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Stochastic vortex dynamics in two-dimensional easy-plane ferromagnets:
Multiplicative versus additive noise
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We study how thermal fluctuations affect the dynamics of vortices in the two-dimensional classical, ferro-
magnetic, anisotropic Heisenberg model depending on their additive or multiplicative character. Using a
collective coordinate theory, we analytically show that multiplicative noise, arising from fluctuations in the
local-field term of the Landau-Lifshitz equations, and Langevin-like additive noise both have the same effect
on vortex dynamics~within a very plausible assumption consistent with the collective coordinate approach!.
This is a nontrivial result, as multiplicative and additive noises usually modify the dynamics quite differently.
We also carry out numerical simulations of both versions of the model finding that they indeed give rise to very
similar vortex dynamics.@S0163-1829~99!03917-X#
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I. INTRODUCTION

In a large class of nonlinear problems arising in physi
chemistry, and biology, coherent, localized excitations of
play a crucial role in governing the dynamics of the cor
sponding systems. This is the case, for instance, with s
tons, vortices, fronts, and many other solitary wavelike o
jects found in a wide variety of low-dimensional systems.1–3

Physical situations featuring these phenomena are usu
described by one of a few ‘‘canonical’’ partial differentia
equations, either integrable, such as the one-dimensi
sine-Gordon or the nonlinear Schro¨dinger equations, or non
integrable, such as thef4 one.4 However, those mathemat
cal formulations correspond in general to highly idealiz
physical contexts, in which factors like inhomogeneitie
fluctuations, external fields, or damping are not taken i
account. Conclusions about stability, dynamics, interactio
and any other property of coherent excitations drawn fr
those simple descriptions do not necessarily carry over w
the above ingredients cannot be neglected. As a co
quence, interest on the effect of perturbations on solitons
related excitations has grown rapidly since the early eight
motivated by the need of bridging the gap between id
models and real applications.

One of the most important and universal perturbations
any physical system is noise in one of its various form5

Typically, noise enters the physics of a system either as t
poral fluctuations of internal degrees of freedom, caused
temperature, for instance, or as random variations of so
external control parameter. In order to study the effect
these fluctuations in the system one is interested in, ran
terms are added to the original deterministic equations; g
erally speaking, internal randomness will reflect itself inad-
ditive noise terms, while external fluctuations will almo
PRB 590163-1829/99/59~17!/11349~9!/$15.00
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always give rise tomultiplicativenoise terms. The difference
between the two cases is that additive noise describes
tuations independent of the values of the system variab
whereas multiplicative noise relates to fluctuations who
magnitude is modified by the state of the system. Of cou
adding one kind of noise or the other to an otherwise de
ministic problem leads in general to very different resul
and nonlinear coherent excitations are not an except
Thus, for instance, studies of the sine-Gordon6 andf4 ~Refs.
7,8! equations have shown that large scale~i.e., spatially ho-
mogeneous! noise modifies the dynamics of solitons in ve
different ways depending on its additive or multiplicativ
character. As another example, we note that the differe
between additive and multiplicative noise in the nonline
Schrödinger equation has also been discussed in Ref
where multiplicative noise is associated with scattering
solitons by phonons with no creation of new phonon
whereas additive noise implies creation and annihilation
phonons. However, a general discussion of the analogies
differences of both kinds of fluctuations is lacking in nonli
ear partial differential equations. Moreover, studies of no
effects on model systems are often carried out without
reference to the physical meaning of the type of term int
duced; hence, we believe that a physically clear-cut exam
will help understand the similarities and differences of ad
tive and multiplicative noise in other cases.

In this paper, we aim to gain insight into the effects of t
two types of fluctuations by presenting a comparison of
effects of additive and multiplicative noise on the dynam
of vortices in two-dimensional~2D! easy-plane ferromag
nets, as described by the classical, anisotropic Heisen
model. The reason we choose this system is that we
justify physically in very direct ways the reasons for intr
ducing one or the other type of noise in the Landau-Lifsh
11 349 ©1999 The American Physical Society
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equation, thus making possible the discussion and inter
tation of our results in physical terms. To this end, we w
address the problem both from analytical and numer
viewpoints in order to achieve a more complete picture
the two cases. Accordingly, in Sec. II we introduce o
model, summarize its main features, and discuss how n
can be introduced in either form according to the physics
has in mind. In Sec. III, we present our analytical resu
obtained in the framework of a collective coordinate a
proach. This approach will allow us to show the surprisi
result that, with a reasonable assumption, very natural in
context of a collective coordinate theory, the two kinds
fluctuations considered lead to thesame dynamicsfor a
single vortex. Our analytical predictions are tested in Sec
by means of numerical simulations, which yield a very go
agreement with the theory, thus confirminga posteriori the
validity of our assumption. Finally, Sec. V discusses our
sults and summarizes our main conclusions. It is importan
note that, in principle, a formulation alternative to the o
presented here is possible in terms of the Hamilton eq
tions, instead of the Landau-Lifshitz equation. We disc
this possibility in the Appendix and show that it suffers fro
several problems.

II. MODEL AND STOCHASTIC PERTURBATIONS

The model we will be working with is the 2D anisotrop
Heisenberg model withXY- or easy-plane symmetry, give
by

H52J (
^m,n&

@Sm
x Sn

x1Sm
y Sn

y1~12d!Sm
z Sm

z #, ~1!

where the subindicesx, y, or z stand for the spin compo
nents 0,d<1, and ^m,n& labels nearest neighbors of
square lattice. Among its excitations, specially interest
ones are vortices, that are planar~i.e., with nullz component!
if d>0.297 and nonplanar~i.e., with localizedSz structure! if
d<0.297.10,11 Such nonplanar vortices will be the specifi
object of our study as reported in the remainder of the pa
however, the ideas we will be discussing are general eno
to be of interest in other, related contexts where the sys
behavior is governed by solitonlike collective excitations.

Physically, this model has many interesting applicatio
In the last few years several classes of materials have b
found or fabricated for which magnetic interactions with
planes of their crystalline structure are much stronger t
between these planes, and therefore the magnetic prope
are basically 2D. Materials in these classes include, for
stance, layered magnets~such as Rb2CrCl4), graphite inter-
calated compounds~such as CoCl2), magnetic lipid layers
~such as manganese stearate!, and highTc superconductors
~see, e.g., Ref. 12!. It is evident that in order to model bette
these materials, one of the factors that has to be added
description in terms of the Heisenberg Hamiltonian is flu
tuations, which can arise from different origins. Amon
those, thermal noise is of course the most natural sourc
fluctuations to consider in the context of the Heisenb
model: Indeed, from the experimental point of view, inso
as the motion of vortices has measurable consequence
inelastic neutron scattering13 and nuclear-magnetic reso
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nance experiments,14 the effects of finite temperature on vo
tex dynamics can have signatures in those measuremen

In most cases, thermal effects are studied by adding to
equations of motion of the system under consideration
additive noise term plus a damping term in order to ens
that the fluctuation-dissipation theorem holds. This is sim
the familiar Langevin dynamics. In our case, our starti
~deterministic! point is the Landau-Lifshitz equation, whic
reads

dSW m

dt
52SW m3

]H

]SW m

, ~2!

whereSW m is the spin vector at lattice sitem, and H is the
Hamiltonian, in our case that of the anisotropic Heisenb
model @Eq. ~1!#. The corresponding Langevin dynamic
equation for our model is obtained by adding damping a
additive noise, which yields

dSW m

dt
52SW m3

]H

]SW m

2eSW m3
dSW m

dt
1hW m~ t !. ~3!

The second term on the right-hand side of Eq.~3! is the
damping term. Following Refs. 15–17, we have chosen
simplicity Gilbert damping,18 chiefly because it is isotropic
in contrast to the Landau-Lifshitz damping.19 The last term
in the right-hand side of Eq.~3! is the noise term, given by a
Gaussian white noise with statistics defined by

^hma~ t !&50, ~4a!

^hma~ t !hnb~ t8!&5Ddmndabd~ t2t8!, ~4b!

whereD52ekBT is the diffusion constant anda,b51,2,3
denote Cartesian coordinates. It is important to note t
strictly speaking, the three Eqs.~3! do not represent Lange
vin equations, becauseall the components ofdSW m /dt appear
in each equation due to the cross products. To properly
troduce the noise, one first has to group all the time deri
tives on the left-hand side of the equation, and only then
can add independent white noise terms, sayrW m , for each
spin component. In Refs. 20 and 21 it was shown that suc
procedure leads to a different Langevin equation, in wh
the noise termhW m must be replaced byhW m5rW m2e(SW 3rW m).
However, as discussed in Refs. 20 and 21, the correctio
of the order ofe2, and taking into account that in the simu
lations values ofe of the order of 1023 are used, the correc
tion factor can be neglected, i.e., we take Eq.~3! as Langevin
equation, containingpurely additive noise.

What we have discussed is the usual way to introd
thermal fluctuations in any model. Nevertheless, in our c
this Langevin approach suffers from the drawback tha
enlarges the length of the spins, which in the original Heis
berg model is fixed touSW u51. In the simulations of Ref. 21
this unphysical effect was suppressed by renormalizing
length of every spin back to its original length at every tim
step. A more detailed discussion of the implementation
this constraint can be found in Ref. 20. At this point, w
were not fully satisfied with this solution, and looked fo
another way to study thermal effects that preserve the s
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lengthexactly. With this motivation, we now propose to in
troduce a noise termmultiplicatively, according to

dSW m

dt
52SW m3F ]H

]SW m

1hW m~ t !G2eSW m3
dSW m

dt
. ~5!

The termhW m(t) is again a set of independent Gaussian wh
noises, but now they represent fluctuations in the local fi
]H/]SW m , in which the spinSW m precesses. In fact, this is
natural way to introduce the effect of thermal fluctuations,
the local field is the only way through which the spinSW m can
feel any changes in its environment, due to those ther
fluctuations or for any other reason. Thus, the random t
accounts for the interaction of the spin degrees of freed
with phonons, magnons, and any other excitation therm
generated. In addition, this fashion of introducing the no
has the property that Eq.~5! exactly preserves the spi
length, hence there is no need for corrections as in the a
tive case. We note that a similar term has been considere
Garanin,22 who proposed it in order to derive an al
temperature theory from the corresponding Fokker-Pla
equation, obtaining a so-called Landau-Lifshitz-Bloch eq
tion. Equation~5! has also been studied by Garcı´a-Palacios
and Lázcro,23 in connection with the dynamics of magnet
nanoparticles. Our purpose now is to use multiplicative no
in order to understand the influence of finite temperature
vortex dynamics, comparing the results with those aris
from the usual Langevin approach discussed above.

There is an important question that deserves discus
before proceeding to the study of vortex dynamics, nam
the correct way to interpret the stochastic partial differen
Eqs. ~3! and ~5!. The first one contains only additive nois
which implies that Ito or Stratonovicˇ interpretations
coincide,5,24 and therefore there is no problem in that ca
As for the second one, being multiplicative, we do have
specify our interpretation of the equation. In principle, wh
thinking of thermal excitations interacting with the spins, w
would have to associate with them a finite correlation ti
that would lead to a colored noise term. Taking white no
means taking the limit of zero correlation time, and theref
it is necessary to interpret Eq.~5! in the Stratonovicˇ sense.
Another reason for us to stay with this interpretation is t
the spin modulus is conserved; it can be seen that Ito ca
lus leads to an exponential decrease of the modulus, wi
damping time proportional to the dampinge in Eq. ~5!. In
addition, in the Stratonovicˇ interpretation, Garanin,22 and
Garcı́a-Palacios and La´zcro,23 and even earlier Brown,25

showed26 that the stationary solution to the Fokker-Plan
equation corresponding to Eq.~5! is the Boltzmann factor
with Hamiltonian ~1!, indicating that Eq.~5! indeed repre-
sents the dynamics of our model at finite temperatures.
terestingly, it is not difficult to show that the Boltzman
factor isnot a stationary solution to the Fokker-Planck equ
tion for the additive noise Langevin problem@Eq. ~3!#, unless
further assumptions are made, including the constrain
constant spin modulus.27

III. ANALYTICAL RESULTS

As stated in Sec. I, our approach to the problem of vor
dynamics will be both analytical and numerical. In this se
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tion, we first derive equations of motion for the vortex cen
XW (t) both for the additive and for the multiplicative nois
cases, and afterwards we compare with numerical sim
tions for our model, i.e., with results from numerical integr
tion of Eqs.~3! and ~5!.

Our analytical approach to the stochastic dynamics of v
tices begins by taking the continuum limit of Eqs.~3! and
~5!, which are much more difficult to deal with in a lattic
formulation. This is a good approximation provided that t
localizedSz structure spans many lattice sites, as typica
occurs in practice~except if the anisotropy parameter is ch
sen close to the critical valued50.297). The next step is to
use a collective coordinate theory to analyze the vortex
namics~see Ref. 28 for a recent review on collective coo
dinate approaches!. Within this procedure, one assumes th
the shape of the excitation under consideration, in our ca
vortex, is not modified by the perturbation for a large ran
of perturbation types~this is a very general, widely
applicable28 approach!, i.e., in our case noise and dampin
terms, and that only the dynamics of its center is modified
these extra terms. The vortex motion is then introduced
the travelling wave Ansatz SW (rW,t)5SW @rW2XW (t)#, whereSW (rW)
describes the static vortex shape. Unfortunately, suc
simple approach~first proposed for magnetic domains b
Thiele15,16! is not enough to describe the vortex dynamics,
was found in Ref. 29. In that paper, Mertenset al.developed
a generalization of the collective coordinate theory in wh

the vortex shape is allowed to depend on the velocityXẆ and,
in general, also on higher-order derivatives ofXW (t). The cor-
respondinggeneralized travelling wave Ansatzis

SW ~rW,t !5SW ~rW2XW ,XẆ ,XẄ , . . . ,XW ~n!!, ~6!

which yields an (n11)th order differential equation fo
XW (t). However, as discussed in Ref. 29, in the case of n
planar vortices only the odd-order equations represent s
consistent valid approximations; and it turns out that
third-order equation is sufficient to describe accurately
simulations without damping.29 Therefore, in this paper we
use theAnsatz~6! with n52 and apply it to the general cas
which includes damping and noise.

The continuum versions of Eqs.~3! and ~5! read, respec-
tively

dSW

dt
52SW 3

dH

dSW
2eSW 3

dSW

dt
1hW ~rW,t !, ~7!

and

dSW

dt
52SW 3FdH

dSW
1hW ~rW,t !G2eSW 3

dSW

dt
. ~8!

To obtain the equations for the collective coordinate, inste
of using the Hamiltonian procedure described in Ref. 29,
follow a much more direct approach, which we have alrea
used for the additive noise~see a preliminary report in Refs
20 and 30!: We begin with Eq.~7! and multiply it by
SW •(]SW /]Xi)3, whereXi is the i th component of the vortex
center position. The contributions of all terms in the righ
hand side of Eq.~7! are
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2SW •S ]SW

]Xi
3FSW 3

dH

dSW
G D 52S2

dH

dSW
•

]SW

]Xi
52S2

]H
]Xi

,

~9a!

eSW •F ]SW

]Xi
3S SW 3

dSW

dt
D G5eS2

]SW

]Xi
•

dSW

dt
, ~9b!

SW •S ]SW

]Xi
3hW D 5S SW 3

]SW

]Xi
D •hW . ~9c!

whereH is the Hamiltonian density in the continuum limit o
Eq. ~1!. According to our ansatz we insert in Eq.~9b!

dSW

dt
5

]SW

]Xj
Ẋj1

]SW

]Ẋj

Ẍj1
]SW

]Ẍj

X̂j . ~10!

The left-hand side of Eq.~7! is dealt with in the same way a
just described for the right-hand side. By collecting the
sults, integrating overrW, and dividing byS2, we obtain the
same third-order equation as that in Refs. 20, 21, and 30

~A1a!XŴ 1~M1m!XẄ 1~G1g!XẆ

5ÂXŴ 1M̂XẄ 1ĜXẆ 5FW 1FW add. ~11!

The terms in Eq.~11! are as follows: The tensors denoted
capital letters come from the left-hand side of Eq.~7!, and
their expressions are, for thegyrotensorG,

Gi j 5S22E d2rSW •S ]SW

]Xi
3

]SW

]Xj
D , ~12!

for the mass tensorM ,

Mi j 5S22E d2rSW •S ]SW

]Xi
3

]SW

]Ẋj
D , ~13!

and for thethird-order gyrotensorA,

Ai j 5S22E d2rSW •S ]SW

]Xi
3

]SW

]Ẍj
D . ~14!

The tensors denoted by small letters come from the Gilb
damping term; as can be seen from Eq.~11!, they contribute
to all orders, and they are given by

gi j 5eE d2r
]SW

]Xi
•

]SW

]Xj
, ~15!

mi j 5eE d2r
]SW

]Xi
•

]SW

]Ẋj

, ~16!

ai j 5eE d2r
]SW

]Xi
•

]SW

]Ẍj

. ~17!

Finally, the force terms are

Fi52E d2r
]H
]Xi

, ~18!
-

rt

and

Fi
add5

1

S2E d2r S SW 3
]SW

]Xi
D •hW ~rW,t !. ~19!

The key to achieve a complete understanding of the vo
dynamics as described by Eq.~11! is to know the mean
^Fi

add& and the variance Var(Fi
add). The mean is easily shown

to be zero, whereas for the correlation functions, by using
continuum version of Eq.~4b! we obtain

^Fi
add~ t !F j

add~ t8!&5Dd i j d~ t2t8!E d2r
]SW

]Xi
•

]SW

]Xj
. ~20!

We now turn to the multiplicative noise case Eq.~8!. The
calculations are mostly the same as described above, ex
that the contribution in Eq.~9c! is now substituted by the
term coming from the multiplicative noise, which reads

SW •S ]SW

]Xi
3~SW 3hW ! D 5S2

]SW

]Xi
•hW . ~21!

As a consequence, only the stochastic term in Eq.~11! is
modified: The new stochastic force is

Fi
mult5

1

S2E d2r
]SW

]Xi
•hW ~rW,t !, ~22!

which is in principle different from what we obtained for th
additive caseFadd. However, when we evaluate the first m
ments, we find again that the mean ofFmult is zero. Further-
more, to compute the variance, we need to evaluate

^Fi
mult~ t !F j

mult~ t8!&

5 K E d2r E d2r 8
]Sa

]Xi

]Sb

]Xj
ha~rW,t !hb~rW8,t8!L , ~23!

where summation overa andb is implied. At this point, it is
important to notice that the noise is multiplicative, and the
fore in principle we cannot take the spin fields out of t
average over realizations of the noise. We stress that th
not a problem in the case of additive noise, and that
indeed proceeded that way to obtain the expression for
variance ofFadd given in Eq. ~20!. This is so because th
additive character of the noise implies that the spin fields
the noise are uncorrelated. However, one cannot simply
ply the same argument to the calculation in Eq.~23!, because
when the noise is multiplicative it is not clear whether t
spin fields and the noise are correlated or not. In this sit
tion, in principle we cannot exactly evaluate the variance
Fmult, but we can make the following approximation: At lea
for small noise, we can substitute the spin fields in Eq.~23!
by the deterministic expression for the vortices, assum
reasonably that the corrections induced by the noise will
of the order of the noise strength and that their contribut
to the variance would be two orders higher in the no
strength than that of the deterministic part, and hence, n
ligible. If we do so, we can then take the spin fields out
the average, finding
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^Fi
mult~ t !F j

mult~ t8!&5Dd~ t2t8!E d2r
]SW

]Xi
•

]SW

]Xj
, ~24!

i.e., the variance of the stochastic force due to the multi
cative noise is the same as that of the additive noise.

We stress that the assumption leading to the above, u
pected result, is very natural within a collective coordina
approach such as the one we are using here. To unders
this, recall that the main hypothesis of a collective coordin
theory is that the shape of the excitation under study rem
mostly unaffected by the perturbations, and only its posit
and possibly a few other collective variables change due
them.28 This assumption amounts to a drastic reduction in
degrees of freedom of the system: From an infinite num
of them in the continuum equations to two for the cen
dynamics, in the present case. Physically, it is equivalen
neglect the contribution of the magnons31 excited by the per-
turbations to the vortex shape; and this approximation
made already at the very beginning, in order to obtain
~11!. In view of this, it would not be reasonable to keep t
exact fieldsSW , containing the contribution of the phonon d
grees of freedom, in Eq.~23!, and therefore we carry out th
calculation with the deterministic vortex shape, obtaining
result~24!.32 Thus, consistently within our collective coord
nate approach, we have shown that the mean and the
ance of the stochastic forces induced by the multiplicat
and the additive noises are the same~higher-order moments
may still differ!. As a consequence, the dynamics of a vor
is predicted to be the same under the influence of each
of noise, which is a surprising result in view of the gene
result that their effects are very different.

Once we have shown that both stochastic forces are eq
then Eq.~11! has to be the description of the vortex dyna
ics under the two types of noise. This equation was alre
studied and solved in Refs. 21 and 30, and we will o
summarize here what we need for our present purposes.
classical spin is constrained to have a fixed magnitude
we set to unity. Therefore, the integrals on the right-ha
side of Eqs.~12! through~17! were calculated using canon
cal fieldsf5arctan(Sy /Sx) andc5Sz for the spin vector:

SW 5A12c2 cosfeW x1A12c2 sinfeW y1ceW z . ~25!

Now, the explicit calculation of all the integrals is only po
sible if thedynamicstructure of the vortex is known. In thi
respect, in Ref. 29 it was shown that the core region of
vortex contributes very little@except to Eq.~12!#; the domi-
nant contributions stem from the outer region, if the syst
size is large enough. A vortex in the center of a circu
system with radiusL and free-boundary conditions has th
following structure in the outer region, which was confirm
by simulations:29

f5f01f11f2 , c5c01c11c2 , ~26!

with

f05qtan21
x2

x1
, ~27!

f15p~x1Ẋ11x2Ẋ2!, ~28!
i-

x-
e
nd

e
ns
n
to
e
r

r
to

is
.

e
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e
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f25
q

8d
log

r

eL
~x2Ẍ12x1Ẍ2!, ~29!

c0;pAr v

r
exp~2r /r v!, ~30!

c15
q

4dr 2
~x2Ẋ12x1Ẋ2!, ~31!

and

c25
p

4d
~x1Ẍ11x2Ẍ2!. ~32!

Hereq561 is the vorticity andp561 is the polarization,
which determines to which side the out-of-plane structure
the vortex points. In addition,r v5@(12d)/d#1/2/2 character-
izes the radius of the vortex core. Straightforward integ
tions then yield expressions for the tensorsĜ, M̂ , andÂ, as
well as for the forces, which can afterwards be inserted
Eq. ~11! for the vortex motion. Finally, this equation is linea
except for the forceFW (XW ), which can in turn be linearized by
expanding around the mean trajectory. Subsequently,
equation can be solved by means of a Green’s function
proach and the so obtained solution can be used to calcu
analytically the variances of the vortex trajectoryX(t).
These variances are proportional to the effective vortex
fusion constant

Dv.DpH log
L

ac
1C~ac!J , ~33!

where ac is chosen of the order ofr v , and the unknown
constantC stems from the core region. As in this paper o
main interest is to show that the dynamics under additive
multiplicative noises is the same, we will not dwell any fu
ther in the solution of Eq.~11!; the interested reader is re
ferred to Refs. 21 and 30 for details.

IV. NUMERICAL RESULTS

Our numerical simulations begin with one vortex with i
center located at a distanceR0 from the middle of a circu-
larly shaped square lattice with a radius ofL lattice con-
stants. We use free-boundary conditions to produce an im
antivortex, which leads to a radial force on our vortex.29,33

The initial spin configuration is determined from an iterati
program that produces a discrete vortex structure on
lattice.33 In this way we avoid the radiation of spin wave
that would appear during the early time units if we use
continuum or other approximation for the vortex shape. T
parameters we used in our simulations were:d50.1, for the
radius of the out-of-plane structure of the vortex to be la
enough to avoid severe discreteness effects; system ra
L524 for the vortex to have enough space to evolve far fr
the boundaries; and initial distance from the circle cen
R0510.

For the time integration of the Landau-Lifshitz equatio
we use the discrete version of Eq.~3!. Consistently with our
interpretation of all the equations in the sense of Stratonoˇ,
we use the Heun method to integrate in time.34,35We explic-
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FIG. 1. Variances of the vortex trajectory for Langevin dynamics withadditive noise. The temperature isT50.03; other parameters ar
given in the text. From top to bottom, shown are the variance of the radial coordinatesRR

2 5^R2&2^R&2, sRf
2 , the off-diagonal elements o

the variance matrix, andsff
2 , the variance of the azimuthal coordinate. In all three cases the lower line is the theoretical prediction w

vortex diffusion constant chosen in order to make the analytical curve lie just below the simulated data.
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itly take into account the constraintSW 251 by means of a
Lagrange parameter, as discussed in Ref. 36~see also Ref.
21!. To find a proper damping constant we checked the t
dependence of the system energy using different dam
constants forL524 andT50.02 ~in dimensionless units!.
The energy att50 is the same as forT50 ande50 because
the noise is introduced with the first time step of the simu
tion. The energy then rises and saturates to a value inde
dent of e, but for e.831023 the energy decreases slow
after saturation. The saturation time gets longer with lowee,
for e>231023 we achieve acceptable saturation tim
,300 @in units of \/(JS)#. We have always made a preru
of length t0.300 prior to beginning the evaluation of th
simulation data. Finally, our simulations consisted of n
merical integrations up to timest54 000~note in this regard
that this takes ten days CPU time on a 433-MHz-Digit
Alpha workstation for averages over 100 runs! because this
is larger than the characteristic time given by 5/e for the
damping in the trajectories. Finally, the difference betwe
the energy without temperature and the saturation ene
with temperature must be the thermal energy. We compu
the mean thermal energy per spin at several temperatures
it agreed withf /23kBT up to T50.9 ~for comparison, we
note that the Kosterlitz-Thouless transition temperature
about 0.8 in our units!, f being the number of degrees o
freedom per spin. This is far above the temperatures we
discuss below. We have to mention that forT*0.1 there is a
more complex phenomenology because the thermal n
does not only induce a diffusive motion of the vortices bu
can also flip their out-of-plane structure, correspondin
changing their direction of motion, and also nucleate ad
tional vortex-antivortex pairs. In this paper we stay aw
e
ng
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from this regime, which has been considered in Ref. 37.
The outcome of our numerical simulations can be summ

rized by saying that they fully confirm the predictions of o
analytical calculations, namely that the vortex dynamics
the same under both kinds of noise. An example of our
sults is shown in Fig. 1 for additive noise and in Fig. 2 f
multiplicative noise. It is already evident from comparing t
dispersion in theR and f components that the behavior o
the vortex is very approximately equal in the two problem

Furthermore, the comparison to the analytical predict
is very good: We emphasize that there is only one adjusta
parameter, the vortex diffusion constant, whose value we
only estimate as an exact expression for the discrete struc
of the vortex core is not known. The systematic deviation
the theory for very long times (t*2000) is due to a
simplification,21 namely keepingR0 constant; in the simula-
tion, R0 slowly increases because of the damping. Results
other low temperatures compare equally well, the better
lower the temperature; for higher temperatures, our num
cal estimates are less accurate, although qualitatively the
sults for both cases remain the same.

V. CONCLUSIONS

In this paper, we have provided analytical and numeri
evidence that additive~Langevin-like! and multiplicative
noise~coming from fluctuations in the local field! have the
same effects on the dynamics of vortices described by the
Landau-Lifshitz-Gilbert equation. Analytically, the result h
been obtained in the framework of a collective coordin
approach within a generalized travelling waveAnsatz.29 The
variances of the effective force acting on the vortex we
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FIG. 2. Variances of the vortex trajectory for the case ofmultiplicativenoise; parameters are the same as in Fig. 1. From top to bot
shown are the variance of the radial coordinate,sRR

2 5^R2&2^R&2,sRf
2 , the off-diagonal elements of the variance matrix, andsff

2 , the
variance of the azimuthal coordinate. In all three cases the lower line is the theoretical prediction with the vortex diffusion constant
the data.
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shown to be the same in the additive and multiplicative ca
provided that deformations of the unperturbed vortex sh
can be neglected. It is important to stress that this hypoth
is not an extra assumption but rather it is in fact implici
made when using any collective coordinate approach.28 In
order to substantiate our analytical results, we numeric
simulated both the additive and the multiplicative cases
the 2D easy-plane Heisenberg ferromagnet, finding an ex
lent agreement with the prediction of equal behavior un
both sources of noise, as well as with the analytical exp
sion for the variance of the vortex trajectory.

As an immediate consequence of the validity of t
above-discussed prediction, we point out that all the res
obtained in Ref. 21 for the additive~thermal! noise apply to
the multiplicative model presented here, specifically:~i! the
existence of three different temperature regimes for the v
tex propagation: a low temperature one, where the vo
motion follows essentially the third-order equation of moti
with parameters independent of temperature; a middle t
perature one, at which traces of the oscillations arising fr
the third-order equation are lost, and a high-temperature
gime, which is not describable by a one-vortex approa
because too many vortex-antivortex pairs arise in the sys
and ~ii ! the dependence of the effective diffusion coefficie
for the vortex on temperature. On the other hand, the exp
ments we have reported on here allow us to place on fir
ground that those are indeed the features of thermal vo
dynamics: The problem with the nonconstant spin length
Langevin approach is now solved by the multiplicative a
proach, in which it is exactly conserved. Furthermore,
fact that the stationary probability distribution for the mul
plicative case is precisely the Boltzmann factor reinforc
s
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our conclusion that this is the correct description of therm
effects in the framework of models with dynamics given
the Landau-Lifshitz-Gilbert equation. The thorough stu
carried out in Ref. 21 for the Langevin approach is then fu
confirmed by the present paper.
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APPENDIX: NOISE IN THE HAMILTON EQUATIONS

In this section we consider an alternative formulation
the problem of thermal fluctuations in the classical Heis
berg ferromagnet, and show that this version exhibits diff
ent features for additive and multiplicative noises, not ev
being well posed for the latter case.

By taking into account that the spin length has to be c
stant, one can reformulate the Heisenberg model in term
the fieldsf5arctan(Sy /Sx) andc5Sz for the spin vector. In
this way, after rewriting the Hamiltonian~1! in these new



fo

vi

wi
n

s-
or
ke
fo

de
g
ov

th

o

b-

he

r-

ex
t
, a

se
s
u-
n
ed
in

di-
u-
,
fea-

11 356 PRB 59KAMPPETER, MERTENS, MORO, SA´ NCHEZ, AND BISHOP
variables, the dynamics of the model is governed by the
lowing Hamilton equations:

ḟ5
dH

dc
, ~A1a!

ċ52
dH

df
. ~A1b!

The additive noise version of the problem, i.e., the Lange
equations, is given by

ḟ5
dH

dc
1hf~rW,t !, ~A2a!

ċ52
dH

df
1hc~rW,t !, ~A2b!

whereas the multiplicative version corresponds to

ḟ5
dH

dc
1hf~rW,t !f, ~A3a!

ċ52
dH

df
1hc~rW,t !c. ~A3b!

Of course, both models should also be supplemented
damping terms in order to fulfill the fluctuation-dissipatio
theorem. For simplicity, we will leave them out in this di
cussion. Their influence, however, is not qualitatively imp
tant as for our main argument below, as it can be chec
that they would only contribute factors to the expressions
the force variances.

Now, from either one of these two equations we can
rive an equation of motion for the vortex center followin
basically the same collective coordinate approach as ab
In this case, one has to multiply the equation forċ by
]f/]Xi and substract from it the equation forḟ times
]c/]Xi . In this way an equation completely analogous to
third-order equation of motion~11! is obtained, but now we
find for the forces in the additive case

Fi
add5E d2r F ]f

]Xi
hc2

]c

]Xi
hfG , ~A4!

whereas for the multiplicative noise,

Fi
mult5E d2r F ]f

]Xi
chc2

]c

]Xi
fhfG . ~A5!

Let us first discuss the additive case Eq.~A4!. It is not
difficult to derive from the above expression the first m
ments of the additive force, which turn out to be^Fi

add(t)&
50 and
l-

n

th

-
d
r

-

e.

e

-

^Fi
add~ t !Fi

add~ t8!&5Dd~ t2t8!E d2r F S ]f

]Xi
D 2

1S ]c

]Xi
D 2G .

~A6!

This expression is actually not very different from that o
tained in Eq. ~20! for the additive noise version of the
Landau-Lifshitz equation: Using Eq.~25!, the integrand of
Eq. ~20! reads, fori 5 j ,

S ]SW

]Xi
D 2

5~12c2!S ]f

]Xi
D 2

1
1

12c2 S ]c

]Xi
D 2

. ~A7!

As the staticSz structure of the vortex~30! falls off expo-
nentially in the outer regionac<r<L, whereL is the system
radius, both integrals~20! and ~A6! have thesamelogarith-
mic size dependence,

^Fi
add~ t !Fi

add~ t8!&5Dd~ t2t8!pS log
L

ac
1CD . ~A8!

The only difference between both formulas consists in t
value of the~small! constantC, which stems from the core
region 0<r<ac , whereac5O(r v).

Moving now to the multiplicative case, given by Eq.~A5!,
it can be easily shown that the situation is completely diffe
ent. The mean and the variance ofFi

mult can again be easily
computed, yieldinĝ Fi

mult(t)&50 and

^Fi
mult~ t !Fi

mult~ t8!&5Dd~ t2t8!E d2r F S ]f

]Xi
D 2

c2

1S ]c

]Xi
D 2

f2G , ~A9!

which, due to the presence of a factorc2 in the first term of
the integrand decaying exponentially away from the vort
core, isindependentof the system size. It is then clear tha
the variances are very different in both cases. Therefore
detailed study of the Hamilton equations with additive noi
@Eqs. ~A2!# would basically lead to the same conclusion
summarized above arising from the study of the Landa
Lifshitz-Gilbert problem, whereas the multiplicative versio
would give totally different answers. It has to be conclud
then that the proper way to include multiplicative noise
this problem is at the Landau-Lifshitz level andnot in the
Hamilton equations forf and c. Finally, this result points
out very clearly that the fact that the two approaches, ad
tive and multiplicative, give the same results in the Landa
Lifshitz equation, is neither trivial nor generally applicable
and should then be regarded as a specific and attractive
ture of that approach.
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