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In this paper we present results for the ground state and low-lying excitations of theS51/2 alternating
Heisenberg antiferromagnetic chain. Our more conventional techniques include perturbation theory about the
dimer limit and numerical diagonalization of systems of up to 28 spins. An application of multiple precision
numerical diagonalization allows us to determine analytical perturbation series to high order; the results found
using this approach include ninth-order perturbation series for the ground state energy and one magnon gap.
We also determine the fifth-order dispersion relation and third-order exclusive neutron scattering structure
factor for one-magnon modes and numerical and analytical binding energies ofS50 andS51 two-magnon
bound states.@S0163-1829~99!02917-3#
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I. INTRODUCTION

The alternating Heisenberg chain~AHC! is a simple quan-
tum spin system that can be used to model the magn
behavior of a wide range of materials; Table I gives so
representative examples of alternating chains. This mod
a straightforward generalization of the uniform Heisenb
antiferromagnetic chain, which is the most widely studi
quantum spin system. The uniformS51/2 chain has a gap
less excitation spectrum with a known dispersion relat
and a rather complicated ground state which is character
by strong quantum fluctuations, making it highly unstable
perturbations.

The alternating chain generalizes the uniform chain
alternating the spin-spin interaction between two valuesJ1
and J2. Since the alternating chain Hamiltonian is rotatio
ally invariant with respect to spin, the total spin is a go
quantum number, and the~antiferromagnetic! ground state is
a spin singlet. The translational symmetry of the unifo
one-dimensional~1D! chain, however, is reduced by dime
ization, and the resulting system has a gap to the first exc
state, which hasS51. This lowest excitation is part of a
‘‘one-magnon’’ triplet band. The alternating chain has
rather complicated spectrum of states at higher energies
cluding multimagnon continua and bound states.

The alternating chain is of theoretical interest as a sim
1D isotropic quantum spin system with a gap, which presu
ably is qualitatively similar to other more complicated sy
tems such as integer-spin chains and even-legS51/2 spin
ladders. The approach to the uniform chain limit is also
interest as an example of critical behavior. Finally, the alt
nating chain is useful as a model for the application of n
numerical techniques such as the multiprecision appro
introduced here.

The alternating chain Hamiltonian is realized in nature
PRB 590163-1829/99/59~17!/11384~14!/$15.00
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many materials that have two important but structurally
equivalent superexchange paths that are spatially linked
that a series of spin-spin interactions of strengthJ12J2
2J12J2••• results. Examples of materials of this type a
(VO)2P2O7 and Cu(NO3)2•2.5H2O and various aromatic
free-radical compounds.1

Alternating chains may also arise as a result of the sp
Peierls effect. In the 1D Heisenberg antiferromagnet a spa
dimerization of the ion positions along the chain gives alt
nating interaction strengths, which results in a lowering
the magnetic ground state energy. There is a correspon
increase in the lattice energy~the phonon contribution!
which dominates at large distortions. In the combin
magnetic-phonon system an equilibrium is reached at a
tial dimerization that minimizes the ground state ener
This spontaneous dimerization is known as the spin-Pei
effect, and the resulting magnetic Hamiltonian is an altern
ing Heisenberg chain. Examples of spin-Peierls alterna
chains in nature are CuGeO3 anda8-NaV2O5.

Much of the recent interest in alternating chains aris

TABLE I. Representative alternating chain materials. The
rametersJ5(11a)J/2 andd5(12a)/(11a) are also commonly
used~see text!.

Material J ~meV! a Reference

Sr14Cu24O41 11.2 20.10~1! 28,33
Cu(NO3)2•2.5H2O 0.45 0.27 20,29
(VO)2P2O7 '10 0.8 4
CuWO4 '12 '0.9 31
a8-NaV2O5 40 0.9 32
CuGeO3

a 13 0.94 30

aThere may also be important second nearest neighbor interac
in this material.
11 384 ©1999 The American Physical Society
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from the observation of a spin-Peierls effect in CuGeO3.2

Many experimental studies suggest an alternating chain
teraction in CuGeO3 ~see for example Ref. 3 and referenc
cited therein!, although interactions beyond nearest neigh
are also thought to be important. The observation of a tw
magnon continuum in CuGeO3 with an onset close to 2D,3

whereD is the magnon energy-gap at the zone center,
motivated recent theoretical studies of the continuum
two-magnon bound states in the AHC. Added impetus
come from neutron scattering studies of (VO)2P2O7,4,5

which show that this material is dominantly an alternati
chain and provide evidence of a possibleS51 two-magnon
bound state.

In this paper we present a detailed study of the AH
including results for the ground state and low-lying exci
tions. We begin by introducing the model~Sec. II! and re-
viewing previous studies~Sec. III!. Perturbation theory abou
the dimer limit, which we find to be particularly well suite
to studying the AHC, is introduced in Sec. IV A and appli
to the ground state energyE0, excitation gapEgap, and one-
magnon dispersionv(k) in Sec. IV B. Section IV C summa
rizes analytical predictions for the critical behavior of t
gap and ground state energy. Section V presents our num
cal results for energies; Sec. V A gives Lanczos results,
Sec. V B introduces a new numerical method for abstrac
analytical perturbation series from high precision numeri
results. In Sec. V B we use this approach to give se
~based onL520 diagonalization! to O(a9) for E0 , Egap,
and the zone-boundary energyEZB . Previously these serie
had only been published toO(a3). We also used this mul
tiple precision method to determine the series expansio
v(k) to O(a5). These high-order formulas are accurate o
a wide range of alternations and should prove useful to
perimentalists. The critical behavior is studied in Sec. V
and we present relationships between the derivatives oE0
andEgap at the critical point as well as comparing our resu
to the proposed scaling behavior of these quantities. T
magnon bound states exist in the AHC, which is a con
nient model for the study of this type of excitation. We d
cuss the binding mechanism and give second-order form
for binding energies in Sec. VI. Since neutron scattering
give detailed information on the excitations of alternati
chains, we derive general expressions for the exclusive n
tron scattering structure factorS(k) to a specific excitation
~Sec. VII A!. We apply these results to the excitation of t
one-magnon band in Sec. VII B, and use the multiprecis
method to calculate thisS(k) to O(a3). A short discussion
of the rather complicated neutron excitation of the tw
magnon bound state band is given in Sec. VII C. In Sec. V
we present an illustrative application of our new formulas
a real material, the alternating chain compound (VO)2P2O7,
for which single-crystal neutron scattering data is availab
Finally we summmarize our results and present our con
sions in Sec. IX.

II. THE MODEL

The AHC Hamiltonian is

H5(
i 51

L/2

J1SW 2i 21•SW 2i1J2SW 2i•SW 2i 11 . ~1!
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In this paper we impose periodic boundary conditions, w
spins 1 andL11 identified. We usually assume thatJ1
.J2.0, so we are in a regime of coupled antiferromagne
dimers.

We can also write this in terms ofJ1[J and the alterna-
tion a, whereJ2[aJ,

H5 (
i 51

Nd5L/2

JSW 2i 21•SW 2i1aJSW 2i•SW 2i 11 . ~2!

Nd is the number of independent dimers or unit cells, wh
are coupled by the interactionaJ. An equivalent form often
used in the discussion of spin-Peierls transitions writes
as interactions of strengthJ(11d) andJ(12d), which are
related to our definitions byJ5(11a)J/2 and d5(1
2a)/(11a) .

For a51 this system is an isotropic, uniform,S51/2
Heisenberg chain which has gapless excitations, and foa
50 it reduces to uncoupled dimers withEgap5J. Since this
is an isotropic Hamiltonian with antiferromagnetic co
plings, for a.0 we expect anS50 ~singlet! ground state
and anS51 ~triplet! band of magnons as the first excitatio

The geometry of our alternating chain is shown in Fig.
Note that the unit cell has lengthb; this leads to a different
set of momenta than the more familiar uniform chain, whi
has a unit cell ofa5b/2. Since the Hamiltonian is invarian
under translations by multiples ofb, the allowed momenta
are

kn5
n

L/4

p

b
. ~3!

For L/2 even the indexn takes the valuesn50,61,
62, . . . ,6(L/421),L/4; for L/2 odd the series stops wit
6 int(L/421). There areL/25Nd independent momenta be

FIG. 1. The geometry of a 1D alternating chain. The intern
dimer spin-spin interaction~solid line! is J15J and the dimer ex-
tent is d. The spin-spin coupling between dimers~dashed line! is
J25aJ, and the spacing between dimer centers, which is the len
of the unit cell, isb. A spatially uniform chain has a smaller un
cell length ofd5b/2, which is normally calleda.
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cause there areNd invariant translations ofH. Positive and
negativek levels are degenerate as usual due to reflec
symmetry.

III. PREVIOUS STUDIES

Early numerical studies of the zero temperature altern
ing chain by Duffy and Barr6 and Bonner and Blo¨te7 consid-
ered the ground state energy and triplet gap on chains o
to 10 and 12 spins, respectively. They concluded that
system probably had a gap for any nonzero alternat
Duffy and Barr also gave results for the ground-state near
neighbor correlation function, magnetization in an exter
field, and triplet dispersion relationv(k). Coupled cluster
expansions of the ground-state energy and zero-temper
magnetization and susceptibility have since been carried
to high order ina by Kohmotoet al.8 in a series of studies o
an anisotropic generalization of the alternating chain. G
fand, Singh, and Huse9 also used coupled cluster methods
generate a high-order series for the ground state energ
principal concern of Bonner and Blo¨te and subsequent nu
merical work was to test the critical behavior of the unifor
chain limit; analytical studies had predicted that the g
Egap/J should open asd2/3 times logarithmic corrections fo
small alternation,10 and that the bulk-limit ground-state en
ergy per spin expressed in terms ofJ and d, ẽ05E0 /JL
52e0 /(11a), should approach 1/42 ln(2) as d4/3 times
logarithmic corrections.11,12 The dependence ofẽ0 on d is
important in determining the existence of a spin-Peierls tr
sition in an antiferromagnetic chain coupled to the phon
field.7

Numerical studies on larger systems were subseque
carried out by Sooset al.13 ~to L526 for e0 andL521 for
Egap) and Spronkenet al.14 ~to L518). Spronkenet al. sup-
ported the anticipated critical behavior. Sooset al., however,
considered much smallerd and larger lattices and conclude
that the expected asymptotic form was incorrect. This is
is unresolved and merits future study on much larger s
tems.

More recent studies of the alternating chain model w
motivated by experimental work on CuGeO3.2,3 In particular
the question of possible two-magnon bound states has
of interest; an analytical paper by Uhrig and Schulz15 antici-
pates anS50 bound state for alld and anS51 bound state
‘‘around k5p/2’’ ~our k5p/b, the zone boundary! ‘‘for not
too small d.’’ Bouzerar et al.17 similarly conclude that the
S51 two-magnon bound state only exists for a range ok
around the zone boundary. Fledderjohann and Gros18 have
searched for evidence of such bound states in a nume
study of the structure factorS(k,v) on chains of up toL
524, and conclude that anS51 two-magnon bound stat
does indeed lie below the two-magnon continuum for alld.

Numerical studies of the thermodynamic properties of
alternating chain have received much less attention. Du
and Barr gave results for the internal energy, entropy, s
cific heat, and magnetic susceptibility of anL510 chain for
a range of alternations. Diederixet al.20 specialized to the
parametera50.27 appropriate for Cu(NO3)2•2.5H2O and
gave results for the magnetization, susceptibility, and
tropy on systems of up toL512. Barnes and Riera21 gave
n
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results for the susceptibility on chains of up toL516, and
extrapolated to the bulk limit for values ofa'0.6–0.8 con-
sidered appropriate for (VO)2P2O7.

IV. ANALYTICAL RESULTS

A. Dimer perturbation theory

Analytical results for the alternating chain can be deriv
using perturbation theory about the isolated dimer limit. F
this purpose we partition the Hamiltonian into a dimerH0
and an interdimer interactionHI ,

H05(
i 51

Nd

JSW 2i 21•SW 2i , ~4!

HI5(
i 51

Nd

aJSW 2i•SW 2i 11 . ~5!

The single-dimer eigenstates ofH0 are anS50 ground state
us&5(u↑↓&2u↓↑&)/A2 with E0

(dimer)523J/4 and an
S51 triplet of dimer excitations ‘‘excitons’’
$u(1)&,u(0)&,u(2)&%, with E1

(dimer)51J/4. We label these
excitations by the dimerSz , for example u(0)&5(u↑↓&
1u↓↑&)/A2. The ground state of the fullH0 is a direct prod-
uct of S50 dimer ground states

uc0
~0!&5 )

m51

Nd

u+m&[u0&, ~6!

with an energy ofE05Nd•E0
(dimer)523JL/8.

Similarly, the unperturbed one-magnon state with m
mentumk andSz511 is given by

uc1
~0!~k!&~1 !5

1

ANd
(

m51

Nd

eikxmu~1 !m&. ~7!

~We will suppress the redundant polarization superscript
uc1& subsequently.! We take the locationxm of dimerm to be
the midpoint of the two spins. In this and similar state ve
tors, if the state of any dimern is not specified explicitly it is
in the ground stateu+n&.

It is useful to derive the effect ofHI on dimer product
basis states. For example, operating withHI on the H0
ground state Eq.~6! gives

~8!

where

u~0,0!m,m11&5
1

A3
~ u~1 !m~2 !m11&2u~0!m~0!m11&

1u~2 !m~1 !m11&) ~9!

is a state of two neighboringS51 dimer excitons at dimer
sitesm,m11 coupled to give (S,Sz)5(0,0). Similarly the
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effect ofHI on a singleSz511 exciton at dimer sitem gives

~10!

The prime on the sum indicates that all dimer sites rep
sented in the state are distinct, so in this casem8Þm,m21.
Evidently HI both translates the exciton~leading to momen-
tum eigenstates! and couples it to two-exciton and thre
exciton states of higher unperturbed energy. The specific
larization state (u(1)(0)&2u(0)(1)&)/A2 is forced because
this is the uniqueuS51,Sz51& combination of twoS51
dimers. We abbreviate this state asu(1,1)m,n&, specifying the
Stotal and Sz total and the excited dimersm and n (m,n),
which gives the simplified form

HI u~1 !m&52
aJ

4 H u~1 !m21&1u~1 !m11&

1A2~ u~1,1!m21,m&1u~1,1!m,m11&!

2A3 (
m851

Nd

8 u~1 !m~0,0!m8,m811&J . ~11!

We can use this formalism to generate an expansion ia
for the ground state and excitations and their matrix eleme
using standard quantum mechanical perturbation the
These results are presented in the next section.

B. Perturbative results for E0 , Egap, and v„k…

The perturbative generalization of the ground state Eq.~6!
to O(a2) is

uc0&5h0F u0&1aH 2
A3

8 (
m51

Nd U~0,0!m,m11L J
1a2H 2

A3

32 (
m51

Nd U~0,0!m,m11L 2
A3

32 (
m51

Nd

u~0,0!m,m12&

1
1

16
A2

3 (
m51

Nd

u~0,0!m,m11,m12&

1
3

128 (
m,m851

Nd

8 u~0,0!m,m11~0,0!m8,m811&, ~12!

where h0512(3/128)a2Nd is the O(a2) normalization.
Note that three- and four-exciton states appear atO(a2). The
four-exciton states encountered here are twoS50,
-

o-

ts
y.

(0,0)m,m11 two-exciton pairs, again with the restriction o
the sum(8 that no excitons overlap. The three-exciton sta
with (S,Sz)5(0,0),

u~0,0!m1 ,m2 ,m3
&

5
1

A6
~ u~1 !m1

~0!m2
~2 !m3

&1u~0!m1
~2 !m2

~1 !m3
&

1u~2 !m1
~1 !m2

~0!m3
&2u~1 !m1

~2 !m2
~0!m3

&

2u~2 !m1
~0!m2

~1 !m3
&

2u~0!m1
~1 !m2

~2 !m3
&), ~13!

is the uniqueS50 combination of three spin-one objects
adjacent sites.

Since theO(ap) state determines theO(a2p11) energy,
we can in principle use Eq.~12! to derive the ground state
energy toO(a5). This proves to be a rather intricate calc
lation. We have carried out this derivation ofe0[E0 /LJ
analytically toO(a4), with the result

e0~a!52
3

23 2
3

26 a22
3

28 a32
13

212
a4. ~14!

This series was previously evaluated analytically toO(a3)
by Brooks Harris,22 and the series coefficients were dete
mined numerically toO(a15) to 5–6 significant figures by
Gelfand, Singh, and Huse9 using a coupled cluster expan
sion.

A similar O(a) generalization of the unperturbedS51
one-magnon excitation Eq.~7! gives

uc1~k!&5h1

1

ANd
F (

m51

Nd

eikxmu~1 !m&

1aH 2
1

2A2
(

m51

Nd

~eikb11!eikxmu~1,1!m,m11&

2
A3

8 (
m,m51

Nd

8 eikxmu~1 !m~0,0!m8&J G . ~15!

The normalizationh151 to this order ina. Taking the ex-
pected value ofH with this state gives a one-magnon dispe
sion relation of

v~k!

J
5S 12

1

16
a21

3

64
a3D2S 1

2
a1

1

4
a22

1

32
a3D cos~kb!

2S 1

16
a21

1

32
a3D cos~2kb!2

1

64
a3 cos~3kb!. ~16!

The O(a3) gap is therefore

Egap

J
512

1

2
a2

3

8
a21

1

32
a3. ~17!

These one-magnon energies were found previously to
order by Brooks Harris,22 and serve as a check of ourO(a)
one-magnon state Eq.~15!.
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C. Critical behavior

As we approach the uniform chain the ground state
ergy and the gap are both expected to approach their limi
values as powers ofd times logarithmic corrections.11,12The
behavior near the critical point is usually discussed in ter
of the variable

d5~12a!/~11a! ~18!

with

J5~11a!J/2 ~19!

fixed, so the alternating couplings areJ(11d) and J(1
2d). These variables are more appropriate for a spin-Pe
system because a displacement of an intermediate ion
O(d) should increase and decrease alternate coupling
approximately the same amount. The ground state energy
spin relative to fixedJ is ẽ0(d)52e0 /(11a).

The critical behavior of the ground state energy a
singlet-triplet gap has been discussed by Cross and Fish11

and by Black and Emery.12 The approach used was to co
sider the properies of the Heisenberg chain within
Luttinger-Tomonaga approximation, which involves
Jordan-Wigner transformation to a fermion representation
the spin operators, and then replacing the cosinusoidal
mion dispersion by a linear dispersion at the Fermi wa
vector. This linear approximation is required to simplify th
commutation relations between the density operators, all
ing the interacting fermion problem to be solved. Renorm
ization techniques are then used to calculate the asymp
behavior of various physical quantities within this appro
mation. The approach makes approximations in neglec
states far from the Fermi surface and ignoring energy ren
malization effects. The predicted asymptoticd dependence is

lim
d→0

ẽ0~d!2ẽ0~d50!}
d4/3

u ln du
~20!

and

lim
d→0

Egap

J }
d2/3

u ln du1/2
. ~21!

We will compare these predictions with our numerical
sults in the next section; it is of interest to see whether th
formulas are accurate for values ofd realized by known
materials.

One may derive some relations between energies and
derivatives near the critical point from a simple identity s
isfied by the alternating chain Hamiltonian Eq.~2!. Note the
proportionality relation

H~J,aJ!5a•H~a21J,J!, ~22!

which implies for any energy eigenvalue

En~a!

J
5a

En~a21!

J
. ~23!

Assuming that there are no singularities on the real a
except ata51, we may differentiate this relation with re
spect toa elsewhere. As it is expected that the singularity
-
g
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by
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e0(a)5E0 /JL at the critical pointa51 is higher order than
linear, de0(a)/da should be well defined everywhere; di
ferentiating Eq.~23! with n50 therefore leads to

de0~a!

da U
a51

5
1

2
e0~a51!5

1

8
2

ln~2!

2
520.22157•••.

~24!

This is consistent with the expectation that the sca
ẽ0(d) has zero slope ind as we approach the critical poin
To see this, note thatẽ0(d)52e0(a)/(11a), so

dẽ0~d!

dd
5e0~a!2

2

~11d!

de0~a!

da
, ~25!

and as we approach the critical point

lim
d→0

dẽ0~d!

dd
5 lim

a→1
e0~a!22

de0~a!

da
50. ~26!

Successive derivatives of Eq.~23! can be used to infer rela
tions between higher derivatives ofe0(a) ~or other energy
eigenvalues! as one approachesa51.

V. NUMERICAL METHODS

A. Lanczos results

Direct numerical diagonalization of moderately large sy
tems is possible for theS51/2 alternating chain. Here we
used a Lanczos method23 to obtain ground state and one
magnon energies onL54n lattices up toL528. Motivated
by previous numerical studies, we extrapolate these ener
to bulk limits using a simple exponential-and-power estim
for the finite size dependence

f ~a,L !5 f ~a!1c1

exp~2L/c2!

Lp , ~27!

wherep51 for energy gaps (f 5En2E0) andp52 for the
ground state energy per spin (f 5E0 /L). We determined the
finite-lattice energies to about 14 place accuracy, and fi
theL54(n22),4(n21) and 4n results to these asymptoti
forms.

The resulting bulk-limit ground state energy is shown
Fig. 2 and presented in Table II, to nine figure accuracy
the smallera values. For largera we include the change in
e0(a) betweenL516,20,24 andL520,24,28 extrapolations
in parenthesis after the tabulatedL520,24,28 result, as an
error estimate. These numerical energies provide an accu
check of the perturbative formulas Eq.~14! and Eq.~28!.

We also used Lanczos diagonalization on lattices up
L528 to determine the singlet-triplet gap and zone bound
energy. These results are given in Table II and shown in F
3, again with a systematic error estimate that is the discr
ancy betweenL<24 andL<28 extrapolations.~The 1 sign
indicates that the bulk-limit gap estimate increased with
creasingL.! Our Lanczos results are again consistent with
perturbative expansions Eq.~16! and Eq.~17!. The higher-
order multiple precision series Eq.~29! and Eq.~30! are as
expected found to be in agreement to much higher accur
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B. High-order series from multiple precision

One may use numerical diagonalization combined w
multiple precision programming to determine analytical p
turbation series to high order. For this application of nume
cal methods to spin systems we employed the multiprecis
packageMPFUN developed by Bailey,24 applied to our For-
tran code for low-lying eigenvectors of the alternating ch
using the ‘‘modified Lanczos’’ method.25 We typically gen-
erated energies to 300 significant figures witha510230 ~and
to 400 figures forL520), which allowed the perturbatio
expansion coefficients to be read directly from the numer
energies as rational fractions. This was possible in part
cause the energy denominators involved simple power
small integers that could be anticipated. The limiting orde
this approach is determined by the size of the system one
diagonalize, since the periodic boundary conditions int
duceO(aL/2) finite-lattice corrections to energies. This ga
a limit of O(a9) for the order of the bulk limit expansion
that could be determined from the largest system we dia
nalized with multiple precision,L520.

FIG. 2. Ground state energy per spine0(a)5E0 /LJ of the al-
ternating chain. The dashed line is third-order perturbation the
the solid line is ninth order, and the points are bulk limit extrap
lations of Lanczos data.
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The multiprecision package was implemented on a P
tium PC, a DEC Alpha, and a Sun 450. Execution times
E0 at this level of precision were approximately 6 CPU hou
for L516 on the DEC Alpha and 100 CPU hours forL
520 on the Sun 450.

The O(a9) series for the ground state energy per sp
determined in this manner is

e0~a!52
3

23 2
3

26 a22
3

28 a32
13

212
a42

89

21433
a5

2
463

21733
a62

73613191

222333
a72

1131393271

22133435
a8

2
107322 005 559

230335352
a9 ~28!

and theO(a9) series for the gap to thek50 one-magnon
state is

y,
-

FIG. 3. Singlet-triplet energy gapEgap/J of the alternating
chain, as in Fig. 2.
TABLE II. Bulk limit alternating chain energies (J51) and two-magnon bound state binding energies, Eq.~44!, extrapolated fromL
520,24,28. The change observed in going from anL516,20,24 extrapolation toL520,24,28~an estimate of the systematic error! is given
in parenthesis.

a E0 /L v(k50)5Egap v(k5p/b) EB
S50(k50) EB

S50(k5p/b) EB
S51(k5p/b)

0.0 @exact# 20.375523/8 1 1 0 0 0
0.1 20.375 480 805 0.946 279 339 1.051 248 884 0.0002 0.0456 0.0210
0.2 20.376 974 494 0.885 209 996 1.104 980 718 0.0009(22) 0.0824 0.0343
0.3 20.379 566 321 0.816 844 275~11! 1.161 143 536 0.0025(21) 0.1104 0.0403
0.4 20.383 356 250 0.741 061 41~13! 1.219 628 893~11! 0.0049(23) 0.1294 0.0402
0.5 20.388 465 614 0.657 477 7~15! 1.280 237 618~19! 0.0077~134! 0.1394 0.0353
0.6 20.395 048 423(23) 0.565 296~17! 1.3 426 173~12! 0.1405 0.0280~11!

0.7 20.40 331 243(25) 0.46 298~15! 1.406 138~13! 0.1327(21) 0.0207~117!

0.8 20.4 135 644(28) 0.3474~13! 1.46 959~14! 0.1151(21)
0.9 20.426 330(216) 0.2098~117! 1.5298~18! 0.0829~12!

1.0 20.44 314 718••• 0 1.5 707 963••• 0 0
51/42 ln(2) 5p/2
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Egap

J
512

1

2
a2

3

23 a21
1

25 a32
5

2733
a42

761

21233
a5

1
~11!23157

216333
a61

21739

218333
a72

107328337079

22433435
a8

1
130739 151 183

228336352
a9. ~29!

The zone-boundary (k5p/b) energy of the one-magno
state relative toE0 to this order is

EZB

J
511

1

2
a1

1

23 a22
1

2533
a42

83

21233
a5

2
713149

216333
a62

6373

214334
a72

193128 461

22433235
a8

2
413256 687 901

228336352
a9. ~30!

We can also use multiprecision methods to determine
one-magnon dispersion relationv(k), parametrized by

v~k!

J
5(

l 50

`

al~a! cos~ lkb!. ~31!

On a finite lattice, momenta are only defined at theNd
5L/2 independent values of Eq.~3!. @See also Fig. 1~b!.#
The relationv(k)5v(2k) further reduces this to a total o
int(Nd/2)11 independent lattice energies. These can be
panded as power series ina, and we again encounter finit
lattice artifacts in these expansions beginning atO(aNd).

The use of the lattice$v(kn)% to determine the Fourie
coefficients in Eq.~31! is nontrivial because there are infi
nitely many coefficients but only int(Nd/2)11 lattice ener-
gies. We can proceed by determining the int(Nd/2)11 finite
lattice Fourier coefficients$âl(a,L)%, l 50,1, . . . ,int(Nd/2),
defined by

v~kn!

J U
L

5 (
l 50

int~Nd/2!

âl~a,L ! cos~ lknb!, ~32!

whereknb52pn/Nd .
We can invert this using a general result for the sum o

product of cosines over the discrete lattice momenta.
shall now assumeNd is even, so there are singly degenera
k50 andk5p/b points in addition to the doubly degenera
valuesk562p/Ndb,64p/Ndb, . . . . We cantranslate the
k50 and negativek values by 2p/b, so a sum over latticek
values becomes a sum overn51,2, . . . ,Nd , with kn
52pn/Ndb. The summed product of cosines is

1

Nd
(
l 51

Nd

cos~2p ln/Nd! cos~2p ln8/Nd!

5
1

2
~dmod~n2n8,Nd!,01dmod~n1n8,Nd!,0!. ~33!
e

x-

a
e

e

On multiplying Eq.~32! by cos(2pnl8/Nd) and summing over
n, we therefore find the lattice Fourier coefficients

âl~a,L !5
2

Nd

1

~11d l ,01d l ,Nd/2!

3 (
n51

Nd v~kn!

J U
L

cos~2p ln/Nd!. ~34!

If we assume more generally that the$v(kn)% are sam-
plings of the continuous function given by Eq.~31!, and
invert the Fourier expansion using Eq.~33! we find

2

Nd
(
n51

Nd v~kn!

J U
L

cos~2pnl8/Nd!

5(
l 50

`

al~dmod~ l 2 l 8,Nd!,01dmod~ l 1 l 8,Nd!,0!. ~35!

As anticipated this constitutes int(Nd/2)11 constraints~the
number of independent choices forl 8) on the infinite set of
Fourier coefficients.

As an illustration, forl 850 Eqs.~34! and ~35! imply

â05
1

Nd
(
n51

Nd v~kn!

J U
L

5
1

2 (
l 50

`

al~dmod~ l ,Nd!,01dmod~ l ,Nd!,0!

5a01aNd
1a2Nd

1•••. ~36!

Since we know that the perturbative series for both the lat

$âl% and bulk-limit $al% coefficients begin atO(a l), the ex-
pansions ofa0 and â0 must be identical until we encounte
contributions from higher-order coefficients; fora0 these be-
gin at O(aNd) due toaNd

. This is also the order at which
finite-lattice artifacts appear in the energies, so there
been no loss of order reached in thea0 expansion beyond the
usual finite-lattice limitation. An equivalent conclusion fo
lows for the Fourier coefficientaNd/2 .

For the other Fourier modes the order of perturbat
theory to which the bulk-limit coefficients are determined
reduced by the contributions of higher-order coefficients. F
l 851 for example we find

â15
2

Nd
(
n51

Nd v~kn!

J U
L

• cos~2pn/Nd!

5(
l 50

`

al~dmod~ l 21,Nd!,01dmod~ l 11,Nd!,0!

5a11aNd111a2Nd111•••1aNd211a2Nd211•••.

~37!

The contributions of the two delta functions that combined
the previousl 850 example are now distinct, so there is a
O(aNd21) difference due toaNd21 between the known lat-

tice series forâ1 and the bulk-limita1 series. The worst cas
is m85Nd/221; the lattice and bulk-limit coefficients ar
then related by
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âNd/2215aNd/2211a3Nd/2211•••1aNd/2111a3Nd/211

1•••, ~38!

so the series for the bulk-limitaNd/221, which begins at

O(aNd/221), cannot be determined beyondO(aNd/2) due to
the presence ofaNd/211. Thus we conclude that the perturb
tive expansion of the bulk-limit dispersion relation Eq.~31!
can only becompletelydetermined toO(aNd/2) from finite
lattice data. The attainable order depends on the mode, a
in generalO(aNd212mod(l ,Nd/2)) for al with Nd/2> l>0.

It follows that the complete set of bulk-limit Fourier co
efficients$al% is uniquely determined just toO(a5) by the
diagonalization of theL520 lattice. These coefficients
which confirm and continue the one-magnon dispersion r
tion of Brooks Harris, Eq.~16!, are

a051 2
1

16
a21

3

64
a31

23

1024
a42

3

256
a5,

a15 2
1

2
a2

1

4
a21

1

32
a31

5

256
a42

35

2048
a5,

a25 2
1

16
a22

1

32
a32

15

512
a42

283

18432
a5,

a35 2
1

64
a32

1

48
a42

9

1024
a5,

a45 2
5

1024
a42

67

9216
a5,

a55 2
7

4096
a5.

~39!

The fifth-order one-magnon dispersion relation given
Eqs.~31!,~39! is shown for a range of alternations in Fig.

FIG. 4. Dispersionv(k) of the one-magnon band in the alte
nating chain fora50.2, 0.4, 0.6, 0.8, and 1.0, using the fifth-ord
dispersion relation Eqs.~31!,~39!. The a51 curve is the exact re
sult pusin(kb/2)u/2.
is

a-

y

C. Numerical results versus predicted critical behavior

The expected behaviors ofEgap/J and ẽ0(d)5E0 /JL
52e0(a)/(11a) as we approach the critical pointd50
are11,12

lim
d→0

ẽ0~d!2ẽ0~d50!}
d4/3

u ln du
~40!

and

lim
d→0

Egap

J }
d2/3

u ln du1/2
. ~41!

As we have no information regarding the range of validity
these predicted asymptotic forms, it is of great interest to
their accuracy for values ofd realized in nature, for example
in (VO)2P2O7, with d'0.1.

FIG. 5. Critical behavior of the alternating chain as a function
d, with J fixed. ~a! shows the energy per spin relative to the bu

limit, ẽ0(d)2ẽ0(0), and a fit toc1d4/3 which givesc150.3134.~b!
showsEgap/J and a fit toc1d3/4 which givesc152.003.
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We will now compare these theoretical asymptotic for

with our numerical results forEgap/J and ẽ0(d) at smalld.
Taking the ground state energy per spin first, in Fig. 5~a! we

show a logarithmic plot ofẽ0 versusd; evidently the smaller
d values do support approximate power-law behavior in
range we have studied. A fit of the three smallest-d points to
the form c1dp gives c150.3632 andp51.412, apparently
consistent withd4/3 times logarithmic corrections. The antic
pated theoretical formc1d4/3/u ln du, however, does not give
an especially good fit, and is actually worse than a pure
power law. A 4/3 power fit to the three smallestd points
givesc150.3134, which is reasonably accurate for larged
as well; this fit is shown in Fig. 5~a!.

The d dependence we observe for the singlet-triplet g
scaled byJ is shown in Fig. 5~b!. The approximate linearity
of the log-log plot suggests power-law behavior over the
range ofd considered. A fit of all points toc1dp gives c1

51.999 andp50.7497, which favors a power law fit with
d3/4 rather than the theoreticald2/3 of Eq. ~41!. Fitting c1d3/4

to the three smallestd points givesc152.003, which is
shown in Fig. 5~b!. Evidently this is a remarkably good fi
The surprising accuracy of this form for large alternation c
be understood by noting that the similar functionEgap/J
52d3/4, corresponding toEgap/J5(12a)3/4(11a)1/4, gives
the correctEgap/J power series Eq.~17! to O(a2).

The formc1d2/3/u ln du1/2 found by Black and Emery give
a less accurate description of our data. Thus we appea
support a different asymptotic power law than expected
the singlet-triplet gap, although we cannot continue to v
smalld to see the range over which this discrepancy pers

Thus we conclude that the predicted critical behavior
small d gives a rather inaccurate description of the grou
state energy and singlet-triplet gap for values ofd typical of
real materials, which implies that these formulas are un
tunately of little utility for experimentalists. Simple genera
zations of the theoretical critical forms do, however, gi
useful parametrizations of these energies for the ranged
we have considered.

In view of the inaccuracies we have found, the behav
of the ground state energy and gap much closer to the cri
point would be an interesting topic for a detailed investig
tion on large lattices, using a finite-size scaling analysis. T
energies on very large lattices might be obtained using
DMRG approach.26

VI. TWO-MAGNON BOUND STATES

Recent theoretical work15,17–19motivated by neutron scat
tering studies of CuGeO3

3 has led to considerable interest
two-magnon bound states in dimerized quantum spin s
tems. The existence of such bound states in the alterna
chain model appears very likely, since the interdimer int
actionHI , Eq. ~5!, gives an attractive diagonal potential e
ergy between two adjacent excited dimers if their total s
is S50 or S51. To see this, note the effect ofHI on a state
of adjacent (1)(0) dimer excitons
s

e

/3

p

ll

n

to
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r
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e
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n

~42!

Again in (8 the indexm8 takes on all values that do no
superimpose a dimer excitation on the already excited (1)
or (2) sites.

The analogous expressions for other polarization sta
may be combined to give the effect ofHI on nearest neigh-
bor dimer excitons with definite total spin. There is a diag
nal interaction due to the ‘‘transpose’’ matrix element a
others that retain two neighboring excitons. This static int
exciton potential is

^~S,Sz!m,m11uHI u~S,Sz!m,m11&5H 1Ja/4 S52,

2Ja/4 S51,

2Ja/2 S50.

~43!

This suggests that at large alternation~smalla) we should
find two-magnon bound states withS50 and S51, with
binding energies of approximatelyJa/2 and Ja/4, respec-
tively. ~This only applies tok5p/b; at otherk values there
is a complication that modifies this result, as noted below!

We can again use numerical results with small couplinga
to establish the higher-order perturbation series for proper
of these bound states. Unfortunately this is a much m
difficult numerical problem than the study of the ground st
and one-magnon levels, so here we give only a few preli
nary results.

The binding energiesEB of the S50 and S51 bound
states are defined by

EB~k!5 min
k11k25k

@v~k1!1v~k2!#2@E~k!2E0#. ~44!

~Thev sum gives the onset of the two-magnon continuum
k.! Assuming that the continuum onset atk5p/b is given by
k150 and k25p/b, we find that the two-magnon bindin
energies toO(a2) on L>12 lattices are
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EB~k5p/b!

J
5H 1

4
a2

13

32
a2 S51,

1

2
a2

7

16
a2 S50.

~45!

Our numerical result for the bulk-limit binding energies
k5p/b ~Table II and Fig. 6! are clearly consistent with thes
perturbative results at smalla. It is interesting that the bind
ing is much weaker neark50, for example the expansion o
theS50 binding energy atk50 appears to begin atO(a2).

The determination of these perturbative binding energ
analytically at generalk is a complicated problem becaus
the two-exciton sector is a manifold of degenerate states
der H0. Determining the appropriate basis states within t
degenerate manifold requires diagonalization of the ‘‘ho
ping’’ part of HI . This is only straightforward atk5p/b,
where this hopping amplitude vanishes; as an illustration,
adjacent (1)(0) excitons we find

^~1 !+~0!+;kuHI u+~1 !~0!+;k&} cos~kb/2!. ~46!

Thusk5p/b bound states do not mix with the two-excito
continuum to leading order, and remain relatively localize

Except neark5p/b we expect the coupling betwee
nearest-neighbor and separated excitons to be very im
tant, because the energy denominator isO(aJ), which is the
same order as the hopping matrix element. This implies
there are corrections to the bound-state wave function of
der O(^HI&/DE)5O(aJ)/O(aJ)5O(a0) and corrections
to the static binding energy Eq.~43! of order
O(u^HI&u2/DE)5O(a) except atk5p/b.

This degenerate two-exciton perturbation problem
been solved at leading order by Uhrig and Schulz15 and by
Damle and Nagler16 for the S51 two-magnon bound state
with the result

EB~k!

J
5aS 1

4
1 cos~kb/2!@cos~kb/2!21# D , ~47!

with solutions only over the rangeup2kbu<p/3. The most
deeply bound two-magnon state, atk5p/b, hasEB5a/4 to
leading order, consistent with ourS51 result Eq.~45!.

FIG. 6. Binding energies of theS50 and S51 two-magnon
bound states atk5p/b ~band maximum!. The points are bulk-limit
extrapolations of Lanczos data~Table II! and the lines are secon
order perturbation theory, Eq.~45!.
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At the extreme pointk50 we see no evidence for anS
51 bound state in our numerical extrapolation of Lancz
data. Although we do see evidence of anS50 bound state at
k50, it is quite weakly bound and~in consequence! has a
very extended spatial wave function. The difference betw
k50 andk5p/b bound state wave functions was quite ev
dent in the finite-size effects seen in our numerical extra
lation.

In a preliminary numerical study of a truncated system
zero-, one- and two-exciton states on anL5200 lattice we
find that the attractive potentials in Eq.~43! are strong
enough to form anS50 bound state for allk, but apparently
theS51 bound state exists only for a range ofk aroundp/b.
Similar conclusions have been reported by Uhrig a
Schulz15 and Bouzeraret al.17

These results are especially relevant to the alternat
chain material (VO)2P2O7, ~VOPO!. An excitation has been
observed in VOPO just below the two-magnon continuu
which has been cited as a possible two-magnon bo
state.4,5 Since this peak is seen clearly for a range ofk in-
cluding k'2p/b ~equivalent to thek50 point where we
find no S51 bound state!, it is inconsistent with the expec
tations of the alternating chain model for such a bound st
If mode observed in VOPO is indeed a two-magnon bou
state, its persistence tok'2p/b is presumably due to addi
tional interactions.

VII. NEUTRON SCATTERING STRUCTURE FACTOR

A. General results

Identification of the magnetic excitations predicted by t
alternating chain model will be facilitated by estimates
their couplings to external probes, such as photons~espe-
cially for S50 states, through Raman scattering! and neu-
trons ~for S51 states!. Here we present perturbative an
numerical results for the neutron scattering structure facto
the one-magnon mode.

The neutron scattering cross section is proportional to
structure factor, which in the Heisenberg picture is

Smm8~kW ,v!5
1

2pE2`

`

dt eivteikW•~xW i2xW j !

3 (
sitesi , j

^c0uSm
† ~xW j ,t !Sm8~xW i ,0!uc0&.

~48!

We can insert a complete set of eigenstates$ucN&% of the
full H between the spins in this matrix element and write
spin structure factor as a sum overexclusive structure factors

Smm8~kW ,v!5(
N

S
mm8

c0→cN~kW ,v!, ~49!

where
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S
mm8

c0→cN~kW ,v!5 (
sitesi , j

1

2pE2`

`

dt eivteikW•~xW i2xW j !

3^c0uSm
† ~xW j ,t !ucN&^cNuSm8~xW i ,0!uc0&.

~50!

Each exclusive structure factor S
mm8

c0→cN(kW ,v), gives the in-
tensity of scattering fromuc0& to a specific excited stat
ucN&.

The Heisenberg picture operator Sm
† (xW j ,t)

5exp(iHt)Sm
† (xW j,0)exp(2iHt) gives trivial exponentials int,

so the time integral leads to a single energy-conserving d
function. In isotropic antiferromagnets the ground state ty
cally hasS50, so the accessible excited states$ucN&% all
have S51. We can then evaluate this exclusive structu
factor to a specific polarization state, hereSz511, without
loss of generality. ForSz511 the only nonzero spherica
component of the exclusive structure factor is then

S
11

c0→cN~kW ,v!5d~EN2E02v!u(
i

^cNuS1~xW i !uc0&e
ikW•xW iu2.

~51!

If the excited stateucN& is an eigenstate of momentum
which we can assume for the alternating chain again with
loss of generality, the matrix elements of the spin operato
translationally equivalent sites are equal modulo a pl
wave

^cN~pW !uSm~xW i !uc0&5e2 ipW ~xW i2xW0!^cN~pW !uSm~xW0!uc0&,
~52!

wherexW0 is some reference site. The sum over all spin s
i can then be reduced to a sum over all sites in the unit
i * times a momentum conserving delta function

S
11

c0→cN~kW ,v!5Nunit cells
2 d~EN2E02v!dkW ,pW•

3U (
sitesi* in
unit cell

^cN~pW !uS1~xW i* !uc0&e
ikW•xW i*U2

.

~53!

If we are only interested in thek dependence andrelative
intensities of neutron scattering from the variousS51 exci-
tations, the overall normalization is irrelevant, and we c
simply evaluate dimensionless reduced intensities. It is c
venient to normalize this reduced exclusive structure fac
as

S~kW !5Nunit cellsU(
i*

^cN~kW !uS1~xW i* !uc0&e
ikW•xW i*U2

. ~54!

~Here and for the remainder of the paper we suppress
superscriptc0→cN and spin indices on the exclusive stru
ture factor.! This expression can be evaluated analytica
~using perturbation theory or other approximate wave fu
tions! or numerically using wave functions on finite lattice
lta
i-

e

ut
at
e

s
ll

n
n-
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he

-

B. One-magnon exclusive S„k…

We will now consider the reduced exclusive neutron sc
tering structure factorS(k), Eq. ~54!, for the excitation of
one-magnon states in the alternating chain, using dimer
turbation theory and the multiprecision technique. The exc
sive structure factor involves the matrix element

(
i* 51,2

^cN~kW !uS1~xW i* !uc0&e
ikW•xW i*

5^c1~k!u~S1
L e2 ikd/21S1

R e1 ikd/2!uc0&. ~55!

The superscriptsL andR refer to the left and right spins in
the first dimer. Note that this can be written as a sum
dimer-spin conserving and changing terms

~56!

For the one-magnon excitation it suffices to determine
matrix element of the raising operator on a single spin,
causeS1

L andS1
R have opposite one-magnon matrix eleme

for any k. ~This is not true for a generalS51 excitation.!
Evaluating the matrix element ofS1

L to O(a) using the per-
turbativeuc0& and uc1(k)&, Eq. ~12! and Eq.~15!, we find

^c1~k!uS1
L uc0&52

1

AL
S 11

a

4
cos~kb! D ~57!

so the matrix element Eq.~55! is

(
i* 51,2

^cN~kW !uS1~xW i* !uc0&e
ikW•xW i*

5
1

AL
~eikd/22e2 ikd/2!S 11

a

4
cos~kb! D . ~58!

The one-magnon exclusive neutron scattering structure
tor S(k) is proportional to the modulus squared of this sp
matrix element. ToO(a) we find

S~k!5~12 cos~kd!!S 11
a

2
cos~kb! D . ~59!

The small-k suppression 12 cos(kd)}sin(kd/2)2 is familiar
from isolated dimer problems and gives a basic intens
‘‘envelope’’ that measures the dimer sized. ~See, for ex-
ample, Ref. 27.! The separationbetweendimer centersb en-
ters as a more rapid modulation 11(a/2)cos(kb) of the in-
trinsic dimer form 12 cos(kd). This O(a) modulation arises
from the excitation of the ‘‘two-exciton’’ component of th
ground stateuc0& to the unperturbed ‘‘one-exciton’’ compo
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nent of uc1(k)&, and apparently has been observed in rec
neutron scattering experiments on single crystals
Sr14Cu24O41.28

TheS(k) series Eq.~59! may be continued using the mu
tiprecision approach. We introduce a cosine expansion
the S1

L matrix element

^c1~k!uS1
L uc0&52

1

AL
(
l 50

`

sl~a! cos~ lkb! ~60!

and the coefficients we find toO(a3) are

s05 12
11

64
a22

5

128
a3,

s15 1
1

4
a2

1

16
a21

31

1536
a3,

s25 1
5

64
a21

31

384
a3,

s35 1
15

512
a3.

~61!

These have the same order finite size effects as the dispe
Fourier coefficients$al%, so diagonalization of anL site
chain gives the complete set of exclusive structure fac
Fourier coefficients toO(aL/4).

These coefficients determine theO(a3) generalization of
Eq. ~59!, which is

S~k!5„12 cos~kd!…•

H S 12
5

16
a22

3

32
a3D1S 1

2
a2

1

8
a22

5

192
a3D cos~kb!

1S 3

16
a21

7

48
a3D cos~2kb!1

5

64
a3 cos~3kb!J . ~62!

A numerical example of this exclusive structure factor
presented in Fig. 8 for the case of (VO)2P2O7, which will be
discussed in Sec.VIII.

C. Two-magnon bound state exclusive S„k…

To evaluate the exclusive neutron scattering structure
tor to theS51 two-magnon bound state we require the s
matrix element Eq.~55!. This bound state is excited by
rather different mechanism than the one-magnon state
cussed in Sec. VII B above. To leading order the bound s
wave function is

uc1
~0!~k!&5

1

ANd
(

m51

Nd

eikxmu~1,1!m,m11& ~63!

which is invisible to neutron excitation of the ‘‘bare’’ groun
state, since two spin flips are required to connect these st

At O(a) a coupling to neutrons appears through the n
leading parts of the ground state and bound state. There
two such contributions, which are apparent on inspecting
O(a) states
nt
f

or

ion

r

c-

is-
te

es.
-
re
e

uc0&5u0&2
A3

8
a (

m51

Nd

u~0,0!m,m11& ~64!

and

uc1~k!&5
1

ANd
(

m51

Nd

eikxmF u~1,1!m,m11&

1O~a0!u~1,1!m,n&terms, withum2nu>2

1
a

2A2
~11e2 ikb!u~1 !m&1•••G . ~65!

In the matrix element̂c1(k)uS1(x)uc0&there is a 0→1
exciton coupling of the bare ground state to theO(a) one-
exciton component of the perturbed bound state, which
the same form as the leading one-magnon matrix elem
The second contribution is the 2→2 exciton coupling of the
O(a)u(0,0)& two-exciton part of the ground state to the tw
exciton bare bound state.

These matrix elements have quite differentk dependences
because the 0→1 term is dimer-spin changing and the
→2 term is dimer-spin conserving. From Eq.~56! one can
see that this leads to prefactors of sin(kd/2) and cos(kd/2),
respectively. Since the one-magnonS(k) has an overall
sin(kd/2) dependence, it may be possible to distinguish o
magnon and bound state modes by thisk dependence.

The reduced structure factorS(k) for the S51 two-
magnon bound state has been derived to leading orde
Damle and Nagler,16 with the result~in our conventions!

S~k!5
a2

4
@124 cos2~kb/2!#sin2@k~b2d!/2#. ~66!

This does indeed show characteristic dependence ond andb
that could be used as an experimental signature.

We unfortunately encountered difficulties in numeric
studies of the bound state. We found very slow converge
of our projection method to this state, perhaps due to
presence of a nearby bulk-limit continuum, so the use of
multiprecision techniques was not practical. This method
quires implementation of an alternative iteration scheme w
better convergence. Work along these lines is in progress
plan to present results for bound state energies and m
elements in a future publication.

VIII. COMPARISON WITH „VO…2P2O7

To illustrate the utility of our results we will now apply
them to the one-magnon dispersion relationv(k) and exclu-
sive neutron scattering intensityS(k) observed in
(VO)2P2O7. This material is an alternating chain with ma
netic V41 ion spacings of 3.2 Å and 5.1 Å along the cha
pathways.4 The chains run along the crystallographicb direc-
tion, and there is a weaker interchain couplingJa along the
‘‘ladder’’ direction a, which gives a leading-order contribu
tion of Ja cos(ka) to v(k).

A fit of the low-lying one-magnon branchv(@0,kb
5k,0#) observed in VOPO to the fifth order formula Eq
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~31!,~39! is shown in Fig. 7.„Since VOPO hasJa'20.73
meV we have added thisJa to the theoretical result Eq.~31!
to obtain v@ka50,kb5k,kc50#.… A least-squares fit gives
an exchange ofJ511.0(1) meV and alternation ofa
50.796(4), which provides an excellent account of the da
We can similarly fit the more accurate ninth-order formu
for Egap and EZB @Eqs. ~29!,~30!#, including theJa shift, to
the measured values of 3.1~1! meV and 15.4~3! meV; this
gives consistent values ofJ510.92 meV anda50.798.

The intensity of the modes seen in neutron scatterin
quite sensitive to the spatial geometry of the alternat
chain. For VOPO we can use this relation to deduce whic
the stronger of the two inequivalent exchange paths in
chain. Figure 8 shows the theoretical one-magnon inten
variation over a wide range ofk. The dashed line is the@1
2 cos(kd)# scattering intensity for isolated dimers, and t
solid line shows theO(a3) alternating-chain result Eq.~55!
for S(k), with a50.8 andd/b55.1 Å /8.3 Å . This d/b

FIG. 7. A fit of the alternating chain dispersion relation Eq
~31!,~39! to the one-magnon dispersion observed in neutron sca
ing from (VO)2P2O7 ~Ref. 4!, as discussed in Sec. VIII. The fitte
parameters areJ511.0 meV anda50.796.

FIG. 8. The predicted neutron scattering intensity~exclusive
structure factor! S(k) for the one-magnon mode in (VO)2P2O7, Eq.
~62!. The parameters area50.8 ~from a fit to the dispersion!, d
55.1 Å andb58.3 Å . The dashed line shows the isolated dim
form @12 cos(kd)# for comparison.
.
s

is
g
is
e
ty

ratio assumes that the long V-PO4-V dimer, which hasd
55.1 Å , has the stronger interactionJ. The characteristic
variation ofS(k), which is measured in neutron scatterin
allows a direct check of this bond assignment and is a st
gent test of the alternating chain model as applied to VO
~Ref. 34, in preparation!.

IX. SUMMARY AND CONCLUSIONS

In summary, we have presented many new analytical
numerical results for the low-lying excitations of the spin-1
alternating Heisenberg chain. We introduced the mode
Secs. I and II, and Sec. III reviewed previous work. Sect
IV A introduced perturbation theory about the dimer lim
and in Sec. IV B we used this approach to confirm previo
results for the one-magnon dispersionv(k) to third order,
and extended the ground state energy calculations to fo
order. Section IV C summarized the expected critical beh
ior of the gap and ground-state energy as we approach
uniform chain limit. Relations between energies and th
derivatives at the critical point were also derived. T
complement these analytical calculations, in Sec. V A
undertook numerical calculations of bulk limit energies
the ground state, gap, zone boundary, andS50 and S51
two magnon bound states, using Lanczos methods on
tems up toL528. As a major part of this work, in Sec. V B
we introduced a technique in which multiple precision c
culations with a very small dimer coupling are used to in
perturbation expansions to high order. This confirmed th
and fourth order energy expansions and allowed continua
of the e0 , Egap, andEZB series toO(a9). The one-magnon
dispersion relationv(k) was then derived toO(a5) using
this method. The expected critical behavior of the grou
state energy and energy gap was compared with our num
cal results in Sec. V C. The ground state energy was foun
be in approximate agreement with the expected~to within
logarithmic corrections! d4/3 power law. The singlet-triplet
gap however appears to support a power law ofd3/4 rather
thand2/3 over the accessible range ofd. Section VI consid-
ered two-magnon bound states. At the zone boundark
5p/b an attractive potential between magnons was found
give rise toS50 andS51 two-magnon bound states for a
alternations. Numerical results andO(a2) analytical forms
were given for the magnon-magnon binding energy. TheS
50 bound state was found for allk considered, and numeri
cal results for its binding energy atk50 were also given.
TheS51 bound state however was found to exist only fo
range ofk nearp/b. In Sec. VII we introduced an exclusiv
neutron scattering structure factorS(k); this was evaluated
analytically for the one-magnon band using the multiple p
cision technique and dimer perturbation theory. The o
magnon exclusive structure factor was determined toO(a3),
and was presented as a modulation times the fam
isolated-dimer form@12 cos(kd)#. Finally, in Sec. VIII we
gave an illustrative application of these results to recent n
tron scattering data on (VO)2P2O7, which is dominantly an
alternating chain. We showed that the fifth-order dispers
relation gives an excellent fit to the observed one-mag
band, and noted that the predicted exclusive structure fa
S(k) will allow a detailed test of the alternating chain mod
as applied to (VO)2P2O7.
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In conclusion, we have used perturbation theory and
merical methods to calculate the properties of the gro
state and one- and two-magnon states in the alterna
Heisenberg chain. Using a technique based on multiple
cision programming we have derived high-order series
pansions for energies and matrix elements of the alterna
chain. This technique is quite general and should be ap
cable to many other quasi-1D quantum spin systems.
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