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Transmission fingerprints in quasiperiodic dielectric multilayers
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~Received 20 August 1998; revised manuscript received 15 October 1998!

We investigate the optical transmission fingerprints in structures that exhibit deterministic disorders. A class
of models that has attracted particular attention in this context are the quasiperiodic dielectric multilayers that
obey a substitutional sequence. These substitutional sequence are characterized by the nature of their Fourier
spectrum, which can be dense pure point~Fibonacci sequences!, singular continuous~Thue-Morse and double-
period sequences!, and absolutely continuous~Rudin-Shapiro sequence!. We use a transfer-matrix approach to
derive the optical transmission coefficients. Numerical results are presented to illustrate the self-similar aspect
of the spectra, as well as to show the optical fingerprint through a return map of the transmission coefficients.
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In the past 15 years, a great number of works in qua
periodic systems have been reported. These quasiper
structures are formed by the superposition of two~or more!
incommensurate periods, so that they can be defined a
termediate systems between a periodic crystal and the
dom amorphous solid.1

Theoretical and experimental works have been carried
to study the propagation of various excitations in these q
siperiodic systems~for a good account of this subject se
Ref. 2, and the references therein!. It has been observed
among others things, that they exhibit collective propert
not shared by their constituents. Therefore, the long-ra
correlation induced by the construction of these system
reflected someway in their various spectra, defining a no
description of disorder. Indeed, theoretical transfer ma
treatments show that these spectra are fractals.3

Localization due to the electronic properties of on
dimensional Schro¨dinger equation with discontinuous quas
periodic potential was also studied by several authors.4–6 In
particular, Kohmoto and collaborators7 have used the renor
malization group technique to obtain the Cantor-set spect
and to describe scaling properties of the wave functi
through a dynamic trace map. Recently, we develope
method to distinguish spectral properties among quasip
odic array.8 We have solved the one-dimensional~1D!
Schrödinger equation for electronic transport through a fin
sequence of barriers obeying Fibonacci, Thue-Morse,
Cantor sequences, and we set up their transmission spec
a function of the energy, showing an evident self-simi
behavior. We plotted their return mapTN11 versus TN ,
where TN is the probability corresponding to theNth se-
quence of the quasiperiodic structure, finding a pattern~or
attractor! depending only upon the particular substitution s
quence, and not upon the energy or other details. In this w
it was possible to identify these patterns asfingerprints for
each kind of sequence.

The aim of this work is to use the same method in qua
periodic dielectric multilayers which obey a Fibonac
Thue-Morse, double-period, and Rudin-Shapiro sequen
looking for their optical fingerprints through their return
map. Our main purpose is to search forglobal or universal
properties for each of these quasiperiodic systems.
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Consider a dielectric multilayer system where the Car
sian axes are chosen in such a way that thez axis is parallel
to the direction normal to the planes of the layers. T
multilayer system is at the region 0,z,L ~L being its size!.
The regionsz,0 andz.L are considered to be filled by
transparent mediumV ~vacuum in general!. This multilayer
system is formed by a quasiperiodic array of Fibonac
Thue-Morse, double-period, and Rudin-Shapiro types. T
procedure to grow these kind of structures can be found
Ref. 9. They can be generated by their inflation rules~in
what followsA, B, C, andD are building blocks!: A→AB,
B→A ~Fibonacci sequence!, A→AB, B→BA ~Thue-Morse
sequence!, A→AB, B→AA ~double-period sequence!; A
→AC, B→DC, C→AB, and D→DA ~Rudin-Shapiro se-
quence!. Each building block is characterized by a thickne
and refractive indexdJ and nJ , respectively (J5A, B, C,
and D!. The transparent mediumV, which surrounds the
multilayer system, is characterized by a refractive indexnV .

To calculate the light transmission rate~or transmittance!
through the multilayer system, we use a transfer matrix
proach for the electromagnetic fields. In this way, we co
sider that as-polarized~TE waves! light of frequencyv is
normally incident from a transparent mediumV with respect
to the layered system. We have chosen thes-polarization
mode for simplicity, since at normal incidence boths andp
polarization give the same results. The reflectance and
transmittance coefficients are simply given byR
5uM21/M11u2, and T5u1/M11u2, where Mi j ( i , j 51,2) are
the elements of the optical transfer matrixM, which links the
amplitudes of the electromagnetic fields in the regionz,0 to
the amplitudes of the electromagnetic fields in the regioz
.L.

The transmission of a normal incident light wave acro
the interfacesa→b (a, b beingV, A, B, C, andD! is rep-
resented by the matrix

Mab5
1

2 S 11kzb /kza 12kzb /kza

12kzb /kza 11kzb /kza
D , ~1!

with kza5nav/c. The propagation of the light wave within
one of the layerg (g5A, B, C, or D! is characterized by the
matrix
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Mg5S exp~2 ikzgdg! 0

0 exp~ ikzgdg!
D . ~2!

We assume that in each layer, the electrical field is given

EW j
~n!5$0,@A1 j

~n!exp~2 ikz jz!1A2 j
~n!exp~ ikz jz!#exp~2 ivt !,0%,

~3!

whereA1 j
(n) andA2 j

(n) ( j 5A, B, C, or D; n50,1,2, . . . ,N) are
their amplitudes.

Successive applications of Maxwell’s electromagne
boundary conditions at each interfaces of the fin
multilayer system, yield

S A1V
~0!

A2V
~0!D 5MNS A1V

~N!

0
D , ~4!

whereA1V
(0) and A2V

(0) are the amplitudes of the electroma
netic field in the transparent mediumV at z,0, whileA1V

(N) is
the amplitude of the electromagnetic field in mediumV at
z.L; MN is the optical transfer matrix of theNth generation
quasiperiodic multilayer system. This transfer matrix
formed by a product of matricesMab andMg . The ordering
of these matrices in the product depends upon the typ
quasiperiodic array and the generation numberN of the qua-
siperiodic sequence~which is the same index used in th
amplitudes of the electromagnetic field!. The transfer matri-
ces of all quasiperiodic systems considered here can
straightforwardly determined~for details see Ref. 10!.

We now present some numerical calculations for
transmission probabilityT, due to a normal propagation o
light waves of frequencyv in a quasiperiodic multilayer
system of the types discussed here. In these example
adopt the optical thickness of the individual layers as qua
wavelength of the incident light wave, which is considered
have a wavelength equal tol05700 nm, i.e.,nAdA5nBdB
5nCdC5nDdD5l0/4. The physical parameters used he
are the same as those in Ref. 10, except for the Ru
Shapiro case where we have adoptednA52, nB53, nC54,
andnD55.

A common feature of this quasiperiodic structure is th
their properties are more evident at higher order~for ex-
ample, the self-similarity!.11 However, the traditional theo
retical methods, used to study the optical transmission s
tra in these system, do not allow us to investigate th
quasiperiodic structures at higher order because their
grows exponentially when the number of generation
creases. As a consequence their transmittances go to
quickly. To overcome this problem we use the method
veloped in Ref. 8, i.e., given an incident frequencyv, we
calculate the maximum generation numberN where the
transmittanceTN is less than 10212.

Figure 1~a! shows the plot of the maximum generatio
numberN versus the reduced frequencyv/v0 for the Fi-
bonacci multilayer system in the range of frequency 0
,v/v0,1.25. In this region the largest generation numb
reached wasN578, which corresponds to a size of th
multilayer system L5F78;1.4431016 monolayers (Fl
5Fl 211Fl 22 are the Fibonacci numbers, withF151 and
F252). From there we can observe several dips and pe
forming band gaps in the frequency. These band gap reg
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correspond to more localized states in higher orders of
bonacci multilayer system. Moreover, these states have
similar properties. To illustrate this fact, we plot in Figs. 1~b!
and 1~c! the same spectra as in Fig. 1~a!, but with other
scales of frequency. The arrows in the figures indicate
scaling points where the self-similarity occurs.

In Fig. 2~a! we plot the maximum generation numberN
versus the reduced frequencyv/v0 for the Thue-Morse
multilayer system, at the frequency range 0.85,v/v0
,1.15. As in the Fibonacci case we observe several b
gaps in this frequency range. They have also self-sim
properties, as shown in Figs. 2~b! and 2~c!. The arrows in
these figures indicate the scaling points were the s
similarity is more evident. Another characteristic of this qu
siperiodic system is that its size grows as 2n, and the maxi-
mum generation number found wasN572 (L5272;4.7221

monolayers!.
The double-period multilayer case is shown in Fig. 3~a!,

where we plotN versus the reduced frequencyv/v0 in the
range 0.75,v/v0,0.84. As in other multilayer systems, w
can find frequency band gaps distributed in a mode cha
teristic of this system. The largest generation num
reached wasN551. As in the Thue-Morse case, the size
this system grows as 2n. It corresponds toL5251;2.5
31015. The self-similarity can be observed in Figs. 3~b! and
3~c!. The arrows in these figures indicate the scaling poin

For the Rudin-Shapiro multilayer case, we plot in F
4~a! a complete different spectraN versus the reduced fre
quencyv/v0. We have chosen the range of frequency 1
,v/v0,2.04 to illustrate our spectra, because it is the

FIG. 1. Maximum generation numberN versusv/v0 for the
Fibonacci system for three different scales. The arrows here i
cate the scaling points where the self-similarity occurs.



der
ther

ntral
a-
tial

eri-
ra-

l

11 130 PRB 59BRIEF REPORTS
FIG. 2. Same as in Fig. 1, but for the Thue-Morse case.

FIG. 3. Same as in Fig. 1, but for the double-period case.
gion where we can find more localized states in high or
generations. The spectrum has no band gaps, as in o
spectra of the quasiperiodic structures. There is also a ce
peak atv/v052.0, where, around it, the maximum gener
tion number decreases to small values in an exponen
form. This fact was also not observed in the other quasip
odic multilayers systems. The value of the maximum gene

FIG. 5. Return mapTN11 versusTN to characterize the optica
fingerprint of the quasiperiodic structures:~a! Fibonacci,~b! Thue-
Morse,~c! double-period, and~d! Rudin-Shapiro.

FIG. 4. Same as in Fig. 1, but for the Rudin-Shapiro case.
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tion at this peak isN558, and it corresponds toL5259

;5.7631017 monolayers~this system grows as 2n11). The
self-similar properties can be observed in Figs. 4~b! and 4~c!,
where the arrows indicate the scaling points.

Other important point to explore here is the return m
which can be built in the following form: For a given valu
of the frequency, we generate a set of transmissionsTN
(T1 ,T2 , . . . ,TN) for each generation of the sequences in
quasiperiodic multilayer system. The return map is the p
TN11 versusTN . In Fig. 5 we illustrate this return map fo
the systems studied here and forv/v052.0. We have chosen
this value forv/v0, because it is at this value that the lig
waves see the quasiperiodic array of the layers~as it is
shown in Fig. 7 of Ref. 10!. The return map for the Fibonacc
structure is shown in Fig. 5~a!. It gives rise to abox whose
vertices are defined by0.725,TN,1.0 and 0.725
,TN11,1.0. Different than the electronic case,8 the spec-
trum dependson the frequency of the incident light. Fo
instance, if we take another value for the frequency, differ
of v/v052.0, we should have a different pattern. In F
5~b! we show the return map for the Thue-Morse quasip
odic system. The pattern in this figure is similar to apa-
rabola and, as in the electronic case, it does not depend u
the particular value of the frequency. The double-period q
siperiodic case is shown in Fig. 5~c!. The pattern found is
again aparabola, as in the Thue-Morse case, but it depen
upon the choice of the frequency. Finally, in Fig. 5~d! we
show the return-map for the Rudin-Shapiro quasiperio
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multilayer system. The pattern found is a kind ofparabola
with no symmetric axis, as those found for the Thue-Mo
and double-period multilayer systems. It is also depend
upon the incident frequency of the light.

In conclusion, we have studied the propagation of lig
waves in quasiperiodic dielectric multilayer systems th
obey the Fibonacci, Thue-Morse, double-period, and Rud
Shapiro sequences. We believe that it could be an exce
way to probe experimentally localized states, since locali
tion phenomenon is essentially due to the wave nature of
electronic states, and thus can be found in any wave phen
ena. In addition, the global aspects of these sequences
found in their transmission spectra, which present a qu
interesting self-similar pattern, with well defined scalin
points in frequency. We have calculated also the opti
transmission probabilities through the deterministic qua
periodic sequences. As the defining rules of these seque
impose long range correlations on them, it is plausible
search for global~universal! consequences of these correl
tions, as exemplified in Fig. 5. The return mapsTn113Tn ,
represent the attractors of thedynamic evolution
T1 ,T2 ,T3 , . . . ,Tn , . . . , and wefound that the patterns o
these attractors depend only upon the particular seque
being tested, for a particular value of the frequency of
incident light. In this way, we can say that they work
fingerprintsfor each kind of sequence.
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