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Statistical thermodynamics and transport of linear adsorbates
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The exact lattice-gas solution for thermodynamics functions, jump and chemical diffusion coefficients of
linear adsorbates in a one-dimensional space is presented. Results are compared with corresponding ones from
the Flory’s approximation. Significant quantitative and qualitative discrepancies are shown and discussed. The
results may be applicable to adsorption and transport of polyatomic molecules in low-dimensional systems
such as carbon nanotubes. All calculations are further extended to higher dimensions~higher connectivity!
based upon the exact forms in one dimension and a connectivity ansatz. The resulting thermodynamic descrip-
tion is much improved with respect to the known standard approximations.@S0163-1829~99!06311-0#
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I. INTRODUCTION

Adsorption with multisite occupancy is a topic being i
creasingly considered in surface science because o
straightforward relevance to practical situations such as
and hydrocarbon separation, streams and pollution con
heterogeneous catalysis, etc.. Most adsorbates, except
gases, are polyatomic. Furthermore, surfaces gene
present inhomogeneities due to irregular arrangement of
face and bulk atoms, the presence of various chemical
cies, etc., which can significantly affect the entropic con
bution to the adsorbate’s free energy. Typical examples
O2,N2 ,CO,CO2 absorbed in carbon and zeolite molecu
sieves1–3 and oligomers in activated carbons.4,5 In spite of
the obvious significance of polyatomic adsorption, most
velopments in adsorption theory have mainly dealt w
monoatomic adsorption.5–7 Valuable contributions have
recently been presented in terms of lattice-g
approximations.8–13

The inherent complexity of this system still represent
major difficulty to the development of approximate solutio
for the thermodynamic functions, which certainly hampe
their analysis. To this respect, simple solvable models
adsorption on homogeneous surfaces are useful as bas
alternative approaches for heterogeneous surfaces.5,6,9,13

Recently, the advent of modern techniques for build
single and multiwalled carbon nanotubes14–19 has consider-
ably encouraged the investigation of the gas-solid interac
~adsorption and transport of simple and polyatomic ads
bates! in such a low dimensional confining adsorption pote
tials.

The design of carbon tubules, as well as of synthetic z
lites and aluminophosphates such as AlPO4

-5 ~Ref. 20! having
narrow channels, literally provides a way to the experimen
realization of one-dimensional adsorbents.

Many studies on conductivity, electronic structure, m
chanical strength, etc. of carbon nanotubes are being
rently carried out. However the amount of theoretical a
experimental work done on the interaction and thermo
namics of simple gases adsorbed in nanotubes is still v
limited.21–23 No experimental adsorption of isotherms ha
been reported yet; however, this type of result will presu
ably be soon available because of the proceeding deve
PRB 590163-1829/99/59~16!/11027~10!/$15.00
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ment of this field~a number of very interesting experimen
on adsorption and diffusion of gases in nanotubes24–26 ~have
recently appeared!.

One outstanding feature of the gas-solid interaction
single-walled nanotubes~SWN! is that the adsorption poten
tial is significantly strengthened with respect to the one o
planar layer of bulk graphite. This has recently been o
served for atomic hydrogen whose isosteric heat of ads
tion in a SWN is roughly four times larger (19.5 KJ/mo
than on graphite (4.9 KJ/mol).27 Concerning the transpor
of gases in narrow nanocylinders, a leading experime
contribution has recently been reported where the diffus
coefficient of polyatomic adsorbates was measured by in
herent quasielastic neutron scattering.20

For theoretical purposes, adsorption in the narrow
nanotubes can be treated in the one-dimensional lattice
approach. This is, of course, an approximation to the stat
real adsorbata in nanotubes, which is justified because t
modynamics and transport coefficient can be analytically
solved in these conditions. This is of much qualitative va
and may be thought feasible for monoatomic spec
strongly bonded to the nanopores’s wall, as well as for po
atomics where the distance between their building units d
not seriously mismatch the separation between adsorp
potential minima for single units.

However, it should be pointed out that polyatomic ads
bates such as hydrocarbons within nanopores cannot be
ply described by a lattice-gas approximation as shown
Refs. 28, 29, and 30.

Here, we present the exact solution for the thermodyna
ics functions of adsorbed linear chains (k-mers! of arbitrary
length in a infinite one-dimensional space. The thermo
namic functions are further extended to higher dimensi
based upon their exact form in one dimension and a conn
tivity ansatz. Although adsorption of monoatomic spec
have been long studied, it appears necessary to obtain r
ous results for polyatomic adsorbates. An early seminal c
tribution to this subject was the well-known Flory’s approx
mation for adsorption of binary liquids in two dimensions31

It is worth mentioning that, in the framework of the lattice
gas approach, adsorption of pure linear molecules is isom
phous to polymer mixture adsorption~linear polymer-
monoatomic solvent!. Thus, all results presented here can
11 027 ©1999 The American Physical Society
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11 028 PRB 59RAMIREZ-PASTOR, EGGARTER, PEREYRA, AND RICCARDO
straightforwardly applied to the corresponding polymer so
tion case. Adsorption of chains on regular lattices is a lo
standing problem in which modified forms of Flory
approximation32–34 have been also proposed. A comprehe
sive discussion on this subject is included in the book of D
Cloizeaux and Jannink35 and Ref. 36.

Monte Carlo simulations of polymer-solvent mixtures
three dimensions37 have shown that critical temperatures a
expected to be largely overestimated by Flory’s appro
and the phase diagram appreciably distorted. Howe
Monte Carlo simulations of very large polymers (k.50) at
high concentrations are still highly demanding even w
modern computational resources.

There are two main contributions in this chemical wo
~a! the rigorous form of the adsorption isotherm and diff
sion coefficient~and remaining thermodynamics function!
of linear adsorbates~sometimes referred here ask-mers!
which may be applicable to adsorption and transport in n
row nanotubes;~b! the extension of the calculations to high
dimensions by using the exact forms in one dimension an
connectivity ansatz, that performs appreciably better than
standard Flory’s approach.

In addition, the importance of the one-dimensional so
tion goes beyond the example cited here. There exist var
phenomena that can be looked upon as adsorption on
dimensional chain, namely, adsorption on linear polymers
on a protein chain.38

Rigorous expressions for the chemical potential~adsorp-
tion isotherm!, free energy, entropy, and spreading press
of linear adsorbates in one dimension are given in Sec. II
Sec. III, approximate forms for the thermodynamic functio
in higher dimensions are proposed based upon the
dimensional exact solution and a connectivity ansatz that
corporates the influence of higher connectivities on the p
tition function.

A thorough comparison of the coverage and chain-s
dependence of thermodynamic functions arising from the
act solution, Flory’s approximation, and Monte Carlo sim
lation, are carried out. Furthermore, dynamical properties
k-mers, such as the chemical and jump diffusion coefficie
are exactly calculated as well and discussed in Sec. IV. C
clusions are drawn in Sec. V.

II. EXACT THERMODYNAMIC FUNCTIONS
IN ONE DIMENSION

Let us assume a one-dimensional lattice ofM sites with
lattice constanta (M→`) where periodic boundary cond
tions apply. Under this condition all lattice sites are equiv
lent, hence border effects will not enter our derivation.

N-linear k-mers are adsorbed on the lattice such a w
that eachk-mer occupies one lattice site and double site
cupancy is not allowed as to represent properties in
monolayer regime. Since differentk-mers do not interac
with each other through their ends, all configurations ofN
k-mers onM sites are equally probable; henceforth, the
nonical partition functionQ(M ,N,T) equals the total num
ber of configurations,V(M ,N), times a Boltzmman facto
including the total interaction energy between k-mers a
lattice sites,Ek(N)
-
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Q~M ,N,T!5V~M ,N!expF2
Ek~N!

kBT G . ~1!

Since the lattice is assumed homogeneous,Ek(N) can be
arbitrarily chosen equal to zero for allN without losing gen-
erality ~i.e., the interaction energy between every unit for
ing a k-mer and the substrate is set to be zero!.

V(M ,N) can be readily calculated as the total number
permutations of theN indistinguishablek-mers out ofne en-
tities, beingne

ne5number of k-mers1number of empty sites

5N1M2kN5M2~k21!N. ~2!

Accordingly,

V~M ,N!5S ne

N D 5
@M2~k21!N#!

N! @M2kN#!
. ~3!

~A particular solution for dimers was presented in Ref. 39!
In the canonical ensemble the Helmholtz free ene

F(M ,N,T) relates toV(M ,N) through

bF~M ,N,T!52 lnQ~M ,N,T!52 ln V~M ,N!, ~4!

whereb51/kBT.
The remaining thermodynamic functions can be obtain

from the general differential form40

dF52SdT2PdM1mdN, ~5!

whereS, P, and m designate the entropy, spreading pre
sure, and chemical potential, respectively, which by defi
tion are

S52S ]F

]TD
M ,N

P52S ]F

]M D
T,N

m5S ]F

]ND
T,M

. ~6!

Thus, from Eqs.~3! and ~4!

bF~M ,N,T!52$ ln@M2~k21!N#! 2 ln N!

2 ln@M2kN#! %, ~7!

which can be accurately written in terms of the Stirling a
proximation

bF~M ,N,T!52@M2~k21!N# ln@M2~k21!N#

1@M2~k21!N#1@N ln N2N#

1@~M2kN!ln~M2kN!2~M2kN!#

52@M2~k21!N# ln@M2~k21!N#

1N ln N1~M2kN!ln~M2kN!. ~8!

Henceforth, from Eqs.~6!

S~M ,N!

kB
5@M2~k21!N# ln@M2~k21!N#

2N ln N2~M2kN!ln~M2kN!, ~9!

bP5 ln@M2~k21!N#2 ln@M2kN#, ~10!
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bm5 ln
kN

M
1~k21!lnF12~k21!

N

M G2k lnF12
kN

M G .

~11!

Then, by defining the lattice coverageu5kN/M , molar-free
energyF̃5F/M and molar entropyS̃5S/M , Eqs.~8!–~11!
can be rewritten in terms of the intensive variablesu andT,

bF̃~u,T!52H F12
~k21!

k
uG lnF12

~k21!

k
uG

2
u

k
ln

u

k
2~12u!ln~12u!J , ~12!

S̃~u!

kB
5F12

~k21!

k
uG lnF12

~k21!

k
uG

2
u

k
ln

u

k
2~12u!ln~12u!, ~13!

exp~bP!5

F12
~k21!

k
uG

~12u!
, ~14!

Ck exp~bm!5

uF12
~k21!

k
uGk21

~12u!k
, ~15!

whereCk5k
Equation ~15! is the exact, so-called, isotherm equati

for k-mers in one dimension that should be regarded a
generalization of the well-known equation

Ck exp~bmFl !5
u

~12u!k
~16!

~wheremFl holds for Flory’s approximation! developed by
Flory31 for polymer solutions when the solvent is monome

FIG. 1. Surface coverageu5kN/M versus relative chemica
potential bm* 5bm1 ln Ck . Comparison between adsorption is
therms fork-mers in one dimension from Flory’s approximatio
~- - -! and exact solution~—! from Eq. ~15! for dimers, 4-mers,
10-mers, and 100-mers~curves from top to bottom!. MC simulation
for k52 andk54 in one dimension are shown in full circles.
a

with unitary molar volume. This is indeed the case analyz
in the present paper, where the empty sites of the lat
formally correspond to the solvent’s monomers in Flory
solution ~see Appendix A!.

Explicit forms for the molar-free energy and entropy fro
Flory’s approximation are given in Appendix A.

In order to compare the adsorption isotherm Eqs.~15! and
~16!, it is worth to define a relative reduced chemical pote
tial

Dk~u!5b~mFl2m!52~k21!lnF12
~k21!

k
uG , ~17!

which yields the limitsDk(u)u→050;Dk(u)k→`5`, for all
u.0.

An extensive comparison between the exact isotherm
~15! and Flory’s equation, along with MC simulations a
shown in Figs. 1 and 2. Flory’s approximation agrees fai
well with the exact result for very smallk-mers~typically k
,3); however the disagreement turns out to be significan
large for larger chains.

The differences between both results can be much ea
rationalized with the help of Fig. 2, where the coverage
pendence of the reduced chemical potential has been
picted.

Concerning other thermodynamic functions such as
free energy, entropy, and spreading pressure, their e
forms present appreciable quantitative as well as qualita
discrepancies with Flory’s approach. Particularly, the ex
molar configurational entropyS̃(u) behaves already quite
differently for very smallk-mers~dimers, trimers, etc.! at all
coverages. The overall behavior can be summarized as
lows: in the limitsu→0 andu→1 the entropy tends to zero
For very low coveragesS̃(u) is an increasing function ofu,
reaches a maximum atum , then decreases monotonically
zero for u.um . The position ofum , which is um50.5 for
k51, shifts to higher coverages as the adsorbate sizek gets
larger. The maximum can be readily obtained from the c
dition ]S̃(u)/]uuu5um

50.
Thus, from Eq.~13! we get

FIG. 2. Relative reduced chemical potentialDk(u)5b(mFl

2m) versus surface coverage~log-linear plot! for various sizes of
linear k-mers; ~—!, dimers (k52);(-•-•),10-mers; (••••), 100-
mers.
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~12u!k2
u

kF12
~k21!

k
uGk21

50, ~18!

which is a polynomial ofkth order with unique solutionum
for all k>1.

This represents a major distinction between the exact
lution and the Flory’s approach since in the latter, the lar
the chain the more the maximum in the entropy shifts
lower coverages.

An even more remarkable behavior comes from Flor
approach for the molar entropy in one dimension, which
tains negative values for allk.1. The range ofu where
S̃Fl(u) becomes negative broadens ask increases. In the no
menclature of random mixing of polymer solutions, the d
ferenceDS̃(u) betweenS̃(u) and the entropy of the pur
polymer, rather thanS̃(u), is considered. Rigorously, thi
difference is expected to behave asDS̃(u)k→`→0 for all u.
On the other hand, in the Flory’s approach it tends to
limiting concave curve from above fork→`.40 In either
case, the qualitative discordance is remarkable~Fig. 3!.

Further comparison is carried out in Fig. 4 for the spre
ing pressure, which is a monotonically increasing function
u over the range@0,1#.

Adsorption of linear adsorbates~i.e., dimers, oligomers
etc.!, in very narrow carbon nanotubes or cylindrical pores
aluminophosphates, can be thought as a physical syste
which the present thermodynamic results may apply.

Although no experimental adsorption isotherms are av
able yet to test the applicability of the exact isotherm E
~15! to this system, they will very likely be soon availab
owing to the increasing interest in the synthesis of mono
perse nanotubes and their adsorption properties.

III. FURTHER EXTENSION TO HIGHER DIMENSIONS

Hereafter, we address the calculation of approxima
thermodynamical functions of linear chains adsorbed on
tices with connectivityc higher than 2~i.e., dimensions
higher than one!.

FIG. 3. Molar entropyS̃(u)/kB ~in units of kB) versus surface
coverage. Comparison between exact results~—! and Flory’s ap-
proach~- - -! for monomers (k51), dimers (k52), and polymers
(k510) andk5100). Curves from top to bottom~the casek51 is
common for both results!.
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In general, the number of statesV for fixed M andN will
be also the function of the lattice connectivity; hencefo
V[V(M ,N,c).

In order to derive an explicit form for theV(M ,N,c) that
bears the advantages of the exact solution in one dimen
with respect to the standard Flory’s approximation, we
sume the following connectivity ansatz~see Appendix C for
further discussion!

V~M ,N,c!

V~M ,N,c8!
5F c21

c821
GN~k21!

5
VFl~M ,N,c!

VFl~M ,N,c8!
, ~19!

whereVFl is given by Eq.~A.1!. Accordingly, we resolve
ln V(M,N,c) by settingc852 and using lnV(M,N,2) from
Eqs.~4! and ~8!

ln V~M ,N,c!5 ln V~M ,N,2!1N~k21!ln~c21!.
~20!

It is straightforward from Eqs.~4!, ~6!–~15!, and~20! that

b f c5b f 2u
~k21!

k
ln~c21! ~21!

Sc

kB
5

S

kB
1u

~k21!

k
ln~c21!, ~22!

exp~bPc!5

F12
~k21!

k
uG

~12u!
, ~23!

FIG. 4. Spreading pressureP(u) in units of 1/b versus surface
coverage. Comparison between exact results~—! and Flory’s ap-
proach~- - -! for monomers (k51), dimers (k52), and polymers
(k510 andk5100). Curves from top to bottom~the casek51 is
common for both results!.
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Ck,c exp~bmc!5

uF12
~k21!

k
uGk21

~12u!k
, ~24!

where the subindexc holds for the thermodynamic quantitie
in regular lattices with connectivityc, and the constantCk of
Eq. ~15! has the general expressionCk,c5k(c21)k21 ~thus,
Ck5Ck,2 for consistency!.

Equations ~19!–~24! provide the basic thermodynam
functions for noninteracting linear adsorbates in lattices w
general connectivityc.

It is worth noting that the isotherm Eq.~24!, valid for
lattices of arbitrary connectivity, shows coverage dep
dence identical to the exact one-dimensional one@Eq. ~15!#.
The lattice connectivity only enters in the constantCk,c @ac-
tually Eq. ~15! is the only particular case in which Eq.~24!
becomes exact#.

A comparison between the adsorption isotherms of
~24!, Monte Carlo~MC! simulation, Flory’s approach is car
ried out in Fig. 5 for adsorbates of different size on a squ

FIG. 5. Surface coverageu versus relative chemical potentia
bm* 5bm1 ln Ck,c for lineark-mers in a square lattice (c54), our
model from Eq.~24! ~—!, Flory’s approximation~- - -!. The iso-
therms for dimers, 3-mers, and 4-mers are shown in both c
~curves from top to bottom!. MC simulations are shown in ful
circles.
h

-

.

e

lattice. For short chains~up to k54), Eq. ~24! agrees with
MC appreciably better than it does with the other a
proaches.

MC simulation of larger linear adsorbates on regular tw
dimensional lattices would be necessary to confirm this
havior. Nevertheless, Eq.~24! appears as a qualitatively an
quantitatively better isotherm than other standa
approaches31 for noninteracting chains. As usual, interactio
between chain units can be incorporated into Eq.~24! by
means of the mean-field approximation. Extension of th
calculations to interacting chainsvia mean-field, quasichemi
cal approximations, and exact counting of configuration
currently being worked out and are not included here to k
a reasonable length for this paper. A thorough analysis
adsorption of chains in higher dimensions and compari
with Flory’s approximation will be given elsewhere.

IV. DYNAMICAL PROPERTIES: CHEMICAL DIFFUSION
COEFFICIENT

Surface diffusion is one of the elementary mechanisms
which an adlayer reaches thermodynamic equilibrium w
the adsorbent. Hence, it is expected to play a significant
in surface processes such as catalysis, thermal desorp
film growth, roughening, etc..

Surface diffusion of monoatomic species has been
dressed since long ago.41–44 However, the mathematical de
scription of migration of polyatomic species on latticelik
substrates has not been paid much attention.45 Features of
surface diffusion of interacting dimers in the monolay
regime have been recently reported.46 The adsorbate
size strongly affects the coverage dependence of the d
sion coefficient both for noninteracting and interacti
molecules. This appears to be pertinent for strongly bou
adsorbates as chemisorbed species@e.g., CO/Ni(111),
Pt2 /W(110), W2 /W(110)]. On the other hand, a review o
surface diffusion of physisorbed molecules can be found
Ref. 44, p. 451.

Hereafter, we address the exact solution for the chem
diffusion coefficient of polymers as a function of surfa
coverage, in the framework of the present description~one-
dimensional space!. Although here, we again address the c
lective diffusion in the lattice-gas approximation because
its simplicity and analytical tractability, it should be note
that in many situations diffusion of polyatomic species
significantly more complex and the model of migratio
through thermally activated jumps on a lattice-like substr
may not apply.47 Even for monoatomic species in one
dimensional adsorption potentials, collective diffusion c
take place by concerted motion of neighboring partic
~clusters! rather than by individual groups as recently pr
posed in Ref. 48. We start the derivation by noting that sm
fluctuations~or linear perturbation! to the local surface cov-
erage relax to equilibrium obeying the Fick’s first law

JW52D¹r, ~25!

whereJW ,r, andD are the net flux of mass through a unit ar
per unit of time, density, and chemical diffusion coefficien
respectively.

es
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Let us assume a planeP dividing the linear lattice in two
segmentsl and r as shown in Fig. 6.

Let Jl→r be the mass per unit of time flowing throughP
from l to r. Since the lattice is assumed to be homogene
and the diffusion a thermally activated process, the jump
an adsorbedk-mer to a nearest-neighbor position occurs w
probability Wl→r given by

Wl→r5k exp~bDEd!5Wr→ l , ~26!

wherek is a rate constant~the rate at which jumps are a
tempted! and DEd the activation energy for diffusion~the
energy barrier that ak-mer has to overcome to move right o
left over a distance equal to one lattice constant!. Thus,

Jl→r5PkP18Wl→r , ~27!

where Pk and P18 hold for the probability to have ak-mer
adsorbed onk sites of l adjacent toP and an empty site
adjacent toP in r, respectively. In order to relate Eq.~27!
with Fick’s first law, we can think of a periodically modu
lated chemical potentialm along the surface with wavelengt
l.ka and very small amplitudebDmo!1. The surface cov-
erage will therefore be modulated along the surface w
small amplitude. Provided the adsorbedk-mers atl are as-
sumed to be in equilibrium with its vapor at chemical pote
tial m,

Pk5Pk8 exp~2bDHk!, ~28!

wherePk8 is the probability to havek adjacent empty sites
andDHk5Ek2m is the change in the Hamiltonian upon th
adsorption of ak-mer onk empty sites,Ek being thek-mer-
surface interaction energy.@Ek50 had already been assume
after Eq.~1! without any loss of generality.# Accordingly,

Pk5Pk8 exp~bm!. ~29!

From Eqs.~26!–~29! one obtains

Jl→r5Pk8P18k exp~2bDEd! exp~bm!

5Pk118 k exp~2bDEd!exp~bm!. ~30!

The reverse jump, i.e., when thek-mer having one unit in
the regionr andk21 units in l moves one lattice unit to the
left, has a likelihood

Jr→ l5Pk118 k exp~2bDEd!exp~bm8!, ~31!

FIG. 6. One-dimensional chain of sites with lattice constana
and periodic boundary condition. The planeP, arbitrarily set be-
tween two nearest-neighbor sites, divides the lattice into two s
ments denoted byl ~after left! andr ~right!, respectively.Pk desig-
nate the probability ofk adjacent sites to be occupied by ak-mer.
s
f

h

-

where the chemical potentialm8 differs slightly fromm be-
cause of the smooth modulation assumed above. Theref

m8.m1dm.m1S ]m

]x D
T

a, ~32!

wherex is the coordinate along the chain of adsorption sit
Hence, the net flux throughP is

uJW u5J5Jl→r2Jr→ l5Pk118 k exp~2bDEd!

3exp~bm!H 12expFbS ]m

]x D
T

aG J . ~33!

Since we assumed a small periodical modulation of
equilibrium chemical potential,

bdm5bS ]m

]x D
T

a5bS ]m

]u D
T
S ]u

]xD
T

a!1. ~34!

Equation~33! can be very well approximated by expan
ing the exponential function around zero. Then

J52bPk118 exp~2bDEd!exp~bm!S ]m

]u D
T
S ]u

]xD
T

a,

~35!

which can be rewritten in terms ofk-mers concentrationr
5Nk/Ma5u/a as to give it the general form of Fick’s firs
law

J52a2Pk118 exp~2bDEd!H ]@exp~bm!#

]u J
T
S ]r

]xD
T

.

~36!

The chemical diffusion coefficient is identified by matc
ing Eqs.~30! and ~19!,

Dk~u!5a2Pk118 exp~2bDEd!H ]@exp~bm!#

]u J
T

. ~37!

It is still necessary to get an exact form for the probabil
to havek11 adjacent empty sites,Pk118 , in order to give an
analytical form forDk as a function of surface coverageu
and temperature@an elegant calculation, due to one of th
authors~T.P.E.!, is presented in Appendix B#. By using Eqs.
~15! and ~B.12! in Eq. ~37!

Dk~u!5a2 exp~2bDEd!F12
~k21!

k
uG22

. ~38!

For the sake of comparison, it is worth defining the ra
Rk(u)5Dk(u)/Dk(0). Thus,

Rk~u!5F12
~k21!

k
u G22

. ~39!

Rk(u) is a monotonous function ofu for all k-mers, with
limits Rk(0)51 andRk(1)5k2. The general features of th
dependence ofRk(u) on u are displayed in Fig. 7 for various
polymers sizes. MC calculations ofRk(u) were also carried
out in order to compare with the exact solution for sm

g-
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k-mers~namely,k51 andk52). Full agreement was foun
as expected. Further comparison is carried out in Fig. 7
tweenRk(u) from Eq. ~39! ~solid lines! and the correspond
ing to Flory’s approximation,Rk,Fl(u)5@11(k21)u#@1
2(k21)/ku#2k obtained by using Eq.~16! in the general
form Eq. ~37!.

The differences between the two results are remarka
large, as it can be inferred from the limitRk,Fl(1)5kk11

compared toRk(1)5k2, which yields a rapidly increasing
ratio Rk,Fl /Rk}kk21 as a function of the adsorbate size.
summary, the approximate Flory’s solution largely overe
mates the chemical diffusion coefficient with respect to
exact result for all coverages andk-mers sizes.

In addition, the jump diffusion coefficientDJ(u) can be
derived from the general form ofD(u) in Eq. ~32! and the
Green-Kubo formula that relatesD(u) andDJ(u) through41

D~u!5DJ~u!F ]bm

] lnuG
T

, ~40!

whereDJ(u) relates to the time dependence of the cente
mass’s mean-square displacement^R2(t)&(R(t) refers to the
center of mass of the whole set of adsorbed particles!. It has
been found by MC simulation49 that ^R2(t)&}t for mono-
mers in one dimension~this is also true fork-mers in one
dimension!. Hence,DJ(u) can be obtained by simulatio
from

DJ~u!5 lim
t→`

^R2~ t !&
2t

. ~41!

On the other hand,DJ(u) can be analytically solved from
Eq. ~40!,

DJ~u!5D~u!F ]bm

] lnuG
T

21

. ~42!

FIG. 7. Relative chemical diffusion coefficientRk(u) versus
surface coverage. Solid lines~—! correspond to exact solution from
Eq. ~32! for k51, 2, and 3. Dashed lines~- - -! arise from Flory’s
approximation for the chemical potential@Eq. ~16!# in the general
form of Eq. ~37!, which yields Rk,Fl(u)5(11(k21)u)@12(k
21)/ku#2k. MC simulations for monomers (k51) and dimers (k
52) are displayed in full circles.
e-

ly

i-
e

f

Replacing the first factor by Eq.~38!, and solving the
second one from Eq.~15! one gets

DJ~u!5a2exp~2bDEd!~12u!F12
~k21!

k
uG21

.

~43!

In this way one can observe the coverage dependenc
the jump factor in the chemical diffusion coefficient regar
less of the influence of the thermodynamic factor that rela
to the density fluctuations in the adlayer.41

In Fig. 8, the coverage dependence ofDJ(u), relative to
its zero-coverage limit, is represented byRJ

k(u)
5DJ(u)/DJ(0). As expected,RJ

k(u) decays monotonically
with coverage. Complete agreement between analytical
simulation results is observed for dimers.

It is worth noticing that our discussion concerned with t
jump diffusion and chemical diffusion coefficientDJ(u) and
D(u) is valid for lattices with one or more spatial dimen
sions. However, the mean-square displacement^r 2(t)& of
single-particles in a one-dimensional lattice~single file-
diffusion! does not vary linearly on time but^r 2(t)&}t1/2 so
the tracer diffusion coefficient@D* (u)# is strictly zero, in
contrast with the normal diffusion~in dimensionsd larger
than one! where^r 2(t)&52dD* (u)t. Although this is since
long known,50 the interest for the investigation of tracer di
fusion in one-dimensional systems, where particles c
not overtake each other, has increased considerably in
last years by both theoretical and experimental studies.51

V. CONCLUSIONS

The exact forms of the thermodynamic functions for no
interacting linear adsorbates (k-mers! in a one-dimensiona
space were presented. Furthermore, the temperature and
erage dependence of the chemical and jump diffusion c
ficients for chains of arbitrary size were calculated and a
lyzed.

The calculations may have interesting potential appli
tion in adsorption equilibrium and diffusion of polyatom
linear adsorbates in quasi-one-dimensional materials,
carbon nanotubes.

FIG. 8. Relative jump diffusion coefficientRJ
k(u) versus sur-

face coverage for dimers. Solid lines~—! correspond to exact so
lution from Eq.~44!. MC simulations are displayed in full circles
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A thorough comparison with corresponding quantit
from Flory’s approximation was carried out. The resu
show that Flory’s approximation becomes inadequate
ready at fairly low coverage.The exact configurational e
tropy is appreciably larger than that from Flory’s solution f
all coverages and adsorbate sizes. This discrepancy is
tended to all thermodynamic functions as well. The anal
cal form of the chemical diffusion coefficient predicts a co
erage and adsorbate size dependence extraordinary w
than the one presumed by Flory’s approximation. The ar
cial effects that this approximation induces on the thermo
namic functions can now be compared with exact results
rationalized.

Approximate analytical expressions for the thermod
namic functions in higher dimensions were given, based
the exact partition function for one dimension and a conn
tivity ansatz. Preliminary comparison with MC simulation
shows approximate adsorption isotherm, in two and hig
dimensions, highly adequate for describing adsorption w
multisite occupancy on homogeneous surfaces in the la
gas approximation.
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APPENDIX A

The total number of configurations for a mixture
N k-mers andm molecules of a monoatomic solvent on
lattice withM sites and connectivityc is given in the Flory’s
approximation by31

ln VFl~M ,N,m!52N ln N1N2m ln m1m1M ln M2M

1N~k21!lnF ~c21!

M G . ~A1!

Hereforth, the following definitions apply

bFFl~M ,N,m!52 ln VFl~M ,N,m!, ~A2!

dFFl52SFldT2PFldM1mFldN, ~A3!

F̃Fl5
FFl

M
, S̃Fl5

SFl

M
. ~A4!

For the purpose of comparison with the exact solution
a pure polymer adsorbed on a one-dimensional lattice
should be noticed that c52 and m5M2kN
[numbers of empty sites. By rewriting the thermodynam
functions in terms ofu5kN/M , we get

bF̃Fl~u,T!52 ln VFl52H u

kF12 lnS u

kD G
2~12u!ln~12u!2uJ . ~A5!
l-
-

x-
i-

ker
-
-
d

-
n

c-

r
h
ce

r
it

c

Similarly for the molar entropyS̃Fl(u), spreading pres-
surePFl and chemical potentialmFl

S̃Fl~u!

kB
5

u

kF12 lnS u

kD G2~12u!ln~12u!2u, ~A6!

exp~bPFl !5

expF2
~k21!

k
uG

~12u!
, ~A7!

Ck exp~bmFl !5
u

~12u!k
, ~A8!

whereCk5k.

APPENDIX B

In order to calculatePn118 [ probability to have (n11)
adjacent empty sites on a one-dimensional lattice ofM sites
randomly covered byN k-mers (u5kN/M ) we first define

Ps[probability to find s empty sites between

two consecutivek–mers. ~B1!

Provided that all sets ofs>n11 contribute toPn118 , then

Pn118 5
N

M (
s5n

`

gs,n11Ps5
N

M (
s5n

`

~s2n!Ps , ~B2!

where gs,n11 denotes the number of waysn11 adjacent
empty sites can be taken out of a set ofs adjacent empty sites
lying between twok-mers. Since this is a typical waiting
time-like Poisson process, it will follow an exponential di
tribution of the stochastic variables,

Ps5abs. ~B3!

The parametersa andb can be determined from the no
malization condition

(
s50

`

Ps5a(
s50

`

bs5
a

12b
51 ~B4!

and the fact that the total number of empty sitesM2kN can
be written in terms ofPs as

M2kN5N^s&, ~B5!

where^s& is the statistical mean ofs

^s&5(
s50

`

sabs5ab
]

]b(
s50

`

bs5ab
]

]bS 1

12bD5
ab

~12b!2

~B6!

from Eqs.~B3! and ~B5!

a512b, ~B7!

b5^s&
~12b!2

a
, ~B8!

respectively.
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Resolving^s& from Eq. ~B4! and relacing it in Eq.~B7!
along witha from Eq. ~B6!, one gets

b5
^s&

11^s&
5

12u

F12
~n21!

n
uG , ~B9!

a5
u

@n2~n21!u#
. ~B10!

Finally, from Eqs.~B1!8, ~B2!, ~B8!, and~B9!

Pn118 5
N

M (
s50

`

sabs1n215
N

M

bn11

~12b!
, ~B11!

Pn118 5
~12u!n11

F12
~n21!

n
uGn . ~B12!

Particularly forn5k @which is the form necessary in Eq
~31!# it yields

Pk118 5
~12u!k11

F12
~k21!

k
uGk . ~B13!
J

.

i

-

r

y

APPENDIX C

We can think of the exact number of configuration f
given M ,N,k, andc, V(M ,N,c) as being

V~M ,N,c!5VFl~M ,N,c!•DV~M ,N,c!, ~C1!

whereVFl(M ,N,c) stands for the Flory’s counting strateg
for the same set of parameters, andDV does for the differ-
ence ~which is actually unknown at this point!. Thus, the
ratio

V~M ,N,c!

V~M ,N,c8!
5

VFl~M ,N,c!

VFl~M ,N,c8!
•

DV~M ,N,c!

DV~M ,N,c8!
~C2!

we now assume thatDV does not depend onc, so the Eq.
~C2! becomes

V~M ,N,c!

V~M ,N,c8!
5

VFl~M ,N,c!

VFl~M ,N,c8!
5F c21

c821
GN~k21!

~C3!

then, Eq.~19! is recovered.
It should be noted that Eq.~C1! and the assumptionDV

[DV(M ,N) is reminiscent of the way overcounting of con
figuration in the quasichemical approximation is handled
.
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