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Transmission fingerprints in quasiperiodic dielectric multilayers
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We investigate the optical transmission fingerprints in structures that exhibit deterministic disorders. A class
of models that has attracted particular attention in this context are the quasiperiodic dielectric multilayers that
obey a substitutional sequence. These substitutional sequence are characterized by the nature of their Fourier
spectrum, which can be dense pure p@iibonacci sequencgssingular continuougThue-Morse and double-
period sequencgsand absolutely continuoy&udin-Shapiro sequencaVe use a transfer-matrix approach to
derive the optical transmission coefficients. Numerical results are presented to illustrate the self-similar aspect
of the spectra, as well as to show the optical fingerprint through a return map of the transmission coefficients.
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In the past 15 years, a great number of works in quasi- Consider a dielectric multilayer system where the Carte-
periodic systems have been reported. These quasiperiodéian axes are chosen in such a way thatzhgis is parallel
structures are formed by the superposition of iwsomorg  to the direction normal to the planes of the layers. The
incommensurate periods, so that they can be defined as imultilayer system is at the region<z<L (L being its siz¢
termediate systems between a periodic crystal and the rafhe regionsz<0 andz>L are considered to be filled by a
dom amorphous solitl. transparent mediury (vacuum in general This multilayer

Theoretical and experimental works have been carried olgystem is formed by a quasiperiodic array of Fibonacci,
to study the propagation of various excitations in these qualhue-Morse, double-period, and Rudin-Shapiro types. The
siperiodic systemgfor a good account of this subject see procedure to grow these kind of structures can be found in
Ref. 2, and the references thereit has been observed, Ref. 9. They can be generated by their inflation rulies
among others things, that they exhibit collective propertiesvhat followsA, B, C, andD are building blocks A—AB,
not shared by their constituents. Therefore, the long-rangB— A (Fibonacci sequengeA— AB, B—BA (Thue-Morse
correlation induced by the construction of these systems isequence A—AB, B—AA (double-period sequengeA
reflected someway in their various spectra, defining a novet-AC, B—DC, C—AB, andD—DA (Rudin-Shapiro se-
description of disorder. Indeed, theoretical transfer matrixquencé. Each building block is characterized by a thickness
treatments show that these spectra are frattals. and refractive indexd; and ny, respectively §=A, B, C,

Localization due to the electronic properties of one-and D). The transparent mediur¥, which surrounds the
dimensional Schidinger equation with discontinuous quasi- multilayer system, is characterized by a refractive indgx
periodic potential was also studied by several authdtsn To calculate the light transmission rai@ transmittance
particular, Kohmoto and collaboratérsave used the renor- through the multilayer system, we use a transfer matrix ap-
malization group technique to obtain the Cantor-set spectrurproach for the electromagnetic fields. In this way, we con-
and to describe scaling properties of the wave functionsider that as-polarized(TE waves light of frequencyw is
through a dynamic trace map. Recently, we developed aormally incident from a transparent mediofrwith respect
method to distinguish spectral properties among quasiperio the layered system. We have chosen shgolarization
odic array’ We have solved the one-dimensiondlD)  mode for simplicity, since at normal incidence batandp
Schralinger equation for electronic transport through a finitepolarization give the same results. The reflectance and the
sequence of barriers obeying Fibonacci, Thue-Morse, anttansmittance coefficients are simply given bR
Cantor sequences, and we set up their transmission spectra@asM »/M44?, and T=|1/My4|%, whereM;; (i,j=1,2) are
a function of the energy, showing an evident self-similarthe elements of the optical transfer matkix which links the
behavior. We plotted their return mapy., versusTy, amplitudes of the electromagnetic fields in the regier0 to
where Ty is the probability corresponding to thdth se-  the amplitudes of the electromagnetic fields in the region
guence of the quasiperiodic structure, finding a pattem >L.
attractoy depending only upon the particular substitution se- The transmission of a normal incident light wave across
quence, and not upon the energy or other details. In this wayhe interfacesx— 8 («, B beingV, A, B, C, andD) is rep-
it was possible to identify these patternsfamyerprintsfor  resented by the matrix
each kind of sequence.

The aim of this work is to use the same method in quasi- 1[1+kyplkse 1—Kyplksg
periodic dielectric multilayers which obey a Fibonacci, Maﬁ:§ 1—koa/K 1+ koalko |’ 1)
Thue-Morse, double-period, and Rudin-Shapiro sequences, A 2
looking for their optical fingerprintsthrough their return with k,,=n_,w/c. The propagation of the light wave within
map. Our main purpose is to search fgobal or universal  one of the layery (y=A, B, C, or D) is characterized by the
properties for each of these quasiperiodic systems. matrix
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whereA{) andA%) (j=A, B, C, orD;n=0,1,2... N) are

their amplitudes. 80
Successive applications of Maxwell's electromagnetic

boundary conditions at each interfaces of the finite 60
multilayer system, yield 2 40 )
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where A)) and AR) are the amplitudes of the electromag-

netic field in the transparent mediwvhat z<0, while A{Y is 80
the amplitude of the electromagnetic field in mediMrat
z>L; My is the optical transfer matrix of tHéth generation
quasiperiodic multilayer system. This transfer matrix is 2, 40

60

(c)

formed by a product of matriced ,; andM . The ordering 20

of these matrices in the product depends upon the type of

quasiperiodic array and the generation nunibef the qua- %99 1.00 1.01
siperiodic sequencéwhich is the same index used in the W/,

amplitudes of the electromagnetic figld@he transfer matri-
ces of all quasiperiodic systems considered here can be FIG. 1. Maximum generation numbeéi versusw/w, for the
straightforwardly determinetfor details see Ref. 10 Fibonacci system for three different scales. The arrows here indi-

We now present some numerical calculations for thecate the scaling points where the self-similarity occurs.
transmission probabilityT, due to a normal propagation of
light waves of frequencyw in a quasiperiodic multilayer correspond to more localized states in higher orders of Fi-
system of the types discussed here. In these examples visnacci multilayer system. Moreover, these states have self-
adopt the optical thickness of the individual layers as quartesimilar properties. To illustrate this fact, we plot in Figgb)l
wavelength of the incident light wave, which is considered toand Xc) the same spectra as in Fig(al, but with other
have a wavelength equal =700 nm, i.e.,nndx=ngdp scales of frequency. The arrows in the figures indicate the
=ncdc=npdp=A\y/4. The physical parameters used herescaling points where the self-similarity occurs.
are the same as those in Ref. 10, except for the Rudin- In Fig. 2@ we plot the maximum generation numksr
Shapiro case where we have adopted-2, ng=3,nc=4, versus the reduced frequenay/w, for the Thue-Morse
andnp=5. multilayer system, at the frequency range G8& wg

A common feature of this quasiperiodic structure is that<1.15. As in the Fibonacci case we observe several band
their properties are more evident at higher ordfer ex- gaps in this frequency range. They have also self-similar
ample, the self-similarity'! However, the traditional theo- properties, as shown in Figs(f? and Zc). The arrows in
retical methods, used to study the optical transmission spethese figures indicate the scaling points were the self-
tra in these system, do not allow us to investigate thessimilarity is more evident. Another characteristic of this qua-
quasiperiodic structures at higher order because their sizgperiodic system is that its size grows d% and the maxi-
grows exponentially when the number of generation in-mum generation number found whs=72 (L=272~4.721
creases. As a consequence their transmittances go to zemmnolayers
quickly. To overcome this problem we use the method de- The double-period multilayer case is shown in Fi¢g)3
veloped in Ref. 8, i.e., given an incident frequensy we  where we plotN versus the reduced frequeneyw, in the
calculate the maximum generation numkdérwhere the range 0.7 w/wy<0.84. As in other multilayer systems, we
transmittancely is less than 102 can find frequency band gaps distributed in a mode charac-

Figure X&) shows the plot of the maximum generation teristic of this system. The largest generation number
numberN versus the reduced frequenay wy for the Fi-  reached wadN=>51. As in the Thue-Morse case, the size of
bonacci multilayer system in the range of frequency 0.7%his system grows as™ It corresponds toL=2%'~2.5
<wlwy<1.25. In this region the largest generation numberx 10'°. The self-similarity can be observed in FiggbBand
reached wadN=78, which corresponds to a size of the 3(c). The arrows in these figures indicate the scaling points.
multilayer system L=F,g~1.44<10' monolayers F, For the Rudin-Shapiro multilayer case, we plot in Fig.
=F,_,+F,_, are the Fibonacci numbers, with,=1 and 4(a) a complete different spectid versus the reduced fre-
F,=2). From there we can observe several dips and peakguencyw/wy. We have chosen the range of frequency 1.96
forming band gaps in the frequency. These band gap regions o/ wy<2.04 to illustrate our spectra, because it is the re-
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FIG. 2. Same as in Fig. 1, but for the Thue-Morse case. FIG. 4. Same as in Fig. 1, but for the Rudin-Shapiro case.
gion where we can find more localized states in high order
generations. The spectrum has no band gaps, as in other
spectra of the quasiperiodic structures. There is also a central

60 peak atw/wy=2.0, where, around it, the maximum genera-
' tion number decreases to small values in an exponential
w0l | form. This fact was also not observed in the other quasiperi-
> @ odic multilayers systems. The value of the maximum genera-
a
20 ¢ | 0 1.0
1.
®
0 ! (@) o (b) °
0.750 t 10.795 0.840 (3
0/,
306 f 306 | .
&~ [
®) 0.2 . 0.2 !
0.2 0.6 1.0 0.2 0.6 1.0
Tn Tll
9 ! T . ° ;
0.770 T To7so 0.791 Y ) Y e
W/, L
(4 o e
60 :
706 4 Yo} @ ¢
~ [ s y
L
(]
© o
0.2 ! 0.2 L
0.2 0.6 1.0 0.2 0.6 1.0
0 : T, T,
0.7782 0.7787 0.7792
w/a, FIG. 5. Return mafy ., versusTy to characterize the optical

fingerprint of the quasiperiodic structurds) Fibonacci,(b) Thue-
FIG. 3. Same as in Fig. 1, but for the double-period case. = Morse,(c) double-period, andd) Rudin-Shapiro.
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tion at this peak isN=58, and it corresponds th=2%  multilayer system. The pattern found is a kind grabola
~5.76x 101" monolayers(this system grows as"2'). The  with no symmetric axis, as those found for the Thue-Morse
self-similar properties can be observed in Figh)4nd 4c),  and double-period multilayer systems. It is also dependent
where the arrows indicate the scaling points. upon the incident frequency of the light.

Other important point to explore here is the return map, In conclusion, we have studied the propagation of light
which can be built in the following form: For a given value Waves in quasiperiodic dielectric multilayer systems that
of the frequency, we generate a set of transmissibgs obey the Fibonacci, Thue-Morse, double-period, and Rudin-
(T1, T, ... Ty) for each generation of the sequences in theShaplro sequences. We believe that it could be_: an exce_llent
quasiperiodic multilayer system. The return map is the plof¥@Y 10 probe experimentally localized states, since localiza-
T\, versusTy. In Fig. 5 we illustrate this return map for ion phe_nomenon is essentially due to th_e wave nature of the
the systems studied here and &ofw,=2.0. We have chosen electronic states, and thus can be found in any wave phenom-
this value forw/wq, because it is at this value that the light ;ana. In add|t_|0n, the g_lok_JaI aspects of th_ese séquences were
waves see the quasiperiodic array of the layefas it is _ound n their transmission spectra, which present a quite
shown in Fig. 7 of Ref. 10 The return map for the Fibonacci Interesting self-similar pattern, with well defined SC"""T‘Q
structure is shown in Fig.(8). It gives rise to ébox whose points n 'frequency._ We have calculated aIsQ .th.e OP“C"?"
vertices are defined by0.725<Ty<1.0 and 0.725 transmission probabilities throgg_h the deterministic quasi-
<Ty,,<1.0. Different than the electronic ca8ahe spec- periodic sequences. As the defining rules of these sequences

L ; impose long range correlations on them, it is plausible to
fcrum depgndson the frequency of the incident l'ght'. For earch for globaluniversal consequences of these correla-
instance, if we take another value for the frequency, d|fferenf

of w/wy=2.0, we should have a different pattern. In Fig. lons, as exemplified in Fig. 5. The return mapg X Ty,

5(b) we show the return map for the Thue-Morse quasiperi-represent the attractors of thedynamic - evolution

odic system. The pattern in this figure is similar topa- 11,72, s, ... Ty, ..., and wefound that the patterns of
L . X these attractors depend only upon the particular sequence

rabolaand, as in the electronic case, it does not depend up neing tested, for a particular value of the frequency of the

the particular value of the frequency. The double-period qua: - dent Iighf In this way, we can say that they work as

siperiodic case is shown in Fig(d. The pattern found is finger rintsfo.r each kind o'f sequence

again aparabola as in the Thue-Morse case, but it depends gerp q ’

upon the choice of the frequency. Finally, in Figdpwe We thank the Brazilian Research Council CNPq for par-
show the return-map for the Rudin-Shapiro quasiperiodidial financial support.
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