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Statistical thermodynamics and transport of linear adsorbates
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The exact lattice-gas solution for thermodynamics functions, jump and chemical diffusion coefficients of
linear adsorbates in a one-dimensional space is presented. Results are compared with corresponding ones from
the Flory’s approximation. Significant quantitative and qualitative discrepancies are shown and discussed. The
results may be applicable to adsorption and transport of polyatomic molecules in low-dimensional systems
such as carbon nanotubes. All calculations are further extended to higher dimefsghes connectivity
based upon the exact forms in one dimension and a connectivity ansatz. The resulting thermodynamic descrip-
tion is much improved with respect to the known standard approximati&0d63-18209)06311-0

I. INTRODUCTION ment of this field(a number of very interesting experiments
on adsorption and diffusion of gases in nanotdbe$ (have

Adsorption with multisite occupancy is a topic being in- recently appeared
creasingly considered in surface science because of its One outstanding feature of the gas-solid interaction in
straightforward relevance to practical situations such as gasingle-walled nanotubeSWN) is that the adsorption poten-
and hydrocarbon separation, streams and pollution controtial is significantly strengthened with respect to the one on a
heterogeneous catalysis, etc.. Most adsorbates, except nolJinar layer of bulk graphite. This has recently been ob-
gases, are polyatomic. Furthermore, surfaces generalerved for atomic hydrogen whose isosteric heat of adsorp-
present inhomogeneities due to irregular arrangement of sution in a SWN is roughly four times larger (19.5 KJ/mol)
face and bulk atoms, the presence of various chemical spghan on graphite (4.9 KJ/mof’. Concerning the transport
cies, etc., which can significantly affect the entropic contri-of gases in narrow nanocylinders, a leading experimental
bution to the adsorbate’s free energy. Typical examples argontribution has recently been reported where the diffusion
0,,N,,CO,CG absorbed in carbon and zeolite molecular coefficient of polyatomic adsorbates was measured by inco-
sieves™ and oligomers in activated carboh®.In spite of  herent quasielastic neutron scatterfig.
the obvious significance of polyatomic adsorption, most de- For theoretical purposes, adsorption in the narrowest
velopments in adsorption theory have mainly dealt withnanotubes can be treated in the one-dimensional lattice-gas
monoatomic adsorptiof.” Valuable contributions have approach. This is, of course, an approximation to the state of
recently been presented in terms of lattice-gaseal adsorbata in nanotubes, which is justified because ther-
approximation§13 modynamics and transport coefficient can be analytically re-

The inherent complexity of this system still represents asolved in these conditions. This is of much qualitative value
major difficulty to the development of approximate solutionsand may be thought feasible for monoatomic species
for the thermodynamic functions, which certainly hampersstrongly bonded to the nanopores’s wall, as well as for poly-
their analysis. To this respect, simple solvable models o&tomics where the distance between their building units does
adsorption on homogeneous surfaces are useful as basis @t seriously mismatch the separation between adsorption
alternative approaches for heterogeneous surfates® potential minima for single units.

Recently, the advent of modern techniques for building However, it should be pointed out that polyatomic adsor-
single and multiwalled carbon nanotubs® has consider- bates such as hydrocarbons within nanopores cannot be sim-
ably encouraged the investigation of the gas-solid interactioply described by a lattice-gas approximation as shown by
(adsorption and transport of simple and polyatomic adsorRefs. 28, 29, and 30.
bates in such a low dimensional confining adsorption poten-  Here, we present the exact solution for the thermodynam-
tials. ics functions of adsorbed linear chainsifierg of arbitrary

The design of carbon tubules, as well as of synthetic zeotength in a infinite one-dimensional space. The thermody-
lites and aluminophosphates such as AfP@ef. 20 having  namic functions are further extended to higher dimensions
narrow channels, literally provides a way to the experimentabased upon their exact form in one dimension and a connec-
realization of one-dimensional adsorbents. tivity ansatz. Although adsorption of monoatomic species

Many studies on conductivity, electronic structure, me-have been long studied, it appears necessary to obtain rigor-
chanical strength, etc. of carbon nanotubes are being cuous results for polyatomic adsorbates. An early seminal con-
rently carried out. However the amount of theoretical andtribution to this subject was the well-known Flory’s approxi-
experimental work done on the interaction and thermodymation for adsorption of binary liquids in two dimensicils.
namics of simple gases adsorbed in nanotubes is still verlt is worth mentioning that, in the framework of the lattice-
limited 2222 No experimental adsorption of isotherms havegas approach, adsorption of pure linear molecules is isomor-
been reported yet; however, this type of result will presumphous to polymer mixture adsorptiodinear polymer-
ably be soon available because of the proceeding developronoatomic solvent Thus, all results presented here can be
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straightforwardly applied to the corresponding polymer solu- Ek(N)}
: @

tion case. Adsorption of chains on regular lattices is a long- Q(M,N,T)=Q(M ,N)EXF{ e
. . . . B
standing problem in which modified forms of Flory's

approximatiof”~>*have been also proposed. A comprehen-  Since the lattice is assumed homogene@gN) can be
sive discussion on this subject is included in the book of Desirbitrarily chosen equal to zero for &l without losing gen-
Cloizeaux and Jannifikand Ref. 36. erality (i.e., the interaction energy between every unit form-
Monte Carlo simulations of polymer-solvent mixtures in ing a k-mer and the substrate is set to be zero
three dimensiorié have shown that critical temperatures are  Q(M,N) can be readily calculated as the total number of
expected to be largely overestimated by Flory's approackpermutations of th&\ indistinguishablé-mers out ofn, en-
and the phase diagram appreciably distorted. Howevetjties, beingn,
Monte Carlo simulations of very large polymers>50) at )
high concentrations are still highly demanding even with ne=number of k-merst- number of empty sites
modern computational resources. =N+M—kN=M—(k—1)N. )
There are two main contributions in this chemical work:
(a) the rigorous form of the adsorption isotherm and diffu- Accordingly,
sion coefficient(and remaining thermodynamics functiopns
of linear adsorbategssometimes referred here &smerg
which may be applicable to adsorption and transport in nar-
row nanotubes(b) the extension of the calculations to higher i i . .
dimensions by using the exact forms in one dimension and & Particular solution for dimers was presented in Ref) 39.
connectivity ansatz, that performs appreciably better than the !N the canonical ensemble the Helmholtz free energy
standard Flory’s approach. F(M,N,T) relates toQ2(M,N) through
In addition, the importance of the one-dimensional solu- _ _
tion goes beyond the example cited here. There exist various BE(MN,T)==INQ(M\N.T)==InQ(M.N),  (4)
phenomena that can be looked upon as adsorption on onghere 8= 1/kzT.
dimensional chain, namely, adsorption on linear polymers or The remaining thermodynamic functions can be obtained

Ne M—(k—1)N]!
)_[ (k= 1)N] @

Q(M'N):( N/~ NI[M—KN]!

on a protein chair? from the general differential forff
Rigorous expressions for the chemical potentalsorp-
tion isotherm, free energy, entropy, and spreading pressure dF=—-SdT-IIdM+ udN, (5)

of linear adsorbates in one dimension are given in Sec. Il. In hereS. TI du desi h di
Sec. lll, approximate forms for the thermodynamic functionsWheres, Il, and u designate the entropy, spreading pres-
ure, and chemical potential, respectively, which by defini-

in higher dimensions are proposed based upon the oné?
dimensional exact solution and a connectivity ansatz that intion are
corporates the influence of higher connectivities on the par- JE JE JE
tition function. S=— (_> Mm=— (_) u= (_) . (6)
A thorough comparison of the coverage and chain-size al M.N oM TN N ™
dependence of thermodynamic functions arising from the ex-
act solution, Flory’s approximation, and Monte Carlo simu-  Thus, from Egs(3) and (4)
lation, are carried out. Furthermore, dynamical properties of
k-mers, such as the chemical and jump diffusion coefficients, BE(M,N,T)=—{In[M—(k—1)N]! —InN!
are exactly calculated as well and discussed in Sec. IV. Con- —In[M—KN]!}, 7)
clusions are drawn in Sec. V.
which can be accurately written in terms of the Stirling ap-
proximation

II. EXACT THERMODYNAMIC FUNCTIONS

IN ONE DIMENSION BF(M,N,T)=—[M—(k—1)N]In[M — (k—1)N]

Let us assume a one-dimensional latticeMsites with +HIM=(k=DN]J+[NInN—N]

lattice constantr (M — ) where periodic boundary condi- +[(M—=KN)In(M—KkN)—(M—KN)]
tions apply. Under this condition all lattice sites are equiva-
lent, hence border effects will not enter our derivation. =—[M—(k—1)N]In[M — (k—1)N]

N-linear k-mers are adsorbed on the lattice such a way
that eachk-mer occupies one lattice site and double site oc- +NINN+(M—kN)In(M—kN). (8)
cupancy is not allowed as to represent properties in thejenceforth, from Eqs(6)
monolayer regime. Since differettmers do not interact

with each other through their ends, all configurationsNof S(M,N)

k-mers onM sites are equally probable; henceforth, the ca- ke =[M—(k=1)N]JIn[M —(k—=1)N]
nonical partition functiorQ(M,N,T) equals the total num-

ber of configurations{)(M,N), times a Boltzmman factor —NInN—(M—KN)In(M—kN), (9)

including the total interaction energy between k-mers and
lattice sitesE,(N) BII=IN[M—(k—1)N]—In[M —kN], (10
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coverage 0

FIG. 1. Surface coverag@=kN/M versus relative chemical
potential Bu* = Bu+In C,. Comparison between adsorption iso-
therms fork-mers in one dimension from Flory’s approximation
(- - -) and exact solutiof—) from Eq. (15) for dimers, 4-mers,
10-mers, and 100-mefsurves from top to bottojn MC simulation
for k=2 andk=4 in one dimension are shown in full circles.

—kIn

1 kN
-l
11
Then, by defining the lattice coverage= kN/M, molar-free

energyF =F/M and molar entropys=S/M, Egs.(8)—(11)
can be rewritten in terms of the intensive variabeand T,

N
1—(k—1)m

_ kN
Bu=In V+(k—1)|n

ﬁﬁ(e,T)=—[ 1- (k;n@ In 1‘(k_T1)4
6 0
— I —(1=0n(1-0), (12
EC) (k—1) (k=1)
e L
6 6
— I —(1=9)n(1-0), (13
{1_“:1)0}
exp BT ="——5— (14
_ k—1
fi- 00
Ceppu)=—— "~ (19
whereC,=k
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FIG. 2. Relative reduced chemical potential(6)=B(ug
— u) versus surface coveragiog-linear ploj for various sizes of
linear k-mers; (—), dimers k=2);(----),10-mers; ¢---), 100-
mers.

with unitary molar volume. This is indeed the case analyzed
in the present paper, where the empty sites of the lattice
formally correspond to the solvent’s monomers in Flory’s
solution (see Appendix A

Explicit forms for the molar-free energy and entropy from
Flory’'s approximation are given in Appendix A.

In order to compare the adsorption isotherm E§5) and
(16), it is worth to define a relative reduced chemical poten-
tial

(k—1) 0

A(0)=B(up—p)=—(k=1)In

which yields the limitsA,(6) y_o=0;A,(6)_..=0°, for all
0>0.

An extensive comparison between the exact isotherm Eq.
(15 and Flory’s equation, along with MC simulations are
shown in Figs. 1 and 2. Flory’s approximation agrees fairly
well with the exact result for very smaltmers(typically k
<3); however the disagreement turns out to be significantly
large for larger chains.

The differences between both results can be much easily
rationalized with the help of Fig. 2, where the coverage de-
pendence of the reduced chemical potential has been de-
picted.

Concerning other thermodynamic functions such as the
free energy, entropy, and spreading pressure, their exact
forms present appreciable quantitative as well as qualitative
discrepancies with Flory’s approach. Particularly, the exact
molar configurational entropy(6) behaves already quite
differently for very smallk-mers(dimers, trimers, etg.at all
coverages. The overall behavior can be summarized as fol-

Equation(15) is the exact, so-called, isotherm equation ,ys: in the limits§— 0 and6— 1 the entropy tends to zero.

for k-mers in one dimension that should be regarded as
generalization of the well-known equation

0
Crexp(Bur)= m (16)

(where wg, holds for Flory’s approximationdeveloped by

Flory®! for polymer solutions when the solvent is monomeric

Eor very low coverage§(6) is an increasing function of,
reaches a maximum &,,, then decreases monotonically to
zero for > 6,,. The position ofé,,, which is 6,,=0.5 for
k=1, shifts to higher coverages as the adsorbate lsgets
larger. The maximum can be readily obtained from the con-

dition 9S(6)/36]4—y =0.
Thus, from Eq.(13) we get
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FIG. 3. Molar entropy3(6)/kg (in units ofkg) versus surface 05
coverage. Comparison between exact resighs and Flory's ap-
proach(- - -) for monomers k=1), dimers k=2), and polymers 0.0 == - - - .
(k=10) andk=100). Curves from top to bottoifthe cas&k=1 is 0.0 0.2 04 0.6 0.8 1.0
common for both resulis 0
9 (k—1) ]k FIG. 4. Spreading pressul&(#6) in units of 13 versus surface
(1-6)°~ K 1- K =0, (18) coverage. Comparison between exact resits and Flory’s ap-

proach(- - -) for monomers k=1), dimers k=2), and polymers

which is a polynomial okth order with unique solutios,, (k=10 andk=100). Curves from top to bottorfthe case&k=1 is
for all k=1. common for both resulis

This represents a major distinction between the exact so-
lution and the Flory’s approach since in the latter, the larger In general, the number of statsfor fixed M andN will
the chain the more the maximum in the entropy shifts tobe also the function of the lattice connectivity; henceforth
lower coverages. 0=Q(M,N,c).

An even more remarkable behavior comes from Flory’s In order to derive an explicit form for th&(M,N,c) that
approach for the molar entropy in one dimension, which atbears the advantages of the exact solution in one dimension
tains negative values for ak>1. The range of¢ where Wwith respect to the standard Flory’s approximation, we as-

3.,(6) becomes negative broadenskascreases. In the no- Sume the following connectivity ansatgee Appendix C for
menclature of random mixing of polymer solutions, the dif- further discussion
ferenceAS(6) betweenS(6) and the entropy of the pure

polymer, rather thar§(6), is considered. Rigorously, this Q(M,Nc) |c—1
difference is expected to behave &S(6),_...— 0 for all 6. Q(M,N,c’) |c'—-1
On the other hand, in the Flory’s approach it tends to a

limiting concave curve from above fdk—o.% In either where Qg is given by Eq.(A.1). Accordingly, we resolve
case, the qualitative discordance is remarkdblg. 3). InQ(M,N,c) by settingc’=2 and using If)(M,N,2) from

Further comparison is carried out in Fig. 4 for the spread€qs. (4) and(8)
ing pressure, which is a monotonically increasing function of
0 over the rangg0,1].

Adsorption of linear adsorbatgse., dimers, oligomers,
etc), in very narrow carbon nanotubes or cylindrical pores of
aluminophosphates, can be thought as a physical system to
which the present thermodynamic results may apply.

Although no experimental adsorption isotherms are avail-
able yet to test the applicability of the exact isotherm Eq. (k—=1)

(15) to this system, they will very likely be soon available Bfc=pi—6 K In(c—1) (21
owing to the increasing interest in the synthesis of monodis-
perse nanotubes and their adsorption properties.

_ QF|(M!NIC)
Qp(M,Nc)’

N(k—1)
1 (19

INnQ(M,N,c)=InQ(M,N,2)+N(k—1)In(c—1).
(20)

It is straightforward from Eqd94), (6)—(15), and(20) that

S. S (k-1)

k—=k—+0 K In(c—l), (22)
Ill. FURTHER EXTENSION TO HIGHER DIMENSIONS B B
Hereafter, we address the calculation of approximated (k—1)
thermodynamical functions of linear chains adsorbed on lat- [1_ 9}
tices with connectivityc higher than 2(i.e., dimensions exp BT1,) = 23)

higher than onge (1-0) '
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g of ' ' ' ' e s o 4 lattice. For short chaintup tok=4), Eq.(24) agrees with
e MC appreciably better than it does with the other ap-
o8} 2-mer 1 proaches.
g MC simulation of larger linear adsorbates on regular two-
0.6 |

7 dimensional lattices would be necessary to confirm this be-
g havior. Nevertheless, ER4) appears as a qualitatively and
/7 — Our model quantitatively better isotherm than other standard
e Simulation approache® for noninteracting chains. As usual, interaction
--------- Flory's approach between chain units can be incorporated into Ef) by
means of the mean-field approximation. Extension of these
calculations to interacting chainga mean-field, quasichemi-
cal approximations, and exact counting of configuration are
currently being worked out and are not included here to keep
a reasonable length for this paper. A thorough analysis of
adsorption of chains in higher dimensions and comparison
with Flory’s approximation will be given elsewhere.

04

02

IV. DYNAMICAL PROPERTIES: CHEMICAL DIFFUSION
COEFFICIENT

Surface diffusion is one of the elementary mechanisms by
which an adlayer reaches thermodynamic equilibrium with
the adsorbent. Hence, it is expected to play a significant rate
in surface processes such as catalysis, thermal desorption,
film growth, roughening, etc..

Surface diffusion of monoatomic species has been ad-
dressed since long adb:** However, the mathematical de-
scription of migration of polyatomic species on latticelike
substrates has not been paid much atterffidfeatures of
surface diffusion of interacting dimers in the monolayer
regime have been recently reporf8d.The adsorbate
size strongly affects the coverage dependence of the diffu-
sion coefficient both for noninteracting and interacting

FIG. 5. Surface coveragé versus relative chemical potential Molecules. This appears to be pertinent for strongly bound
Bu* = Bu+In Cy, for lineark-mers in a square lattice € 4), our ~ @dsorbates as chemisorbed speclesg., CO/Ni(111),
model from Eq.(24) (—), Flory’s approximation(- - -). The iso-  Pt/W(110), W,/W(110)]. On the other hand, a review on
therms for dimers, 3-mers, and 4-mers are shown in both casesrface diffusion of physisorbed molecules can be found in

(curves from top to bottoin MC simulations are shown in full Ref. 44, p. 451.
circles. Hereafter, we address the exact solution for the chemical

diffusion coefficient of polymers as a function of surface
(k—1) }k‘l coverage, in the framework of the present descriptiome-
0

dimensional spageAlthough here, we again address the col-
' (24) lective diffusion in the lattice-gas approximation because of
its simplicity and analytical tractability, it should be noted
that in many situations diffusion of polyatomic species is
where the subindeg holds for the thermodynamic quantities significantly more complex and the model of migration
in regular lattices with connectivity, and the constar@, of through thermally activated jumps on a lattice-like substrate
Eq. (15) has the general expressiﬁnlczk(c—1)"*l (thus, may not applyt’ Even for monoatomic species in one-
Cy=Cy, for consistency. dimensional adsorption potentials, collective diffusion can
Equations (19)—(24) provide the basic thermodynamic take place by concerted motion of neighboring particles
functions for noninteracting linear adsorbates in lattices with(clustersg rather than by individual groups as recently pro-
general connectivity. posed in Ref. 48. We start the derivation by noting that small
It is worth noting that the isotherm Eq24), valid for  fluctuations(or linear perturbationto the local surface cov-
lattices of arbitrary connectivity, shows coverage depenerage relax to equilibrium obeying the Fick’s first law
dence identical to the exact one-dimensional deg. (15)].
The lattice connectivity only enters in the constént, [ac-
tually Eq. (15) is the only particular case in which E{4)
becomes exatt )
A comparison between the adsorption isotherms of Eqwhered,p, andD are the net flux of mass through a unit area
(24), Monte Carlo(MC) simulation, Flory’s approach is car- per unit of time, density, and chemical diffusion coefficient,
ried out in Fig. 5 for adsorbates of different size on a squareespectively.

N

Cre &XP(Bue) =~

j=—DVp, (25
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P where the chemical potential’ differs slightly from u be-
Kk-mer. P cause of the smooth modulation assumed above. Therefore,
"k
ST
0-0-0-+++-0-0 p'=ptdu=p+|——| a, (32
v e @—@e oo O—O—@o s oo 0l 0—@c o P—y X T
12 M>>1 . . . . .
k-sites wherex is the coordinate along the chain of adsorption sites.
1 r Hence, the net flux through is

o 3 o, B
FIG. 6. One-dimensional chain of sites with lattice consint [91=3=3,_r = Jr 1= Pis 1 exp( — BAEg)

and periodic boundary condition. The plaRe arbitrarily set be- 9
tween two nearest-neighbor sites, divides the lattice into two seg- Xexp(Bu) 1—ex;{l[3 —1 alt. (33
ments denoted bl (after lef) andr (right), respectively P, desig- X/

nate the probability ok adjacent sites to be occupied by-aner. ) o )
Since we assumed a small periodical modulation of the

I

—5 a<l1. (34)

Let us assume a plaredividing the linear lattice in two ~ €quilibrium chemical potential,
segmentd andr as shown in Fig. 6.
Let J,_,, be the mass per unit of time flowing through Bdu=2 a_'“) a=p (‘9_‘9
from | to r. Since the lattice is assumed to be homogeneous 29 T\ OX) 4
and the diffusion a thermally activated process, the jump of
an adsorbedt-mer to a nearest-neighbor position occurs with ~ Equation(33) can be very well approximated by expand-

probability W, _,, given by ing the exponential function around zero. Then
W, =k exp BAEy)=W,_,, (26) , au\ [0

o WimeeRpAE) =W J= = BPiexp— BAEgexi )| 5| |5 a
where « is a rate constantthe rate at which jumps are at- T T
tempted and AE, the activation energy for diffusiofithe (35
energy barrier that -mer has to overcome to move right or which can be rewritten in terms démers concentratiop
left over a distance equal to one lattice constafibus, =Nk/Ma= 6/a as to give it the general form of Fick’s first

/ law
Ji_r=PPiW (27)

where P, and P; hold for the probability to have &mer J=—a?p, exp(—,BAEd)(a[quB’u)] (f?_P> .
adsorbed ork sites of | adjacent toP and an empty site t a0 T\OX) 4
adjacent toP in r, respectively. In order to relate EQR7) (36)

with Fick’s first law, we can think of a periodically modu- ] o o o »
lated chemical potential along the surface with wavelength The chemical diffusion coefficient is identified by match-
\>ka and very small amplitudBA u,<1. The surface cov- "9 Eas.(30) and(19),
erage will therefore be modulated along the surface with

small amplitude. Provided the adsorbledners atl are as- D( 9):a2p&+1exq_ﬁAEd)(w (37)
sumed to be in equilibrium with its vapor at chemical poten- a6 T
tial w,

It is still necessary to get an exact form for the probability
P.=Pexp(—BAH,), (28 to havek+ 1 adjacent empty site®),, ;, in order to give an
analytical form forD, as a function of surface coverage
and temperaturgan elegant calculation, due to one of the
authors(T.P.E), is presented in Appendix]BBy using Egs.
(15 and(B.12) in Eq. (37)

where Py, is the probability to havé adjacent empty sites
andAH,=&.— u is the change in the Hamiltonian upon the
adsorption of &-mer onk empty sites&, being thek-mer-
surface interaction energlyé,,=0 had already been assumed

after Eqg.(1) without any loss of generality Accordingly, (k—1) 172
Dy(6)=a? exp — BAEy) 1-——"0 (39
Py=Py exp(Bu). (29)
_ - For the sake of comparison, it is worth defining the ratio
From Egs.(26)—(29) one obtains Ri(6) = Dy(8)/D(0). Thus,
Ji_.r=PPix exp(— BAEy) exp( Su) (k=1) ]°2
, R(9)=|1— 0| . 39
=P}, kexp~ BAEQexpBp). (30 () K } 39
The reverse jump, i.e., when themer having one unit in Ry(6) is a monotonous function of for all k-mers, with
the regionr andk— 1 units inl moves one lattice unit to the limits R,(0)=1 andR,(1)=k2. The general features of the
left, has a likelihood dependence d®,(6) on 6 are displayed in Fig. 7 for various

) , polymers sizes. MC calculations &(6) were also carried
Jr1= Py exp(— BAEg)exp(Bu’), (3D out in order to compare with the exact solution for small
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FIG. 7. Relative chemical diffusion coefficie®,(6) versus
surface coverage. Solid linés-) correspond to exact solution from FIG. 8. Relative jump diffusion coefficierR’,(6) versus sur-
Eq. (32) for k=1, 2, and 3. Dashed lings - -) arise from Flory’s face coverage for dimers. Solid linés-) correspond to exact so-
approximation for the chemical potentigq. (16)] in the general lution from Eg.(44). MC simulations are displayed in full circles.
form of Eq. (37), which yields Ry r(0)=(1+(k—1))[1—(k

—1)/kf]7%. MC simulations for monomersk&1) and dimers K Replacing the first factor by Eq38), and solving the
=2) are displayed in full circles. second one from Eq15) one gets

k-mers(namely, k=1 andk=2_). Fu_II agreement was _found DY(60)=aexp(— BAE,)(1— 0)[1— (k—1) 0} 1.

as expected. Further comparison is carried out in Fig. 7 be- k

tweenRy(6) from Eq. (39) (solid liney and the correspond- (43

ing to Flory’s approximation,Ry r(8)=[1+(k—1)6][1 i

—(k—1)/k8]~ % obtained by using Eq(16) in the general Ir_1 this way one can obse_rve the coverage _d(_apendence of
form Eq. (37). the jump factor in the chemical diffusion coefficient regard-

The differences between the two results are remarkablesS Of the influence of the thermodynamic factor that relates

large, as it can be inferred from the Ny p(1)=k<' 10 the density fluctuations in the adlay®r. _
compared toR(1)=k2, which yields a rapidly increasing . " Fig. 8, the coverage dependencel®¥(9), relatljve to
ratio Ry r1 /Rk"! as a function of the adsorbate size. In 'S  zero-coverage limit, 'S represented  biR"\(6)
summary, the approximate Flory’s solution largely overesti-— P ~(#)/D"(0). As expectedR"(¢) decays monotonically
mates the chemical diffusion coefficient with respect to theVith coverage. Complete agreement between analytical and
exact result for all coverages akemers sizes. simulation results is observed for dimers. .

In addition, the jump diffusion coefficier®’(6) can be Itis yvorth noticing tha’g our c_hscgssmn co_n_cerned with the
derived from the general form dd(6) in Eq. (32 and the 1YMP diffusion and chemical diffusion coefficieBt’(6) and

Green-Kubo formula that relaté(8) andD’(6) through* D(6) is valid for lattices with one or more spatial dimen-
sions. However, the mean-square displacemen(t)) of

single-particles in a one-dimensional latti¢single file-
, (40)  diffusion) does not vary linearly on time bit?(t))t* so
T the tracer diffusion coefficientD* (6)] is strictly zero, in
contrast with the normal diffusiofin dimensionsd larger
whereD’(0) relates to the time dependence of the center othan ong where(r?(t))=2dD* (6)t. Although this is since
mass’s mean-square displacem@rt(t))(R(t) refers to the  long known®° the interest for the investigation of tracer dif-
center of mass of the whole set of adsorbed particle$as  fusion in one-dimensional systems, where particles can-
been found by MC simulatidf that (R?(t))=t for mono-  not overtake each other, has increased considerably in the
mers in one dimensiofthis is also true fork-mers in one last years by both theoretical and experimental stuthies.
dimension. Hence,D(6) can be obtained by simulation

from V. CONCLUSIONS

IBu

d1né

D(6)=D"(0)

(RA(1)) The exact forms of the thermodynamic functions for non-
. (41 interacting linear adsorbate&-(mer9 in a one-dimensional
2t space were presented. Furthermore, the temperature and cov-
erage dependence of the chemical and jump diffusion coef-
On the other hand)?’(#6) can be analytically solved from ficients for chains of arbitrary size were calculated and ana-

DY(6)=lim

t—o

Eqg. (40), lyzed.
The calculations may have interesting potential applica-
oBu] "t tion in adsorption equilibrium and diffusion of polyatomic
DY 0)=D(6)| —— (42) linear adsorbates in quasi-one-dimensional materials, like
dIn6], carbon nanotubes.
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—(1-6)In(1—0)—6, (A6)

, (A7)

(A8)

A thorough Comparispn with Corrgsponding quantities S|m||ar|y for the molar entrop)‘-é':l(a), Spreading pres-
from Flory’s approximation was carried out. The resultssyre[l, and chemical potentigk
show that Flory’s approximation becomes inadequate al-
ready' at fairly'low coverage.The exact configurational en- SL(60) 6 0
tropy is appreciably larger than that from Flory’s solution for ke K 1-In K
all coverages and adsorbate sizes. This discrepancy is ex- B
tended to all thermodynamic functions as well. The analyti- (k—1)
cal form of the chemical diffusion coefficient predicts a cov- p{— - }
erage and adsorbate size dependence extraordinary weaker exp Bllg) = K
than the one presumed by Flory’s approximation. The artifi- (1-90)
cial effects that this approximation induces on the thermody-
namic functions can now be compared with exact results and
rationalized. CrexpBur)= (1-9)’
Approximate analytical expressions for the thermody-
namic functions in higher dimensions were given, based omhereC,=k.
the exact partition function for one dimension and a connec-
tivity ansatz. Preliminary comparison with MC simulations APPENDIX B
shows approximate adsorption isotherm, in two and higher -
dimensions, highly adequate for describing adsorption with In order to calculateP;,, ;= probability to have 1+ 1)
multisite occupancy on homogeneous surfaces in the latticadjacent empty sites on a one-dimensional latticédfites
gas approximation. randomly covered b\ k-mers (@=kN/M) we first define

P.=probability to find s empty sites between
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Pri1=17 2 Gsn+iPs=1r 2 (S=N)P, (B2

M s=n M sS=n

APPENDIX A
i ) ) where g5 1 denotes the number of ways+1 adjacent

N k-mers andm molecules of a monoatomic solvent on a |y|ng between twok-mers. Since this is a typ|ca| Waiting_

lattice with M sites and connectivity is given in the Flory's  tjime-like Poisson process, it will follow an exponential dis-

approximation by* tribution of the stochastic variabke
INQg(M,N,m)=—=NInN+N-mInm+m+MInM—-M P.=ab®. (B3)
c—1 i -
+N(k—1)In ( ) ' (A1) T_he parametera andb can be determined from the nor
M malization condition
Hereforth, the following definitions appl - = a
? g > Ps=aY bS=—0r=1 (B4)
s=0 s=0 1-b
BFr(M,N,m)=—InQg(M,N,m), (A2)
and the fact that the total number of empty sités-kN can
dFg=—SqdT—II5dM+ updN, (A3)  be written in terms oP as
M —KkN=N(s), (BS)
~ Fg = S
FFI_V ' SFI_W- (A4) where(s) is the statistical mean af

For the purpose of comparison with the exact solution for _ . w9 - s_onY 1 _ ab
a pure polymer adsorbed on a one-dimensional lattice, it (s) SZO salf abo?bZo b*=ab 1-b

should be noticed thatc=2 and m=M-—-kN (B6)
=numbers of empty sites. By rewriting the thermodynamic

functions in terms off)=kN/M, we get from Egs.(B3) and (B5)

a=1-b, (B7)

0
1_'”(F” (1-b)>2
b=(s) , (B8)

~ 0
BFr(8,T)==InQg = _{E

~(1=0)n(1-6)~ 0] ' (AS5) respectively.
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Resolving(s) from Eq. (B4) and relacing it in Eq(B7)
along witha from Eqg. (B6), one gets

po S 176 (B9)
1+(s) 1_(n—l) 0} '
n
B 6
a__ﬂ;zzﬁjjiygj. (Bl@
Finally, from Egs.(B1)', (B2), (B8), and(B9)
N * i N n+1
Pn+1:ﬁ320 sab’ 1:M m , (Bll)
) B (1_ 0)n+1
n+1—(n—_1)r- (B12)
1- = 6

Particularly forn=k [which is the form necessary in Eq.
(31)] it yields

, (1_0)k+1
Pet=r =) ©
1- K 0}

(B13)
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APPENDIX C

We can think of the exact number of configuration for
given M,N,k, andc, Q(M,N,c) as being

Q(M,N,c)=Q(M,N,c)-AQ(M,N,c), (CD

whereQg(M,N,c) stands for the Flory’s counting strategy
for the same set of parameters, ahf) does for the differ-
ence (which is actually unknown at this pointThus, the
ratio

Q(M,N,c) _ Qg(M,N,c) AQ(M,N,c)
QM,N,c’) Qg(M,N,c’) AQ(M,N,c’)

(C2

we now assume thak() does not depend oq so the Eq.
(C2) becomes

c—1
c'—1

QM,N,c)  OQg(M,Nc) _{ c3

N(k—1)
QM,N,c’) Qg(M,N,c') ]
then, Eq.(19) is recovered.

It should be noted that EC1) and the assumptioA ()
=AQ(M,N) is reminiscent of the way overcounting of con-
figuration in the quasichemical approximation is handled.
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