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Neutron-diffraction and inelastic-scattering experiments are used to investigate in detail the field dependence
of the magnetic structure and low-energy spin-wave spectrum of the Dzyaloshinskii-Moriya helimagnet
Ba,CuGe0;. The results suggest that the previously proposed model for the magnetism of this corfgsound
ideal sinusoidal spin spiral, stabilized by isotropic exchange and Dzyaloshinskii-Moriya interact@us to
be refined. Both recent and previously published data can be quantitatively explained by taking into account
the Kaplan-Shekhtman-Entin-Wohlman-Aharony term, a special magnetic anisotropy term that was predicted
to always accompany Dzyaloshinskii-Moriya interactions in insula{®8163-182699)01017-§

. INTRODUCTION egant macroscopic free energy functiotiaf*® (5) Last but
not least, the scale of energies and wave numbers that char-
The recently discovered spiral magnet,BaGeO; is  acterize magnetic interactions in BauGe O, are very con-
one of many materials known to have incommensurate magrenient for neutron-scattering measurements. Magnetic fields
netic structure$? A fortunate combination of properties, in which the most interesting magnetic phase transformations
however, make B&LuGe0; a particularly useful model sys- occur are also readily accessible using standard equipment.
tem for both experimental and theoretical studies of incom- As described in detail elsewhef®efs. 1 and 14 the
mensurate magnetism(1) Unlike the extensively studied principal feature of BsCuGeO; is a square-lattice arrange-
rare-earth compoundsBa,CuGe0; is an insulator, and ment of C&" ions in the @,b) plane of the tetragonal non-
thus can be conveniently described in terms of localizectentric ~crystal structure (space group P42;m, a
spins. (2) Helimagnetism in BgCuGeO; is caused by the =8.466 A, 6 c=5.445 A). Nearest-neighbor in-plane anti-
somewhat exotic Dzyaloshinskii-Moriya off-diagonal ex- ferromagnetic exchange coupliiglong the(1,1,0 direc-
change interactiods that involve only nearest-neighbor tion] is by far the strongest magnetic interaction in the sys-
spins. This is in contrast with such well-known systems agem (J=0.96 meV per bon). The interaction between Cu
MnO, (Ref. 6 and NiBr, (Refs. 7 and § where the mag- spins from adjacent planes is much weaker and ferromag-
netic incommensurability results from a competition betweernetic (J, ~—0.026 meV per bond The magnetic structure
exchange interactions for different neighbor pagsometric ~ can be described as an almost-antiferromagnetic sffirgl
frustration. (3) Compared to such classic Dzyaloshinskii- 1, inse}, with spins confined in the (1,@) plane and the
Moriya helimagnets as MnSiRefs. 9 and 1pand FeGe magnetic propagation vector ¢1£,£,0),{~0.0273,(1,0,0
(Ref. 11), Ba,CuGe0; has a rather lowtetragonal crystal ~ being the Nel point. It was previously demonstrated that the
symmetry. The result is a much richer field-temperaturéh€limagnetic state is stabilized by nearest-neighbor
phase diagram. In particular, in BauGeO, a magnetic ~Dzyaloshinskii-Moriya interactions that for two interacting
field applied along the unique tetragonal axis induces a peSPiNsS; and S, can be written as$; X S;)- D!*2. For the
culiar Dzyaloshinskii-typ¥ incommensurate-to- Cu-Cu bond along th¢1,1,0 direction  axis) the Dzy-
commensurate transitidri* Applying a magnetic field in  aloshinskii vectorD is pointing along (1,10) (y axis), in-
the tetragonal plane does not change the length of the maghcing a relative rotation of the interacting spins in tiezj
netic propagation vector, but leads to its reorientatb@)  plane(the z axis is chosen along the axis of the crystal
The spin arrangement in BauGeO; is a perfect square The rotation anglep (relative to a perfect antiparallel align-
lattice. This fact allowed us previously to describe the statianen) is related to the magnetic propagation vector dy
properties of this remarkable system using a simple and el=27{~0.172. Obviously, two types of domains, with
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Ba,CuGe,0, T=0.35K Q=(h,h-1,0) the presence of previously disregarded magnetic anisotropy.
Our results are consistent with the theoretical predictions of
Kaplant” and Shekhtman, Entin-Wohlman, and Ahardfry®

who demonstrated that a generic anisotropy term must inevi-
tably accompany Dzyaloshinskii-Moriya interactions. The
understanding of the physics of BauGeO, enables us to
refine our interpretation of previously obtained experimental
X data. A brgef report on some of our results is published
§ 1436320 elsewheré'

10“—;

10“—;

103—5
] Il. EXPERIMENT
107

Neutron diffraction and inelastic neutron-scattering mea-
surements were performed in two series of experiments, on
the IN-14 3-axis spectrometer at the Institut Laue Langevein
(ILL) in Grenoble, and the SPINS spectrometer at the Cold
Neutron Research Facility at the National Institute of Stan-
dards and TechnologyNIST). Single-crystal samples of
Ba,CuGeO; rarely survive more than one cooling to low
temperatures. Two different crystals, prepared by the
floating-zone method, were used in the two experimental
runs. Sample A, a cylindrical single crystal of dimensions
4x4x20 mn? was used in experiments at IN-14, but spon-
taneously disintegrated during subsequent storage. Sample B
was used in the second experiment on SPINS and was ap-
. S S e proximately 6x6xX50 mnt. The crystal mosaic was around
098 1.00 1.02 104 1.06 1.08 1.10 1.12 0.35° full width at half maximum(FWHM) for sample A

and 1.2° FWHM for sample B, as measured in tlaeh(
h(rlu) crystallographic plane. The mosaic spread in the perpendicu-

FIG. 1. Typical elastic scans along thi 1,0 direction in the lar direction was measured for sample B and found to be
vicinity of the antiferromagnetic zone centér,0,0, measured in ~around 2° FWHM. The samples were mounted on the spec-
Ba,CuGeO, at T=0.35 K in zero field(top) and in aH=1.6 T  trometers with theirc axes vertical, makingh(k,0) wave
magnetic field applied along t8,0,1) direction(bottom. Note the ~ Vectors accessible for measurements. In both experiments the
logarithmic scale on thg axis. The solid lines are guides for the Magnetic field was produced by standard split-coil supercon-
eye. The arrows show the positions of the principal magnetic Bragglucting magnets. The alignment of theaxis of the crystal
reflections at (¥ ¢£,£,0), characteristic of a spiral spin structure, With the direction of the magnetic field, previously shown to
and the third harmonic at (£3¢,3Z,0), a signature of a slight be crucial for high-field measuremenrfsyas around 1.4° in
distortion of the helicoid. Inset: a schematic of the magnetic struchoth runs, as measured at low temperatures. The measure-
ture showing a single Cu plane in BauGeO; . ments were performed in the field range 0-2.5 T. The

sample environment was a pumpégde cryostat for the ILL
equivalent propagation vectors ¥,£,0) and (1+¢, experiment and a cryopump-drivetHe cryostat at NIST.
—£,0) will always be present in a macroscopic sample. The data were coIIe_cted at temperatures in the range_0.35—5

By now, a large amount of experimental and theoreticaK- AS observed previously, cooling the sample throdgfin
work has been done on BauGeO,, mainly dealing with &0 H_wl T magnetic field always resulted in a single-
the phase transitions and static magnetic properties. SonflPmain magnetic structure. _
important issues remain unresolved, however. For example, The spin-wave dispersion was measured in consgant-
it was predicted that applying a magnetic field along theS¢ans in the range of energy transfers 0-0.8 meV. Neutrons
unique axis should give rise to a distortion of the ideal spiral®f 35 or 2.5 meV fixed incident energy were used in most
structuret*14This so-called soliton phase is characterized bycases. Alternatively, a 3.5 meV fixed final-energy setup was
the appearance of higher-order magnetic Bragg harmonic§?fp|9'ted- A Be filter was positioned in front of the sample to
To date these additional Bragg reflections have not been otgliminate higher-order beam contamination. ' 4G
served directly in an experiment. As far as the spin dynamic40’ —A—40" collimations were utilized in both runs. The
is concerned, only the near-zone-boundary spin-wave dispefyPical energy resolution with 3.5 meV incident energy neu-
sion relations were studied. For the physics of the incomirons was 0.075 meV FWHM, as determined from measure-
mensurate state, it is the the low-energy, sriakpin exci-  Ments of incoherent scattering from the sample.
tations that are most relevant. In the present work we
continue our studies of B&€uGegO0O-, investigating the field . RESULTS
dependence of higher-order magnetic Bragg peaks and the
low-energy spin-wave spectrum in both the incommensurate
and commensurate states. We find that even in the absence of In previous studies the only magnetic elastic peaks ob-
an external magnetic field the spiral structure is distorted byerved in BaCuGeO; were those corresponding to an ideal

10“;

Intensity (normalized to counts/100s)

10“%

A. Higher-order Bragg reflections



11434 A. ZHELUDEV et al. PRB 59

@ BaCuGe0, Q-0,095h0) o . 0Bh D) large as that of the firsF harmonic._Th_is result does not appear
Hol6T g (M50 (1-34:3,0) peak to depend on the applied magnetic field or the history of the
w0l TEL3K | sample. The large observed transverse width is likely to be
.Tg 201 related to the previously established fact that the spiral struc-
= .. tures propagating in any direction in tt§@01) plane have
§ 20001 { N almost identical energies. Thél,1,0 direction is only
g X slightly energetically preferabf€. Due to pinning or even
£ ool ' y ! thermal fluctuations, in a macroscopic sample an entire en-
semble of spiral structures with propagation directions fan-
| ning out around1,1,0 will therefore be realized, producing
o 0'9' 29acnen substantial transverse peak widths.

The field dependence of the integrated peak intensities
was measured in both field-cooling and zero-field cooling

FIG. 2. Transverse elastic scans through the first-ofdeand ~ €xperiments. Consistent results were obtained in both types
third-order (b) magnetic Bragg reflections measured in Of measurement, and no signs of hysteresis were observed. In
Ba,CuGgO; atT=1.3 KandH=1.6 T. Solid lines are Gaussian the ILL experiment the propagation direction of the spiral,
fits to the data. The shaded Gaussian represents the calculated edways along(1,1,0 at H=0, was found to deviate by as
perimentalQ resolution. The intrinsic angular width of both peaks much as several degrees from this direction in higher fields.
is ~20° as seen from th€i,0,0 antiferromagnetic zone center.  This effect is clearly due to a slight misalignment of the

magnetic field relative to the axis, and the possibility to

sinusoidal spiral structure with propagation vectors=¢l  almost freely rotate the magnetic propagation vector in the
*+{,0). These reflections, whose intensity seems to accouri,b) crystallographic plan& In the NIST experiment such
for almost 100% of the expected magnetic diffraction inten-a deviation was not observed, thanks to a slightly different
sity appear belowy~3.2 K around antiferromagnetic zone and more “fortunate” setting of the sample. The field depen-
centers [,k,0), h, k integer,h+k odd. In the present study, dence of the peak intensities was therefore measured in this
careful elastic scans along the<{Xk,x,0) line in reciprocal second experimental run, but, just in case, at each field, both
space revealed the presence of additional extremely weake first- and third-order peaks were centered in a series of
peaks at (¥3¢,£3¢,0), as shown in Fig. 1. These peaks transverse and longitudinal scans. The measured integrated
are clearly of magnetic origin, as the temperature depenintensity of the first and third-order reflection, as well as that
dence of their intensity is similar to that of the principal of the commensurate peak(@t0,0, are plotted against mag-
magnetic reflections at (t{,*+ £,0). The additional third- netic field applied along the axis in Fig. 3. The total inten-
order peak was observed in all magnetic fields in the rangsity of all three features is field independent within experi-
0-1.9 T, and always appears at#3¢,*+3¢,0), where(, mental error.
defined by the position of the principal magnetic Bragg peak, As seen in Fig. 3, the intensity of the {1Z,£,0) magnetic
is itself field dependenf*For 0<H<1.7 T the measured reflection is almost field independent in the range H)
field dependence of is in total agreement with previous <H;. This appears to be in contradiction with previous mea-
studies. For the purpose of convenience we shall defineurement§Ref. 14, Fig. &)], where a gradual decrease of
Q. »=(1,0,0) (antiferromagnetic zone cenjerand g, the intensity of the first harmonic was observed with increas-
=(¢,£,0). In this notation the first- and third-order magnetic ing magnetic field. However, we now know what was wrong
reflections correspond to momentum transf@rs, =g, and  with these previous measurements: the possibility of the
Q. »* 300, respectively. propagation vector deviating from th&,1,0 direction was

As observed previously, atH=H;~1.7 T (at T not taken into account. In a slightly misaligned sample the
=0.35 K) the system goes through a magnetic transition tdield-induced drift of the magnetic reflections away from the
a different phase that is characterized by the appearance ofliae of the elastic scan was incorrectly interpreted as a de-
new peak at the commensurdfe0,0 reciprocal-space posi- crease of peak intensity. Note that in the present study the
tion. As discussed previously, this phase may or may not beentering of the peaks at each field ensures that this problem,
a result of the slight misalignment of the magnetic field rela-even if present, does not influence the measurements.
tive to thec axis of the crystal. In the present work we did
not investigate this “intermediate” phase in detail, perform-

h(rlu)

ing most measurements in the field rangesH)<H,; and B. Spin waves
H>H ~2.2 T, whereH is the magnetic field at which the Al inelastic measurements were done in the vicinity of
structure becomes commensuraté’ the (1,0,0 antiferromagnetic zone centeQ€Q,, ). The

In scans along thél,1,0 direction, shown in Fig. 1, the  gpin-wave dispersion was measured along the €e,0) di-
widths of both first- and third-order peaks are resolution lim-rection ( axis). In most cases the sample was field cooled to
ited. This is not the case for transverse scans along@,1 eliminate the need to deal with inelastic signal coming from
where the first, and especially the third harmonic are visiblythe two magnetic domains. All scans @=Q,, ,. were re-
broader than the experimental resolutigfig. 2). The ob- peated using zero-field cooling to ensure that no hysteresis
served peak width pattern is consistent with both peaks hawffects influence the measurements. The most important lim-
ing a zero longitudinal and a 20° transverse intrinsic widthiting factor in these inelastic studies is the presence of inco-
as seen from th@,, . reciprocal-space pointThe transverse herent scattering and magnetic Bragg tails, centered at zero
intrinsic Q width of the third harmonic is thus three times as energy transfer. This undesirable contamination is absent for
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FIG. 3. (a) Measured field dependence of the magnetic Bragg peak intensities@uBa0O, at T=0.35 K. Solid and open circles show
the behavior of the first-order and third-order incommensurate Bragg peak integrated intensities, respectively. The intensity of the commen-
surate peak at the antiferromagnetic zone center is plotted in open triafiylSguare root of the ratio of intensities of the third and first
harmonic plotted against the square of the applied magnetic field. The solid and dashed lines show the theoretical prediction for the DM-only
and DM+KSEA models.(c) Measured intensity of the third harmonic plotted against the normalized incommensurability paraméter
solid line shows the prediction of the DIWKSEA model.

energy transfers #w)=0.15 meV, where reliable data main characteristic of th&, . branch is the energy gap
could be collected. Typical consta@t-scans obtained in the A, ~0.18(1) meV at the antiferromagnetic zone center
ILL and NIST experiments are shown in Fig. 4. Peak posi-Q, ..

tions were determined by fitting Gaussian profiles to the

da.ta. A]I tlhe inelastic peal_<s studiegl'were found to_be reSO- 5 Field dependence in the incommensurate phagé<H )

lution limited. The focusing conditions are considerably
more favorable aQ=(1+ ¢,¢,0), >0, where most of the
measurements were performed.

In Fig. 6 we show the spin-wave dispersion measured in
Ba,CuGeO; inaH=1 T magnetic field applied along the
c axis of the crystal. In this case the incommensurability
parameter{/(H=1 T)=0.02525). The Q, .*q, disper-
sion curves are very similar to those measured in zero field
The dispersion relation measured in zero applied field issnd appear to be adequately described by the same spin-
plotted in symbols in Flg 5. One clearly sees three diStinCWave Ve|ocity and sp"tting parametei? . . Compared to
branches of the spectrum. These we shall label by the wavge zero-field case however, &t=1 T the centralQ,, ..
vectors to which they extrapolate at zero energy transfefpranch is visibly flattened at its minimum. The gAp .. in
Qr»* 0o andQ; ., correspondingly. An obvious and very this mode is equal te=0.24 meV. Comparing this td ,

interesting feature is the “repulsion” between th@, .  =0.18 meV atH=0, we find that, to a good approximation
*(p branches at their point of intersectid@=Q, . Its

magnitude is given by the splitting&, ,~0.12(1) meV.
This effect again manifests itself &, ,+ 209y, where it is
seen as a discontinuity in th@,. .= gy branch. Simple em-
pirical fits to the datanot shown allow us to estimate the
spin-wave velocitycy~5.21(3) meV A . This value is in
reasonable agreement with the estimatg=Ja/\2

1. Zero field

A, (H)?=A% +(29.SugH)?, 1)

where g.=2.474 is thec-axis diagonal component of the
~5.75 mé&/ A, obtained using the classical formul@) in  gyromagnetic ratio for Gif in Ba,CuGeO; (Ref. 21, S
Ref. 1 and the exchange constdrt0.96 meV, previously =1/2 is the spin of C&i* ions andug is the Bohr magneton.
determined from measuring the spin-wave bandwidth. TheAt H=1 T the measured dispersion curve for tg .
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FIG. 6. Spin-wave dispersion curves measured ipBe5e0;,
FIG. 4. Typical inelastic scans measured in,BaGg0O; in the inaH=1 T magnetic field applied along tH601) direction atT
two experimental runs, at ILL(top) and NIST (bottorm), respec- =0.35 K. Solid lines are guides for the eye. Dashed lines are as in
tively. The heavy solid line is a multiple-Gaussian fit to the data,Fig. 5.
and the shaded curves represent the individual Gaussians. The gray
area in the top panel shows the position of a “Bragg-tail” spurious

peak.
08
| Ba,CuGe,O, 08
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FIG. 5. Spin-wave dispersion curves measured inB&560;, € (r.Lu)

in zero magnetic field. The data collected B0.35 K andT

=1.5 K are combined in this plot. The solid lines are parameter- FIG. 7. Spin-wave dispersion curves measured ipBee0,

free theoretical curves as described in the text. Dashed lines aie a H=1.5 T magnetic field applied along tt{€01) direction at
guides for the eye and the solid circles on the abscissa show tHE=0.35 K. The lines and symbols as in previous figures. Note the
positions of the observed magnetic Bragg peaks. additional branch in the spectrum.
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0.7 for the “additional” gap in the commensurate phase we ob-
Ba,CuGe,0, tain A;=0.28(1) meV(solid lines in Fig. §.
Q=(1+£,£,0)
0.6
H=25T IV. THEORY
054 Most of the magnetic properties of BauGe O, reported

to date appeared to be rather well described by a simple spin
Hamiltonian that included only nearest-neighbor Heisenberg
0.4 antiferromagnetic  exchange interactions and the
Dzyaloshinskii-Moriya cross-product terms. For reasons that
will shortly become apparent we shall refer to this construct

E (meV)

037 as the “DM-only” model for BaCuGeO0,. For a single Cu
plane in BaCuGeO;, the Hamiltonian takes the form
0.2 1
H=HHW+HOW
" =2 {3(ShmShe 1t Sum S 1)+ DL (Sym
0.0 A L N I N XS+ 1mly T (ShmX Shm+1)xl}- ()
0.00 0.02 0.04 0.06 0.08 0.10 0.12
£ (@lu) Here the indexes and m enumerate the Cii spins along

the x andy axes, respectively, ,, are the site spin opera-
~ FIG. 8. Spin-wave dispersion curves measured ip®&60;  tors, J is Heisenberg exchange constant, &nis the norm of
inaH=2.5 T magnetic field applied along t{€01) direction at  ne Dzyaloshinskii vector. Microscopically, the Heisenberg
T=_ 0.35 K(commensurateT spl_n-flo_p phasEhe upper solid line is term H ™ represents the Anderson superexchange
afitto Eq.(2). The lower line is a linear fit. mechanisnt? It arises from virtuanon-spin-flophopping of

two electrons onto a nonoccupied orbital, where they interact
branch has a different feature, namely a discontinuity ayia Pauli’'s exclusion principle. As shown by Moriyathe
Q-+ 0. This splitting, that we shall denote as’g, is  cross-product terrfit (° originates fromspin-flophopping,
roughly 0.05 meV. which is made possible by spin-orbit interactions.

In a magnetic fieldH=1.5 T=H. ({=0.0232) the The classical ground state of the DM-only model is an
spectrum becomes substantially more comgleg. 7). The ideal sinusoidal spin spiral. The experimental observation of
two Q, ,*0o modes remain essentially unchanged. Thehigher-order magnetic reflections in zero magnetic field tells
Qr,» 9ap in the central branch idq (H)~0.28 meV, us that this model is not a fully adequate description of

which is consistent with Eq(1). The discontinuity aQ, ,  Ba&CuGeO;: something is missing from the Hamiltonian
+qp is clearly visible inH=1.5 T data: &, ~0.11 meV. (3). Tounderstand what is going on we first note that for two
0

Another feature of the spectrum that is not visible in IowerSpm‘Q’S-L and S,, interacting via isotropic exchange and the

applied fields is the presence of a different excitation branclPZyalOSh'nSk"'MOrlya term, the interaction energy is mini-
that atQ, ,, is seen at kw)~0.45 meV. The shortage of mized at—\J*+D?S* when both spins5; andS, are per-
beam time prevented us from following this branch to lowerpendicular to D, forming the angle 7+ «, where o
energy transfer@vhere its intensity should incregsst wave  =arctanD/J). Therefore, the Dzyaloshinskii-Moriya cross-
vectors where it would appear focusing: all measurementproduct term ®™ Jifts the local Q3) symmetry of the
were done aQ=(1+¢,€,0), e>0. The limited data that we Heisenberg Hamiltonian and creates an effective easy-plane
have at this stage is totally consistent with the new branchnjsotropy of strength/J2+ D2—J=D?/2J.

being a replica of theQ, , mode, but centered &@, . Relatively recently Kaplai and Shekhtman, Entin-
*2qp, as shown by the corresponding solid lines in Fig. 7. wohlman, and Aharor (KSEA) argued that in most real-
izations of Moriya’'s superexchange mechanism this apparent
3. High field: commensurate phase easy-plane anisotropy is an artifact of the omission of terms
quadratic inD in the expansion of the true Hamiltonian of

aboveH ~2.2 T, are shown in Fig. 8. As expected for the the system. If such terms are properly included, th&)O

commensurate state, only two branches are present. Two pYMMmetry of a siggle bond is restored by an additional term
culiarities are to be noted here. First, the measured spin-wa\feJJZJr DZ_‘_]) /D _(_Sl' D? (S D)_ = (1/23) (S,-D) (S, D). )
velocity c,=4.83(3) meVA is significantly smaller than Note that this additional interaction has the form of easy-axis
that seen atH<H,.. Second, the gap in the higher-energthO"O” anisotropy and its strength is such thaexactly

branch (0.45 meV) is too large to be accounted for by thecompensates the easy-plane effect of the Dzyaloshinskii-
effect of magnetic field alone (RSugH=0.36 meV). If Moriya cross product. With this term included, the ground
for this branch we can write state of the two-spin Hamiltonian has full(® symmetry.

The energy of two interacting spins pointing parallel and
s 2 0. 20 antiparallel toD, respectively, is exactly equal to that of two
(hw)*=Ac+(29.SugH)“+cqa”, (2)  spins perpendicular t® and forming the angler+a be-

The dispersion relations measured l&=2.5 T, well
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tween themselves. We shall refer to this “hidden symmetry” Ps @ 2
term as the KSEA anisotropy term or KSEA interaction. For F<DM+KSEA)=J dx dY{E dn— Keyxn
a recent discussion of this subject see Ref. 23.
To properly account for KSEA interactions in our model @ 2
of Ba,CuGe0O;,, whereD<J, the spin Hamiltonian can be +{dyn— Xexxn
rewritten as follows:
+(XL_X|)(H'n)2_XLH2] ©
H=HH 4 HOM) 4 | (KSEA) 2 2 |

This equation is in agreement with E®) in Ref. 15. Com-
paring Eqgs(3) and(6) one concludes thah the continuous
limit for the square-lattice spin arrangement found in
Ba,CuGegO0;,, KSEA interactiondtwo sets of easy axes, for
x andy bonds, respectivelyare indistinguishable from an
ove;all easyXy)-plane anisotropy of relative strength
=a“/2.

In this work we are mostly concerned with the effect of a
magnetic field applied along th801] crystallographic direc-
éion, i.e., along the axis. Under these conditions the propa-
gation direction of the spin spiral in BE&uGeO0O; is either
along thex or y axis (two domain types are possibléMore-
“over, as we shall prove rigorously while discussing the spin
waves in the system, the magnetic structure remplasar
despite the two types of Dzyaloshinskii vectors, alongxhe
andy axes(for the y and x bonds, respectively This fact
allows us to write the components of vectolr) as
[sin#(x),0,cosA(x)], where 8(x) is the angle between local
staggered momemt(r) and thez axis, for a helix propagat-

As the period of the spiral structure in BauGe0O; is ing along thex direction. The free energy can be then rewrit-
rather long €36 lattice spacings we can safely use the ten in terms of thed(x) as
continuous approximation to describeit® In this frame-
work the magnetic free energy is expanded as a functional of

J dx dy{
4
7

a slowly rotating unitary vector field(r). At each point in
spacen(r) is chosen along the local staggered magnetization. F(PM+KSEA =

This is exactly Eq. (1) of Ref. 13 modified to include the
effects of an easy xy) plane anisotropypsa®n2/2A?

The Hamiltonian(3) then gives rise to the following free
=const-psa® cos A/2A?, coming from the KSEA interac-

energy functional:
Ps|
F(DM)ZJ X —_
dxd 5

tion ony bonds. As seen from this equation the sole effect of

such anisotropy is to renormalize the external field to

:n2m I(Sum She1mt Som Sume1)
+D[(ShmX Sns 1)yt (SnmX Snms 1)x]

2

D
+ ﬁ(sﬁ,msﬁ-%—l,m_i_s)ri,msﬁ,mﬁ—l) . (4)

Can this Hamiltonianthe “DM +KSEA” model) account
for both recent and previously published experimental dat
on BgCuGeO0-? In the following sections we shall system-
atically investigate the effect of the KSEA term on static and
dynamic properties of a DM helimagnet, and show that in
deed it can.

A. Static properties

1. Free energy in the continuous limit

ps[z?xﬁ—(a//\)]z
2

azps+ (x.—xH?

XJ.HZ
2A2 2 '

2

)cos.2 60—

2

2 o
+(ayn—Kex><n

In this formulapg is the spin stiffness, that in the classical
model atT=0 is given byp.,=S?\/324+ D2~ S?J, « as be-
fore is the equilibrium angle between two spins defined as
a=arctanD/J), A is the nearest-neighbor Cu-Cu distance,
x| andy, are the local longitudinal and transverse magnetic
susceptibilities, respectively. Their classidat 0 values are One important consequence of what is said above is that
x. = (9ug)?(4IA?) andx;=0, correspondingly. In Eq5)  all our previous results, obtained in Refs. 13 and 14, can be
we have included the Zeeman term that represents interacecycledby substitutingH(H) for H in all formulas. Our
tion of the system with an external magnetic fi¢ld conclusions regarding the field-induced commensurate-
The term_QZpSng/zAZ in Eq. (5) deserves some com- incommensurate Dzyaloshinskii transition in BaGgO,
ment. It has the form of a magnetic eas.ﬁ.xis anisotropy remain valid in the presence of KSEA interaction. The
and represents the combined effect of the eﬂective @nd KSEA interaction, however, modifies the value of the critical
(yZ) easy planes produced by DM interactions onyrend ~ field H¢. Indeed, substitutingHeq(H) for H in Eq.
x bonds, respectively. This term @iminatedby KSEA in-  (5) of Ref. 13 one gets VHi+a?/A%ps/(x, — X))
teractions that modify E(q5) as follows: =(mal2A)\ps/(x. — x))- From this we immediately obtain

o
= 5Xn

aZ

_ 24+ (XL_XH)(H‘n)Z_XLHZ
2A2ps z 2 2

(5

Her(H) = VH?+ a®ps/A%(x, — X)) (8

2. Critical field and magnetic propagation vector
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i ) o FIG. 10. Theoretical predictions for the spin-wave dispersion
FIG. 9._ Field dependen(_:e of the |ncommens_urab|I|ty parametepjong thex axis in (a) the DM-only model,(b) DM +KSEA model.
¢, as previously measured in BauGgO;. The solid curve is plot-  The effect of the KSEA term is to couple magnons separated by
ted using Eqs(10) and(11), that takes into account KSEA anisot- oq - which leads to the appearance of new gaps in the spectrum,
ropy. The dashed curve is the prediction of the DM-only model. ang reduce the gap i@, ,, branch.

V-4 Ps 3. Higher-order Bragg harmonics
H.=a . (9
2A X1~ X|

An important implication of Eq(8) is that even inzero
applied field theeffectivefield is nonzero. The result is that

We see that the KSEA term reduces the critical field by th . . ; i X
universal factor/1— 4/m2~0.771. Ghe spiral structure is distorted even in zero field and higher

. : . order (odd magnetic Bragg peaks are present. To obtain a

. (Ijn ?rtc:]er t? okitam the f':'ld (tjepend.(tancl:ze oéflthe én\;ersfe PCtheoretical form for the field dependence of the third har-
gof 33 e structurg one has to rewrite Eq$4) and(7) o monic we can use Eg$l7) and(18) in Ref. 14. More prac-

et. as tical than the resulting expression is its linearized form, that

applies in the limif —27¢{(H)]< « (weakly distorted spi-

2mg(H) 10 ral):
o AE(B)K(B)’
ls 16(77Heﬁ(H))4_ 1 (17'2 )(H)22
17256 2He(H | 256 14 IR |
HerH) B 11 (14
Her(He)  E(B) Herel, andl; are the intensities of the first and third har-

Here B is an implicit variable. In case when the deformation monic, respectively. One can see that té=0 the third
of the spiral is weal («—27¢(H))/ a<1], one can safely harmonic is predicted to be smaller than the first one by a
use the linearized formula: factor of 1/256=3.9x 10 3.
Comparing Eqgs(14) and(12) one can see that for weak
distortions the intensity of the third harmonic is proportional

2w¢(H) 1 7He(H) |4 hiah g to the relative decrease ¢{H):
p = —3—2 m + igher-oraer terms.
12
_ _ . {H)  8[l5(H)~15(0)]

From this formula one can derive by how much KSEA in- 2(0) =1- R : (15)
teractions deform the spiral in zero external field. Let us
definep=2={(0) as the average angle between spins in the 4. Comparison with experiment
spiral in zero field. This parameter is easily accessible ex- '
perimentally and equal t¢=27x0.0273=0.172=10°. We now have to make sure that our results for the DM

Recalling thatH .(0)/Hen(H.) =2/ and plugging it in ~ ~KSEA model are consistent with both the previously pub-
Eq. (12) one getsp/a=1—1/32 or lished (Refs. 13 and 14and new neutron-diffraction results

on BaCuGeO; . First, let us compare the previously mea-
suredZ(H) curve with the predictions of Eq$10) and(11).
32 32 The experimental data for the incommensurability parameter
a=arctanD/J) = 72 ¢= z72m{(0). (13 (Ref. 13 is plotted againsH? in Fig. 9. The solid line is the
prediction of Eqs(10) and(11). The dashed line is the the-
The KSEA term thus increases the period of the structure iretical curve previously obtained without including the
zero field by roughly 3%. KSEA term in the Hamiltonian®!* In plotting both these
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curves we have assumed the act(rakasuref values for

H.=2.15 T and(0)=0.0273. Within experimental statis- H(l):nEm [IShm  Sh+1mTIShm Shym+1
tics it is practically impossible to distinguish between the '
two theoretical dependences and the data fits both of them +D(Sh,mX Sht1mlyl- (16

reasonably well.

o It is easy to see that classically this Hamiltonian is mini-
While it appears that thehgpeof the £(H) curve c_annot mized by a perfect helicoid propagating along xexis with
be used to extract information on KSEA interactions, the

all spins lying in the x2) plane:
actual numerical value oH. in the DM-only and DM pins fying p

+KSEA models is substantially different. For the low- (S y=(—1)""™(S)cosna;
temperature limit in B&CuGeO,; we can use the clas- '
sical expressionsps=JS*=0.24 meV, x;=0, and x, (Shm=(—1)""™(S)sinna. (17)

=(gcmp)?/8IA, whereg.=2.47 is thec-axis gyromagnetic .
ratio for C#* in Ba,CuGe0,.2* One can expect these clas- The standard procedure to calculate the spin-wave spectrum

sical estimates to be rather accurate, as they rely orfthe "; to rewrite this I—(|jamiltonian in ternrw]s of Sr? in dprojectionsf orr:
) ) ' ; the rotating coordinate system, where the direction of the
fgtheexchang_e con;tadl; that_ltself was detgrmlned_ from equilibrium value of the spin atn(m) defines thdocal z/
fitting the classicalspin-wave dispersion relations to inelas- 2 N m
tic neutron-scattering dataSubstituting these values into @IS in such a way thaS; ) =(—1)"""(S). We leave the
Eq. (9) we immediately obtairHPYKSEA—2 T This is y coordinate unchanged, and selectxhexis to be orthogo-
’ ¢ ’ ’ r_ H H — !
much closer to the experimental valdg=2.15 T, than the Nal to bothz" andy’=y. Substltu’tmgsﬁ’m—Sﬁ,mcosna
estimateH®=2.6 T for the DM-only model. —Simsinne, S =S\ cosna+S, sinne, and S,
The data for the field dependence of relative intensities o= Sﬁfm in the Hamiltonian(16) and usinge = arctanD/J) we
the first and third Bragg harmonics become consistent witlobtain
theory only if KSEA interactions are properly taken into ac-
count. Indeed, the KSEA term is necessary to reproduce the 1 2 N2z o7 X' ox’
S - L = VJ*+D4(S +
observed distortion of the spiral in zero magnetic field. In " % [ (ShmShe1mt ShmSn1m)
Fig. 3(b) the solid lines are plotted using E¢L4) andH, .,
=2.15 T. The dashed lines are results for the intensity of the +IS St 1mt IShme Shm+1]- (18
th'rg iaa?:? hallm:ﬁm%&lfigzi pre\(/jlolusl_y for the DMI-IOHLY In these coordinates the Hamiltonian is simply that of a
model. Liearly the MOGE! gIVES an excelient gqare lattice antiferromagnetidFM) with easy-plane ex-

agreement with experimerfopen symbols in Fig. ®)],  change anisotropy on bonds along theirection. In agree-
while the DM-only Hamiltonian fails entirely to account for ment with the discussion in Sec. IV A 1 the relative strength

the available data. of this anisotropy is given by
In Fig. 3(c) we check the validity of theoretical prediction
of Eq. (15), which is supposed to hold both with and without JIZ2+D%2-J D2 a2
KSEA terms. The excellent agreement of theory and experi- o= T3 T2 (19
ment confirms the validity of our picture of weakly deformed
almost sinusoidal spiral. Applying the Holstein-Primakoff formalism we write the
spin projection operators ﬁ:m=(—1)“+m(s— axyman,m),
B. Spin dynamics S =(— 1)n+m\/5/2(an,m+al,m): S =i VSIZ(a:,m_an,m)-

i ) ) From Eq.(16) it is then straightforward to extract the qua-
We now turn to calculating the classical spin-wave specy;atic part of the spin-wave Hamiltonian:

trum in the DM+KSEA model for BaCuGeO,. This task

will be accomplished in several separate steps. First, we shall @ "

derive the spectrum for a square-lattice Heisenberg Hamil-  * :an}:«n (48, m@nm~ 8n,mn+1m™ @nmanm+1
tonian, including DM interactions only for theaxis bonds. '

Second, we shall consider the effect of DM interactions —-al al a—-al al oo-a@l +anm
along they-axis bonds, showing that they do not disturb the N :
planar spiral structure and do not influence the dispersion X(ps1mtan+1m)/2+28a, panm- (20

relation a'of‘g thex direction. Next we s.hall analyze the ef- After performing Fourier and Bogolyubov transformations to
fec't of a_lddmg the KSEA term, followmg the method de- iagonalize this Hamiltonian, one readily obtains the spin-
scribed in Refs. 24 and 25. While at this stage we do noa/ave spectrum:

have results for spin-wave dispersion in the BMSEA

model in the presence of an arbitrary external magnetic fieldg Ky)

we shall consider the cas¢>H_ and derive an expression

for A.— the anisotropy gap in the commensurate state. =JS\[4+ 26— 6 cosk J2—[(2+ 8)cosk+ 2 cosky]2.

(21)

This spectrum has one Goldstone branclk,atk,=0, that
We start from a truncated version of the Hamilton{d corresponds to the continuous symmetry of a simultaneous

1. Dzyaloshinskii-Moriya interactions for x-axis bonds only
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rotation of all spins in the Xz) plane. Atk,=k,== the tjon that spins continue to lie in thez plane in the presence

spectrum has a finite gap)®\/6=22DS due to the easy of Dzyaloshinskii-Moriya interactions oy bonds, made in

(x2) plane anisotropy coming from the DM without KSEA Sec. IVA1.

correction. New termsquadraticin a, , and a;m are indeed intro-
Now we have to recall that in the above derivation theduced by the Dzyaloshinskii-Moriya interactions yhonds,

wave vector, ,k, correspond to @otating system of coor- and the spin-wave spectrum is thus altered. After Fourier
dinates. They are thus distinct from the actual component ofransformation Eq(23) becomes

the scattering vector in a neutron experiment. To get the

proper spin-wave spectrum one has to perform a reverse cc%:((z)_iDS

— i t to— —
ordinate transformation to the laboratory system: = k%(y sinky[a'(ky,ky)a'(—kyt+ 7+ a, —ky+m)

: . _at to_ o
St m=S% mcosna— Sk, sinna a'(kg,kya'(—ket m—a,—ky+m)

:(_1)n+m[(s_ ag'man'm)cosna +a(kx,ky)a(_kx+ ’7T_C¥,_ky+ ’7T)

—\/S/_Z(an'm-i-ag'm)sinna]; —a(ky kya(—kt+7+a, -k +m)]. (24)
The analysis of this term for geneilg) is rather complicated
and should be done by matrix diagonalization similar to that

St =5 cosna+S% . sinna ; ; . .
hm=Shm nm described in the next subsection for calculating the effects of

=(—1)""M(S—al m@n.m)Sinna KSEA interactions. Fortunately, for spin waves propagating

) ' along thex axis (k,=0 ork,= ) the contribution ofH (?) is

+VS/2(ay mta, mcosnal; exactly zero, thanks to the g prefactor in Eq.(24). In
other words, as long as we are concerned with spin waves

Syn,m:S%,’m:i /S/Z(a:;,m_an,m)- (22)  bropagating along th€110) direction in BaCuGegO,; we

can totally disregard the contribution of Dzyaloshinskii-
The x-axis dispersion of three spin-wave branches in laboraMoriya interactions along thg-axis bonds.
tory system is shown in Fig. 18). The dynamic structure
factor 9Y(Q,w) has a single magnon peak at the energy 3. Influence of KSEA interactions

given by £(Qy,Qy) (the Q; , branch. The structure factors Having understood the spectrum for the DM-only model,
S*(Q.w) andS*(Q,w) each contain two magnon branchesye can proceed to include KSEA terms in our calculations.
with dispersion relations given by(Qy+m+a,Q,+m),  we first note that if our system werne-dimensionalthe

and &(Qy+ m—a,Qy+ ) (the Q, .+ 0o branches As ex-  inclusion of the KSEA term would fully restore (@) sym-
pected, the zeroes of energy in these two modes are preciselyetry, making the commensurate and spiral phases degener-
at the positions of magnetic Bragg peaks@jf .*do. A ate. In terms of spin waves this would signify a complete
curious feature of this plot is that all three branches arespftening of theQ, magnon branch at the AF zone center

nearly degenerate at the AFM zone center. Q.. As will be demonstrated below, in the case of a two-
o . . dimensional spin arrangement in uGegO; the magnon
2. Dzyaloshinskii-Moriya interactions along y-axis bonds softening atQ,. ., produced by KSEA interactions is incom-

Let us now consider Dzyaloshinskii-Moriya interactions plete.

for the bonds in the direction. Their contribution to the spin ~ As discussed in Sec. IV A 3, in the presence of the KSEA

Hamiltonian can be written as term the ground state is distortedflat spin spiral. In this
situation the transition to a uniformly rotating coordinate
system used in Sec. IV B 1 loses its usefulness. Instead, we

H(2>=2 D(Sx,msrz],erl_Sﬁ,mS)rq,erl) must rotate the coordinate system for spin quantization at

mm each site in such a way, that thexis follows the rotation of

the spins in the distorted helix:

=2 DS (Simi1— Shm-1) .

i Srz1,m:(_1)n+m[(s_an,man,m)cosen,m

=iDSY, (—1)™ ™sinnala, m@nm+1— & mdh ms 1] —\Sl2(ay mtal )sinby ml;
n,m
s;'m: (—1)" M (S— aﬁyman,m)sin Onm

+\SI2(an m+al )cosby ml;

+third-order terms. (23

The absence of terms of the first order ap ,, and axvm
means that in the origindflat-spira) spin configuration the
force acting on each spin produced by the added y Y i T

Dzyaloshins?(ii-Moriya coupl?ng oFr)1 thg bondsyis equal to = S~ 1520 = B0 9
zero. Thus, switching on theaxis DM interactionsioes not  Here 6, ,, denotes the angle between the local spin axis and
disturb the planar helimagnetic ground state of the Hamil-z axis in thex-z plane. The Hamiltoniar W+H®) (as
tonian H ), which therefore is also the ground state of explained abovel (2 is not relevant to the dispersion along
H@=1 M 174 (O Thisa posterioriverifies our assump- the x axis that we are interested)iis then rewritten as
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C05(0n+1m_ On,m— a) S
! : T T T T
- cosa ((S_ an,man,m)(s_an+1,man+l,m)+§(an,m+an,m)(an+1,m+an+1,m)

HO+HE=3
n,m

S
- E(al,m_ an,m)(a$+1,m_ Ant1m) —COS On m+1— Onm)| (S— an m&n, m) (S— an m+18hn, m+1)

S T T S T T
+ _(an,m+an,m)(an,m+1+an,m+1) - _(an,m_an,m)(an,m+1_an,m+1)
2 2

a?(S

S
_? (anm_anm)( n+1m an+1m)+ (anm+anm)(anm+1+anm+1)3|n0 msmenm-ﬂ

+(S—al 1anm(S—al ni18nm+1)C0SOy ;mCOSO, my1 | | +linear terms. (26)

If all angleséd), ., in the above expression are given by the solution of the sin-Gordon equation determining the ground state,
the linear terms will vanish: they represent a static uncompensated force acting on the spins and must not be present in an
equilibrium spin configuration. In general, E@®6) cannot be diagonalized analytically. Fortunately, we are dealing with a
rather weakly distorted structure and can safely restrict ourselves to calculating the effect of the KSEA term to the first order
in 4. It is easy to show that the eagyy plane anisotropy of strength deforms the spiral in such a way thatég ,=qn
+ (814a®)sin qn+0(8°), whereq=a—0(5?). Therefore within our accuracy one can assufpg,~an in Eg. (26). In
particular the anisotropy dependence of 6gs{;— 6 m— @) =C0$q—a-+(84Ja?)sin n+0(5%)]=1+0(5? can be disre-
garded. With these simplifications and after Fourler transformation(Z).becomes

H(1)+H(3)=JE
Kic Ky
o Ak ky)alky ky) +al—ky, = ky)a(ky ky)'

2

)
a(ky ky) Ta(ky ky) — ( 2 cosk, + 2 cosky+ - cosk,

)
(4+ d— 5 cosk, 5

2

5+ - cosk,

512 [a(ke+2a,ky) Ta(ky k)

a(—ky+2a,ky)a(ky ky) +a(—k,+2a,k,) Ta(k, k)"
2

5
+a(ke—2a,ky) Ta(ky, ky) ]+ Zcosky

(27)

. a(—ky—2a,ky)a(ky, ky) +a(—k,—2a,ky) "a(k, ,ky)T”
> .

From this equation we can already qualitatively understand the role of KSEA interactions. Their main impact is the introduc-
tion of terms that couple magnons with wave vectors that differ dgy Zhis coupling will have the largest effect when acting
on a pair of magnons of equal energies. The result will be discontinuities in the magnon branches at certain wave vectors, that
for the distorted helix become new zone boundaries. This picture is very similar to the formation of a zone structure and
zone-boundary energy gaps in a free-electron gas, subject to a weak periodic external potential. Another consequence of KSEA
interaction is the reduction of the energy gap in @g,. branch ak,=k,= 7 from 2\/2DSto 2DS. However, contrary to the
one-dimensional case this gap does not become zero, i.e., another Goldstone excitation does not appear in two dimensions.
This can be derived by looking at the part of EQ7), which does not involve mixing of branches separated &y, 2nd,
therefore, yields to the standard analytical calculation.

To actually calculate the spin-wave spectrum we have to find a transformation of Bose operators that would diagonalize the
Hamiltonian(27). This transformation must respect Bose commutation relations, and for a rather general case of helimagnetic
structures is described in detail in Ref. 25. It is essentially a Bogolyubov transformation involving a column vector of four

operatorsa(k, Ky)=[a(k— a,ky)T,a( —kyt+a,—ky),a(ket a, ky)T,a( —ky—a,—ky)]. The relevant part of the Hamiltonian
(27) can be written agt=(1/2)2x ,a(Ky,Ky) 'Va(ky k) , where the 44 matrixV is given by

A(ky— a,ky) B(kx—a,ky) C(ky—a,ky) D(ky—a,ky)
B(kx—a.,ky) A(—kyt+a,—ky) D(ky—aky) C(—keta,—ky)
C(ky+ a,ky) D (ky+ a,ky) A(ky+ a,ky) B(kx+ a,ky)
D(keta,ky) C(—ky—a,—ky) B(ktak,) A(—k—a,—ky)

<
Il

(28)
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Here  A(ky,ky)=Jg2+36—(d8/2)cosk ],  B(ky k)= Substituting the known numerical values into this formula
—JY (2+26)cosk+2 cosk,+ a2 cosky], C(ky,ky) we obtainA.=0.24 meV, which is in reasonable agreement
=J9 o/2+ (/4)cosk,], and D(ky,k,)=J(6/4)cosk,. To  with the experimental resuli;=0.28 meV.

diagonalize the spin-wave Hamiltonian and at the same time

ensure the conservation of commutation relations we have to V. DISCUSSION

find a matrixQ such thatQ™VQ is diagonal, whileQ'g®
=g, whereg is the diagonal matrix with diagonal elements
(1,-1,1,-1). This is equivalent to diagonalizing the matrix

We see that both the static and dynamic properties of
Ba,CuGe0O;, are quantitatively consistent with the presence
A2 e of KSEA interactions. To be more precise, the experimental
gV. , , i data unambiguously indicate the presence of an easy-plane

To obtain numerical results that could be directly COM-anisotropy of exactly the same strength as predicted by the
pared to our measurements on,BaGeO; we used the KSEA mechanism. It is important to stress that islawly
independently measured values fb+0.96 meV andD/J  yotating helix it is impossible to distinguish experimentally
~aAr9tanD/J)Ea=§—f¢=0.177. A numerical diagonalization petween single-ion easy-plane anisotropy of type
of gV(0,0) was performed using RATHEMATICA software En,m(Sﬁym)Z/Z, two-ion  anisotropy  Xn [ S mSh+1m
package to yield the eigenvalue§;=0.172 meV, &; _ +Sﬁ,m5rz1,m+1]/2) or KSEA-type anisotropy
=0.297 meV, antt,;=0.171 meV. These are the energies(s oS St S S q]) of the same strength. In-
of the Q. »(€0), andQ;, »* do(&1,€7) branches at the AFM  geeq, the difference between a pair of easy aSEA
zone centeR, . The splitting was predicted to be52 . term) and an easy plan@onventional single-ion or two-ion
=(€,—&)=0.12 meV. This value is indistinguishable from anjisotropy becomes apparent only when the period of the
the actual splitting observed in BauGgO;, quoted in the  structure is comparable to the nearest-neighbor spin-spin
previous section. We can also calculate the splitting in theseparation, i.e., is only manifested in lattice effects. Alterna-
Q. - branch atQ, .*q: 26, =0.049 meV. Experimen- tjvely, it can be observed in strong magnetic fields when the
tally, this splitting was not observed in zero field, but is smallcanting of spins towards the field direction becomes substan-
enough to be well within the experimental error bars. Attial. In BaCuGeO,, where the magnetic structure has a
higher fields the discontinuity at this wave vector becomegather long periodicity, and where even at the critical field
apparent(see Sec. [lIB2 The gap in theQ, ., branch, the uniform magnetizatiogspin canting is small, these ef-

A, -=&=0.172 meV, is also in very good agreement with fects are expected to be insignificant. It is entirely possible
the INS measurements. Entire dispersion branches calculatéiolat the weak “quadrupolar” in-plane anisotropy seen in
numerically using the technique described above are shownorizontal-field experiment3is in fact such a lattice effect.
in Fig. 1ab). They can be also seen as solid lines in Fig. 5Note that its strength is extremely small, of the order of
and apparently are in very good agreement with experimerizx10™° eV, and yet it can be reliably measured in a dif-
tal data. fraction experiment where a magnetic field is applied in the
(ab) crystallographic plane at different angles to the

4, Spin-wave spectrum in the spin-flop phase axis!® Another possible manifestation of lattice effects is the

'g]termediate phase seen just before the commensurate-

As we have already mentioned, we presently do not hav S L .
theoretical results for the spin-wave dispersion in the presl_ncommensurate transition in a magnetic field applied along

. . 4
ence of an external magnetic field. However, we can makéhe c crystallographic axis! A further study of these phe-

some predictions for the spin-wave spectrum in the spin-flo;po.metna th"?‘t glsgn%wsg t_)etwe.ent KSEA atnd _ot?erftytpes of
phase(i.e., forH>H,). After some tedious calculations that anisotropy In BaLULgLy; IS an interesting topic for tuture

are omitted here, but are very similar to those performed ir?x%erm}?ntfl and thetorrletlctal t\)/vork. de in ref ¢ th
Sec. IV B 2, one arrives at the result that the contribution of ne inal comment has 1o be made In reterence 1o another

the Dzyaloshinskii-Moriya term for th& (y) bonds is pro- possible player in the spin Hamiltonian for BauGeO;:

portional to sirk, (sinky) and thereforeexactly vanishes at ?|polar |ntergct|gl>ln§.ﬂln prlnglptlﬁ,ththe everépr?stent Q|polar
the AFM zone center. In order to calculate the additionalc'™ ¢an and wiltinfluence bo € ground-state spin con-

; : figuration and the spin-wave spectrum in,BaGeO;. Its
energy gapA. in the spin-flop phase we thus need to con- i L2
sider only the KSEA terms. AQ=Q,, ., (long-wavelength effect, however, is expected to be insignificant compared

limit) the effect of KSEA interactions is identical to that of even to the weakest terms that we have considered in our

conventional easy-plane exchange anisotropy. The spectrupheatmem' Indeed_, neJa_rSst-nAelghbor Spins |QCB&3§O7
of a Heisenberg AFM with such anisotropy in a magnetic®'® Separated bx=a/y2~6 A. For two nearest-neighbor

field is well known?® Both field and anisotropy split the SPINS the energy of dipolar coupling is of the order of
twofold degenerate magnons in a Heisenberg system to gikd#e) /A°~1 weV. This is an order of magnitude less

a gapless mode with linear dispersion and an “optical”t an the smallest energy scale in our model, which is the
mode with the energy gap &.. .. given by strength of KSEA anisotropya?/2~15 ueV. Moreover, in

an almost-antiferromagnetic structure long-range dipolar in-
teractions will be heavily suppressed by the sign alternation
in the contribution of individual pairs of interacting spins.
he(Qq )= VAGH(gueH)?, Our neglecting dipolar interactiopns in all the degrjivariions
above is thus justified.
In summary we have demonstrated that KSEA interac-
A.=2\23S\25=22DS. tions can result in very interesting measurable effects, and
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that noadditional anisotropy is needed to reproduce the be-national Joint Research Grant and the U.S.-Japan Coopera-

havior observed in B&LuGeO0O,.
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