA interac-

tion ony bonds. As seen from this equation the sole effect
such anisotropy is to renormalize the external field to

Heff~H !5AH21a2rs /L2~x'2x i!. ~8!

2. Critical field and magnetic propagation vector

One important consequence of what is said above is
all our previous results, obtained in Refs. 13 and 14, can
recycledby substitutingHeff(H) for H in all formulas. Our
conclusions regarding the field-induced commensura
incommensurate Dzyaloshinskii transition in Ba2CuGe2O7
remain valid in the presence of KSEA interaction. T
KSEA interaction, however, modifies the value of the critic
field Hc . Indeed, substitutingHeff(H) for H in Eq.
~5! of Ref. 13 one gets AHc

21a2/L2rs /(x'2x i)
5(pa/2L)Ars /(x'2x i). From this we immediately obtain
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Hc5a
Ap224

2L
A rs

x'2x i
. ~9!

We see that the KSEA term reduces the critical field by
universal factorA124/p2.0.771.

In order to obtain the field dependence of the inverse
riod of the structurez one has to rewrite Eqs.~4! and~7! of
Ref. 13 as

2pz~H !

a
5

p2

4E~b!K~b!
, ~10!

Heff~H !

Heff~Hc!
5

b

E~b!
. ~11!

Hereb is an implicit variable. In case when the deformati
of the spiral is weak@„a22pz(H)…/a!1#, one can safely
use the linearized formula:

2pz~H !

a
512

1

32S pHeff~H !

2Heff~Hc!
D 4

1higher-order terms.

~12!

From this formula one can derive by how much KSEA i
teractions deform the spiral in zero external field. Let
definef52pz(0) as the average angle between spins in
spiral in zero field. This parameter is easily accessible
perimentally and equal tof52p30.027350.172.10°.

Recalling thatHeff(0)/Heff(Hc)52/p and plugging it in
Eq. ~12! one getsf/a.121/32 or

a[arctan~D/J!5
32

31
f5

32

31
2pz~0!. ~13!

The KSEA term thus increases the period of the structur
zero field by roughly 3%.

FIG. 9. Field dependence of the incommensurability param
z, as previously measured in Ba2CuGe2O7. The solid curve is plot-
ted using Eqs.~10! and ~11!, that takes into account KSEA aniso
ropy. The dashed curve is the prediction of the DM-only mode
e

e-

s
e
x-

in

3. Higher-order Bragg harmonics

An important implication of Eq.~8! is that even inzero
applied field theeffectivefield is nonzero. The result is tha
the spiral structure is distorted even in zero field and high
order ~odd! magnetic Bragg peaks are present. To obtai
theoretical form for the field dependence of the third h
monic we can use Eqs.~17! and~18! in Ref. 14. More prac-
tical than the resulting expression is its linearized form, t
applies in the limit@a22pz(H)#!a ~weakly distorted spi-
ral!:

I 3

I 1
5

1

256S pHeff~H !

2Heff~Hc!
D 4

5
1

256F11S p2

4
21D S H

Hc
D 2G2

.

~14!

Here I 1 and I 3 are the intensities of the first and third ha
monic, respectively. One can see that forH50 the third
harmonic is predicted to be smaller than the first one b
factor of 1/256.3.931023.

Comparing Eqs.~14! and ~12! one can see that for wea
distortions the intensity of the third harmonic is proportion
to the relative decrease ofz(H):

z~H !

z~0!
512

8@ I 3~H !2I 3~0!#

I 1
. ~15!

4. Comparison with experiment

We now have to make sure that our results for the D
1KSEA model are consistent with both the previously pu
lished ~Refs. 13 and 14! and new neutron-diffraction result
on Ba2CuGe2O7 . First, let us compare the previously me
suredz(H) curve with the predictions of Eqs.~10! and~11!.
The experimental data for the incommensurability parame
~Ref. 13! is plotted againstH2 in Fig. 9. The solid line is the
prediction of Eqs.~10! and ~11!. The dashed line is the the
oretical curve previously obtained without including th
KSEA term in the Hamiltonian.13,14 In plotting both these

er
FIG. 10. Theoretical predictions for the spin-wave dispers

along thex axis in ~a! the DM-only model,~b! DM1KSEA model.
The effect of the KSEA term is to couple magnons separated
2q0, which leads to the appearance of new gaps in the spect
and reduce the gap inQp,p branch.
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curves we have assumed the actual~measured! values for
Hc52.15 T andz(0)50.0273. Within experimental statis
tics it is practically impossible to distinguish between t
two theoretical dependences and the data fits both of t
reasonably well.

While it appears that theshapeof the z(H) curve cannot
be used to extract information on KSEA interactions, t
actual numerical value ofHc in the DM-only and DM
1KSEA models is substantially different. For the low
temperature limit in Ba2CuGe2O7 we can use the clas
sical expressionsrs5JS250.24 meV, x i50, and x'

5(gcmB)2/8JL, wheregc52.47 is thec-axis gyromagnetic
ratio for Cu21 in Ba2CuGe2O7.21 One can expect these cla
sical estimates to be rather accurate, as they rely on thef-
fectiveexchange constantJ, that itself was determined from
fitting the classicalspin-wave dispersion relations to inela
tic neutron-scattering data.1 Substituting these values int
Eq. ~9! we immediately obtainHc

(DM1KSEA)52 T. This is
much closer to the experimental valueHc52.15 T, than the
estimateHc

(DM)52.6 T for the DM-only model.
The data for the field dependence of relative intensities

the first and third Bragg harmonics become consistent w
theory only if KSEA interactions are properly taken into a
count. Indeed, the KSEA term is necessary to reproduce
observed distortion of the spiral in zero magnetic field.
Fig. 3~b! the solid lines are plotted using Eq.~14! and Hc

52.15 T. The dashed lines are results for the intensity of
third Bragg harmonic obtained previously for the DM-on
model.14 Clearly the DM1KSEA model gives an excellen
agreement with experiment@open symbols in Fig. 3~b!#,
while the DM-only Hamiltonian fails entirely to account fo
the available data.

In Fig. 3~c! we check the validity of theoretical predictio
of Eq. ~15!, which is supposed to hold both with and witho
KSEA terms. The excellent agreement of theory and exp
ment confirms the validity of our picture of weakly deforme
almost sinusoidal spiral.

B. Spin dynamics

We now turn to calculating the classical spin-wave sp
trum in the DM1KSEA model for Ba2CuGe2O7. This task
will be accomplished in several separate steps. First, we s
derive the spectrum for a square-lattice Heisenberg Ha
tonian, including DM interactions only for thex-axis bonds.
Second, we shall consider the effect of DM interactio
along they-axis bonds, showing that they do not disturb t
planar spiral structure and do not influence the dispers
relation along thex direction. Next we shall analyze the e
fect of adding the KSEA term, following the method d
scribed in Refs. 24 and 25. While at this stage we do
have results for spin-wave dispersion in the DM1KSEA
model in the presence of an arbitrary external magnetic fi
we shall consider the caseH.Hc and derive an expressio
for Dc— the anisotropy gap in the commensurate state.

1. Dzyaloshinskii-Moriya interactions for x-axis bonds only

We start from a truncated version of the Hamiltonian~4!:
m

e

f
h

he

e

i-

-

all
il-

s

n

t

d,

H ~1!5(
n,m

@JSn,m•Sn11,m1JSn,m•Sn,m11

1D~Sn,m3Sn11,m!y#. ~16!

It is easy to see that classically this Hamiltonian is mi
mized by a perfect helicoid propagating along thex axis with
all spins lying in the (xz) plane:

^Sn,m
z &5~21!n1m^S&cosna;

^Sn,m
x &5~21!n1m^S&sinna. ~17!

The standard procedure to calculate the spin-wave spec
is to rewrite this Hamiltonian in terms of spin projections o
the rotating coordinate system, where the direction of
equilibrium value of the spin at (n,m) defines thelocal z8

axis in such a way that̂Sn,m
z8 &5(21)n1m^S&. We leave the

y coordinate unchanged, and select thex8 axis to be orthogo-

nal to both z8 and y85y. SubstitutingSn,m
z 5Sn,m

z8 cosna

2Sn,m
x8 sinna, Sn,m

x 5Sn,m
x8 cosna1Sn,m

z8 sinna, and Sn,m
y

5Sn,m
y8 in the Hamiltonian~16! and usinga5arctan(D/J) we

obtain

H ~1!5(
n,m

@AJ21D2~Sn,m
z8 Sn11,m

z8 1Sn,m
x8 Sn11,m

x8 !

1JSn,m
y8 Sn11,m

y8 1JSn,m8 •Sn,m118 #. ~18!

In these coordinates the Hamiltonian is simply that of
square lattice antiferromagnetic~AFM! with easy-plane ex-
change anisotropy on bonds along thex direction. In agree-
ment with the discussion in Sec. IV A 1 the relative streng
of this anisotropy is given by

d5
AJ21D22J

J
.

D2

2J2
.

a2

2
. ~19!

Applying the Holstein-Primakoff formalism we write th

spin projection operators asSn,m
z8 5(21)n1m(S2an,m

† an,m),

Sx85(21)n1mAS/2(an,m1an,m
† ), Sy85 iAS/2(an,m

† 2an,m).
From Eq.~16! it is then straightforward to extract the qua
dratic part of the spin-wave Hamiltonian:

H ~1!5JS(
n,m

~4an,m
† an,m2an,man11,m2an,man,m11

2an,m
† an11,m

† 2an,m
† an,m11

† !2d~an,m
† 1an,m!

3~an11,m
† 1an11,m!/212dan,m

† an,m . ~20!

After performing Fourier and Bogolyubov transformations
diagonalize this Hamiltonian, one readily obtains the sp
wave spectrum:

E~kx ,ky!

5JSA@412d2d coskx#
22@~21d!coskx12 cosky#

2.
~21!

This spectrum has one Goldstone branch atkx5ky50, that
corresponds to the continuous symmetry of a simultane
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rotation of all spins in the (xz) plane. At kx5ky5p the
spectrum has a finite gap 4JSAd52A2DS due to the easy
(xz) plane anisotropy coming from the DM without KSE
correction.

Now we have to recall that in the above derivation t
wave vectorskx ,ky correspond to arotating system of coor-
dinates. They are thus distinct from the actual componen
the scattering vector in a neutron experiment. To get
proper spin-wave spectrum one has to perform a reverse
ordinate transformation to the laboratory system:

Sn,m
z 5Sn,m

z8 cosna2Sn,m
x8 sinna

5~21!n1m@~S2an,m
† an,m!cosna

2AS/2~an,m1an,m
† !sinna#;

Sn,m
x 5Sn,m

x8 cosna1Sn,m
z8 sinna

5~21!n1m@~S2an,m
† an,m!sinna

1AS/2~an,m1an,m
† !cosna#;

Sn,m
y 5Sn,m

y8 5 iAS/2~an,m
† 2an,m!. ~22!

Thex-axis dispersion of three spin-wave branches in labo
tory system is shown in Fig. 10~a!. The dynamic structure
factor Syy(Q,v) has a single magnon peak at the ene
given byE(Qx ,Qy) ~the Qp,p branch!. The structure factors
Sxx(Q,v) andSzz(Q,v) each contain two magnon branch
with dispersion relations given byE(Qx1p1a,Qy1p),
and E(Qx1p2a,Qy1p) ~the Qp,p6q0 branches!. As ex-
pected, the zeroes of energy in these two modes are prec
at the positions of magnetic Bragg peaks atQp,p6q0. A
curious feature of this plot is that all three branches
nearly degenerate at the AFM zone center.

2. Dzyaloshinskii-Moriya interactions along y-axis bonds

Let us now consider Dzyaloshinskii-Moriya interactio
for the bonds in they direction. Their contribution to the spin
Hamiltonian can be written as

H ~2!5(
n,m

D~Sn,m
y Sn,m11

z 2Sn,m
z Sn,m11

y !

5(
n,m

DSn,m
y ~Sn,m11

z 2Sn,m21
z !

5 iDS(
n,m

~21!n1m sinna@an,man,m112an,m
† an,m11

† #

1third-order terms. ~23!

The absence of terms of the first order inan,m and an,m
†

means that in the original~flat-spiral! spin configuration the
force acting on each spin produced by the add
Dzyaloshinskii-Moriya coupling on they bonds is equal to
zero. Thus, switching on they-axis DM interactionsdoes not
disturb the planar helimagnetic ground state of the Ham
tonian H (1), which therefore is also the ground state
H (2)[H (H)1H (DM). This a posterioriverifies our assump
of
e
o-

-

y

ely

e

d

-
f

tion that spins continue to lie in thex-z plane in the presence
of Dzyaloshinskii-Moriya interactions ony bonds, made in
Sec. IV A 1.

New termsquadratic in an,m and an,m
† are indeed intro-

duced by the Dzyaloshinskii-Moriya interactions ony bonds,
and the spin-wave spectrum is thus altered. After Fou
transformation Eq.~23! becomes

H ~2!5
iDS

2 (
kx ,ky

sinky@a†~kx ,ky!a†~2kx1p1a,2ky1p!

2a†~kx ,ky!a†~2kx1p2a,2ky1p!

1a~kx ,ky!a~2kx1p2a,2ky1p!

2a~kx ,ky!a~2kx1p1a,2ky1p!#. ~24!

The analysis of this term for generalky is rather complicated
and should be done by matrix diagonalization similar to t
described in the next subsection for calculating the effect
KSEA interactions. Fortunately, for spin waves propagat
along thex axis (kx50 or kx5p) the contribution ofH (2) is
exactly zero, thanks to the sinky prefactor in Eq.~24!. In
other words, as long as we are concerned with spin wa
propagating along the~110! direction in Ba2CuGe2O7 we
can totally disregard the contribution of Dzyaloshinsk
Moriya interactions along they-axis bonds.

3. Influence of KSEA interactions

Having understood the spectrum for the DM-only mod
we can proceed to include KSEA terms in our calculatio
We first note that if our system wereone-dimensional, the
inclusion of the KSEA term would fully restore O~3! sym-
metry, making the commensurate and spiral phases dege
ate. In terms of spin waves this would signify a comple
softening of theQp magnon branch at the AF zone cent
Qp . As will be demonstrated below, in the case of a tw
dimensional spin arrangement in Ba2CuGe2O7 the magnon
softening atQp,p produced by KSEA interactions is incom
plete.

As discussed in Sec. IV A 3, in the presence of the KS
term the ground state is adistortedflat spin spiral. In this
situation the transition to a uniformly rotating coordina
system used in Sec. IV B 1 loses its usefulness. Instead
must rotate the coordinate system for spin quantization
each site in such a way, that thez axis follows the rotation of
the spins in the distorted helix:

Sn,m
z 5~21!n1m@~S2an,m

† an,m!cosun,m

2AS/2~an,m1an,m
† !sinun,m#;

Sn,m
x 5~21!n1m@~S2an,m

† an,m!sinun,m

1AS/2~an,m1an,m
† !cosun,m#;

Sn,m
y 5Sn,m

y8 5 iAS/2~an,m
† 2an,m!. ~25!

Hereun,m denotes the angle between the local spin axis
z axis in the x-z plane. The HamiltonianH (1)1H (3) ~as
explained above,H (2) is not relevant to the dispersion alon
the x axis that we are interested in! is then rewritten as
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H ~1!1H ~3!5J(
n,m

F2
cos~un11,m2un,m2a!

cosa S ~S2an,m
† an,m!~S2an11,m

† an11,m!1
S

2
~an,m

† 1an,m!~an11,m
† 1an11,m! D

2
S

2
~an,m

† 2an,m!~an11,m
† 2an11,m!2cos~un,m112un,m!S ~S2an,m

† an,m!~S2an,m11
† an,m11!

1
S

2
~an,m

† 1an,m!~an,m11
† 1an,m11! D2

S

2
~an,m

† 2an,m!~an,m11
† 2an,m11!

2
a2

2 S S

2
~an,m

† 2an,m!~an11,m
† 2an11,m!1

S

2
~an,m

† 1an,m!~an,m11
† 1an,m11!sinun,m sinun,m11

1~S2an,m
† an,m!~S2an,m11

† an,m11!cosun,m cosun,m11D G1 linear terms. ~26!

If all anglesun,m in the above expression are given by the solution of the sin-Gordon equation determining the groun
the linear terms will vanish: they represent a static uncompensated force acting on the spins and must not be pres
equilibrium spin configuration. In general, Eq.~26! cannot be diagonalized analytically. Fortunately, we are dealing wi
rather weakly distorted structure and can safely restrict ourselves to calculating the effect of the KSEA term to the fir
in d. It is easy to show that the easyx-y plane anisotropy of strengthd deforms the spiral in such a way that isun,m5qn
1(d/4a2)sin 2qn1O(d2), whereq5a2O(d2). Therefore, within our accuracy one can assumeun,m.an in Eq. ~26!. In
particular the anisotropy dependence of cos(un11,m2un,m2a).cos@q2a1(d/4Ja2)sin 2qn1O(d 2)#.11O(d 2) can be disre-
garded. With these simplifications and after Fourier transformation Eq.~26! becomes

H ~1!1H ~3!5J (
kx ,ky

F S 41d2
d

2
coskyDa~kx ,ky!†a~kx ,ky!2S 2 coskx12 cosky1

d

2
coskyD

3
a~2kx ,2ky!a~kx ,ky!1a~2kx ,2ky!†a~kx ,ky!†

2
1S d

2
1

d

4
coskyD @a~kx12a,ky!†a~kx ,ky!

1a~kx22a,ky!†a~kx ,ky!#1
d

4
coskyS a~2kx12a,ky!a~kx ,ky!1a~2kx12a,ky!†a~kx ,ky!†

2

1
a~2kx22a,ky!a~kx ,ky!1a~2kx22a,ky!†a~kx ,ky!†

2 D G . ~27!

From this equation we can already qualitatively understand the role of KSEA interactions. Their main impact is the in
tion of terms that couple magnons with wave vectors that differ by 2q0. This coupling will have the largest effect when actin
on a pair of magnons of equal energies. The result will be discontinuities in the magnon branches at certain wave vec
for the distorted helix become new zone boundaries. This picture is very similar to the formation of a zone struct
zone-boundary energy gaps in a free-electron gas, subject to a weak periodic external potential. Another consequence
interaction is the reduction of the energy gap in theQp,p branch atkx5ky5p from 2A2DS to 2DS. However, contrary to the
one-dimensional case this gap does not become zero, i.e., another Goldstone excitation does not appear in two di
This can be derived by looking at the part of Eq.~27!, which does not involve mixing of branches separated by 2q0, and,
therefore, yields to the standard analytical calculation.

To actually calculate the spin-wave spectrum we have to find a transformation of Bose operators that would diagon
Hamiltonian~27!. This transformation must respect Bose commutation relations, and for a rather general case of helim
structures is described in detail in Ref. 25. It is essentially a Bogolyubov transformation involving a column vector
operators:â(kx ,ky)5@a(kx2a,ky)

†,a(2kx1a,2ky),a(kx1a,ky)
†,a(2kx2a,2ky)#. The relevant part of the Hamiltonia

~27! can be written asH5(1/2)(kx,kyâ(kx ,ky)
†V̂â(kx ,ky) , where the 434 matrix V̂ is given by

V̂5S A~kx2a,ky! B~kx2a,ky! C~kx2a,ky! D~kx2a,ky!

B~kx2a,ky! A~2kx1a,2ky! D~kx2a,ky! C~2kx1a,2ky!

C~kx1a,ky! D~kx1a,ky! A~kx1a,ky! B~kx1a,ky!

D~kx1a,ky! C~2kx2a,2ky! B~kx1a,ky! A~2kx2a,2ky!

D . ~28!
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Here A(kx ,ky)5JS@213d2(d/2)cosky#, B(kx ,ky)5
2JS@(212d)coskx12 cosky1d/2 cosky#, C(kx ,ky)
5JS@d/21(d/4)cosky#, and D(kx ,ky)5JS(d/4)cosky . To
diagonalize the spin-wave Hamiltonian and at the same t
ensure the conservation of commutation relations we hav
find a matrix Q̂ such thatQ̂†V̂Q̂ is diagonal, whileQ̂†ĝQ̂

5ĝ, whereĝ is the diagonal matrix with diagonal elemen
(1,21,1,21). This is equivalent to diagonalizing the matr
ĝV̂.25

To obtain numerical results that could be directly co
pared to our measurements on Ba2CuGe2O7 we used the
independently measured values forJ50.96 meV andD/J
'arctan(D/J)[a532

31f50.177. A numerical diagonalizatio
of ĝV̂(0,0) was performed using aMATHEMATICA software
package to yield the eigenvaluesE050.172 meV, E1
50.297 meV, andE250.171 meV. These are the energi
of the Qp,p(E0), andQp,p6q0(E1 ,E2) branches at the AFM
zone centerQp,p . The splitting was predicted to be 2dp,p
5(E12E2)50.12 meV. This value is indistinguishable fro
the actual splitting observed in Ba2CuGe2O7, quoted in the
previous section. We can also calculate the splitting in
Qp,p branch atQp,p6q: 2dq0

50.049 meV. Experimen-
tally, this splitting was not observed in zero field, but is sm
enough to be well within the experimental error bars.
higher fields the discontinuity at this wave vector becom
apparent~see Sec. III B 2!. The gap in theQp,p branch,
Dp,p5E050.172 meV, is also in very good agreement w
the INS measurements. Entire dispersion branches calcu
numerically using the technique described above are sh
in Fig. 10~b!. They can be also seen as solid lines in Fig
and apparently are in very good agreement with experim
tal data.

4. Spin-wave spectrum in the spin-flop phase

As we have already mentioned, we presently do not h
theoretical results for the spin-wave dispersion in the pr
ence of an external magnetic field. However, we can m
some predictions for the spin-wave spectrum in the spin-
phase~i.e., for H.Hc). After some tedious calculations tha
are omitted here, but are very similar to those performed
Sec. IV B 2, one arrives at the result that the contribution
the Dzyaloshinskii-Moriya term for thex ~y! bonds is pro-
portional to sinkx (sinky) and thereforeexactlyvanishes at
the AFM zone center. In order to calculate the additio
energy gapDc in the spin-flop phase we thus need to co
sider only the KSEA terms. AtQ5Qp,p ~long-wavelength
limit ! the effect of KSEA interactions is identical to that
conventional easy-plane exchange anisotropy. The spec
of a Heisenberg AFM with such anisotropy in a magne
field is well known.26 Both field and anisotropy split the
twofold degenerate magnons in a Heisenberg system to
a gapless mode with linear dispersion and an ‘‘optica
mode with the energy gap atQp,p given by

\v~Qp,p!5ADc
21~gmBH !2,

Dc52A2JSA2d52A2DS.
e
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Substituting the known numerical values into this formu
we obtainDc50.24 meV, which is in reasonable agreeme
with the experimental resultDc50.28 meV.

V. DISCUSSION

We see that both the static and dynamic properties
Ba2CuGe2O7 are quantitatively consistent with the presen
of KSEA interactions. To be more precise, the experimen
data unambiguously indicate the presence of an easy-p
anisotropy of exactly the same strength as predicted by
KSEA mechanism. It is important to stress that in aslowly
rotating helix it is impossible to distinguish experimenta
between single-ion easy-plane anisotropy of ty
(n,m(Sn,m

z )2/2, two-ion anisotropy ((n,m@Sn,m
z Sn11,m

z

1Sn,m
z Sn,m11

z #/2) or KSEA-type anisotropy
((n,m@Sn,m

y Sn11,m
y 1Sn,m

x Sn,m11
x #) of the same strength. In

deed, the difference between a pair of easy axes~KSEA
term! and an easy plane~conventional single-ion or two-ion
anisotropy! becomes apparent only when the period of t
structure is comparable to the nearest-neighbor spin-
separation, i.e., is only manifested in lattice effects. Altern
tively, it can be observed in strong magnetic fields when
canting of spins towards the field direction becomes subs
tial. In Ba2CuGe2O7, where the magnetic structure has
rather long periodicity, and where even at the critical fie
the uniform magnetization~spin canting! is small, these ef-
fects are expected to be insignificant. It is entirely possi
that the weak ‘‘quadrupolar’’ in-plane anisotropy seen
horizontal-field experiments15 is in fact such a lattice effect
Note that its strength is extremely small, of the order
731029 eV, and yet it can be reliably measured in a d
fraction experiment where a magnetic field is applied in
(ab) crystallographic plane at different angles to thea
axis.15 Another possible manifestation of lattice effects is t
intermediate phase seen just before the commensu
incommensurate transition in a magnetic field applied alo
the c crystallographic axis.14 A further study of these phe
nomena that distinguish between KSEA and other types
anisotropy in Ba2CuGe2O7 is an interesting topic for future
experimental and theoretical work.

One final comment has to be made in reference to ano
possible player in the spin Hamiltonian for Ba2CuGe2O7:
dipolar interactions. In principle, the ever-present dipo
term can and will influence both the ground-state spin c
figuration and the spin-wave spectrum in Ba2CuGe2O7. Its
effect, however, is expected to be insignificant compa
even to the weakest terms that we have considered in
treatment. Indeed, nearest-neighbor spins in Ba2CuGe2O7

are separated byL5a/A2'6 Å . For two nearest-neighbo
spins the energy of dipolar coupling is of the order
(gmB)2/L3'1 meV. This is an order of magnitude les
than the smallest energy scale in our model, which is
strength of KSEA anisotropyJa2/2'15 meV. Moreover, in
an almost-antiferromagnetic structure long-range dipolar
teractions will be heavily suppressed by the sign alterna
in the contribution of individual pairs of interacting spin
Our neglecting dipolar interactions in all the derivatio
above is thus justified.

In summary we have demonstrated that KSEA inter
tions can result in very interesting measurable effects,
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that noadditional anisotropy is needed to reproduce the b
havior observed in Ba2CuGe2O7.
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