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It is shown that the main result presented by Ercelebi and Senger@Phys. Rev. B53, 11 008 ~1996!# is
unreasonable, and is only an artifact produced by a variational scheme rather than an intrinsic property of the
system.@S0163-1829~99!01616-1#
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In Ref. 1, within a perturbative-variational scheme pr
posed previously by Devreeseet al.2 in the treatment of po-
larons bound to a Coulomb center, the authors have ca
lated the binding energy and the effective mass of polar
in a cylindrical quantum wire with infinite potential bound
ary. The key results obtained in Ref. 1 show that ‘‘at we
coupling, the binding energy of the polaron can be sma
and its mass less inertial compared with the bulk case w
the wire is made narrow.’’ This is contrary to the gene
trend that the electron-phonon interaction is inherently str
ger in systems of lower dimensionality. We will show th
their main results are unreasonable and the general tren
still right.

To show this, we first apply the Feynman-Haken var
tional path integral method3 to the Hamiltonian~1! in Ref. 1
and derive the Feynman energy, which is principally an
per bound to true ground-state energy of the system,
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where F j
eff(r ) and Ej

eff are the wave function and ground
state energy ofHeff5p21Veff(r ). It should be mentioned
that V(r) is the wire potential taken in Ref. 1 andVeff(r ) is
the effective potential one should choose in practical ca
lations. For detailed derivations we refer the readers to R
3, where similar derivations were carried out. It is interest
to note that Eq.~1! will give the results of the second-orde
Rayleigh-Schro¨dinger perturbative theory~RSPT! if the ef-
fective potentialVeff(r ) is exactly taken as the confining po
tentialV(r). It thus follows that the second-order RSPT pr
vides an upper bound to the exact ground-state energy.

Now, by the second-order RSPT, one can easily ob
the curves of the binding energyEp ~the difference between
the ground-state energies of the system in the absence
the presence of the electron-phonon interactions! versus the
wire radiusR for small a, which is shown in Fig. 1. It is
clear that the binding is monotonically stronger as the w
radiusR decreases. Because the value ofEp by the second-
order RSPT is proportional toa @cf. Eq. ~1!#, the curves of
Ep /a versusR for small a are independent ofa and there-
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fore exhibit the same behavior. Because the second-o
RSPT provides an upper bound to the exact ground-s
energy, Thus, even one obtain the exact results of
ground-state energy of polarons in quantum wire, which m
push theEp2R curves to a higher position,the values of Ep
for any wire radius R is absolutely not lower thana, the
value of Ep in bulk limit R→`. Thus, we have strictly shown
that the the idea that ‘‘at weak coupling, the binding ener
of the polaron can be smaller and its mass less inertial c
pared with the bulk case when the wire is made narrow’’1 is
unreasonable, and the general conclusion that the elec
phonon interaction is inherently stronger in systems of low
dimensionality, which mostly arrived within the secon
order perturbation theory, is still qualitatively right.

Next, we will present a few remarks about the results
Fig. 3~a! in Ref. 1 by which the authors arrived at their ma
conclusions. It is very clear from the curves fora50.07 that
almost the whole curve is, surprisingly, considerably le
thana, and is therefore more considerably less than the s
ond RSPT ones. As a result of this knowledge, we can c

FIG. 1. The binding energy of polarons in quantum wiresEp ~in
unit of a) within the second-order RSPT as a function of the w
radiusR.
11 077 ©1999 The American Physical Society
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vincingly say that the authors obtained very poor results
almost the whole range of the wire radius, not merely in
bulk limit.

In what follows, we will briefly explain why the author
in Ref. 1 obtained such an exceptional property for polar
in quantum wires at weak coupling.

It should be acknowledged that the variational sche
adopted by the author is quite a good approach to deal
a strongly localized state in polaron problems. Here we re
to a state as localized if the root mean square of the coo
nate r , calculated by$^ur2u&%1/2 with u& being the state, is
finite, and extended if it is infinite. For instance, this sche
has been successfully applied to bipolarons,4 bound
polarons,2 and strong-coupling free polarons5 and produces
very good results in all these problems. These are the
pected results due to the fact that a factore2l2r 2

or e2l2r in
the trial states taken in this scheme can only describe
localized states. Note that the operator transformation of
~7! of Ref. 5, which was previously proposed b
Huybrechts,6 is equivalently the introduction of a strong co
pling counterpart for a wave function ase2l2r 2

. Of course,
the smaller the value ofl is that one finally obtained, the
worse is the result obtained by this scheme. In the stro
coupling or strong binding limit, this scheme could prese
exact results.

For extended states, this scheme will produce very p
results. For example, in Ref. 5 the same authors have sh
that this scheme is quite poor in characterizing the free
larons in the weak- and intermediate-coupling regimes
think this is because the polaron wave function in all dire
tions in the weak- and intermediate-coupling regimes is
extended one. From Fig. 1~a! of Ref. 5, one can clearly se
that at the regime 0.03<a<1, the binding energy of po
larons is lower than that of second-order RSPT theory,
this tendency is more serious with increasinga in the weak-
and intermediate-coupling regimes.

For polarons confine in quantum wires at weak coupli
no one can say that the polaron wave function along the w
axis should be a localized one. But in Ref. 1, one can
from the trial state Eq.~17! @substitution of Eqs.~3!, ~40!,
and either of Eqs.~39! and ~42!# in Ref. 1 that there is a
factor e2b2z2/2 in Eq. ~40!, which only reasonably describ
the localized state along the wire axis. Just by this trial st
which describes the polarons localized along the wire a
the authors obtained the localized solution at weak coup
for all the wire radius. It is surprising from the curved su
face in Fig. 5 of Ref. 1 that at weak coupling and in a wi
range of the wire radius (0<R<2.0) the polaron is localized
along the wire axis. Note that in the extended state solut
jz→`. It is difficult for us to accept that, at such a sma
coupling constanta50.06 and for such a large wire radiu
R52.0, the longitudinal spatial extentjz is still finite ~about
7!. This is physically unreasonable. Therefore, in our op
o
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ion, at weak coupling this kind of trial state form cannot gi
physically reasonable results for polarons in quantum wir

Now we can qualitatively present the cause of these
reasonable properties. The reduction of the wire radius
equivalently the increase of the effective electron-phon
coupling. This statement is true in the literature and a
agreed to by the authors in Ref. 1. At weak coupling, wh
the wires are made narrow, the effective electron-phon
coupling is strengthened and theEg ~ground-state energy! of
the polarons in quantum wires becomes decreasing ph
cally. On the other hand, as the effective electron-phon
coupling is enhanced, the results forEg obtained within this
variational scheme become higher than the second-o
RSPT results~i.e., Eg is overestimated!, which is analogous
to the case of free polarons mentioned above and discu
in Ref. 6. According to these combined effects, if the lat
effect exceeds the former one, then when the wires are m
narrow the polaron ground-state energy would increa
which leads to the decrease of the binding energyEp . This is
exactly the case ata50.07 in the region of wire radius
0.25<R<1.0 in Fig. 3~a! of Ref. 1. As the coupling constan
a increases further~it is possible that the former effect a
ways surpasses the latter one for any wire radius!, this fea-
ture will not show up. So in Ref. 1, whena.0.10, no such
feature can be displayed within this variational scheme.
short, at weak coupling the primary reason for this exc
tional and incorrect conclusion in Ref. 1 is that the sche
adopted could lead to the overestimation of the ground-s
energy of the system.

Finally, we point out that the only ‘‘evidence’’ to show
that the author’s calculation based on Eq.~39! is capable of
reflecting a reasonable description of the system ove
broader range ofR at weak coupling is that Eq.~39! and Eq.
~42! in Ref. 1 can give almost identical binding energies f
R<2. In other words, it seems that Eq.~42! could give rea-
sonable results. We disagree. Both Eq.~42! and Eq.~39! are
suited in the framework of previous discussions since
~40! is used for both cases. Although the results given by
~42! are better than those given by Eq.~39! at largerR, as
shown from by they are still very poor. From the dash
curve, one can easily find that even atR52 the binding
energy given by Eq.~42! is less thana, which in turn is
absolutely less than that in the bulk limit. More serious
these results in Fig. 1 are obviously not self-consistent w
their expectation that Eq.~42! depicts asymptotically the
bulk limit R→`.

Similarly, the above discussion is also suited to the c
for the effective mass.

In summary, the main result obtained in Ref. 1 is only
artifact produced by the variational scheme, which is qu
poor at weak coupling, rather than an intrinsic property
the polarons confined in quantum wires. It should be poin
out that this method is really a good one for the system
strong coupling.
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