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We study how thermal fluctuations affect the dynamics of vortices in the two-dimensional classical, ferro-
magnetic, anisotropic Heisenberg model depending on their additive or multiplicative character. Using a
collective coordinate theory, we analytically show that multiplicative noise, arising from fluctuations in the
local-field term of the Landau-Lifshitz equations, and Langevin-like additive noise both have the same effect
on vortex dynamicgwithin a very plausible assumption consistent with the collective coordinate approach
This is a nontrivial result, as multiplicative and additive noises usually modify the dynamics quite differently.
We also carry out numerical simulations of both versions of the model finding that they indeed give rise to very
similar vortex dynamics.S0163-18289)03917-X

I. INTRODUCTION always give rise tanultiplicativenoise terms. The difference
between the two cases is that additive noise describes fluc-
In a large class of nonlinear problems arising in physicstuations independent of the values of the system variables,
chemistry, and biology, coherent, localized excitations ofterwhereas multiplicative noise relates to fluctuations whose
play a crucial role in governing the dynamics of the corre-magnitude is modified by the state of the system. Of course,
sponding systems. This is the case, for instance, with soliadding one kind of noise or the other to an otherwise deter-
tons, vortices, fronts, and many other solitary wavelike ob-ministic problem leads in general to very different results,
jects found in a wide variety of low-dimensional systefnd. and nonlinear coherent excitations are not an exception:
Physical situations featuring these phenomena are usualljhus, for instance, studies of the sine-Gortland ¢* (Refs.
described by one of a few “canonical” partial differential 7,8) equations have shown that large sdale., spatially ho-
equations, either integrable, such as the one-dimensionatogeneousnoise modifies the dynamics of solitons in very
sine-Gordon or the nonlinear Schiinger equations, or non- different ways depending on its additive or multiplicative
integrable, such as thé* one? However, those mathemati- character. As another example, we note that the difference
cal formulations correspond in general to highly idealizedbetween additive and multiplicative noise in the nonlinear
physical contexts, in which factors like inhomogeneities,Schralinger equation has also been discussed in Ref. 9,
fluctuations, external fields, or damping are not taken intavhere multiplicative noise is associated with scattering of
account. Conclusions about stability, dynamics, interactionssolitons by phonons with no creation of new phonons,
and any other property of coherent excitations drawn fromwhereas additive noise implies creation and annihilation of
those simple descriptions do not necessarily carry over whephonons. However, a general discussion of the analogies and
the above ingredients cannot be neglected. As a conselifferences of both kinds of fluctuations is lacking in nonlin-
guence, interest on the effect of perturbations on solitons andar partial differential equations. Moreover, studies of noise
related excitations has grown rapidly since the early eightiesffects on model systems are often carried out without any
motivated by the need of bridging the gap between ideateference to the physical meaning of the type of term intro-
models and real applications. duced; hence, we believe that a physically clear-cut example
One of the most important and universal perturbations ofvill help understand the similarities and differences of addi-
any physical system is noise in one of its various foPms. tive and multiplicative noise in other cases.
Typically, noise enters the physics of a system either as tem- In this paper, we aim to gain insight into the effects of the
poral fluctuations of internal degrees of freedom, caused bywo types of fluctuations by presenting a comparison of the
temperature, for instance, or as random variations of someffects of additive and multiplicative noise on the dynamics
external control parameter. In order to study the effect ofof vortices in two-dimensiona{2D) easy-plane ferromag-
these fluctuations in the system one is interested in, randomets, as described by the classical, anisotropic Heisenberg
terms are added to the original deterministic equations; gemmodel. The reason we choose this system is that we can
erally speaking, internal randomness will reflect itselfigh  justify physically in very direct ways the reasons for intro-
ditive noise terms, while external fluctuations will almost ducing one or the other type of noise in the Landau-Lifshitz
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equation, thus making possible the discussion and interprerance experimenté,the effects of finite temperature on vor-
tation of our results in physical terms. To this end, we will tex dynamics can have signatures in those measurements.
address the problem both from analytical and numerical In most cases, thermal effects are studied by adding to the
viewpoints in order to achieve a more complete picture ofequations of motion of the system under consideration an
the two cases. Accordingly, in Sec. Il we introduce ouradditive noise term plus a damping term in order to ensure
model, summarize its main features, and discuss how noighat the fluctuation-dissipation theorem holds. This is simply
can be introduced in either form according to the physics on¢he familiar Langevin dynamics. In our case, our starting
has in mind. In Sec. lll, we present our analytical results,(deterministi¢ point is the Landau-Lifshitz equation, which
obtained in the framework of a collective coordinate ap-reads

proach. This approach will allow us to show the surprising

result that, with a reasonable assumption, very natural in the dém . OH

context of a collective coordinate theory, the two kinds of at —SpuX—=, 2
. . . 39Sy

fluctuations considered lead to tleame dynamicdor a

single vortex. Our analytical predictions are tested in Sec. Ithereén is the spin vector at lattice sitey, andH is the

by means of numerical simulations, which yield a very gOOdHamiItonian, in our case that of the anisotropic Heisenberg

agreement with the theory, thus confirmiagposteriorithe : . ;
validity of our assumption. Finally, Sec. V discusses our re_model [Eq. (1)]. The corresponding Langevin dynamics

sults and summarizes our main conclusions. Itis importanttequaﬂon for our model is obtained by adding damping and

note that, in principle, a formulation alternative to the one%lddltlve noise, which yields

presented here is possible in terms of the Hamilton equa- 43 o4 43
tions, instead of the Landau-Lifshitz equation. We discuss dSn_ ¢ XT—e§m><—Sm+;; (1). 3)
this possibility in the Appendix and show that it suffers from dt dt m

several problems. ) ) )
The second term on the right-hand side of E8). is the

damping term. Following Refs. 15-17, we have chosen for
Il. MODEL AND STOCHASTIC PERTURBATIONS simplicity Gilbert dampind?® chiefly because it is isotropic

The model we will be working with is the 2D anisotropic in contrast to the Landau-Lifshitz dampifyThe last term

Heisenberg model wittX Y- or easy-plane symmetry, given IN the right-hand side of Ed3) is the noise term, given by a
by Gaussian white noise with statistics defined by

<7]ma(t)>=0, (48
H=-J2 [SiS+SHhS+1-9SShl, @)
(m.n) (Mma(t) 7np(t)) =D 8nndapd(t—t"), (4b)

where the subindices, y, or z stand for the spin compo- whereD=2¢kgT is the diffusion constant and,3=1,2,3
nents 0<d<1, and(m,n) labels nearest neighbors of a denote Cartesian coordinates. It is important to note that,
square lattice. Among its excitations, SpeCia”y interestin%tricﬂy Speaking, the three Eq@) do not represent Lange_
ones are vortices, that are plam'r_ae., With, nuIIzcomponth vin equations, becaus#l the components aS,,/dt appear

if =0.297 and nonplandr.e., with localizeds, structureif i, each equation due to the cross products. To properly in-
6<0.297.7"" Such nonplanar vortices will be the Specific 4, ce the noise, one first has to group all the time deriva-

object of our s_tudy as repprted i_n the r.emainder of the pape ives on the left-hand side of the equation, and only then one
however, the ideas we will be discussing are general enoug

to be of interest in other, related contexts where the syster‘r“la.n add mdep?nldeFr;t fW h|2tg no(;s;lt_eirms, 9@' fo;he?ch h
behavior is governed by solitonlike collective excitations. Spin component. In REts. 2 an It was shown that such a

Physically, this model has many interesting appliCaﬁons.procedure leads to a different Langevin equation, in which

In the last few years several classes of materials have bedfie noise termy, must be replaced byy,=pm— €(SXpp).
found or fabricated for which magnetic interactions within However, as discussed in Refs. 20 and 21, the correction is
planes of their crystalline structure are much stronger tha®f the order ofe®, and taking into account that in the simu-
between these planes, and therefore the magnetic propertiions values of of the order of 10° are used, the correc-
are basically 2D. Materials in these classes include, for intion factor can be neglected, i.e., we take E}.as Langevin
stance, layered magnefsuch as RECrCl,), graphite inter- €quation, containingurely additive noise _

calated Compound$uch as COQD, magnetic ||p|d |ayers What we ha.ye d[SCUSSGd is the usual way tO introduce
(such as manganese steayatnd highT,. superconductors thgrmal fluct.uat|ons in any model. Nevertheless, in our case
(see, e.g., Ref. 12t is evident that in order to model better this Langevin approach suffers from the drawback that it
these materials, one of the factors that has to be added to&larges the length of the spins, which in the original Heisen-
description in terms of the Heisenberg Hamiltonian is fluc-berg model is fixed t¢S|=1. In the simulations of Ref. 21,
tuations, which can arise from different origins. Among this unphysical effect was suppressed by renormalizing the
those, thermal noise is of course the most natural source déngth of every spin back to its original length at every time
fluctuations to consider in the context of the Heisenbergstep. A more detailed discussion of the implementation of
model: Indeed, from the experimental point of view, insofarthis constraint can be found in Ref. 20. At this point, we
as the motion of vortices has measurable consequences were not fully satisfied with this solution, and looked for
inelastic neutron scatterify and nuclear-magnetic reso- another way to study thermal effects that preserve the spin
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lengthexactly With this motivation, we now propose to in- tion, we first derive equations of motion for the vortex center

troduce a noise termmultiplicatively, according to X(t) both for the additive and for the multiplicative noise
dém H dén cases, and afterwards we compare with numerical simula-
- J ~ 2 tions for our model, i.e., with results from numerical integra-
o SmX 25 (V) |~ €SnX g ®  tion of Egs.(3) and (5).

_ Our analytical approach to the stochastic dynamics of vor-
The termh,,(t) is again a set of independent Gaussian whitetices begins by taking the continuum limit of Eq8) and
noises, but now they represent fluctuations in the local field5), which are much more difficult to deal with in a lattice
aH/aém, in Wh|Ch the Spiném precesses_ In fact, th|S iS a formulation. Th|S iS a gOOd appI’OXimation prOVided that the
natural way to introduce the effect of thermal fluctuations, agocalized S, structure spans many lattice sites, as typically
the local field is the only way through which the sgi can occurs in practicéexcept if the anisotropy parameter is cho-

feel any changes in its environment, due to those thermai®" close to _the C”“Cf%' valué=0.297). The next step is to
fluctuations or for any other reason. Thus, the random ternfS€ & collective coordinate theory to analyze the vortex dy-
accounts for the interaction of the spin degrees of freedorr[ﬂf"‘m'cs(see Ref. 28 for_ a recent review on collective coor-
with phonons, magnons, and any other excitation thermallgjlnate approachélsW.lth[n this procedur_e, one assumes that
generated. In addition, this fashion of introducing the nois he shape of the ex_cnatlon under consw_jeratlon, In our case a
has the property that Eq5) exactly preserves the spin vortex, is no'g modified by_the_ perturbation for a Iarge_ range
length, hence there is no need for corrections as in the addPf ?ertgjlgk;atlon types(this is a very genera(lj, dW|de!y
tive case. We note that a similar term has been considered tﬁg’p Ica approach i.e., in our case noise and damping
Garanin?? who proposed it in order to derive an all- terms, and that only the dynamics Qf its center is modified by
temperature theory from the corresponding Fokker-Planck€S€ €xtra terms. The vortex motion is then introduced by
equation, obtaining a so-called Landau-Lifshitz-Bloch equathe travelling wave Ansatz ($,t)=S[r — X(t)], whereS(r)
tion. Equation(5) has also been studied by Gard?alacios describes the static vortex shape. Unfortunately, such a
and Lacro?® in connection with the dynamics of magnetic Simple_approachfirst proposed for magnetic domains by
nanoparticles. Our purpose now is to use multiplicative noisd hiele'>9 is not enough to describe the vortex dynamics, as
in order to understand the influence of finite temperature oivas found in Ref. 29. In that paper, Mertegisal. developed
vortex dynamics, comparing the results with those arising® generalization of the collective coordinate theory in which
from the l_JsuaI I__angevin approe}Ch discussed abovg. _ the vortex shape is allowed to depend on the veloignd,
There is an important question that deserves discussiop general, also on higher-order derivativesigt). The cor-

before proceeding to the study of vortex dynamics, ”amehfespondinggeneralized travelling wave Ansat
the correct way to interpret the stochastic partial differential
Egs. (3) and(5). The first one contains only additive noise, N S S ()
which implies that Ito or Stratonovicinterpretations S(rH=S(r=XX,X, ... X™), (6)

coincide>?* and therefore there is no problem in that casewhich yields an (+1)th order differential equation for

As fo_r the s_econd one, being multipli_cative, we c_io have to)Z(t). However, as discussed in Ref. 29, in the case of non-
sp_ec!fy our Interpretation pf the_ equation. Ir_1 P“”C'P'?v Whenplanar vortices only the odd-order equations represent self-
thinking of thermal excitations mteractln_g_wnh the SPINS, W€ cqnsistent valid approximations; and it turns out that the
would have to associate with them a finite qorrelat_|on UMenird-order equation is sufficient to describe accurately all
that would lead to a colored noise term. Taking white noisej, j1ations without dampin®. Therefore, in this paper we

means taking the limit of zero correlation time, and therefore . theAnsatz(6) with n=2 and apply it to the general case
it is necessary to interpret E¢G) in the Stratonovicsense. which includes damping and noise. '
Another reason for us to stay with this interpretation is that The continuum versions of EqE3) and (5) read, respec-

the spin modulus is conserved; it can be seen that Ito calcyr, '

; Civel
lus leads to an exponential decrease of the modulus, with a y

damping time proportional to the dampirgin Eg. (5). In d3 SH ds

addition, in the Stratonovidnterpretation, Garaniff and = —S8x— —€Sx—+ ;;(F,t), (7
Garcm-Palacios and 1z&ro?® and even earlier Browfr, dt 8S dt

showed® that the stationary solution to the Fokker-Planck |

equation corresponding to E() is the Boltzmann factor

with Hamiltonian (1), indicating that Eq(5) indeed repre- 43 SH 43

sents the dynamics of our model at finite temperatures. In- —=—SX|—+h(r,t) | — eSx—. (8)
terestingly, it is not difficult to show that the Boltzmann dt S dt

factor isnot a stationary solution to the Fokker-Planck equa-
tion for the additive noise Langevin probldfag. (3)], unless
further assumptions are made, including the constraint o
constant spin modulus.

To obtain the equations for the collective coordinate, instead
f using the Hamiltonian procedure described in Ref. 29, we
ollow a much more direct approach, which we have already

used for the additive noisegee a preliminary report in Refs.

20 and 30: We begin with Eqg.(7) and multiply it by

S. («9§/(9Xi)><, whereX; is theith component of the vortex

As stated in Sec. I, our approach to the problem of vortexcenter position. The contributions of all terms in the right-
dynamics will be both analytical and numerical. In this sec-hand side of Eq(7) are

Ill. ANALYTICAL RESULTS
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_ (4SS [. oH SH 43 M and
—S. _ X—_) = — 2—_).—:—52—,
X 5S 58S IX X 2
(09 pal f dr| 8x 22 ). 7(r,0) (19
P ax; | T
€S- o'?_SX §><d_s :ESZa_S. d_S (9b)  The key to achieve a complete understanding of the vortex
IX; dt oX; dt dynamics as described by E¢L1) is to know the mean
. . (F2%9 and the variance VaF®™). The mean is easily shown
g. &—Sx - _ §><a— = (90) to be zero, whereas for the correlation functions, by using the
X, K X, G continuum version of Eq4b) we obtain
whereH is the Hamiltonian density in the continuum limit of PP
Eq. (1). According to our ansatz we insert in E@b) ad add i \W£\=pDg: S(t—t’' j 2 = . =
(FA)F4t'))=Ds;s(t—t') | d "X X (20)
dS 4S. 4S. 4S.. S .
i ax Kt Kt X (10 We now turn to the multiplicative noise case E8).. The
! X IX; calculations are mostly the same as described above, except

The left-hand side of Eq7) is dealt with in the same way as that the contribution in Eq(9c) is now substituted by the
just described for the right-hand side. By collecting the resterm coming from the multiplicative noise, which reads
sults, integrating over, and dividing byS?, we obtain the
same third-order equation as that in Refs. 20, 21, and 30:

>

% Sxh
X ( )

>

S. :SZ(?_S.ﬁ (21)
ax,

+a)X+ (M+m)X+(G+g)X
(AT@X+(M+m)X+(G+g)X As a consequence, only the stochastic term in @4) is

=A)€+ I\7I§(+é)?= E 4 Fadd (11) modified: The new stochastic force is

The terms in Eq(11) are as follows: The tensors denoted by e 1 ) oS . .

capital letters come from the left-hand side of Ed), and Fm =§f dr—-h(r.v), (22)
their expressions are, for tlggrotensorG, '

which is in principle different from what we obtained for the

G. :S—zf dzrs. a_S Xﬁ_s (12) additive casé=299 However, when we evaluate the first mo-

N X X’ ments, we find again that the meanff'" is zero. Further-

for the mass tensoM more, to compute the variance, we need to evaluate
|38 a8 (FMOFM(t))

M;;=S" d“rS.-| —XxX—|, 13

’ f XX, " <sz fdz P By (F o) (23

= r r'—- = Ny(r, r, y
IX;i IX; P

and for thethird-order gyrotensorA,

where summation over andg is implied. At this point, it is
(14) important to notice that the noise is multiplicative, and there-
fore in principle we cannot take the spin fields out of the
. average over realizations of the noise. We stress that this is
The tensors denoted by small letters come from the Gilbert,; o problem in the case of additive noise, and that we

damping term; as can be seen from Etj), they contribute  j,qeed proceeded that way to obtain the expression for the

Aij :Sizf d2r§'

S  9S

to all orders, and they are given by variance ofF24 given in Eq.(20). This is so because the
5 2 additive character of the noise implies that the spin fields and
9 :Ef dzr&—s- ‘9_5 (15) the noise are uncorrelated. However, one cannot simply ap-
! ax; X’ ply the same argument to the calculation in E2B), because
when the noise is multiplicative it is not clear whether the
) PSS spin fields and the noise are correlated or not. In this situa-
mij = 'fJ d rﬁ' &_'X’ (18 tion, in principle we cannot exactly evaluate the variance of
' i F™ but we can make the following approximation: At least
- - for small noise we can substitute the spin fields in E&3)
a':ff dzra_S, ‘9_5. (17) by the deterministic expression for the vortices, assuming
! IX; an reasonably that the corrections induced by the noise will be
. of the order of the noise strength and that their contribution
Finally, the force terms are to the variance would be two orders higher in the noise
IH strength than that of the deterministic part, and hence, neg-
F= _j d2r— (18)  ligible. If we do so, we can then take the spin fields out of
IX; the average, finding
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asS a4S q r S :

<F{““"(t)F;"““(t')>=Da(t—t')J dzr&—xi- P (24) $2=g 51005 (X2X1=X1Xy), (29
i.e., the variance of the stochastic force due to the multipli- r
cative noise is the same as that of the additive noise. Yo~ p\ T exp—r/ry), (30

We stress that the assumption leading to the above, unex-

pected result, is very natural within a collective coordinate
approach such as the one we are using here. To understand = (XpXq—X1X5), (31)
this, recall that the main hypothesis of a collective coordinate 45r2

theory is that the shape of the excitation under study remains
mostly unaffected by the perturbations, and only its positionan
and possibly a few other collective variables change due to p
them? This assumption amounts to a drastic reduction in the o= (X X1+ XX5). (32
degrees of freedom of the system: From an infinite number 40

of them in the continuum equations to two for the centerqereq=+1 is the vorticity ando= =1 is the polarization,
dynamics, in the present case. Physically, it is equivalent tQuhich determines to which side the out-of-plane structure of
neglect the contribution of the magndhexcited by the per- the vortex points. In addition, =[ (1— )/ 6]"%2 character-
turbations to the vortex shape; and this approximation iszes the radius of the vortex core. Straightforward integra-
made already at the very beginning, in order to obtain Eqy, ¢ then yield expressions for the tens@sM, andA, as
(1D. In view of this, it would not be reasonable to keep theWeII as for the forces, which can afterwards be inserted in

exact fieldsS, containing the contribution of the phonon de- Eq. (11) for the vortex motion. Finally, this equation is linear

grees of freedom, in Eq23), and therefore we carry out the except for the forc& (X), which can in turn be linearized by

calculation with the deterministic vortex shape, obtaining the - :
; o T . “expanding around the mean trajectory. Subsequently, the
result(24).32 Thus, consistently within our collective coordi- P 9 ! y g y

equation can be solved by means of a Green’s function ap-
nate approach, we have shown that the mean and the vaeﬁq y b

. . " © "“Broach and the so obtained solution can be used to calculate

ance of the.s.tocha.stlc forces '”d“"‘?d by the multiplicativ analytically the variances of the vortex trajectoK(t).
and th? agjd|t|ve noises are the sa(hfgher-ord(_ar MOMENtS rpage variances are proportional to the effective vortex dif-
may still differ). As a consequence, the dynamics of a VOrteXq \cion constant
is predicted to be the same under the influence of each type
of noise, which is a surprising result in view of the general L
result that their effects are very different. D,= DTr( Iog—+C(aC)], (33

Once we have shown that both stochastic forces are equal, A
then Eq.(11) has to be the description of the vortex dynam-where a, is chosen of the order aof,, and the unknown
ics under the two types of noise. This equation was alreadgonstantC stems from the core region. As in this paper our
studied and solved in Refs. 21 and 30, and we will onlymain interest is to show that the dynamics under additive and
summarize here what we need for our present purposes. Thaultiplicative noises is the same, we will not dwell any fur-
classical spin is constrained to have a fixed magnitude thaher in the solution of Eq(11); the interested reader is re-
we set to unity. Therefore, the integrals on the right-handerred to Refs. 21 and 30 for details.
side of Eqs(12) through(17) were calculated using canoni-

d

cal fieldsp=arctan,/S) and ¢s=S, for the spin vector: IV. NUMERICAL RESULTS
S=\1-y?cosge,+\1—yZsinge,+ye,. (25 Our numerical simulations begin with one vortex with its

center located at a distané® from the middle of a circu-
Now, the explicit calculation of all the integrals is only pos- larly shaped square lattice with a radius loflattice con-
sible if thedynamicstructure of the vortex is known. In this stants. We use free-boundary conditions to produce an image
respect, in Ref. 29 it was shown that the core region of thentivortex, which leads to a radial force on our vortéx®
vortex contributes very litti¢except to Eq(12)]; the domi-  The initial spin configuration is determined from an iterative
nant contributions stem from the outer region, if the systenprogram that produces a discrete vortex structure on the
size is large enough. A vortex in the center of a circularlattice® In this way we avoid the radiation of spin waves
system with radiud. and free-boundary conditions has the that would appear during the early time units if we use a
following structure in the outer region, which was confirmedcontinuum or other approximation for the vortex shape. The

by simulations?® parameters we used in our simulations we¥e:0.1, for the
radius of the out-of-plane structure of the vortex to be large
bd=dot p1t+da, Y=ttt s, (260 enough to avoid severe discreteness effects; system radius

L =24 for the vortex to have enough space to evolve far from

with the boundaries; and initial distance from the circle center
X Roz 10
gbo=qtan*1—2, (27) For the time integratiqn of the Landaq—Lifshitz gquation
1 we use the discrete version of E&). Consistently with our

) ) interpretation of all the equations in the sense of Stratonovic
d1=pP(X X1+ X,X5), (28)  we use the Heun method to integrate in tiffié>We explic-
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t

0 n | 1 7
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FIG. 1. Variances of the vortex trajectory for Langevin dynamics wilitive noise The temperature i$=0.03; other parameters are
given in the text. From top to bottom, shown are the variance of the radial coordipate(R?) — (R)?, oﬁd,, the off-diagonal elements of
the variance matrix, andfﬁd), the variance of the azimuthal coordinate. In all three cases the lower line is the theoretical prediction with the

vortex diffusion constant chosen in order to make the analytical curve lie just below the simulated data.

itly take into account the constraifi= 1 by means of a from this regime, which has been considered in Ref. 37.
Lagrange parameter, as discussed in Ref(3#@ also Ref. The outcome of our numerical simulations can be summa-
21). To find a proper damping constant we checked the timéized by saying that they fully confirm the predictions of our
dependence of the system energy using different dampin nalytical calculations, namely that the vortex dynamics is
constants forL=24 andT=0.02 (in dimensionless units  the same under both kinds of noise. An example of our re-
The energy at=0 is the same as fdf=0 ande=0 because Sults is shown in Fig. 1 for additive noise and in Fig. 2 for
the noise is introduced with the first time step of the simula-Multiplicative noise. Itis already evident from comparing the
tion. The energy then rises and saturates to a value indepeflispersion in theR and ¢ components that the behavior of
dent of , but for e>8x 1072 the energy decreases slowly the vortex is very approximately equal in the two problems.
after saturation. The saturation time gets longer with lower _ Furthermore, the comparison to the analytical prediction
for €=2x10"3 we achieve acceptable saturation timesiS Very good: We emphasize that there is only one adjustable
<300[in units of #/(JS)]. We have always made a prerun Parameter, the vortex diffusion constant, whose value we can
of length t,>300 prior to beginning the evaluation of the only estimate as an exact expression for the discrete structure
simulation data. Finally, our simulations consisted of nu-Of the vortex core is not known. The systematic deviation of

merical integrations up to times=4 000(note in this regard the theory for very long times t£2000) is due to a
that this takes ten days CPU time on a 433_MHZ_Digita|_;lmpllflcat|on, .namely keepindR, constant; |n.the simula-
Alpha workstation for averages over 100 rubgcause this 0N, Ro slowly increases because of the damping. Results for
is larger than the characteristic time given by 56r the other low temperatures compare equally well, the better th_e
damping in the trajectories. Finally, the difference betweerOWer the temperature; for higher temperatures, our numeri-
the energy without temperature and the saturation energ9a| estimates are less accurate, although qualitatively the re-
with temperature must be the thermal energy. We computedults for both cases remain the same.

the mean thermal energy per spin at several temperatures and

it agreed withf/2x kB'I_' up toT=0.9 (for_(_:omparison, we V. CONCLUSIONS

note that the Kosterlitz-Thouless transition temperature is

about 0.8 in our unifs f being the number of degrees of In this paper, we have provided analytical and numerical
freedom per spin. This is far above the temperatures we wilevidence that additiveLangevin-like and multiplicative
discuss below. We have to mention that Toe 0.1 there is a  noise (coming from fluctuations in the local fieldhave the
more complex phenomenology because the thermal noisgame effects on the dynamics of vortices described by the 2D
does not only induce a diffusive motion of the vortices but itLandau-Lifshitz-Gilbert equation. Analytically, the result has
can also flip their out-of-plane structure, correspondinglybeen obtained in the framework of a collective coordinate
changing their direction of motion, and also nucleate addiapproach within a generalized travelling wakmsatZ® The
tional vortex-antivortex pairs. In this paper we stay awayvariances of the effective force acting on the vortex were
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FIG. 2. Variances of the vortex trajectory for the casenuiitiplicative noise; parameters are the same as in Fig. 1. From top to bottom,
shown are the variance of the radial coordinatéR=<R2>—<R>2,a§¢, the off-diagonal elements of the variance matrix, arfp¢ the
variance of the azimuthal coordinate. In all three cases the lower line is the theoretical prediction with the vortex diffusion constant fitted to
the data.

shown to be the same in the additive and multiplicative casesur conclusion that this is the correct description of thermal
provided that deformations of the unperturbed vortex shapeffects in the framework of models with dynamics given by
can be neglected. It is important to stress that this hypothesthe Landau-Lifshitz-Gilbert equation. The thorough study
is not an extra assumption but rather it is in fact implicitly carried out in Ref. 21 for the Langevin approach is then fully
made when using any collective coordinate apprdddn.  confirmed by the present paper.
order to substantiate our analytical results, we numerically
simulated both the additive and the multiplicative cases for
the 2D easy-plane Heisenberg ferromagnet, finding an excel-
lent agreement with the prediction of equal behavior under We thank Grant Lythe, Yuri Gaididei, Francisco
both sources of noise, as well as with the analytical expresDominguez-Adame, Rd oral, and Niels Gfabech-Jensen
sion for the variance of the vortex trajectory. for discussions. Travel between Bayreuth and Madrid was
As an immediate consequence of the validity of thesupported by “Acciones Integradas Hispano-Alemanas,” a
above-discussed prediction, we point out that all the resultint program of DAAD(Az. 314-Al) and DGES. Additional
obtained in Ref. 21 for the additivé¢herma) noise apply to  funding for the stay of E.M. at Bayreuth was provided by the
the multiplicative model presented here, specificaliythe ~ Fundacia Universidad Carlos Ill. Travel between Europe
existence of three different temperature regimes for the vorand Los Alamos was supported by NATO Grant No. CRG
tex propagation: a low temperature one, where the vorte®71090. Work at Legarsewas supported by CICyTSpain
motion follows essentially the third-order equation of motion Grant No. MAT95-0325 and by DGESpain grant PB96-
with parameters independent of temperature; a middle ten9119. Work at Los Alamos was supported by the United
perature one, at which traces of the oscillations arising fronStates Department of Energy.
the third-order equation are lost, and a high-temperature re-
gime, which is not describable by a one-vortex approach AppeNDIX: NOISE IN THE HAMILTON EQUATIONS
because too many vortex-antivortex pairs arise in the system;
and (ii) the dependence of the effective diffusion coefficient In this section we consider an alternative formulation of
for the vortex on temperature. On the other hand, the experthe problem of thermal fluctuations in the classical Heisen-
ments we have reported on here allow us to place on firmdperg ferromagnet, and show that this version exhibits differ-
ground that those are indeed the features of thermal vortegnt features for additive and multiplicative noises, not even
dynamics: The problem with the nonconstant spin length in &eing well posed for the latter case.
Langevin approach is now solved by the multiplicative ap- By taking into account that the spin length has to be con-
proach, in which it is exactly conserved. Furthermore, thestant, one can reformulate the Heisenberg model in terms of
fact that the stationary probability distribution for the multi- the fields¢ = arctan,/S) and =S, for the spin vector. In
plicative case is precisely the Boltzmann factor reinforceghis way, after rewriting the Hamiltoniafl) in these new
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variables, the dynamics of the model is governed by the fol- § § ap\% [ ay\?
lowing Hamilton equations: (Faqt) R d('[')>=D5('f—'[')f d?r (07) +(ﬁ) :
| I
. SH (AB)
¢: W (Ala) . . . .
oy This expression is actually not very different from that ob-
tained in Eq.(20) for the additive noise version of the
b= ﬁ (Alb) Landau-Lifshitz equation: Using Eq25), the integrand of
5o’ Eq. (20) reads, fori =],
The additive noise version of the problem, i.e., the Langevin oo ) )
equations, is given by S| o do 1 Ay
(axi =(1=¢7) X +1_¢2 ax;) - (A7)
¥ As the staticS, structure of the vortex30) falls off expo-
nentially in the outer regioa,<r=<L, whereL is the system
iﬁ= _ ﬁ + 740 F.t), (A2b) ra_diu;, both integral§20) and (A6) have thesamelogarith-
o mic size dependence,

whereas the multiplicative version corresponds to

SH . (Ff‘dd(t)Ff‘dd(t’))=D6(t—t’)7-r( IogLJrC). (A8)
=55 T 110, (A3a) 8
The only difference between both formulas consists in the
. - value of the(small) constantC, which stems from the core
¥=- 5h oy r) . (A3D) region O<r<a,, wherea,=O(r,).
- Moving now to the multiplicative case, given by E&5),
Of course, both models should also be supplemented with can pe easily shown that the situation is completely differ-

damping terms in quer to fuI_fiII the fluctuation-.dissi.patipn ent. The mean and the varianceRff"" can again be easily
theorem. For simplicity, we will leave them out in this dis- o mult/sy\ _
. > , L . computed, yielding F{"""(t))=0 and

cussion. Their influence, however, is not qualitatively impor-
tant as for our main argument below, as it can be checked
that they would only contribute factors to the expressions for Emult ) pmult 4/ Ds(t—t' f d2 ( &4’)2 2
the force variances. (FEHORT) ( ) X v

Now, from either one of these two equations we can de-

2
rive an equation of motion for the vortex center following +< i

d)z} ) (A9)

Fmult= f d?r . (A5)

basically the same collective coordinate approach as above. 2
In this case, one has to mgltlply the equatlo_n i{'»rby which, due to the presence of a facipt in the first term of
9¢/9X; and .substract from. it the equation fab times the integrand decaying exponentially away from the vortex
5%.”“”9 - In this way an equation cgmpletgly analogous to thecore, isindependentf the system size. It is then clear that
thlrd-order equation of mOt'O.ﬁ.ll) is obtained, but now we the variances are very different in both cases. Therefore, a
find for the forces in the additive case detailed study of the Hamilton equations with additive noise
o I [Egs. (A2)] would basically lead to the same conclusions
Ff‘dd:f d?r _’71#__7741 (A4)  summarized above arising from the study of the Landau-
IXi IXi Lifshitz-Gilbert problem, whereas the multiplicative version
whereas for the multiplicative noise, would give totally different answers. It has to be concluded
then that the proper way to include multiplicative noise in
¢ P this problem is at the Landau-Lifshitz level amdt in the
Txi’md/—(y_xid’% Hamilton equations foky and . Finally, this result points
out very clearly that the fact that the two approaches, addi-
Let us first discuss the additive case E44). It is not  tive and multiplicative, give the same results in the Landau-
difficult to derive from the above expression the first mo- Lifshitz equation, is neither trivial nor generally applicable,
ments of the additive force, which turn out to bE?{t)) and should then be regarded as a specific and attractive fea-

=0 and ture of that approach.
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