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In this paper we present results for the ground state and low-lying excitations &=tlié2 alternating
Heisenberg antiferromagnetic chain. Our more conventional techniques include perturbation theory about the
dimer limit and numerical diagonalization of systems of up to 28 spins. An application of multiple precision
numerical diagonalization allows us to determine analytical perturbation series to high order; the results found
using this approach include ninth-order perturbation series for the ground state energy and one magnon gap.
We also determine the fifth-order dispersion relation and third-order exclusive neutron scattering structure
factor for one-magnon modes and numerical and analytical binding energis ®@fandS=1 two-magnon
bound stated.S0163-1829)02917-3

[. INTRODUCTION many materials that have two important but structurally in-
equivalent superexchange paths that are spatially linked, so
The alternating Heisenberg chdihHC) is a simple quan- that a series of spin-spin interactions of strengih-J,
tum spin system that can be used to model the magnetie J;—J,- - - results. Examples of materials of this type are
behavior of a wide range of materials; Table | gives somgVO),P,0; and Cu(NQ),-2.5H,0 and various aromatic
representative examples of alternating chains. This model isee-radical compounds.
a straightforward generalization of the uniform Heisenberg Alternating chains may also arise as a result of the spin-
antiferromagnetic chain, which is the most widely studiedPeierls effect. In the 1D Heisenberg antiferromagnet a spatial
guantum spin system. The unifor8= 1/2 chain has a gap- dimerization of the ion positions along the chain gives alter-
less excitation spectrum with a known dispersion relatiomating interaction strengths, which results in a lowering of
and a rather complicated ground state which is characterizetthe magnetic ground state energy. There is a corresponding
by strong quantum fluctuations, making it highly unstable toincrease in the lattice energgthe phonon contribution
perturbations. which dominates at large distortions. In the combined
The alternating chain generalizes the uniform chain bymagnetic-phonon system an equilibrium is reached at a spa-
alternating the spin-spin interaction between two valligs tial dimerization that minimizes the ground state energy.
andJ,. Since the alternating chain Hamiltonian is rotation- This spontaneous dimerization is known as the spin-Peierls
ally invariant with respect to spin, the total spin is a goodeffect, and the resulting magnetic Hamiltonian is an alternat-
guantum number, and tHantiferromagneticground state is ing Heisenberg chain. Examples of spin-Peierls alternating
a spin singlet. The translational symmetry of the uniformchains in nature are CuGg@nd a'-NaV,0s.
one-dimensiona{1D) chain, however, is reduced by dimer-  Much of the recent interest in alternating chains arises
ization, and the resulting system has a gap to the first excited
state, which hass=1. This lowest excitation is part of a
“one-magnon” triplet band. The alternating chain has a"@Meters/=(1+a)J/2ands=(1-a)/(1+ a) are also commonly
rather complicated spectrum of states at higher energies, iﬁ'—sed(see text
cluding multimagnon continua and bound states. .
Thegalternatingg chain is of theoretical interest as a simple'\/lalte'rlal J (meV) “ Reference

TABLE I. Representative alternating chain materials. The pa-

1D isotropic quantum spin system with a gap, which presumsr, ,Cu,,0,4; 11.2 —-0.101) 28,33

ably is qualitatively similar to other more complicated Sys-Cu(NG,),-2.5H,0 0.45 0.27 20,29

tems such as integer-spin chains and evendedl/2 spin  (v0),P,0;, ~10 0.8 4

ladders. The approach to the uniform chain limit is also ofcuwo, ~12 ~0.9 31

interest as an example of critical behavior. Finally, the alter'_Nav,04 40 0.9 32

nating chain is useful as a model for the application of newsygeq @ 13 0.94 30
numerical techniques such as the multiprecision approach

introduced here. &There may also be important second nearest neighbor interactions

The alternating chain Hamiltonian is realized in nature in in this material.
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from the observation of a spin-Peierls effect in Cug80  1a) real space lattice
Many experimental studies suggest an alternating chain in-
teraction in CuGeg@(see for example Ref. 3 and references

cited thereif, although interactions beyond nearest neighbor J alJ J al J

are also thought to be important. The observation of a two- G- o JEbbbLEEE -~
h . . 3 d

magnon continuum in CuGeQwith an onset close to 2, |

where A is the magnon energy-gap at the zone center, has |<L>|

motivated recent theoretical studies of the continuum and
two-magnon bound states in the AHC. Added impetus has L 1 LB B
come from neutron scattering studies of (\@)0O,,*° x= —d/2 0+d/2 bf2 b w2
which show that this material is dominantly an alternating
chain and provide evidence of a possifie 1 two-magnon
bound state.
In this paper we present a detailed study of the AHC, 1) k-space lattice
including results for the ground state and low-lying excita-
tions. We begin by introducing the modéec. 1) and re-

viewing previous studie&Sec. Ill). Perturbation theory about ——— - ———¢——¢——¢— - —¢—
the dimer limit, which we find to be particularly well suited _E _ar Ay 4 B k3
to studying the AHC, is introduced in Sec. IV A and applied b b Lb b b b

to the ground state enerdp, excitation gapEg,p, and one- FIG. 1. The geometry of a 1D alternating chain. The internal
magnon dispersiom(k) in Sec. IV B. Section IV.C summa-  gimer spin-spin interactiofsolid line) is J;=J and the dimer ex-
rizes analytical predictions for the critical behavior of thetant isd. The spin-spin coupling between dimedashed ling is

gap and ground state energy. Section V presents our NUMetj;= J, and the spacing between dimer centers, which is the length
cal results for energies; Sec. V A gives Lanczos results, angf the unit cell, ish. A spatially uniform chain has a smaller unit
Sec. VB introduces a new numerical method for abstractingell length ofd=b/2, which is normally calledh.

analytical perturbation series from high precision numerical

results. In Sec. VB we use this approach to give seriesn this paper we impose periodic boundary conditions, with
(based onL =20 diagonalizationto O(«®) for Ey, Egaps spins 1 andL+1 identified. We usually assume thaj

and the zone-boundary energyg . Previously these series >J,>0, so we are in a regime of coupled antiferromagnetic
had only been published ©(«®). We also used this mul- dimers.

tiple precision method to determine the series expansion of We can also write this in terms df,=J and the alterna-
w(K) to O(a®). These high-order formulas are accurate overion a, whereJ,= aJ,

a wide range of alternations and should prove useful to ex-
perimentalists. The critical behavior is studied in Sec. VC, . . .
and we present relationships between the derivativeS,of H= Zl ISi-1" St ad Sy Spirg- (2
andEgy,,at the critical point as well as comparing our results o

to the proposed scaling behavior of these quantities. TwoN is the number of independent dimers or unit cells, which
magnon bound states exist in the AHC, which is a conveare coupled by the interactianJ. An equivalent form often
nient model for the study of this type of excitation. We dis- used in the discussion of spin-Peierls transitions writes this
cuss the binding mechanism and give second-order formulass interactions of strengtfi(1+ 8) and 7(1— 8), which are

for binding energies in Sec. VI. Since neutron scattering camelated to our definitions by7=(1+«)J/2 and 6=(1

give detailed information on the excitations of alternating— «)/(1+ a) .

chains, we derive general expressions for the exclusive neu- For ¢=1 this system is an isotropic, uniforn§=1/2
tron scattering structure factdi(k) to a specific excitation Hejsenberg chain which has gapless excitations, andrfor
(Sec. VIIA). We apply these results to the excitation of the = it reduces to uncoupled dimers wiy,,=J. Since this
one-magnon band in Sec. VIIB, and use the multiprecisions an isotropic Hamiltonian with antiferromagnetic cou-
method to calculate this(k) to O(a®). A short discussion plings, for a>0 we expect arS=0 (singled ground state
of the rather complicated neutron excitation of the two-and anS=1 (triplet) band of magnons as the first excitation.
magnon bound state band is given in Sec. VIIC. In Sec. VIl The geometry of our alternating chain is shown in Fig. 1.
we present an illustrative application of our new formulas toNote that the unit cell has length this leads to a different

a real material, the alternating chain compound (@97,  set of momenta than the more familiar uniform chain, which
for which single-crystal neutron scattering data is availablehas a unit cell ofa=b/2. Since the Hamiltonian is invariant
Finally we summmarize our results and present our conclugnder translations by multiples & the allowed momenta

Ng=L/2

sions in Sec. IX. are
Il. THE MODEL - n 3
The AHC Hamiltonian is " LiAb
L/2 For L/2 even the indexn takes the valuesn=0,+1,
H=> 33 .8 +33 .5 ... 1 *+2,...,%(L/4—1),L/4; for L/2 odd the series stops with
21 152152 J2%ai i @ +int(L/4—1). There ard./2=N, independent momenta be-
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cause there arbly invariant translations oH. Positive and  results for the susceptibility on chains of uplte-16, and

negativek levels are degenerate as usual due to reflectio§xtrapolated to the bulk limit for values af~0.6—0.8 con-
symmetry. sidered appropriate for (VGQP,0;.

IV. ANALYTICAL RESULTS
Il. PREVIOUS STUDIES
A. Dimer perturbation theory

Early numerical studies of the zero temperature alternat- . . . .
ing chezn by Duffy and Bafrand Bonner ande'te7 consid- _Analytlcal re_sults for the alternatlng chain can be_ d_erlved
sing perturbation theory about the isolated dimer limit. For

ered the ground state energy and triplet gap on chains of UR, " h iitonian i di
to 10 and 12 spins, respectively. They concluded that thi€"!S Purpose we partition the Hamiltonian into a dintég

system probably had a gap for any nonzero alternatiordd @n interdimer interactiod, ,
Duffy and Barr also gave results for the ground-state nearest-

neighbor correlation function, magnetization in an external H =§ Jéz' éz @
field, and triplet dispersion relatiom(k). Coupled cluster 0T =12

expansions of the ground-state energy and zero-temperature

magnetization and susceptibility have since been carried out Ny

to high order ina by Kohmotoet al®in a series of studies of Hi=> alS, -Soiiq. (5)
an anisotropic generalization of the alternating chain. Gel- i=1

fand, Singh, and HuSelso used coupled cluster methods to i , i

generate a high-order series for the ground state energy. A€ Single-dimer eigenstates ldp grrniran5=0 ground state
principal concern of Bonner and Boand subsequent nu- |O)=(T1)=IL1)/\2 with E{*™=-3)/4 and an
merical work was to test the critical behavior of the uniformS=1  triplet  of  dimer  excitations  “excitons”
chain limit; analytical studies had predicted that the gapt|(+))./(0)).[(=))}, with E{"™*7=+J/4. We label these
Egap/ 7 should open ag®* times logarithmic corrections for excitations by the dimerS,, for example[(0))=(|1])
small alternatiort® and that the bulk-limit ground-state en- +||1))/+/2. The ground state of the full, is a direct prod-

ergy per spin expressed in terms gfand 8, e,=E,/JL  uct of S=0 dimer ground states

=2e,/(1+ ), should approach 1/4In(2) as 6*° times N

logarithmic corrections>*? The dependence af, on & is On_ TT _

- : on . fo ON 9"y =11 lom)=10), (6)
portant in determining the existence of a spin-Peierls tran- m=1

sition in an antiferromagnetic chain coupled to the phonon _

field.” with an energy of,=Ngy- E{™)= —3JL/8.
Numerical studies on larger systems were subsequently Similarly, the unperturbed one-magnon state with mo-

carried out by Soost al!® (to L=26 forey andL=21 for  mentumk andS,=+1 is given by

Egap and Spronkeret al' (to L=18). Spronkeret al. sup-

ported the anticipated critical behavior. Satsal, however, Nog

considered much smallérand larger lattices and concluded [ P(k) P =—== X e (+) ). (7)

that the expected asymptotic form was incorrect. This issue N =1

is unresolved and merits future study on much larger SYStwe will suppress the redundant polarization superscript on

temNT. t studi f the alt i hai del 1) subsequently We take the locatiom,, of dimermto be
ore recent studies of the aftérnating chain model Wergy,q midpoint of the two spins. In this and similar state vec-

motlvated_ by experlmental work on CuGg®’ In particular tors, if the state of any dimeris not specified explicitly it is
the question of possible two-magnon bound states has beeﬁp the ground staté,).

of interest; an analytical paper by Uhrig and Schtntici- It is useful 1o derve the effect ofl. on dimer product
pates ar5=0 bound state for ald and anS=1 bound state basis states. For example operatinlg with on the H
“around k= /2" (ourk= /b, the zone boundayy‘for not ground state Eq(6) gives ’ ! 0
too small 5.” Bouzerar et all” similarly conclude that the '
S=1 two-magnon bound state only exists for a rangek of

Ng
around the zone boundary. Fledderjohann and Broave Hp |0) = if\/gz 1(0,0)m,m+1)
searched for evidence of such bound states in a numerical m=1 "
study of the structure factdB(k,w) on chains of up ta- ®

=24, and conclude that aB=1 two-magnon bound state
does indeed lie below the two-magnon continuum forgall Where
Numerical studies of the thermodynamic properties of the
alternating chain have received much less attention. Duffy 1
and Barr gave results for the internal energy, entropy, spe- |(0!O)m,m+l>:ﬁ(|(+)m(_)m+l>_|(O)m(0)m+1>
cific heat, and magnetic susceptibility of r=10 chain for
a range of alternations. Diederit al?® specialized to the () m(Fme1)) (9)
parametera=0.27 appropriate for Cu(Ng,-2.5H,0 and
gave results for the magnetization, susceptibility, and enis a state of two neighborin§=1 dimer excitons at dimer
tropy on systems of up ta=12. Barnes and Riefhgave sitesm,m+1 coupled to give $.S,)=(0,0). Similarly the
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effect ofH, on a singleS,= + 1 exciton at dimer siten gives

H1 1)) = S ) = )

hop

(0,0)mm+1 two-exciton pairs, again with the restriction on
the sumX’ that no excitons overlap. The three-exciton state
with (S,S,)=(0,0),

(0.0, 1y my)

Z[(H)m-1(0)m) + [(O)m-1(+)m)

excite

Vi) + (0, (=) m(F)mg)

1
= (|(+ ) (O (-
) (O)mr) + O (F)ons) G

excite

+|( m1 +)m2(0)m3> |(+)ml(_)m2(o)m3>
_|( m1 0)m2(+)m3>
_|(0)m1(+)m2(_)m3>)1

is the uniqueS=0 combination of three spin-one objects at
adjacent sites.

N
+\/§ Z’ |(+)m(070)m’,m’+l>} .
m'=1 double excite (13)
(10)
The prime on the sum indicates that all dimer sites repre-
sented in the state are distinct, so in this casem,m—1. Since theO(aP) state determines the(a2**1) energy
Evider_wtlyH| both translates th_e excitc(teading to momen- we can in principle use Eq12) to derive the ground sta’te
tum e|genstatesand couples it to two-exciton and th_r_ee energy toO(«®). This proves to be a rather intricate calcu-
exciton states of higher unperturbed energy. The specific PQation. We have carried out this derivation 8f=E,/LJ
larization state |(+)(0))—|(0)(+)))/y2 is forced because analytically toO(a?), with the result 0
this is the uniqugS=1,S,=1) combination of twoS=1
dimers. We abbreviate this state|é$,1), ,), specifying the 3 3 3 13
Siotal @aNd S, o1z @nd the excited dimersm and n (m<n), eo(@)=— 53— sga’— sga’— —a’. (14)
which gives the simplified form 2° 2 2 212
This series was previously evaluated analyticallyQtoe®)
by Brooks Harris’? and the series coefficients were deter-
mined numerically toO(a*®) to 5-6 significant figures by
Gelfand, Singh, and HuSausing a coupled cluster expan-
sion.

al
HI|(+)m>:_T |(+)m—l>+|(+)m+1>

+V2(/(1,D 1y + (LD mme 1))

Ng A similar O(«) generalization of the unperturbeg= 1
~3 E ’ ()00 e 1) b (1D) one-magnon excitation Eq7) gives
m'=1 '
e|k><m +
We can use this formalism to generate an expansian in [9ak))=m === \/— 2 [ )m)
for the ground state and excitations and their matrix elements N
using standard quantum mechanical perturbation theory. 1 q oikb ik
These results are presented in the next section. Tay — 202 i (€"°+1)e™m (1,1 ms 1)
N
B. Perturbative results for Ey, E 4., and w(k \/— d ,
_ " Eo B a0 9 5 2 eml(+)n(0,0m) 1 | (15
The perturbative generalization of the ground state(gq. 8 mm=1

to O(a?) is

%
|¢O>:770 |O>+a[ —gmzl (an)m,m+1
3
+a2[—;/—;2 (010)m,m+1> \/—2 |(00)mm+2>
m=1
Ng

16 E |(00mm+1m+2>

Ng

+ 128,20 . (0000 )

where 7,=1—(3/128)a’N, is the O(«?) normalization.
Note that three- and four-exciton states appe@at?). The
four-exciton states encountered here are =0,

(12

The normalizationn;=1 to this order ine. Taking the ex-
pected value oH with this state gives a one-magnon disper-
sion relation of

w(k) 1 2, 3 ) (1 1, -

3 |1 e e | gat 797 397 coskb)
1 1 1

—<1—6a +3—2a )COiZkb)— a CO$(3kb) (16)

The O(a®) gap is therefore

E 1 3 1
QaP: - Y 2, =~ 3
3 1 SaTga +32a (17

These one-magnon energies were found previously to this
order by Brooks Harri4? and serve as a check of o0 a)
one-magnon state E@L5).
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C. Critical behavior eo(a) =Eq/JL at the critical pointz=1 is higher order than

As we approach the uniform chain the ground state enlinear, dey(a)/de should be well defined everywhere; dif-
ergy and the gap are both expected to approach their limitinéfrentiating Eq(23) with n=0 therefore leads to
values as powers af times logarithmic corrections:*? The

behavior near the critical point is usually discussed in terms deg(a) :Ee (a=1)= 1_ @: —0.22157 - -
of the variable da | _, 27 8 2 ' '
(24)
5=(1—a)l(1+a) (18
with This is consistent with the expectation that the scaled
‘eo(8) has zero slope i as we approach the critical point.
J=(1+a)d/2 (19 710 see this, note tha( ) =2e(a)/(1+ a), S0
fixed, so the alternating couplings afg1+6) and J(1 ~
— ). These variables are more appropriate for a spin-Peierls dey(5) 2 dey(a)
system because a displacement of an intermediate ion by dsé =€p(a)= (1+6) da ’ (29
O(6) should increase and decrease alternate couplings by
approximately the same amount. The ground state energy pafd as we approach the critical point
spin relative to fixed7 is ey(8)=2ey/(1+ a). _
The critical behavior of the ground state energy and "mdeo(5) —lime (a)_zdeO(a)zo 26
singlet-triplet gap has been discussed by Cross and Eisher 5o do Y 0 da ’

and by Black and Emenrlf The approach used was to con-

sider the properies of the Heisenberg chain within aSuccessive derivatives of E(R3) can be used to infer rela-
Luttinger-Tomonaga approximation, which involves ations between higher derivatives ef(«) (or other energy
Jordan-Wigner transformation to a fermion representation oéigenvaluesas one approaches=1.

the spin operators, and then replacing the cosinusoidal fer-

mion dispersion by a linear dispersion at the Fermi wave V. NUMERICAL METHODS
vector. This linear approximation is required to simplify the
commutation relations between the density operators, allow- A. Lanczos results

ing the interacting fermion problem to be solved. Renormal-  Dpirect numerical diagonalization of moderately large sys-
ization techniques are then used to calculate the asymptotiems is possible for th&=1/2 alternating chain. Here we
behavior of various phySical quantities within this apprOXi- used a Lanczos methajto obtain ground state and one-
mation. The approach makes approximations in neglectinghagnon energies ob=4n lattices up toL = 28. Motivated
states far from the Fermi surface and ignoring energy renothy previous numerical studies, we extrapolate these energies
malization effects. The predicted asymptafidependence is  to bulk limits using a simple exponential-and-power estimate
3 for the finite size dependence
LILnOEO( P10 O)oc“n 8| (20 exp(—L/c,)
fleL)=f(a)+Cr—p—, (27)
and
wherep=1 for energy gapsf(=E,—Eg) andp=2 for the
21) ground state energy per spifi€Ey/L). We determined the
finite-lattice energies to about 14 place accuracy, and fitted

_ o _ _ theL=4(n—2),4(n—1) and 4 results to these asymptotic
We will compare these predictions with our numerical re-fgrms.

sults in the next section; it is of interest to see whether these The resulting bulk-limit ground state energy is shown in
formulas are accurate for values éfrealized by known Fig. 2 and presented in Table Il, to nine figure accuracy for
materials. the smallera values. For largerr we include the change in
One may derive some relations between energies and theif () betweenlL = 16,20,24 and.=20,24,28 extrapolations
derivatives near the critical point from a simple identity sat-j, parenthesis after the tabulated= 20,24,28 result, as an
isfied by the alternating chain Hamiltonian E@). Note the  error estimate. These numerical energies provide an accurate
proportionality relation check of the perturbative formulas Ed.4) and Eq.(28).
We also used Lanczos diagonalization on lattices up to

52/3

lim 92 .
s—0 J |In§t?

HQ,ad)=a-H(a 13,9), (22 |~ 28 to determine the singlet-triplet gap and zone boundary
which implies for any energy eigenvalue energy. These results are given in Table Il and shown in Fig.
3, again with a systematic error estimate that is the discrep-
En(@)  Ep(a™) ancy betweer <24 andL <28 extrapolations(The + sign
37 Y3 (23 indicates that the bulk-limit gap estimate increased with in-

creasing-.) Our Lanczos results are again consistent with the
Assuming that there are no singularities on the real axiperturbative expansions E¢L6) and Eq.(17). The higher-
except ate=1, we may differentiate this relation with re- order multiple precision series ER9) and Eq.(30) are as
spect toa elsewhere. As it is expected that the singularity inexpected found to be in agreement to much higher accuracy.
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e
0
-0.40
_0‘45 1 1 L i 0 1 i, 1 L
0 0.2 0.4 0.6 0.8 1 0 02 04 0.6 0.8 1
o a
FIG. 2. Ground state energy per spig(a)=E,/LJ of the al- FIG. 3. Singlet-triplet energy gajEy,,/J of the alternating

ternating chain. The dashed line is third-order perturbation theoryghain, as in Fig. 2.
the solid line is ninth order, and the points are bulk limit extrapo-

lations of Lanczos data. The multiprecision package was implemented on a Pen-

tium PC, a DEC Alpha, and a Sun 450. Execution times for

E, at this level of precision were approximately 6 CPU hours
One may use numerical diagonalization combined withfor L=16 on the DEC Alpha and 100 CPU hours for

multiple precision programming to determine analytical per-=20 on the Sun 450.

turbation series to high order. For this application of numeri- The O(«®) series for the ground state energy per spin

cal methods to spin systems we employed the multiprecisiodetermined in this manner is

packagemPFUN developed by Bailey* applied to our For-

tran code for low-lying eigenvectors of the alternating chain

using the “modified Lanczos” methotf. We typically gen- 3 3 3

erated energies to 300 significant figures with 10~ *° (and e(a)=— 237 56 T oy

to 400 figures forL=20), which allowed the perturbation

expansion coefficients to be read directly from the numerical

B. High-order series from multiple precision

13, 89

R -
g% " Hua g

463 7X61X191 11X139x 271

energies as rational fractions. This was possible in part be- - ab— al— a8
cause the energy denominators involved simple powers of 217x 3 222x 33 221x 3%x5
small integers that could be anticipated. The limiting order in

this approach is determined by the size of the system one can ~ 107x22005559 08
diagonalize, since the periodic boundary conditions intro- 230y 35 52 @ (28)

duceO(a'’?) finite-lattice corrections to energies. This gave

a limit of O(a®) for the order of the bulk limit expansion

that could be determined from the largest system we diagcand theO(«°) series for the gap to thk=0 one-magnon
nalized with multiple precisionl,. = 20. state is

TABLE Il. Bulk limit alternating chain energiesJ& 1) and two-magnon bound state binding energies, (&4), extrapolated froni
=20,24,28. The change observed in going fromLan16,20,24 extrapolation th=20,24,28(an estimate of the systematic ey given
in parenthesis.

Y Eo/L w(k=0)=Egyp w(k=/b) Ey °%k=0) E5 %k=m/b) E5 ‘(k=m/b)
0.0[exaci  —0.375=-3/8 1 1 0 0 0

0.1 —0.375 480 805 0.946 279 339 1.051 248 884 0.0002 0.0456 0.0210
0.2 —0.376 974 494 0.885 209 996 1.104 980718 0.060®(  0.0824 0.0343

0.3 —0.379566 321 0.8168442(761) 1.161143536 0.0025(1) 0.1104 0.0403

0.4 —0.383356 250 0.7410614%3)  1.219628898+1) 0.0049( 3) 0.1294 0.0402

0.5 —0.388465 614 0.657 477¥5) 1.280237616+9) 0.0077+34)  0.1394 0.0353

0.6 —0.395048423¢3)  0.565296+7) 1.3426178+2) 0.1405 0.0280+1)
0.7 —0.40331243¢5)  0.46298+5) 1.406 138+3) 0.1327(-1) 0.0207+17)
0.8 —0.4 135 644( 8) 0.3474+3) 1.46 959+4) 0.1151(-1)

0.9 —0.426 330( 16) 0.2098+17) 1.5298+8) 0.0829+2)

1.0 —0.44314718- - 0 1.5 707 963- - 0 0

=1/4—1n(2) =7/2
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Egap: —}a—ia +ia - > at— 7ol a®
J 2° 23 2° 2'x3 212y 3
(11)?x157 21739 _ 107x283x7079
o —
216x 33 218x 33 2%4% 345
1307x 9 151183
————a° (29

228 36 52

The zone-boundarykE 7/b) energy of the one-magnon
state relative tdeq to this order is

5 1, 1, 8
T—l—l—za-l—?a 25X3a 212><3a
71X 149 6 6373 - 19X128 461 8

- o — a — o
2165 33 2145 34 224% 32x 5
41x 256 687 901

30
228 36 52 (30

AND D. A. TENNANT PRB 59

On multiplying Eq.(32) by cos(Zml’'/Ng) and summing over
n, we therefore find the lattice Fourier coefficients

- (L) 2 1
a , e e ————————
O NG (14 810+ S ngo)
o w(ky)

=1 J |

cog2mIn/Ny). (34

If we assume more generally that the(k,)} are sam-
plings of the continuous function given by E(1), and
invert the Fourier expansion using E&3) we find
2

Ngn=1

o(kp)
J

cog27nl’INg)
L

:;0 1(Omod|1-17,Ny,0F Smodi+17,N,),0)- (35)

As anticipated this constitutes iéNg/2)+ 1 constraintgthe
number of independent choices d)) on the infinite set of
Fourier coefficients.

We can also use multiprecision methods to determine the As an jllustration, fo’ =0 Egs.(34) and (35) imply

one-magnon dispersion relati@(k), parametrized by

oo

w(k)
52

=0

a,(a) coglkb). (31
On a finite lattice, momenta are only defined at tkg
=L/2 independent values of E@3). [See also Fig. (b).]
The relationw (k) = w(—k) further reduces this to a total of

int(Ny/2)+ 1 independent lattice energies. These can be e

panded as power series éin and we again encounter finite
lattice artifacts in these expansions beginnin@éty"d).

The use of the latticdw(k,)} to determine the Fourier
coefficients in Eq.(31) is nontrivial because there are infi-
nitely many coefficients but only in{y/2)+ 1 lattice ener-
gies. We can proceed by determining the M(2) + 1 finite
lattice Fourier coefficientsa,(a,L)}, 1=0,1, ... jnt(N4/2),
defined by

int(Ng/2)

w(kp)
J

a(a,L) coglk,b),

(32

L

wherek,b=2mn/Ng.

We can invert this using a general result for the sum of a
product of cosines over the discrete lattice momenta. We
shall now assumély is even, so there are singly degenerate
k=0 andk= /b points in addition to the doubly degenerate

valuesk=*=27/Nyb,£47/Ngb, . ... We cantranslate the
k=0 and negativé values by 2r/b, so a sum over lattick
values becomes a sum over=12,... Ny, with Kk,
=2mn/Nyb. The summed product of cosines is

Ng

cog2mIn/Ng) cog27In’/Ny)
Ngi=1

:E(émodnfn’,Nd),O‘F 5modn+n',Nd),0)- (33

N o
- 1 U wky) 1
= — P +
do NPEA ) 2 240 a|(5moc(|,Nd>,o 5mod(|,Nd),o)
:a0+aNd+a2Nd+"'. (36)

Since we know that the perturbative series for both the lattice
{a,} and bulk-limit{a,} coefficients begin aD(a'), the ex-

)%')ansions ofay and éo must be identical until we encounter

contributions from higher-order coefficients; fag these be-
gin at O(aNd) due toay,. This is also the order at which

finite-lattice artifacts appear in the energies, so there has
been no loss of order reached in tigexpansion beyond the
usual finite-lattice limitation. An equivalent conclusion fol-
lows for the Fourier coefficierdy .

For the other Fourier modes the order of perturbation
theory to which the bulk-limit coefficients are determined is
reduced by the contributions of higher-order coefficients. For

"=1 for example we find

. 2 M

1=
Ndnzl

w(kn)
J

- cog2mn/Ny)
L

©

= ;0 ay(Smod|1-1Ny),0T Smod 1 +1Ny),0)

=a;tan 1t a1t Fan,-ataon, 1t

(37

The contributions of the two delta functions that combined in
the previoud’'=0 example are now distinct, so there is an
O(aMNa™?) difference due tay,; between the known lat-

tice series foél and the bulk-limita; series. The worst case
is m'=Ny/2—1; the lattice and bulk-limit coefficients are
then related by
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FIG. 4. Dispersionw(k) of the one-magnon band in the alter-
nating chain fora=0.2, 0.4, 0.6, 0.8, and 1.0, using the fifth-order 1

dispersion relation Eqg31),(39). The @=1 curve is the exact re-
sult 7r|sinkb/2)|/2.
5
- 8
ang2-17Ang-1 T Agny-1F - Fan et Agng 2 ¥
+.., (39 w”
so the series for the bqu-IimiaNd,z_l, which begins at
O(aNd?"1), cannot be determined beyo{ «"¢?) due to 0.1
the presence OiNd/z+1- Thus we conclude that the perturba- 0.01 1
tive expansion of the bulk-limit dispersion relation E§1) (b) 5

can only becompletelydetermined toO(aN¢?) from finite

lattice data. The attainable order depends on the mode, and is FIG. 5. Critical behavior of the alternating chain as a function of

in generalO(aNa~1~modtN2)) for a, with Ny/2=1=0. 8, with 7 fixed. (a) shows the energy per spin relative to the bulk
It follows that the complete set of bulk-limit Fourier co- limit, ‘ey(8)—e,(0), and a fit toc, 5*° which givesc,=0.3134.(b)

efficients{a,} is uniquely determined just t®(a”) by the  showsE,,/7 and a fit toc, 5** which givesc,=2.003.

diagonalization of theL=20 lattice. These coefficients,

which confirm and continue the one-magnon dispersion rela-

tion of Brooks Harris, Eq(16), are
C. Numerical results versus predicted critical behavior

The expected behaviors dy,,/J and eo(8)=Eq/JL

1 1, 3 3 23 4 3 5 =2ey(a)/(1+a) as we approach the critical poit=0
an= R + — + — [ — 1,12
0 16% " 6a% T 1024% ~ 256" are
1 1 1 5 35
A= ——py_—o2y = 3, 2 4 2 5
1 2% 2% " 324 " 256 T 2048" L 5403
1,1, 15 283 lim ()~ €o( 6=0)*j 7 40
a2= __a2__a3__a4_—a5 —
16% ~ 32% T 512% T 18432 @9
1 1 9
ax= _ - 3_— _4__~ 5 and
3 64% ~ 28% T 1024
o 5 , 67
! T 1024% 9216 i Eomp )
:x .
7 sm0 7 |Ino|"2
as= ———a°.
4096

As we have no information regarding the range of validity of
these predicted asymptotic forms, it is of great interest to test
The fifth-order one-magnon dispersion relation given bytheir accuracy for values af realized in nature, for example
Egs.(31),(39) is shown for a range of alternations in Fig. 4. in (VO),P,0;, with §~0.1.
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We will now compare these theoretical asymptotic forms

with our numerical results foE g,/ J andey(d) at smallé.
Taking the ground state energy per spin first, in Fi@) Sve
show a logarithmic plot 0, versuss; evidently the smaller

6 values do support approximate power-law behavior in the
range we have studied. A fit of the three small@gtoints to

the formc,6° gives c;=0.3632 andp=1.412, apparently
consistent with9*® times logarithmic corrections. The antici-

il o (+)0)0) = Z{ [0 O)(4)e)

transpose

Zl(+) 0 (0)o) — o (+) 0 (0))

hop

Ho(+)oo)+[oo(+)o)

deexcite

PRB 59

pated theoretical forne; 5*%|In &, however, does not give
an especially good fit, and is actually worse than a pure 4/3
power law. A 4/3 power fit to the three smalle$tpoints
givesc,=0.3134, which is reasonably accurate for larger
as well; this fit is shown in Fig. @).

The § dependence we observe for the singlet-triplet gap
scaled byJ is shown in Fig. 8). The approximate linearity
of the log-log plot suggests power-law behavior over the full
range of§ considered. A fit of all points t@;6” givesc, +V3 %'I(O, )t mrst .“(_’_)(0)“.)} .
=1.999 andp=0.7497, which favors a power law fit with mi=1 '
5%4 rather than the theoretical’® of Eq. (41). Fitting ¢, 6%
to the three smallest points givesc,;=2.003, which is
shown in Fig. Bb). Evidently this is a remarkably good fit. o i ,
The surprising accuracy of this form for large alternation carf*9ain in 2" the indexm’ takes on all values that do not
be understood by noting that the similar functifi,/.7 superimpose a dimer excitation on the already excited (

=25% ' —(1— )34 14 or (—) sites.
ths é:or’rgggesegnsgfeﬁigeaﬁg E%(l?t)x )to él(:;;;)  gIves The analogous expressions for other polarization states
gap S .

23 12 . may be combined to give the effect Bf on nearest neigh-
The forme,6%|In 4™ found by Black and Emery gives bor dimer excitons with definite total spin. There is a diago-

a less accu_rate description _of our data. Thus we appear {0 interaction due to the “transpose” matrix element and
support a different asymptotic power law than expected fOlyhers that retain two neighboring excitons. This static inter-
the singlet-triplet gap, although we cannot continue to veryayciton potential is

small § to see the range over which this discrepancy persists.
Thus we conclude that the predicted critical behavior for

H(H)(©0)(0)0) — [(0)(+)(0)o)

excite

Ho () = [o (H)(=)H)

excite

double excite

(42)

small § gives a rather inaccurate description of the ground- +Jald S=2,

state energy and singlet-triplet gap for valuessdf/pical of _! —Ja/4 s=1

real materials, which implies that these formulas are unfor- ((SS)mm+1lHIl(S,S)mm+1) Ja/z . o (43
—Ja = VU.

tunately of little utility for experimentalists. Simple generali-
zations of the theoretical critical forms do, however, give

useful parametrizations of these energies for the rang® of .
P 9 g2 This suggests that at large alternatismall @) we should

we ha\_/e conS|der_ed. . ._find two-magnon bound states witB=0 and S=1, with
In view of the inaccuracies we have found, the behavior,_. . . ;
demg energies of approximateljw/2 andJa/4, respec-

of J.[he ground state energy .and 9ap much closgr to.the Cr.itiC%vely. (This only applies tk=7r/b; at otherk values there
point would be an interesting topic for a detailed Ir“/(':‘St'g"’l'is a complication that modifies this result, as noted below.

tion on large lattices, using a finite-size scaling analysis. The We can again use numerical results with small coupting
energies on veryelarge lattices might be obtained using thg, estaplish the higher-order perturbation series for properties
DMRG approact! of these bound states. Unfortunately this is a much more
difficult numerical problem than the study of the ground state
and one-magnon levels, so here we give only a few prelimi-
nary results.

The binding energieg€g of the S=0 and S=1 bound
states are defined by

Recent theoretical wot motivated by neutron scat-
tering studies of CuGe{ has led to considerable interest in )
two-magnon bound states in dimerized quantum spin sys-  Es(K)= min [w(ky)+w(ky)]-[E(K)—Eo]. (44)
tems. The existence of such bound states in the alternating kitke=k
chain model appears very likely, since the interdimer inter-
actionH,, Eq.(5), gives an attractive diagonal potential en- (The w sum gives the onset of the two-magnon continuum at
ergy between two adjacent excited dimers if their total spirk.) Assuming that the continuum onsetkat 7/b is given by
is S=0 or S=1. To see this, note the effect By on a state k;=0 andk,= /b, we find that the two-magnon binding
of adjacent ¢-)(0) dimer excitons energies tdD(a?) on L=12 lattices are

VI. TWO-MAGNON BOUND STATES

R,l7—19
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0.00 ' ' - At the extreme poink=0 we see no evidence for &
: =1 bound state in our numerical extrapolation of Lanczos
0os | s=1 1 data. Although we do see evidence of$n0 bound state at
' k=0, it is quite weakly bound an@in consequengehas a
Ey(/J . very extended spatial wave function. The difference between
010k ] k=0 andk=7/b bound state wave functions was quite evi-
. 8=0 dent in the finite-size effects seen in our numerical extrapo-
] lation.
0.15 | ) . In a preliminary numerical study of a truncated system of
zero-, one- and two-exciton states on las 200 lattice we
find that the attractive potentials in E@43) are strong

020 ' ' ' ' enough to form ars=0 bound state for ak, but apparently
00 02 04 06 08 10 theS=1 bound state exists only for a rangekadround/b.
“ Similar conclusions have been reported by Uhrig and
FIG. 6. Binding energies of th&=0 and S=1 two-magnon  Schul2® and Bouzeraet all’

bound states &= #/b (band maximum The points are bulk-limit These results are especially relevant to the alternating-
extrapolations of Lanczos dat@able 1)) and the lines are second chain material (VO)P,0O,, (VOPO). An excitation has been
order perturbation theory, E¢45). observed in VOPO just below the two-magnon continuum,
which has been cited as a possible two-magnon bound
1 13, state?® Since this peak is seen clearly for a rangekdh-
Eg(k=m/b) 49 3¢ S=1, qludlng k~2w/b (equwal(.en.t tlo thek.=0 p0|r_1t where we
—_—= (450  find noS=1 bound statg it is inconsistent with the expec-
J Ea_ laz s=o. tations of the alternating chain model for such a bound state.
2 16 If mode observed in VOPO is indeed a two-magnon bound

. o ) state, its persistence to=2/b is presumably due to addi-
Our numerical result for the bulk-limit binding energies at tional interactions.

k= /b (Table Il and Fig. § are clearly consistent with these
perturbative results at small. It is interesting that the bind-
ing is much weaker ned=0, for example the expansion of  \/; NEUTRON SCATTERING STRUCTURE FACTOR

the S=0 binding energy ak=0 appears to begin &(a?).

The determination of these perturbative binding energies A. General results
analytically at generak is a complicated problem because |dentification of the magnetic excitations predicted by the
the two-exciton sector is a manifold of degenerate states Ungjternating chain model will be facilitated by estimates of
der Hy. Determining the appropriate basis states within thisheir couplings to external probes, such as phot@spe-
dggenerate manifold_ requires diagonalization of the “hop-cjally for S=0 states, through Raman scattejirend neu-
ping” part of H,. This is only straightforward ak=/b,  {rons (for S=1 states Here we present perturbative and
where this hopping amplitude vanishes; as an illustration, fopymerical results for the neutron scattering structure factor to
adjacent 6’)(0) excitons we find the one_magnon mode_

The neutron scattering cross section is proportional to the
((+)o(0)esk[Hy[o(+)(0)o; k) cogkbi2).  (46) gy crure factor, which in the Heisenberg picture is
Thusk=#/b bound states do not mix with the two-exciton
continuum to leading order, and remain relatively localized.

Except neark=m/b we expect the coupling between
nearest-neighbor and separated excitons to be very impor-
tant, because the energy denominatd®(srJ), which is the
same order as the hopping matrix element. This implies that +,2 -
there are corrections to the bound-state wave function of or- XsiteEsi,j (Yol Sm(X} ) S (%1.0)| o).
der O((H,)/AE)=0(aJ)/0(aJ)=0(a) and corrections
to the static binding energy EQ.(43) of order
O(|(H,)|*/AE)=0(«) except atk=7/b.

This degenerate two-exciton perturbation problem has
been solved at leading order by Uhrig and Schuénd by
Damle and Nagléf for the S=1 two-magnon bound state,
with the result

S '(|Z w):ifoc dteiwteiIZ~()Zi—)Zj)
m ) 277' .

(48)

We can insert a complete set of eigenstdtes,)} of the
full H between the spins in this matrix element and write the
spin structure factor as a sum owxclusive structure factors

EBJ(k)=a %+c03kb/2)[005(kb/2)_l] 4D

S (K, ) =3 SN, w), (49)

mm’
with solutions only over the ranger—kb|=< =/3. The most
deeply bound two-magnon state,kat /b, hasEg= a/4 to
leading order, consistent with o@=1 result Eq.(45). where
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1 (= L B. One-magnon exclusive &)
SOUINR )= S | dteetelkximx) . . .
mn sifesi,j 27T ) —w We will now consider the reduced exclusive neutron scat-
tering structure facto5(k), Eq. (54), for the excitation of
X{ ol SH(X; )| ) ¥on| S (Xi,0) | o) - one-magnon states in the alternating chain, using dimer per-

turbation theory and the multiprecision technique. The exclu-

(50) sive structure factor involves the matrix element

Each exclusive structure factofiﬁ,w“(lz,w), gives the in- ) A .
tensity of scattering fronjyo) to a specific excited state i*zlz<l/fN(k)|5+(Xi*)|lﬂo)e'k'xi*

[tn)-
The  Heisenberg  picture  operator Si(x;,t) =((k)| (S, e K2+ SRetkd2)| ), (55)

=exp¢|-'|t)sﬁ1'(ij,0)exp(—th) gives trivial exponentials i,  he gyperscripts andR refer to the left and right spins in
so the time integral leads to a single energy-conserving deltgq first dimer. Note that this can be written as a sum of
function. In isotropic antiferromagnets the ground state typi'dimer-spin conserving and changing terms

cally hasS=0, so the accessible excited stafg¢gy)} all

have S=1. We can then evaluate this exclusive structure GE emikd/2 4 GR gikd2
factor to a specific polarization state, hég= + 1, without * +

loss of generality. FoS,= +1 the only nonzero spherical

component of the exclusive structure factor is then = cos(kd/2) (Sﬁ n Sf)

————

dimer-spin conserving

S0 MK, )= S(En—Eo— )| 2 (4l S: (%) | o)™ ¥ .

(51) +sin(kd/2) %(sﬁ - sf)
If the excited statgiy) is an eigenstate of momentum, dimer-spin changing
which we can assume for the alternating chain again without (56)

loss of generality, the matrix elements of the spin operator at For the one-magnon excitation it suffices to determine the
translationally equivalent sites are equal modulo a plane 9

matrix element of the raising operator on a single spin, be-
wave N R ) .
causeS; andST have opposite one-magnon matrix elements
- - bk — %) - - for any k. (This is not true for a gener&=1 excitation)
(NP Sm(xi) | tho) = €PN (y(P) | Si(Xo) [ o) Evaluating the matrix element & to O(a) using the per-
turbative| o) and|4(k)), Eq.(12) and Eq.(15), we find

wherex, is some reference site. The sum over all spin sites 1
i can then be reduced to a sum over all sites in the unit cell (1 (K)|S5 | o) = — —=
i* times a momentum conserving delta function JL

1+ %cos( kb)) (57)

Vo Ny 2 so the matrix element E@55) is
S, (kvw)zNunitcellsﬁ(EN_EO_w)‘S'zJ;'

> - s 2 " _). “Z')Zi*
X sne;* n (IN(P)[S (Xix ) poye! Xix | i*zl,z<¢N(k)|s+(x'*)|%>e
unit cell

(53 :i(eikdlz_ e ikdi2)

JL

intgnvsvi(tai:sr%;)2gultr:;iriitgt?elgnthfr%%o?r?g?/g(;?ﬁa Ilng\éﬁ The one-magnon exclusive neutron scattering structure fac-
) ering from tor S(k) is proportional to the modulus squared of this spin
tations, the overall normalization is irrelevant, and we can . .
) ) . : ” : matrix element. TA(«) we find
simply evaluate dimensionless reduced intensities. It is con-
venient to normalize this reduced exclusive structure factor

as S(k)=(1— cos(kd))(1+%cos{kb)). (59)

1+ %cos( kb)) . (58)

2

- o > s i i 2 il
S(K) = Nynit coll %‘4 (Un(K)|S (X )| o) Xix| . (54) The smallk suppression + coskd)«sinkd/2)< is familiar

from isolated dimer problems and gives a basic intensity
“envelope” that measures the dimer sizke (See, for ex-
(Here and for the remainder of the paper we suppress thaemple, Ref. 27.The separatiobetweerdimer centers en-
superscriptiyo— iy and spin indices on the exclusive struc- ters as a more rapid modulationtX«/2)coskb) of the in-
ture factor) This expression can be evaluated analyticallytrinsic dimer form - coskd). This O(«) modulation arises
(using perturbation theory or other approximate wave funcfrom the excitation of the “two-exciton” component of the
tions) or numerically using wave functions on finite lattices. ground staté,) to the unperturbed “one-exciton” compo-
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nent of|#41(k)), and apparently has been observed in recent 3 Ng
neutron scattering experiments on single crystals of |0)=10) = >, [(0,0mms1) (64)
S14ClUpgOyy. % 8 "=
The S(k) series Eq(59) may be continued using the mul- gnd
tiprecision approach. We introduce a cosine expansion for

the S- matrix element 1 Na .
= — m
- a0k = &, € [0 Dmimia)
<z/f1<k>|85|¢o>=—f 2, si(@) coglkb)  (60) +0(a)|(1,3); pterms, withm—n|=>2
and the coefficients we find ©(«°) are n i(1+efikb)|(+)m>+ .t 65)
2\2
B 1, 5
So= 1- 6249 " 128% In the matrix element,(k)|S. (x)|#o)there is a 6-1
exciton coupling of the bare ground state to théa) one-
= + Ea_ ia2+ ias exciton component of the perturbed bound state, which has
4 16 1536 ° the same form as the leading one-magnon matrix element.
5 31 (61) The second contribution is the22 exciton coupling of the
S,= + —a’+ =——a°, O(a)|(0,0)) two-exciton part of the ground state to the two-
64 384 exciton bare bound state.
15 These matrix elements have quite differ&mtependences
S3= +5_12a : because the 81 term is dimer-spin changing and the 2

—2 term is dimer-spin conserving. From E&6) one can
These have the same order finite size effects as the dispersisae that this leads to prefactors of &uiig) and cos{d/2),
Fourier coefficients{a,}, so diagonalization of arL site  respectively. Since the one-magn@(k) has an overall
chain gives the complete set of exclusive structure factosin(kd/2) dependence, it may be possible to distinguish one-

Fourier coefficients t@(a'"%). magnon and bound state modes by thidependence.
These coefficients determine ttE «®) generalization of The reduced structure facta$(k) for the S=1 two-
Eq. (59), which is magnon bound state has been derived to leading order by

Damle and Naglet® with the result(in our conventions
S(k)=(1— cogkd))-

2
5, 3 1 1, 5 S(K)=211—4 co2(kbi2)Jsi[k(b—d)/2].  (66)
~ 2 2 3 o 2 > 3 .
1 6% 3¢ + SAT g T oo )cos{kb) 4
3 ) 7 3 5 3 . . .
+ 162 +4_8a cos{2kb)+§1a cog3kb) . (62  This does indeed show characteristic dependenadardb

that could be used as an experimental signature.

We unfortunately encountered difficulties in numerical
studies of the bound state. We found very slow convergence
of our projection method to this state, perhaps due to the
presence of a nearby bulk-limit continuum, so the use of our
multiprecision techniques was not practical. This method re-

C. Two-magnon bound state exclusive &) guires implementation of an alternative iteration scheme with

To evaluate the exclusive neutron scattering structure fad2etter convergence. Work along these lines is in progress; we
tor to theS=1 two-magnon bound state we require the spinpla” to present results fqr b_ound state energies and matrix
matrix element Eq(55). This bound state is excited by a €léments in a future publication.
rather different mechanism than the one-magnon state dis-
cussed in Sec. VII B above. To leading order the bound state VIIl. COMPARISON WITH  (VO),P,0,
wave function is

A numerical example of this exclusive structure factor is
presented in Fig. 8 for the case of (V&}0,, which will be
discussed in Sec.VIII.

To illustrate the utility of our results we will now apply

. MNa them to the one-magnon dispersion relatiofk) and exclu-
(0) — ikX, sive neutron scattering intensityS(k) observed in
[427() INg mzzl (1 Dmm2) 63 (VO),P,0,. This material is an alternating chain with mag-

netic V** ion spacings of 3.2 A and 5.1 A along the chain
which is invisible to neutron excitation of the “bare” ground pathways'! The chains run along the crystallograpbidirec-
state, since two spin flips are required to connect these state#n, and there is a weaker interchain couplihgalong the
At O(«) a coupling to neutrons appears through the non-‘ladder” direction a, which gives a leading-order contribu-
leading parts of the ground state and bound state. There at®n of J, cosk,) to w (k).
two such contributions, which are apparent on inspecting the A fit of the low-lying one-magnon brancho([ 0k,
O(a) states =k,0]) observed in VOPO to the fifth order formula Egs.
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20 ' ; ' ratio assumes that the long V-R& dimer, which hasd

=5.1 A, has the stronger interactiah The characteristic

variation of S(k), which is measured in neutron scattering,

o(k) 15 P AR ‘ SN allows a direct check of this bond assignment and is a strin-

meV A gent test of the alternating chain model as applied to VOPO
S : C foo (Ref. 34, in preparation

N :L%

10 | ' -
; : ﬁ Lo Vo ' IX. SUMMARY AND CONCLUSIONS

5 [ | ﬂ B / v L In summary, we have presented many new analytical and
g ! ¥ v : numerical results for the low-lying excitations of the spin-1/2
alternating Heisenberg chain. We introduced the model in
0 . , . Secs. | and I, and Sec. Il reviewed previous work. Section
0 2 4 6 8 IV A introduced perturbation theory about the dimer limit,
kb/x and in Sec. IV B we used this approach to confirm previous
results for the one-magnon dispersiaifk) to third order,
FIG. 7. A fit of the alternating chain dispersion relation Egs. and extended the ground state energy calculations to fourth
(31),(39) to the one-magnon dispersion observed in neutron scatterder. Section IV C summarized the expected critical behav-
ing from (VO),P,0; (Ref. 4, as discussed in Sec. VIII. The fitted ior of the gap and ground-state energy as we approach the
parameters aré=11.0 meV andx=0.796. uniform chain limit. Relations between energies and their
derivatives at the critical point were also derived. To
(31),(39) is shown in Fig. 7(Since VOPO hag,~—0.73 complement these analytical calculations, in Sec. VA we
meV we have added thi, to the theoretical result E31)  undertook numerical calculations of bulk limit energies of
to obtain w[k,=0k,=k,k.=0].) A least-squares fit gives the ground state, gap, zone boundary, &0 andS=1
an exchange ofJ=11.0(1) meV and alternation ofr  two magnon bound states, using Lanczos methods on sys-
=0.79q4), which provides an excellent account of the data.tems up toL=28. As a major part of this work, in Sec. VB
We can similarly fit the more accurate ninth-order formulaswe introduced a technique in which multiple precision cal-
for Egqp and Ezg [Egs. (29),(30)], including theJ, shift, to  culations with a very small dimer coupling are used to infer
the measured values of 811 meV and 15.43) meV; this  perturbation expansions to high order. This confirmed third
gives consistent values df=10.92 meV andx=0.798. and fourth order energy expansions and allowed continuation
The intensity of the modes seen in neutron scattering i9f the €y, Egap, andEzg series toO(a®). The one-magnon
quite sensitive to the spatial geometry of the alternatinglispersion relationw(k) was then derived t®(a®) using
chain. For VOPO we can use this relation to deduce which ighis method. The expected critical behavior of the ground
the stronger of the two inequivalent exchange paths in thétate energy and energy gap was compared with our numeri-
chain. Figure 8 shows the theoretical one-magnon intensitgal results in Sec. V C. The ground state energy was found to
variation over a wide range &€ The dashed line is thgl ~ be in approximate agreement with the expecttedwithin
— coskd)] scattering intensity for isolated dimers, and thelogarithmic corrections 5*° power law. The singlet-triplet
solid line shows the(«?) alternating-chain result Eq55  gap however appears to support a power laws3f rather
for S(k), with «=0.8 andd/b=5.1 A/8.3 A. Thisd/b  than 5?3 over the accessible range &f Section VI consid-
ered two-magnon bound states. At the zone boundary
3 , : : = 7r/b an attractive potential between magnons was found to
give rise toS=0 andS=1 two-magnon bound states for all
alternations. Numerical results af@(«?) analytical forms
were given for the magnon-magnon binding energy. Bhe
=0 bound state was found for &lconsidered, and numeri-
cal results for its binding energy &=0 were also given.
The S=1 bound state however was found to exist only for a
range ofk nears/b. In Sec. VIl we introduced an exclusive
neutron scattering structure facts¢k); this was evaluated
analytically for the one-magnon band using the multiple pre-
cision technique and dimer perturbation theory. The one-
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05 magnon exclusive structure factor was determine@ta®),
and was presented as a modulation times the familiar

0 4 6 isolated-dimer form{ 1— coskd)]. Finally, in Sec. VIII we
Kbl gave an illustrative application of these results to recent neu-

tron scattering data on (VQP,O,, which is dominantly an

FIG. 8. The predicted neutron scattering intengigxclusive  alternating chain. We showed that the fifth-order dispersion
structure factorS(k) for the one-magnon mode in (VgR,0,, Eq.  relation gives an excellent fit to the observed one-magnon
(62). The parameters are=0.8 (from a fit to the dispersion d band, and noted that the predicted exclusive structure factor
=5.1 A andb=8.3 A. The dashed line shows the isolated dimer S(K) will allow a detailed test of the alternating chain model
form [1— coskd)] for comparison. as applied to (VO)P,0;.
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