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Coupled ladders in a magnetic field
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We investigate the phase transitions in two-legs ladder systems in the incommensurate phase, for which the
gap is destroyed by a magnetic fiek.{<h) and the ladder is not yet totally saturatéo<(h.,). We compute
quantitatively the correlation functions as a function of the magnetic field for an isolated strong-coupling ladder
J, >Jj and use it to study the phase transition occurring in a three-dimensional array of antiferromagnetically
coupled ladders. The three-dimensional ordering is in the universality class of Bose condensation of hard-core
bosons. We compute the critical temperatiiggh) as well as various physical quantities such as the NMR
relaxations rateT; has an unusual camel-like shape with a local minimum=ath., +h.,)/2 and behaves as
T.~(h—hg)?® for h~h,. We discuss the experimental consequences for compounds such as
Cu,(CsH1.N,),Cl,. [S0163-18209)06417-9

I. INTRODUCTION This is the case for example for the compound
Cuw,(CsH1,N,),Cl,, which has an experimentally accessible

q terials. Th ; i kablv. h ap of A~11 K. Specific heat measurements have revealed
er matérials. hese systems, quite remarkably, Nave a 94 existence of a transition at finite temperature, the nature

in the spin excitation spectrum for an even number of Igg%f which is still controversiat®?4-28t is thus a challenge,
and no gap for an odd number. This phenomenon, reminissoi from a theoretical point of view and in view of appli-
cent of the Haldane conitfctu%é,has been explzorltgd In great cation to experiments, to understand how three-dimensional
detail both theoreticalfr*! and experimentally?~ ordering can occur in ladder systems.

In ladders, contrarily to the case of si#ithains, the gap  we investigate the nature and physical properties of such
and the dispersion in the ladder are controlled by two differtransition by looking at antiferromagnetically coupled lad-
ent energy scales, namely the transveksand longitudinal  ders. Because of the peculiar nature of the excitation spec-
J| exchanges. The ladders are thus prime candidates to stuttym in ladders, this transition is different from the one oc-
guantum phase transitions where the spin gap is destroyed loyiring in more conventional spin materials.
application of a magnetic field. Because of this separation of The plan of the paper is as follows. In Sec. Il, we define
energy scales between the gap and the exchange, even whée model for coupled ladders. For simplicity we confine
the gap is destroyed quantum effects are still crucial. Th@urselves to the case of strongly coupled ladders J; . In
ladders thus offers the possibility of an extremely rich quanSec. lll, we examine the single ladder in this limit, using a
tum behavior, unsuspected in more conventional spin sysnhapping on a single-spin chaifr!®2'we compute quantita-
tems. Such quantum phase transitions were indeed studidiyely the correlation functions as a function of the magnetic
experimentally***"*8On the theoretical side they were in- field. The weak- and strong-coupling limits give an identical
vestigated using a bosonization technitjfer a single lad- ~ structure for the correlations functions and we recover the
der. Close to the critical point where the gap vanished, th&niversal exponents and spectrum for the spin-spin correla-
spin-spin correlation functions were found to diverge with ation functions derived in Ref. 19. The three dimensionally
universal exponent, leading to a divergent NMR relaxationcoupled ladders are described in Sec. IV. The three-
rate 1T,~T 2 in good agreement with the experimental dimensional ordering is in the universality class of Bose con-
findings. Between the critical fielth,; where the gap was densation. We compute the critical temperafligeas well as
destroyed and the saturation figig,, the ladder had incom- various physical quantities such as the NMR relaxations rate.
mensurate spin-spin correlation function with a quite distinc-Tc has a camel-like shape with a local minimum fat
tive spectrum compared to single chain systems. These re= (he+hey) and behaves aF.~(h—hg)?? for h~hg.
sults were confirmed and extended in subsequent analyticiVe discuss the experimental consequences for compounds
and numerical calculatiorf823 such as Cy(CsH;,N,),Cl,. Conclusions can be found in

Due to the gapped nature of the excitations for a singlésec. V and some technical details are left for the Appendix.
ladder whenh<h.; a weak interladder coupling is ineffi-
cient .and the S|r_lgle Iadder approximation is nearly exact. Il. THE MODEL
This is clearly different in the incommensurate phése
<h<h,, and the question of the coupling of ladders be- We consider the two-legs ladders shown in Fig. 1.
comes much more crucial. Quite generally interladder cou- For the moment we consider a single ladder and thus take
pling can lead now to a three-dimensional ordered phasel’=0. The ladder Hamiltonian is given by

There has been recently considerable intém@stspin lad-
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¢ L8 % B The Hamiltonian(5) describes a single spin-1/2 chain with a
/,"\ /,‘\ /,‘\ - _\P‘ fixed XYanisotropy of 1/2 in an effective magnetic field. In
7; Bl S5 1 the following we denote with a tilde, the magnetic figid
x N\ x AN H ' ' . .~ . . .
Nt N O ! ! and the magnetizatiom of the effective spin-1/2 chain. The
\ Do : gapped phask<h, for th_e ladder corresponds to thg nega-
7 ' » b \/5-\ P \:/'T tively saturated magnetized phase for the effective spin
poo DTN TN TN T chain, whereas the massless phase for the ladder corresponds
H N o X -- Nl P .. . . . .
w T S LI to the finite magnetization phase for the effective spin-1/2
< < <L chain!® The fieldh,, where the ladder is totally magnetized

=

correspond to the fully magnetized phase for the effective
FIG. 1. The two-leg ladder system considered in this paper. Arspin-1/2 chain. It is easy to check that
interladder coupling)’ couples the ladder in a three-dimensional
way. ~ _3‘JH
herco=+—- )

H :JHi IZlZ Si,l . Si’|+JLZ Si,l' Si,2_ hi |212 SIZJ f (1)
s S lll. SINGLE LADDER

wherel=1,2 denote the two legs of the ladder, amdhe
applied magnetic field. . Before taking into account interladder interactions, let us

The case when the rung couplidg is much smaller than st recall some important consequences of such a mapping
the interactionJ; along the ladder has been studied by afor the single ladder. In the process we give a more quanti-
variety of techniques both in the absencé 8t'or in the  tative calculation for the correlation functions as a function
presence of a magnetic fiel#**We concentrate here on the of the magnetic field. The results of this section will be used
opposite limitJ, >J; . In that case the ladder can be mappedo study the interladder coupling. We focus here on the mass-
onto a single-spin 1/2 chafif;****and we recall the mapping |ess phaseh,;<h<h.,. To conveniently derive the low-
here for completeness. Indeed an individual rung may be in @nergy properties of the effective spin-1/2 chain we use the
singlet or a triplet state. Applying a magnetic field brings onepy now well-known bosonization technique. We refer the
component of the triplet closer to the singlet ground statgeader to Refs. 27—-29 and 19 for details and just recall here
such that for a strong-enough magnetic field we have a Situhe main steps.
ation when singlet anth=—1 component of triplet create a We first use the Jordan-Wigner transformatfors?
new effective spin 1/2. It is thus possibleif>J; to retain  which essentially maps the spin problem onto a problem of
only these two states for all the magnetic field range betweemteracting fermions on a lattice. For the spin-1/2 system
he1 when the gap is broken tio., when the ladder is com- considered here, the corresponding fermionic problem has

pletely magnetlz_ed. . - _ . Fermi momentumkg= /2 if h=0. Finite magnetic field
Qne can easily project the_ original Heisenberg Ham"'corresponds to a chemical potential for the fermions. We
tonian(1) on the new singlet-triplet subspace then perform a linearization around the free Fermi points
1 given by = kg, to obtain an effective low-energy continuum
|I>:—[|Tl>—|lT>] fermionic theory and then express the fermion operators in
2 terms of bosonic ones related to the fermion density fluctua-
tions using the standard dictionary of Abelian bosonization

Hy=111). (2)
. . . [ e_la(x)
This leads to the definition of the effective spin-1/2 operators S*(x) = — [e' ™2+ cos 26(x)]
T
1.
S/ ,=%—S", (3)
1,2 J2 S, (x)= — ia ¢+emxlacos 2p(X) ®
z _ 1 'SZ ™ ma ,
10~ z[1+257]. 4

hereS+(x)=S,T/\/5, SY(x)=S;/a for x=na, a being the
stance between two nearest-neighbors sites along the
chain. From now on we take the lattice spaceg 1 and
~ 5 - e measure all distance in units af The phasep is related to
Het=912 [SS, 1+, 1 +355,1-hY §+C, the average density of fermiorfer equivalently to the uni-
: ! form spin density along) by S,(x)=—1/mwd, ¢, whereasd
(5) is connected to the conjugate momentubh of ¢
whereC=(—J, /4+J)/8—h/2)L is a simple energy shiftand (such thaf ¢(x),I1(x")]=is(x—x")) by 0(x)
the system is in an effective magnetic field =[* _dyII(y). In a very crude sense, d can be viewed as
the polar angles of a spin. The low-energy properties of the
Hamiltonian(5) can be totally described in terms of the bo-
son Hamiltonian

When expressed in term of the effective spin operator%vi
(3), the original Hamiltoniar(1) becomes

|
h=h-3,-3. (6)
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H—de K(mI1)24 o (dych)? 9 w
= | 57| UKD+ 2 (9x$)7), ©)
. - o 0.0
where ¢ has been shifted to absorb the finite magnetization
d— -+ 2mXx. (10) h o
The only two parameters controlling the low-energy proper-
ties are the “spin-wave” velocityy and a numbeK called 20
the Luttinger liquid exponent. Both are known exactly for
the spin-1/2 chaif®> For h=0 analytic expressions are 3.0
known 000 010 020 __030 040 0.0
m
3,13y y= —cosmf3?, 3.0
1K =282, (11)
2.
u= ! sir[w(l—ﬁz)]ﬂ u "
1-p2 2"
Thus, K=1/2 for an isotropic Heisenberg chain with=0 10
whereaK =1 for the pureXY one. For the Hamiltoniarb)
this leads to 00
000 010 020 _ 030 040 0.50
K=3/4 u=—3\/§ﬂ (12 m
' 2 2
1.00
At finite magnetic fieldKk andu can be obtained by integra-
tion of the Bethe ansatz equations and are shown in Fig. 2 for
the specific case of th¥Y anisotropy 1/2. 0.90
Close toh.; or h., the number of excitations compared to K
the fully polarized ground state becomes very snallthe
fermionic language one is close to an empty or a full hand 0.50
and thus,K take the value for noninteracting particlé&s ’
—1 regardless of the strength of the original interaction
NFYNNYE
Since the free-boson theory given by E8) is trivially 07 0 010 020 030 040 050
solvable, it is straightforward to calculate the asymptotic de- m

cay of the dynamic correlation functions, which are just the

ones of a spin-1/2 chain. Using E(), one gets forT=0
(for more details see, e.g., Ref.)19

2 2 ~ 1
($(x,7)§40,0)=m*+C, =
;

2K
+C,co8 w(l—ZFn)x](F) ,

B ~ B 1| 2K+1(2K)
(S*(x,t)S(O,O)>=C3cos{27rmx)(F>
1/(2K)

: (13

1
+ C4c0g WX)(F

where r=x?+(ur)? and C; are constants on which we

focus later in this section. When expressed in term ofrihe

magnetization th= 1+ 2m and the original spin operators of

the ladder using Eqg3) this gives(e.g., for rung 1)
2 1 2K
|

1
(S1(x,t)S;(0,0)) =m7 +— +cog2mmx)
r

FIG. 2. Magnetic fielch and Luttinger liquid parametersand
K for an XY anisotropy of 1/2 plotted as a function of the magne-

tization m (only positive values are shown, the parameters being
symmetric withm— —m). m=1/2 is the saturated chai=3/4

for zero-magnetic field, where&s— 1 andu— 0 close to saturation
since the excitations above the ground state become very diluted.
andh are in units ofJ/2.

1 2K +1/(2K)
(Sf (x,1)S; (0,0))=cog m(1—2m)x] )

r
1\ 12K)
+cogq 7X) F) (14

(where we have dropped the constafisfor simplicity).
Equation(14) presents some remarkable features. First, as
already pointed out in Ref. 19, low-energy modes appear
only close tog~0 in the $* correlation function or close to
g~  for the transverse one. The~ 7 (for S%) or g~0 (for

S*) mode remaingnassive This is in marked contrast to
what would happen for a gappdd.g., dimerized or frus-
trated single-chain systeniin weak coupling where both
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0 2mm q T 0 q =1-2m T 0.8
@ ®) 0.6
FIG. 3. Schematic picture of the field-dependent dispersion as 0.4
seen by theS?’S? (a) andS*S™ (b) correlations for fields close to 0.2 0.4 0.6 0.8 1.0
h.;. Only the dominant singularities are shown. In marked contrast 1/(2 K)
with a single chain there is no massless excitations closp~tar
(resp. g~0) due to the presence of an antisymmetric massive 0.60
mode, unaffected by the magnetic fiefd.
0.58
theg~0 andq~ 7 would become massless wheeh.;. A
summary of the massless and massive modes is shown on 2
Fig. 3. 0.56
Such prediction for the ladder correlations should be test-
able in neutron or resonance experiments. Closh.{o(or
. 0.54
h.,) K—1 and one recovers the universal exponent for the
decay of the correlation functions predicted in Ref. 19. The

weak-coupling approximation only allowed for a qualitative 0.52
calculation of the exponents far from.,; andh,,. For the 00 01 02_03 04 05
strong-coupling case one can get the full magnetic-field de- m

pendence as shown in Fig. 2. As shown in Appendix A, the £G4, prefactoF as a function of the Luttinger parametér
whole asymptotistructure of the correlation function is in- The divergence close t=1/2 is due to the appearance of loga-
dependent of the strength of the couplihig vs Jj provided rithmic corrections in the correlations functions for the isotropic
of course that the correct Luttinger liquid exponent are usedzase®® For the specific case of the chain wixlY anisotropy 1/2,

Let us now compute quantitatively the correlation func-the prefactor is shown as a function of the magnetizatioiNote
tions. We only focus here on the massless modes. The prefae relatively weak dependence on the whole interval due to the
actors in the correlation functions of the spin operators in théinite XY anisotropy of the effective spin chain.

XXZ model have been computed by Lukyanov and
Zamolodchikov**34 Thus, for example, for the transverse  Using Eq.(15) one gets for the staggered part of the trans-
staggered magnetization we have verse spin-spin correlation function of the physical ladder
spins as a function of space, time, and temperature
_ 2
(—1)"S*(x=na,7)=[F4/8]Y4a/u)# %' **",  (15)

2 2
Fgla T A
where the expression for the prefactor réds (S"(na, 'T)S(0,0)>:l—g(a) m (—1)<.
aw T v
52 B2 (18
1 F( 2—2,82) The term 1) indicates that due to the relation between

physical and effective sping3), the physical correlation
) function is singular at the wave vectorr(). Let us insist

F:
2(1-p%)?
2\xr 2232 that the position of the singularity does not change with
field'® [see Eq(14)].

edt sinh(82t) Assuming that the local susceptibility is dominated by the
<exn — f bt — B2 contribution from the transverse part of the staggered suscep-
o t | sinhtcosh(1—B2)t]

tibility, we get the following expression for the NMR relax-
(16)  ation rate:

In the vicinity of the value of interest heyg®=2/3 an ana- 1 )
lytic calculation is possible 7. =Tlim (19
1 w0 @
_ 9 |r@p Ze*(ﬁz’”@[“'”(?’”’l@ s (up to the hyperfine coupling constantShis leads, when
B o223 T'(1/3) the Fourier transform and analytical continuation of Eg)
is performedsee also Eq(27)], to the relaxation rate

~F(2/3)exf —2.173 B>—2/3)]. (17

For more general values & andm the value ofF is shown io( EI’Z(,BZIZ)F(l—,BZ) (20)

on Fig. 4. T, 8 (27T)2 8
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Kk possibility would be to have, for a certain strength of cou-
1 L2 XY pling and a given anisotropy a Luttinger liquid parameter
totally field independent.
Weak
12 Tsotropic ] IV. COUPLED LADDERS
SR XY 7] . .. .
N T In order to describe realistic compounds we now take into
e Strong account an interladder interaction of the form shown in Fig.
* 1 and given by the Hamiltonian
3/8.L RIS Isotropic - 9 y
D E——
Ji a ’ - -
! - H3D:§ Hizgdert 3 2 EI Sia1rSip2 (29
hCl h (a,B)

o o . o where(a, 8) denotes pairs of nearest-neighbors ladders. It is
FIG. 5. Qualitative variation of the Luttinger liquid parameier easy to see from Fig. 1 that a spin on leg 1 of one ladder can
as a function of the magnetic field both for the weak- and strong-omy interact with the spin on leg 2 of the neighboring ladder
coupling ladder. Full line is the weak-coupling ladder<J;, and and vice versa.
dashed line for the strong-coupling ode>J; . Different curves Since the interladder coupling is very weak it is again
correspond to differenXY anisotropy from the isotropic case to the 4egitimate to map the problem to an effective spin-1/2 prob-

XY limit. A is the gap for the weak-coupllng case. See also _Flg. em. The coupled ladder system thus reduces to a problem of
for the exact result for the strong coupling laddidue to the dif- . . . .
spin-1/2 chains coupled by the interaction

ference of definition(see text betweenK e, and Kgyong We plot
Kstrondz]- J/ o
~ Hcoupling: 4 E [S;r S; +H.c]
At B2=2/3[i.e., forh=0 or h=(he; +h,)/2] this gives for (@p)
T J’ e, 7~
! + 2D FE+ 2 E, (25
\ 4ap 0 8% T
Xioc(®)
w

1 .
—aTlim

T (21 wherez is the coordination number. Because a spin on leg 1
1

can only be coupled to a spin on leg 2 by this leads to a
ferromagneticcoupling for theXY part of the interchain cou-
13 pling although the original interladder coupling is antiferro-
(220  magnetic. There is also a trivial redefinition of the effective
magnetic field by the interladder coupling. Although the
problem of coupled ladders now looks identical to the one of
Close tohg; or he,, K—1 (thus B°—1/2) and EQ.(20)  three dimensionally coupled spin-1/2 chain, the physics will
gives back the universdldivergence of the relaxation time pe quite different from the standard c¥sef isotropic
coupled spin-1/2 chains. Indeed, as we will see below, the
1 1 XY anisotropy of the effective spin-1/2 chain inherent in the
T T (23 ladder problem, plays a crucial role. The treatment of Eq.
1 T (25 depends crucially on what is the characteristic energy
scale of the interladder coupling when compared to what
Away from the critical field the exponent increases weakly tohappens for a single ladder.
—1/3 ath=0. (See also Refs. 21 and 23he full magnetic
field dependence can be obtained from Fig[uging 2 A. High-density limit
=1/2 K and Eq.(20)]. ) .
Although, as shown in Appendix A, the correlation func- f One is far enough fromh, and he,, the interladder
tions for the strong- and weak-coupling ladder are smoothiy©UP!ing will be small compared to the characteristic ener-
connected, a very interesting question is how the Luttingepi€S (Fermi energy for the associated spinless fermion prob-

liquid parameter varies with the field when going from weak€M Of the single chain. It is then possible to treat the inter-
to strong coupling. This is not trivial since for the weak- [2dder coupling in the mean-field approximation while

coupling ladder wheA <h<J) one recovers essentially the keeping_ the full _single—ladder physics. Since the singlg—chain
Luttinger liquid exponent of a single chatfFor an isotropic correlation functions alongdecays faster thgn the one in Fhe
system this ik =1/2, i.e., the same value as the universalXY Plane[see, e.g., Eq(14)], three-dimensional order will

one close tch,,. If there isXY anisotropy the parametés occurfirst in the XY pl~arle. It is thus possible to neglect in
increases and thué=1/2. On the other hand for the strongly EQ. (25) the interchainS’S* coupling, and to retain only the
Coup]ed |adden’egard|essof the XY anisotropy(provided XY part. Note that in that case it is not important whether the
J,>0) the Luttinger liquid parameter decreases with theinterchain coupling is ferro or antiferro since one can go
field [see Eqs(5) and(11) and Fig. 3, giving the very dif- from one to the other by making the gauge transformation
ferent field dependence shown in Fig. 5. 5 -8, 9 -9, F-Fon alternating chains. The cou-
It would be extremely interesting to have more quantita-pling is just a spin flip term for the spin, which in a bosonic
tive estimates for the behavior shown in Fig. 5. An amusingrepresentation for the chain is just a hopping term for the

w—0

1
=7

u
a

v

133./3r(2/3) 1
a

16\/577 . TT/?’
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Z 0.07
B
s L Xy 0.06
0.05
Te
0.04
FIG. 6. Cartoon of the three-dimensional transition in ladder 0.03
systems. The direction of the spins in tK&’ plane tends to lock
together between different chains leading to a planar antiferromag- 0.02
net. Note that the triplet states are in fact delocalized on the ladder -3.00 -1.00 _, 100 3.00
and that in theXY plane the spins remain modulatedgat 7 in the h

ladder direction. We have represented the singlets as shaded boxes.
This transition is in the universality class of normal-superfluid tran-
sition or Bose condensation of hard-core bosons.

FIG. 7. Three-dimensional transition temperatiligeas a func-
tion of the applied magnetic field (i.e., forh,;<h<h,). The full
line is the complete solution whereas for the dotted curve the pref-
actorF 5 has been fixed to its zero-field value. Note the minimum at

bosons(see below. Another way of viewing it is as a Jo- h=0.

sephson coupling between the phasgesf the spins on dif-

ferent chains. This shows that the transition is a normal-

superfluid-type transition or alternatively is a Bose- J'Dg U2-p%

condensation transition for the hard-core bosons associated TCIU( 16770)

with the effective spins. In a pictorial level this says that the

orientation of the spins of the ladder in tX& plane wantto  ith

lock in the same direction as shown in Fig. 6. Since we are in

d=3 (i.e., above the critical dimension for the quantum

transitior?’) the exponents are the mean-field ones- (/2 Dy= Fﬁsin(q-rB2/2)

andZ=1).

To compute the transition one can use a standard mean-
field approach. The transition temperature is given by Given the fact that we used quantitative estimates for the
one-dimensional correlation functions and not just
1 asymptotic estimates E@29) should even be able to give
- O semi-quantitatively theT. if J' can be determined by an
J’ x.(9=00=0.1). 26 independent method. Much more important, however, is the
field dependence of th&.. Indeed since the exponents de-
where y, is the single-chain transverse staggered susceptpend on the field in a nontrivial way one can expect a non-
bility (wave vectom is to be counted relative t@). For the trivial magnetic-field dependence of the three-dimensional

Luttinger liquid the susceptibility can be computéd’ transition temperature. Close To=0 an analytical solution
can be obtained. We have

(29

T(BUHT (1— B%2)|?

I'(1-B?4)

(30

Fsal 77,82) 2maT| 2+F°
X (0,0)=——5 —Isin— a
) ) dinT,/)  3dp? 1160 In(o/T +ld|nv
xB B——is+,1—'8—) aH - 2 gn Letin/Tea)l+ 7 g
4 2 (32
B B ™ . . .
xB| = —is_,1— _) - (27)  Itis clear that at small enough’ this expression becomes
4 2] 1-p%2 positive and thus magnetic field increases the transition tem-
Where perature. A numerical estimate of is given in Fig. 7.
The camel-type structure, instead of the naively expected
w—0q dromedary one, comes from the competition between the de-
S.= T (29 crease of the exponent when one moves closér.{®r h.,
(which leads to an increase of tfig), with the fact that the
andB(x,y)=T(X)I'(y)/T'(x+Yy). excitation velocityu decreases at the same time.
Solving Eq.(26) with Eq. (27) gives the critical tempera- We can also obtain the local susceptibility clos@to In
ture the mean-field approximation it is given by

f dag;qs
(2m)2) [xo =235 —235]+4d]sirPq,/2+ 4J4sirPq,/2”

Xioc(®) = (32
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Whenr=y, 10,0)— 2J;—2J,<J' one can linearize the si-

nuses and calculate the integral Hposor= 5 2 (b i1+ H.C)
— ) Imygy? 2 (2 (bl Jboj g+H.c). (36)
w . i
Xloe 477\/3 5 | Rexg-23,-23,

To go back to the standard negative hopping one must per-
(33 ; .
form along the chain the gauge transformation

In the limit of zero frequency we get ci—(—1)'c;. (37
Since the density is low, Eq.36) can be reduced to the
) continuum limit of bosons with the kinetic energy
L!)Lo w kﬁ k?
E(k,ki)—ﬁan. (38

Nl

The ordering transition thus reduces to the well-known prob-
lem of the Bose condensation transition for the diluted boson
['(1-p%4—ix)T(B%14) gas?® The three-dimensional ordered phase corresponds to
(34) the superfluid one, whereas the high-temperature phase is the

normal fluid of bosons. Most physical quantities relevant for
the ladder problem can immediately be borrowed from the
vast knowledge existing for the diluted boson gas. We will
not dwell on all quantities that can be computed but simply
give here a few examples.

The critical temperature is known in the limit of low den-
sity and is given by the equatith

if dx] (11— B2lA+ix) — y( B2A+ix)]
U ['(B%4—ix)I'(1— p214)

1 (T T)>#

Close toT;, Eq. (34) reduces to a mean-field divergence
1/(T—T.)Y2 This leads to a similar divergence in the relax-
ation rate 1T ;.

B. Low-density limit

When the magnetic field is close kg, or h, the above A h
mean-field approach on the single-chain Luttinger liquid can- ragaa 3,25(3/2)1'3/2 0, (39
not be used. Indeed the energy of the interchain coupling o fo (4m)
becomes larger than the intrachain energy scale, and intefyheret, is a simple numbefscattering matrix for an infinite

chain coupling should be treated from the start. Fortunatelyhard core potential This leads to a critical temperature vary-
the problem is still solvable since the number of excitationsng as

above the fully polarized ground state become very small.
Let us focus orh~h.;, the solution forh~h., can be de- Tex(h—hgy)?? (40
duced by symmetry.

Another useful way of viewing this problem, especially
useful when we deal with the low-density limit, is given by
using the boson representation of spins, instead of the stan-

and gives back immediately the mean-field critical expo-
nents. Of interest also is the total densityi.e., the magne-
tization of the ladder. It is given by

dard Jordan-Wigner fermionic onghe fermions have to [ 1
carry a string. The spins can be represented by hard-core p=—— —3/2§(3/2)T3/2, T<T,, (42)
bosons. The presence of a boson denotes a spin-up state or in o (4m)

the original ladder a triplet on the rung. The hard-core con-

straint ensures that one has only two stétel or empty) on 1 2

each site to get a faithful representation of the spin 1/2. The p= n )3/25(3/2)1_ T>Te. (42)
problem thus reduces to a problem of hard-core bosons with

in chain interactiongdue to theézéz term). The interchain Thus, two effects occur. First the magnetization is nonmo-

coupling Hamiltonian is thus just the kinetic energy inter-notonous in temperature and increases by a factor of two
chain hopping term of these bosons betweenT=T, and T=0. Second, at criticalith=h_, the

magnetization grows a2 at very low temperature@vhich
, can be readily seen by computifig®qng[ e(q)]). This is a
J_ 2 b’ b (35) different temperature dependence than ifatependentad-
ders. In that case it would be given by the excitations of the
one-dimensional theory, which are fermionic in nature and

have a one-dimensional density of state, leading to
Since the bosons are very diluted it is essentially exact to

neglect the interactions between them but for the hard-core €max

constraint, as indicated by the fact that the Luttinger liquid mee fo deNyg(e)ne(e) T2 (43
parameter for a single chain goeske-1 close toh.;. One

has thus to solve the problem of a three-dimensional gas dfooking at the temperature dependertf@ very low tem-
hard-core bosons with the simple kinetic energy peraturesof the magnetization at criticality should thus pro-
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vide information on the interladder coupling. Of course atinteresting feature in the spin-correlation function of the lad-
higher temperatures one always recovers the independedér compared to a single chain is the appearancehfor
ladders behavio(43). ~h.; of a low-energy modeonly close tog~0 for the
Another important quantity is the NMR relaxation rate. (S,S,) correlation function and close tgq~m for the
The(S*S™) correlation function is here simply given by the (S, S_) one. A single chain would have had baih-0 and
bosonic single-particle Green'’s function g~ 7 mode at low energy. This prediction should be testable
. B B ] + in neutron experiments. Close to the lower critical fibld,
(S"(r,1S (0,0)=(=1c(r,7)c'(0,0). (44  \where the gap is destroyed we recovered the universal
The (— 1) factor coming from the transformatio@@7) im- exponent’® for the divergence of the NMR relaxation rate

. - 1/2
plies that the low-energymasslesspart of the spectrum, Ty~ 1T )
which for the spins is around~ = (see Fig. 3is given by These results served as a basis to analyze the nature of the

the smallo small g Green’s function for the bosons. The phase transition in a system of three dimensionally coupled

single-particle Green’s function can also be computed in thé@dders. This problem falls into the category of Bose conden-
limit of low density’® and is given in the condensed low- sation of hard-core bosons, which allows to obtain many

temperature phase by properties of the phase diagram and the ordered phase. The
variation of T, with the field has a locaminimumat h

i+ K2+ A =(hg + hcz)lg leading to an unusual camel-like §hapg for
Glon, =~ (45  the phase diagram. Close tg; and h;, the transition is
oK+ 2Ak similar to the one of a diluted Bose gas with.~(h
Using the standard formula for the NMR relaxation réte) ~ ~ Ne)*. The temperature dependerlj:ze of Biemagnetiza-
and (45) one obtains tion goes at criticalith=h, from aT~* behavior for inde-
pendent ladders to @%? (when interladder coupling inter-
1 T venes at low temperatures. The NMR rate diverges close to
e (46)  the transition as T,~|T— T, *? and behaves asT/~T
1 VA at low temperatures. These quite distinct features could be

where A is given by Eq.(39) giving thus a relaxation rate used to check whether this transition is the one occurring in
proportional toT at low temperature and diverging close to the experimental system GCsH;oN,) o Cly.
T. as 1/(T,—T)'2

The above results could apply to the three-dimensional
phase of Cp(CsH;oN,),Cly, which is a strong-coupling
ladder® where this theory is directly applicable. Whether or ~ We thank L.P. Levy for many inspiring discussions.
not the transition experimentally observed is due to theA.T.is grateful to University of Paris-Sud, where part of this
mechanism presented here is still an open question and othefrk was completed, for support and hospitality. T.G. thanks
mechanisms of instability have been propo$&t.Various the I.T.P.(Santa Barbaawhere the final stage of this work
experiments can be performed to elucidate this point. Firstvas completed, for support and hospitality. This research
since the three-dimensional transition described here is sinwas supported in part by the National Science Foundation
ply an ordering in the direction of the spins in tK& plane  under Grant No. PHY94-07194.
its impact on the global-global magnetization is very weak,
as seems to be the case experimentally. Note, however, that
it does change the temperature dependence of the magnetRPPENDIX A: WEAK VS STRONG COUPLING LADDER

zation at criticality and below ;.. Other interesting experi- We show in this appendix the connection between the
ments could be a fit of tha—T, relation(40) close oy ¢orelation functions for the weak-coupling ladder and the

and more generally the camel-like shape of the phase diagng.coupling one. The use of the simple Luttinger liquid

gram. Local probes like NMR or neutrons should be Ioer'expressions due to Halddfallows for a more transparent

fectly suited to study this transition. NMR could provide a Jerivation than the one given in Ref. 22.
way to map the phase boundafyy looking at the diver- For weakJ, one introduces two boson fieldsne for

~ —TIV ~ i - o - .
gence of 11y~ 1/T,—T|"%). The 17|'1_ T law in _the lO\_N each leg and it is more convenient to use the symmetric and
temperature phase could also provide conclusive ev'dencﬁntisymmetric combinations

Finally, since we know that the transition is in the normal-
superfluid transition universality class, one could also try to

compare the thermodynamic singularities. dF b
b1 = (A1)

V2

We have examined in this work the properties of ladderaVith the usual representations of the spin operators in terms
under magnetic field, and focused on the gapless phase ocf the ¢ and 6. Since the magnetic field couples only to the
curing betweerh.;<h<h.,. For a single ladder we com- symmetric field, it can only remove this gap and the antisym-
puted quantitatively the correlation functions as a function ofmetric field remainamassiveeven aboveh.;. To write the
the magnetic field. The correlation functions in the ladderscorrelation functions for the spins in terms of the bosonic
have an identical structure both for the weak-coupling laddefields one uses the standard representation of spin in terms of
J, <J) and the strong-coupling one. As in weak coupling anfermion operators and then the expression of this fermion in
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terms of the bosonic ones for a Luttinger liquid. Let us startFor the weak-coupling ladder sinke=1/2 the cos(®) term
with the S, operator, connected with the density of associ-is subdominant and can be safely dropped. To make the con-

ated fermions.

nection with the case of strong coupling, where one can have

We use the decomposition of the density or fermion op-K<1/2, it must be kept? SinceQ=m(1—2m) it is easy to

erator in a Luttinger liquid

1 .
p=po— ;Vx¢+2 en(Qx+9), (A2)
n
which contains all harmonicsk? , 4kg, etc. of the fermion
density. Traditionally, one only retains the lowéstost sin-
gulan harmonic, which leads to the standard expres$&n

However here, since here th&k2component is massive due
to the presence of the antisymmetric mode, it makes it ne
essary to retain the next harmonic. This leads to the sp

operatorge.g., for spins on chain 1)

S,=V e+ @l QX+ V2(¢s+ ba) | @i 2Qx+2\2(ps+ da) . . .
(A3)

Since the fieldg, remains massive even abokg,, all cor-

relation functions containing it decay exponentially, and can

be neglected at large distan@@ time). Thus, noQ compo-
nent appears in the correlation function for the ladden

marked contrast to the frustrated or dimerized single chain.

On the other hand the@ term contains 22¢,. Although

this term is superficially massive, it can be combined with a
cos(2/2¢,) term existing in the Hamiltonian for the ladder,

giving rise to the operator

Cell2Qx+212(g9] (A4)

wherec is a mere constant. This operator containing only th
symmetric field is massless. The long wavelength decay o
the correlation function in the weak-coupling ladder is thus

given by

1 14K
<sz<r>sz<0>>=r—2+czcos(2Q)(;). (a5)

see that Eq(A5) has exactly the same form as the expression
derived for the strongly coupled laddét4), showing that
the two limits are smoothly connected.

Similar results can be obtained for the higher harmonics
2nQ. For the transverse magnetization correlation one gets
in a similar way for the weak-coupling ladder

S"=e’[(-1)'+cog2¢)+(—1)'cog44)], (A6)

Svhere the cos(4) term comes again from the higher har-

thonics. As for theS, component, the cos¢) remains mas-
sive due to the gap in the, field, whereas the cosf# can
again be combined with terms in the Hamiltonian to give a
massless term. The final result is

1 1/4K
<s+<r>s—<0>>=<—1>'(;)
1/4K+4K
+cos{7r(1+2m)r](r)

(A7)

Thus, the expressiofl4) for the strongly coupled ladder is
again similar to this one.

Thus weak- and strong-coupling ladders are smoothly
connected. The crucial reason is that the gap in the antisym-
etric degrees of freedom, which exists already in the weak-
oupling ladder is equivalent to the neglect of the two ex-
cited states of the triplet performed for the strong coupling.
In a system without such an antisymmetric gapch as a
dimerized chaipthis smooth continuity would not hold and
the weak- and strong-coupling correlation functions would
be radically different.
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