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Coupled ladders in a magnetic field
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We investigate the phase transitions in two-legs ladder systems in the incommensurate phase, for which the
gap is destroyed by a magnetic field (hc1,h) and the ladder is not yet totally saturated (h,hc2). We compute
quantitatively the correlation functions as a function of the magnetic field for an isolated strong-coupling ladder
J'@Ji and use it to study the phase transition occurring in a three-dimensional array of antiferromagnetically
coupled ladders. The three-dimensional ordering is in the universality class of Bose condensation of hard-core
bosons. We compute the critical temperatureTc(h) as well as various physical quantities such as the NMR
relaxations rate.Tc has an unusual camel-like shape with a local minimum ath5(hc11hc2)/2 and behaves as
Tc;(h2hc1)2/3 for h;hc1. We discuss the experimental consequences for compounds such as
Cu2(C5H12N2)2Cl4. @S0163-1829~99!06417-6#
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I. INTRODUCTION

There has been recently considerable interest1 on spin lad-
der materials. These systems, quite remarkably, have a
in the spin excitation spectrum for an even number of le
and no gap for an odd number. This phenomenon, remi
cent of the Haldane conjecture,2,3 has been explored in grea
detail both theoretically4–11 and experimentally.12–16

In ladders, contrarily to the case of spinSchains, the gap
and the dispersion in the ladder are controlled by two diff
ent energy scales, namely the transverseJ' and longitudinal
Ji exchanges. The ladders are thus prime candidates to s
quantum phase transitions where the spin gap is destroye
application of a magnetic field. Because of this separation
energy scales between the gap and the exchange, even
the gap is destroyed quantum effects are still crucial. T
ladders thus offers the possibility of an extremely rich qu
tum behavior, unsuspected in more conventional spin s
tems. Such quantum phase transitions were indeed stu
experimentally.14,17,18 On the theoretical side they were in
vestigated using a bosonization technique19 for a single lad-
der. Close to the critical point where the gap vanished,
spin-spin correlation functions were found to diverge with
universal exponent, leading to a divergent NMR relaxat
rate 1/T1;T21/2, in good agreement with the experiment
findings. Between the critical fieldhc1 where the gap was
destroyed and the saturation fieldhc2, the ladder had incom
mensurate spin-spin correlation function with a quite disti
tive spectrum compared to single chain systems. These
sults were confirmed and extended in subsequent analy
and numerical calculations.20–23

Due to the gapped nature of the excitations for a sin
ladder whenh,hc1 a weak interladder coupling is ineffi
cient and the single ladder approximation is nearly exa
This is clearly different in the incommensurate phasehc1
,h,hc2, and the question of the coupling of ladders b
comes much more crucial. Quite generally interladder c
pling can lead now to a three-dimensional ordered pha
PRB 590163-1829/99/59~17!/11398~10!/$15.00
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This is the case for example for the compou
Cu2(C5H12N2)2Cl4, which has an experimentally accessib
gap ofD;11 K. Specific heat measurements have revea
the existence of a transition at finite temperature, the na
of which is still controversial.18,24–26It is thus a challenge,
both from a theoretical point of view and in view of appl
cation to experiments, to understand how three-dimensio
ordering can occur in ladder systems.

We investigate the nature and physical properties of s
transition by looking at antiferromagnetically coupled la
ders. Because of the peculiar nature of the excitation sp
trum in ladders, this transition is different from the one o
curing in more conventional spin materials.

The plan of the paper is as follows. In Sec. II, we defi
the model for coupled ladders. For simplicity we confi
ourselves to the case of strongly coupled laddersJ'@Ji . In
Sec. III, we examine the single ladder in this limit, using
mapping on a single-spin chain.20,18,21We compute quantita-
tively the correlation functions as a function of the magne
field. The weak- and strong-coupling limits give an identic
structure for the correlations functions and we recover
universal exponents and spectrum for the spin-spin corr
tion functions derived in Ref. 19. The three dimensiona
coupled ladders are described in Sec. IV. The thr
dimensional ordering is in the universality class of Bose c
densation. We compute the critical temperatureTc as well as
various physical quantities such as the NMR relaxations r
Tc has a camel-like shape with a local minimum ath
5(hc11hc2) and behaves asTc;(h2hc1)2/3 for h;hc1.
We discuss the experimental consequences for compo
such as Cu2(C5H12N2)2Cl4. Conclusions can be found in
Sec. V and some technical details are left for the Append

II. THE MODEL

We consider the two-legs ladders shown in Fig. 1.
For the moment we consider a single ladder and thus t

J850. The ladder Hamiltonian is given by
11 398 ©1999 The American Physical Society
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H5Ji (
i ,l 51,2

Si
W
,l•Si

W
,l1J'(

i
Si

W
,1•Si

W
,22h (

i ,l 51,2
Si ,l

z , ~1!

where l 51,2 denote the two legs of the ladder, andh the
applied magnetic field.

The case when the rung couplingJ' is much smaller than
the interactionJi along the ladder has been studied by
variety of techniques both in the absence of3–9,11 or in the
presence of a magnetic field.19,22We concentrate here on th
opposite limitJ'@Ji . In that case the ladder can be mapp
onto a single-spin 1/2 chain,20,18,21and we recall the mapping
here for completeness. Indeed an individual rung may be
singlet or a triplet state. Applying a magnetic field brings o
component of the triplet closer to the singlet ground st
such that for a strong-enough magnetic field we have a s
ation when singlet andm521 component of triplet create
new effective spin 1/2. It is thus possible ifJ'@Ji to retain
only these two states for all the magnetic field range betw
hc1 when the gap is broken tohc2 when the ladder is com
pletely magnetized.

One can easily project the original Heisenberg Ham
tonian ~1! on the new singlet-triplet subspace

u↓̃&5
1

A2
@ u↑↓&2u↓↑&]

u↑̃&5u↑↑&. ~2!

This leads to the definition of the effective spin-1/2 operat

S1,2
1 57

1

A2
S̃1, ~3!

S1,2
z 5 1

4 @ I 12S̃z#. ~4!

When expressed in term of the effective spin operat
~3!, the original Hamiltonian~1! becomes

Heff5Ji(
i

@S̃i
xS̃i 11

x 1S̃i
yS̃i 11

y 1 1
2 S̃i

zS̃i 11
z #2h̃(

i
S̃i

z1C,

~5!

whereC5(2J'/41Ji/82h/2)L is a simple energy shift and
the system is in an effective magnetic field

h̃5h2J'2
Ji

2
. ~6!

FIG. 1. The two-leg ladder system considered in this paper.
interladder couplingJ8 couples the ladder in a three-dimension
way.
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The Hamiltonian~5! describes a single spin-1/2 chain with
fixed XYanisotropy of 1/2 in an effective magnetic field. I
the following we denote with a tilde, the magnetic fieldh̃

and the magnetizationm̃ of the effective spin-1/2 chain. The
gapped phaseh,hc1 for the ladder corresponds to the neg
tively saturated magnetized phase for the effective s
chain, whereas the massless phase for the ladder corresp
to the finite magnetization phase for the effective spin-
chain.18 The fieldhc2 where the ladder is totally magnetize
correspond to the fully magnetized phase for the effect
spin-1/2 chain. It is easy to check that

h̃c1,c257
3Ji

2
. ~7!

III. SINGLE LADDER

Before taking into account interladder interactions, let
first recall some important consequences of such a map
for the single ladder. In the process we give a more qua
tative calculation for the correlation functions as a functi
of the magnetic field. The results of this section will be us
to study the interladder coupling. We focus here on the ma
less phasehc1,h,hc2. To conveniently derive the low-
energy properties of the effective spin-1/2 chain we use
by now well-known bosonization technique. We refer t
reader to Refs. 27–29 and 19 for details and just recall h
the main steps.

We first use the Jordan-Wigner transformation,29–31

which essentially maps the spin problem onto a problem
interacting fermions on a lattice. For the spin-1/2 syst
considered here, the corresponding fermionic problem
Fermi momentumkF5p/2 if h̃50. Finite magnetic field
corresponds to a chemical potential for the fermions. W
then perform a linearization around the free Fermi poi
given by6kF , to obtain an effective low-energy continuum
fermionic theory and then express the fermion operators
terms of bosonic ones related to the fermion density fluct
tions using the standard dictionary of Abelian bosonizatio

S1~x!5
e2ıu~x!

A2pa
@e2ıpx/a1cos 2f~x!#

Sz~x!52
1

p
]xf1eıpx/a

cos 2f~x!

pa
, ~8!

whereS1(x)5Sn
1/Aa, Sz(x)5Sn

z/a for x5na, a being the
distance between two nearest-neighbors sites along
chain. From now on we take the lattice spacinga51 and
measure all distance in units ofa. The phasef is related to
the average density of fermions~or equivalently to the uni-
form spin density alongz) by Sz(x)521/p]xf, whereasu
is connected to the conjugate momentumP of f
„such that@f(x),P(x8)#5 id(x2x8)… by u(x)
5*2`

x dyP(y). In a very crude sensef,u can be viewed as
the polar angles of a spin. The low-energy properties of
Hamiltonian~5! can be totally described in terms of the b
son Hamiltonian

n
l
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H5E dx

2p FuK~pP!21
u

K
~]xf!2G , ~9!

wheref has been shifted to absorb the finite magnetizat

f→f12m̃x. ~10!

The only two parameters controlling the low-energy prop
ties are the ‘‘spin-wave’’ velocityu and a numberK called
the Luttinger liquid exponent. Both are known exactly f
the spin-1/2 chain.32 For h̃50 analytic expressions ar
known

Jz /Jx,y52cospb2,

1/K52b2, ~11!

u5
1

12b2
sin@p~12b2!#

Ji

2
.

Thus, K51/2 for an isotropic Heisenberg chain withh̃50
whereasK51 for the pureXY one. For the Hamiltonian~5!
this leads to

K53/4, u5
3A3

2

Ji

2
. ~12!

At finite magnetic fieldK andu can be obtained by integra
tion of the Bethe ansatz equations and are shown in Fig. 2
the specific case of theXY anisotropy 1/2.

Close tohc1 or hc2 the number of excitations compared
the fully polarized ground state becomes very small~in the
fermionic language one is close to an empty or a full ban!,
and thus,K take the value for noninteracting particlesK
→1 regardless of the strength of the original interact
Jz /Jxy .

Since the free-boson theory given by Eq.~9! is trivially
solvable, it is straightforward to calculate the asymptotic
cay of the dynamic correlation functions, which are just t
ones of a spin-1/2 chain. Using Eq.~8!, one gets forT50
~for more details see, e.g., Ref. 19!

^S̃z~x,t!S̃z~0,0!&5m̃21C1

1

r 2

1C2cos@p~122m̃!x#S 1

r D 2K

,

^S̃1~x,t !S̃2~0,0!&5C3cos~2pm̃x!S 1

r D 2K11/~2K !

1C4cos~px!S 1

r D 1/~2K !

, ~13!

where r 5Ax21(ut)2 and Ci are constants on which w
focus later in this section. When expressed in term of thetrue

magnetization 2m5112m̃ and the original spin operators o
the ladder using Eq.~3! this gives~e.g., for rung 1)

^S1
z~x,t !S1

z~0,0!&5
m2

4
1

1

r 2
1cos~2pmx!S 1

r D 2K
n

-

or

-
e

^S1
1~x,t !S1

2~0,0!&5cos@p~122m!x#S 1

r D 2K11/~2K !

1cos~px!S 1

r D 1/~2K !

~14!

~where we have dropped the constantsC for simplicity!.
Equation ~14! presents some remarkable features. First,
already pointed out in Ref. 19, low-energy modes app
only close toq;0 in theSz correlation function or close to
q;p for the transverse one. Theq;p ~for Sz) or q;0 ~for
S6) mode remainsmassive. This is in marked contrast to
what would happen for a gapped~e.g., dimerized or frus-
trated! single-chain system~in weak coupling! where both

FIG. 2. Magnetic fieldh̃ and Luttinger liquid parametersu and
K for an XY anisotropy of 1/2 plotted as a function of the magn

tization m̃ ~only positive values are shown, the parameters be

symmetric withm̃→2m̃). m̃51/2 is the saturated chain.K53/4
for zero-magnetic field, whereasK→1 andu→0 close to saturation
since the excitations above the ground state become very diluteu

and h̃ are in units ofJi/2.
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PRB 59 11 401COUPLED LADDERS IN A MAGNETIC FIELD
theq;0 andq;p would become massless whenh>hc1. A
summary of the massless and massive modes is show
Fig. 3.

Such prediction for the ladder correlations should be te
able in neutron or resonance experiments. Close tohc1 ~or
hc2) K→1 and one recovers the universal exponent for
decay of the correlation functions predicted in Ref. 19. T
weak-coupling approximation only allowed for a qualitati
calculation of the exponents far fromhc1 and hc2. For the
strong-coupling case one can get the full magnetic-field
pendence as shown in Fig. 2. As shown in Appendix A,
whole asymptoticstructure of the correlation function is in
dependent of the strength of the couplingJ' vs Ji provided
of course that the correct Luttinger liquid exponent are us

Let us now compute quantitatively the correlation fun
tions. We only focus here on the massless modes. The p
actors in the correlation functions of the spin operators in
XXZ model have been computed by Lukyanov a
Zamolodchikov.33,34 Thus, for example, for the transvers
staggered magnetization we have

~21!nS̃1~x5na,t!5@Fb/8#1/2~a/u!b2/2eiu~x,t!, ~15!

where the expression for the prefactor reads34

F5
1

2~12b2!2 F GS b2

222b2D
2ApGS 1

222b2D G
b2

3expH 2E
0

`dt

t S sinh~b2t !

sinht cosh@~12b2!t#
2b2e22tD J .

~16!

In the vicinity of the value of interest hereb252/3 an ana-
lytic calculation is possible

Fb5
9

2p2/3FG~2/3!

G~1/3!G
2

e2~b222/3![g1 ln~3p/16!1p/A3]

'F~2/3!exp@22.173~b222/3!#. ~17!

For more general values ofK andm the value ofF is shown
on Fig. 4.

FIG. 3. Schematic picture of the field-dependent dispersion
seen by theSzSz ~a! and S1S2 ~b! correlations for fields close to
hc1. Only the dominant singularities are shown. In marked cont
with a single chain there is no massless excitations close toq;p
~resp. q;0) due to the presence of an antisymmetric mass
mode, unaffected by the magnetic field.19
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Using Eq.~15! one gets for the staggered part of the tran
verse spin-spin correlation function of the physical ladd
spins as a function of space, time, and temperature

^S1~na,t!S2~0,0!&5
Fb

16 S a

uD b2U pT

sinpT~t1 ix/v !
Ub2

~21!Q.

~18!

The term (21)Q indicates that due to the relation betwe
physical and effective spins~3!, the physical correlation
function is singular at the wave vector (p,p). Let us insist
that the position of the singularity does not change w
field19 @see Eq.~14!#.

Assuming that the local susceptibility is dominated by t
contribution from the transverse part of the staggered sus
tibility, we get the following expression for the NMR relax
ation rate:

1

T1
}T lim

v→0

x loc9 ~v!

v
~19!

~up to the hyperfine coupling constants!. This leads, when
the Fourier transform and analytical continuation of Eq.~18!
is performed@see also Eq.~27!#, to the relaxation rate

1

T1
}

Fb

8
G2~b2/2!G~12b2!

T

~2pT!22b2 . ~20!

s

st

e

FIG. 4. PrefactorF as a function of the Luttinger parameterK.
The divergence close toK51/2 is due to the appearance of log
rithmic corrections in the correlations functions for the isotrop
case.35 For the specific case of the chain withXY anisotropy 1/2,
the prefactor is shown as a function of the magnetizationm. Note
the relatively weak dependence on the whole interval due to
finite XY anisotropy of the effective spin chain.
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11 402 PRB 59T. GIAMARCHI AND A. M. TSVELIK
At b252/3 @i.e., for h̃50 or h5(hc11hc2)/2# this gives for
T1

1

T1
}T lim

v→0

x loc9 ~v!

v
~21!

5
1

T1/3S u

aD 1/33A3G~2/3!

16A2p
'0.1

1

T1/3S v
aD 1/3

. ~22!

Close to hc1 or hc2 , K→1 ~thus b2→1/2) and Eq.~20!
gives back the universal19 divergence of the relaxation time

1

T1
}

1

T1/2
. ~23!

Away from the critical field the exponent increases weakly
21/3 ath̃50. ~See also Refs. 21 and 23.! The full magnetic
field dependence can be obtained from Fig. 2@using b2

51/2 K and Eq.~20!#.
Although, as shown in Appendix A, the correlation fun

tions for the strong- and weak-coupling ladder are smoo
connected, a very interesting question is how the Luttin
liquid parameter varies with the field when going from we
to strong coupling. This is not trivial since for the wea
coupling ladder whenD!h!Ji one recovers essentially th
Luttinger liquid exponent of a single chain.19 For an isotropic
system this isK51/2, i.e., the same value as the univer
one close tohc1. If there isXY anisotropy the parameterK
increases and thusK>1/2. On the other hand for the strong
coupled ladderregardlessof the XY anisotropy~provided
Jz.0) the Luttinger liquid parameter decreases with
field @see Eqs.~5! and ~11! and Fig. 2#, giving the very dif-
ferent field dependence shown in Fig. 5.

It would be extremely interesting to have more quanti
tive estimates for the behavior shown in Fig. 5. An amus

FIG. 5. Qualitative variation of the Luttinger liquid parameterK
as a function of the magnetic field both for the weak- and stro
coupling ladder. Full line is the weak-coupling ladderJ'!Ji , and
dashed line for the strong-coupling oneJ'@Ji . Different curves
correspond to differentXY anisotropy from the isotropic case to th
XY limit. D is the gap for the weak-coupling case. See also Fig
for the exact result for the strong coupling ladder@due to the dif-
ference of definition~see text! betweenKweak and Kstrong we plot
Kstrong/2#.
ly
r

l

e

-
g

possibility would be to have, for a certain strength of co
pling and a given anisotropy a Luttinger liquid parame
totally field independent.

IV. COUPLED LADDERS

In order to describe realistic compounds we now take i
account an interladder interaction of the form shown in F
1 and given by the Hamiltonian

H3D5(
a

H ladder
a 1J8 (

^a,b&
(

i
Si ,a

W
,1•Si ,b

W
,2, ~24!

where^a,b& denotes pairs of nearest-neighbors ladders. I
easy to see from Fig. 1 that a spin on leg 1 of one ladder
only interact with the spin on leg 2 of the neighboring ladd
and vice versa.

Since the interladder coupling is very weak it is aga
legitimate to map the problem to an effective spin-1/2 pro
lem. The coupled ladder system thus reduces to a problem
spin-1/2 chains coupled by the interaction

Hcoupling52
J8

4 (
^a,b&

@S̃a
1S̃b

21H.c.#

1
J8

4 (
^a,b&

S̃a
z S̃b

z 1
J8z

8 (
a

S̃a
z , ~25!

wherez is the coordination number. Because a spin on le
can only be coupled to a spin on leg 2 byJ8 this leads to a
ferromagneticcoupling for theXY part of the interchain cou-
pling although the original interladder coupling is antiferr
magnetic. There is also a trivial redefinition of the effecti
magnetic field by the interladder coupling. Although th
problem of coupled ladders now looks identical to the one
three dimensionally coupled spin-1/2 chain, the physics w
be quite different from the standard case36 of isotropic
coupled spin-1/2 chains. Indeed, as we will see below,
XY anisotropy of the effective spin-1/2 chain inherent in t
ladder problem, plays a crucial role. The treatment of E
~25! depends crucially on what is the characteristic ene
scale of the interladder coupling when compared to w
happens for a single ladder.

A. High-density limit

If one is far enough fromhc1 and hc2, the interladder
coupling will be small compared to the characteristic en
gies~Fermi energy for the associated spinless fermion pr
lem! of the single chain. It is then possible to treat the int
ladder coupling in the mean-field approximation wh
keeping the full single-ladder physics. Since the single-ch
correlation functions alongz decays faster than the one in th
XY plane@see, e.g., Eq.~14!#, three-dimensional order wil
occur first in the XY plane. It is thus possible to neglect i
Eq. ~25! the interchainS̃zS̃z coupling, and to retain only the
XY part. Note that in that case it is not important whether
interchain coupling is ferro or antiferro since one can
from one to the other by making the gauge transformat
S̃x→2S̃x, S̃y→2S̃y, S̃z→S̃z on alternating chains. The cou
pling is just a spin flip term for the spin, which in a boson
representation for the chain is just a hopping term for

-

2
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bosons~see below!. Another way of viewing it is as a Jo
sephson coupling between the phasesu of the spins on dif-
ferent chains. This shows that the transition is a norm
superfluid-type transition or alternatively is a Bos
condensation transition for the hard-core bosons assoc
with the effective spins. In a pictorial level this says that t
orientation of the spins of the ladder in theXY plane want to
lock in the same direction as shown in Fig. 6. Since we ar
d53 ~i.e., above the critical dimension for the quantu
transition37! the exponents are the mean-field ones (n51/2
andz51).

To compute the transition one can use a standard m
field approach. The transition temperature is given by

1

J8
5x'~q50,v50,T!. ~26!

wherex' is the single-chain transverse staggered susce
bility ~wave vectorq is to be counted relative top). For the
Luttinger liquid the susceptibility can be computed38,39

x'~v,q!52
Fb

8

a

v FsinS pb2

2 D S 2paT

u D 221b2

3BS b2

4
2 is1,12

b2

2 D
3BS b2

4
2 is2,12

b2

2 D2
p

12b2/2
G , ~27!

where

s65
v2vq

4pT
~28!

andB(x,y)5G(x)G(y)/G(x1y).
Solving Eq.~26! with Eq. ~27! gives the critical tempera

ture

FIG. 6. Cartoon of the three-dimensional transition in ladd
systems. The direction of the spins in theXY plane tends to lock
together between different chains leading to a planar antiferrom
net. Note that the triplet states are in fact delocalized on the lad
and that in theXY plane the spins remain modulated atq5p in the
ladder direction. We have represented the singlets as shaded b
This transition is in the universality class of normal-superfluid tra
sition or Bose condensation of hard-core bosons.
l-

ted

in

n-

ti-

Tc5uS J8Db

16pv D 1/~22b2!

~29!

with

Db5Fbsin~pb2/2!FG~b2/4!G~12b2/2!

G~12b2/4!
G 2

. ~30!

Given the fact that we used quantitative estimates for
one-dimensional correlation functions and not ju
asymptotic estimates Eq.~29! should even be able to giv
semi-quantitatively theTc if J8 can be determined by a
independent method. Much more important, however, is
field dependence of theTc . Indeed since the exponents d
pend on the field in a nontrivial way one can expect a n
trivial magnetic-field dependence of the three-dimensio
transition temperature. Close toh̃50 an analytical solution
can be obtained. We have

d ln Tc /J8

dH
52

3

4

db2

dH
@1.161 ln~v/Tca!#1

1

4

d ln v
dH

.

~31!

It is clear that at small enoughJ8 this expression become
positive and thus magnetic field increases the transition t
perature. A numerical estimate ofTc is given in Fig. 7.

The camel-type structure, instead of the naively expec
dromedary one, comes from the competition between the
crease of the exponent when one moves closer tohc1 or hc2
~which leads to an increase of theTc), with the fact that the
excitation velocityu decreases at the same time.

We can also obtain the local susceptibility close toTc . In
the mean-field approximation it is given by

r

g-
er

es.
-

FIG. 7. Three-dimensional transition temperatureTc as a func-

tion of the applied magnetic fieldh̃ ~i.e., for hc1,h,hc2). The full
line is the complete solution whereas for the dotted curve the p
actorFb has been fixed to its zero-field value. Note the minimum

h̃50.
x loc~v!5
1

~2p!2E dq1q½ 2

@x0
2122J1822J28#14J18sin2q1/214J28sin2q2/2

. ~32!
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Whent[x0
21(0,0)22J1822J28!J8 one can linearize the si

nuses and calculate the integral

I mx loc~v!5
1

4pAJ18J28
tan21F I mx0

21

R ex0
2122J1822J28

G .

~33!

In the limit of zero frequency we get

lim
v→0

x loc9 ~v!

v

5
1

puE dx@c~12b2/41 ix !2c~b2/41 ix !#

12~Tc /T!22b2UG~b2/42 ix !G~12b2/4!

G~12b2/42 ix !G~b2/4!
U2 .

~34!

Close toTc , Eq. ~34! reduces to a mean-field divergen
1/(T2Tc)

1/2. This leads to a similar divergence in the rela
ation rate 1/T1.

B. Low-density limit

When the magnetic field is close tohc1 or hc2 the above
mean-field approach on the single-chain Luttinger liquid c
not be used. Indeed the energy of the interchain coup
becomes larger than the intrachain energy scale, and in
chain coupling should be treated from the start. Fortunat
the problem is still solvable since the number of excitatio
above the fully polarized ground state become very sm
Let us focus onh;hc1, the solution forh;hc2 can be de-
duced by symmetry.

Another useful way of viewing this problem, especia
useful when we deal with the low-density limit, is given b
using the boson representation of spins, instead of the s
dard Jordan-Wigner fermionic one~the fermions have to
carry a string!. The spins can be represented by hard-c
bosons. The presence of a boson denotes a spin-up state
the original ladder a triplet on the rung. The hard-core c
straint ensures that one has only two states~full or empty! on
each site to get a faithful representation of the spin 1/2. T
problem thus reduces to a problem of hard-core bosons
in chain interactions~due to theS̃zS̃z term!. The interchain
coupling Hamiltonian is thus just the kinetic energy inte
chain hopping term of these bosons

J8

4 (
i ,^a,b&

bi ,a
† bi ,b . ~35!

Since the bosons are very diluted it is essentially exac
neglect the interactions between them but for the hard-c
constraint, as indicated by the fact that the Luttinger liqu
parameter for a single chain goes toK51 close tohc1. One
has thus to solve the problem of a three-dimensional ga
hard-core bosons with the simple kinetic energy
-
g

er-
y,
s
ll.

n-

e
r in
-

e
th

to
re

of

Hboson5
Ji

2 (
i ,a

~bi ,a
† bi 11,a1H.c.!

1
J'

2 (
i ,^a,b&

~bi ,a
† bi ,b1H.c.!. ~36!

To go back to the standard negative hopping one must
form along the chain the gauge transformation

ci→~21! ici . ~37!

Since the density is low, Eq.~36! can be reduced to the
continuum limit of bosons with the kinetic energy

E~k,k'!5
ki

2

2m
1

k2

2M
. ~38!

The ordering transition thus reduces to the well-known pr
lem of the Bose condensation transition for the diluted bo
gas.40 The three-dimensional ordered phase correspond
the superfluid one, whereas the high-temperature phase i
normal fluid of bosons. Most physical quantities relevant
the ladder problem can immediately be borrowed from
vast knowledge existing for the diluted boson gas. We w
not dwell on all quantities that can be computed but sim
give here a few examples.

The critical temperature is known in the limit of low den
sity and is given by the equation40

L

t0
5

h̃

t0
2

2

~4p!3/2
z~3/2!T3/250, ~39!

wheret0 is a simple number~scattering matrix for an infinite
hard core potential!. This leads to a critical temperature var
ing as

Tc}~h2hc1!2/3 ~40!

and gives back immediately the mean-field critical exp
nents. Of interest also is the total densityr, i.e., the magne-
tization of the ladder. It is given by

r5
h̃

t0
2

1

~4p!3/2
z~3/2!T3/2, T,Tc, ~41!

r5
1

~4p!3/2
z~3/2!T3/2, T.Tc . ~42!

Thus, two effects occur. First the magnetization is nonm
notonous in temperature and increases by a factor of
betweenT5Tc and T50. Second, at criticalityh5hc1 the
magnetization grows asT3/2 at very low temperatures„which
can be readily seen by computing*ddqnB@e(q)#…. This is a
different temperature dependence than forindependentlad-
ders. In that case it would be given by the excitations of
one-dimensional theory, which are fermionic in nature a
have a one-dimensional density of state, leading to

m}E
0

emax
deN1d~e!nF~e!}T1/2. ~43!

Looking at the temperature dependence~for very low tem-
peratures! of the magnetization at criticality should thus pr
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vide information on the interladder coupling. Of course
higher temperatures one always recovers the indepen
ladders behavior~43!.

Another important quantity is the NMR relaxation rat
The ^S1S2& correlation function is here simply given by th
bosonic single-particle Green’s function

^S1~r ,t!S2~0,0!&5~21!r^c~r ,t!c†~0,0!&. ~44!

The (21)r factor coming from the transformation~37! im-
plies that the low-energy~massless! part of the spectrum
which for the spins is aroundq;p ~see Fig. 3! is given by
the smallv small q Green’s function for the bosons. Th
single-particle Green’s function can also be computed in
limit of low density40 and is given in the condensed low
temperature phase by

G~vn ,q!5
ivn1k21L

vn
21k412Lk2

. ~45!

Using the standard formula for the NMR relaxation rate~19!
and ~45! one obtains

1

T1
}

T

AL
, ~46!

whereL is given by Eq.~39! giving thus a relaxation rate
proportional toT at low temperature and diverging close
Tc as 1/(Tc2T)1/2.

The above results could apply to the three-dimensio
phase of Cu2(C5H12N2)2Cl4, which is a strong-coupling
ladder18 where this theory is directly applicable. Whether
not the transition experimentally observed is due to
mechanism presented here is still an open question and o
mechanisms of instability have been proposed.26,25 Various
experiments can be performed to elucidate this point. F
since the three-dimensional transition described here is
ply an ordering in the direction of the spins in theXY plane
its impact on the global-global magnetization is very we
as seems to be the case experimentally. Note, however,
it does change the temperature dependence of the mag
zation at criticality and belowTc . Other interesting experi
ments could be a fit of theh2Tc relation ~40! close tohc1
and more generally the camel-like shape of the phase
gram. Local probes like NMR or neutrons should be p
fectly suited to study this transition. NMR could provide
way to map the phase boundary~by looking at the diver-
gence of 1/T1;1/uTc2Tu1/2). The 1/T1;T law in the low-
temperature phase could also provide conclusive evide
Finally, since we know that the transition is in the norm
superfluid transition universality class, one could also try
compare the thermodynamic singularities.

V. CONCLUSION

We have examined in this work the properties of ladd
under magnetic field, and focused on the gapless phase
curing betweenhc1,h,hc2. For a single ladder we com
puted quantitatively the correlation functions as a function
the magnetic field. The correlation functions in the ladd
have an identical structure both for the weak-coupling lad
J'!Ji and the strong-coupling one. As in weak coupling
t
nt
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interesting feature in the spin-correlation function of the la
der compared to a single chain is the appearance foh
;hc1 of a low-energy modeonly close to q;0 for the
^SzSz& correlation function and close toq;p for the
^S1S2& one. A single chain would have had bothq;0 and
q;p mode at low energy. This prediction should be testa
in neutron experiments. Close to the lower critical fieldhc1,
where the gap is destroyed we recovered the unive
exponent19 for the divergence of the NMR relaxation ra
1/T1;1/T1/2.

These results served as a basis to analyze the nature o
phase transition in a system of three dimensionally coup
ladders. This problem falls into the category of Bose cond
sation of hard-core bosons, which allows to obtain ma
properties of the phase diagram and the ordered phase.
variation of Tc with the field has a localminimum at h
5(hc11hc2)/2 leading to an unusual camel-like shape f
the phase diagram. Close tohc1 and hc2 the transition is
similar to the one of a diluted Bose gas withTc;(h
2hc1)2/3. The temperature dependence of theSs magnetiza-
tion goes at criticalityh5hc1 from a T1/2 behavior for inde-
pendent ladders to aT3/2 ~when interladder coupling inter
venes! at low temperatures. The NMR rate diverges close
the transition as 1/T1;uT2Tcu21/2 and behaves as 1/T1;T
at low temperatures. These quite distinct features could
used to check whether this transition is the one occurring
the experimental system Cu2(C5H12N2)2Cl4.
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APPENDIX A: WEAK VS STRONG COUPLING LADDER

We show in this appendix the connection between
correlation functions for the weak-coupling ladder and t
strong-coupling one. The use of the simple Luttinger liqu
expressions due to Haldane41 allows for a more transparen
derivation than the one given in Ref. 22.

For weakJ' one introduces two boson fields~one for
each leg! and it is more convenient to use the symmetric a
antisymmetric combinations

f1,25
fs6fa

A2
. ~A1!

With the usual representations of the spin operators in te
of the f andu. Since the magnetic field couples only to th
symmetric field, it can only remove this gap and the antisy
metric field remainsmassiveeven abovehc1. To write the
correlation functions for the spins in terms of the boso
fields one uses the standard representation of spin in term
fermion operators and then the expression of this fermion
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terms of the bosonic ones for a Luttinger liquid. Let us st
with the Sz operator, connected with the density of asso
ated fermions.

We use the decomposition of the density or fermion o
erator in a Luttinger liquid

r5r02
1

p
¹xf1(

n
ein~Qx1f!, ~A2!

which contains all harmonics 2kF , 4kF, etc. of the fermion
density. Traditionally, one only retains the lowest~most sin-
gular! harmonic, which leads to the standard expression~8!.
However here, since here the 2kF component is massive du
to the presence of the antisymmetric mode, it makes it n
essary to retain the next harmonic. This leads to the s
operators~e.g., for spins on chain 1)

Sz5¹fs1eiQx1A2~fs1fa!1ei2Qx12A2~fs1fa!1•••.
~A3!

Since the fieldfa remains massive even abovehc1, all cor-
relation functions containing it decay exponentially, and c
be neglected at large distance~or time!. Thus, noQ compo-
nent appears in the correlation function for the ladder,19 in
marked contrast to the frustrated or dimerized single ch
On the other hand the 2Q term contains 2A2fa . Although
this term is superficially massive, it can be combined wit
cos(2A2fa) term existing in the Hamiltonian for the ladde
giving rise to the operator

Cei [2Qx12A2~fs!] , ~A4!

wherec is a mere constant. This operator containing only
symmetric field is massless. The long wavelength decay
the correlation function in the weak-coupling ladder is th
given by

^Sz~r !Sz~0!&5
1

r 2
1C2cos~2Q!S 1

r D 4K

. ~A5!
. B

et
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-
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For the weak-coupling ladder sinceK>1/2 the cos(2Q) term
is subdominant and can be safely dropped. To make the
nection with the case of strong coupling, where one can h
K,1/2, it must be kept.22 SinceQ5p(122m) it is easy to
see that Eq.~A5! has exactly the same form as the express
derived for the strongly coupled ladder~14!, showing that
the two limits are smoothly connected.

Similar results can be obtained for the higher harmon
2nQ. For the transverse magnetization correlation one g
in a similar way for the weak-coupling ladder

S15eiu@~21! i1cos~2f!1~21! icos~4f!#, ~A6!

where the cos(4f) term comes again from the higher ha
monics. As for theSz component, the cos(2f) remains mas-
sive due to the gap in thefa field, whereas the cos(4f) can
again be combined with terms in the Hamiltonian to give
massless term. The final result is

^S1~r !S2~0!&5~21!r S 1

r D 1/4K

1cos@p~112m!r #S 1

r D 1/4K14K

.

~A7!

Thus, the expression~14! for the strongly coupled ladder i
again similar to this one.

Thus weak- and strong-coupling ladders are smoot
connected. The crucial reason is that the gap in the antis
metric degrees of freedom, which exists already in the we
coupling ladder is equivalent to the neglect of the two e
cited states of the triplet performed for the strong couplin
In a system without such an antisymmetric gap~such as a
dimerized chain! this smooth continuity would not hold an
the weak- and strong-coupling correlation functions wou
be radically different.
rg.
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