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Anharmonic adlayer vibrations on the Si„111…:H surface

R. Honke
Institut für Theoretische Physik, Universita¨t Regensburg, D-93040 Regensburg, Germany

P. Jakob* and Y. J. Chabal
Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, New Jersey 07974
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Using infrared absorption spectroscopy, the frequency and linewidth of the H-stretching vibration on the
Si~111!:H-~131! surface has been measured over a temperature range of 14–350 K. Anab initio calculation of
the temperature dependence of the anharmonic frequency shift and the intrinsic linewidth of this mode has
been carried out, which fully accounts for the quantum nature of the atomic vibrations by using interacting
phonon theory. The theoretical results show that at temperatures greater than 200 K, both line shift and
linewidth of the stretching mode are primarily due to strong anharmonic coupling to the bending modes, which
suffer decay into substrate modes via cubic anharmonicity. At low temperatures, direct coupling to various
phonon modes of the substrate dominates the temperature dependence of the line shift. In addition, predictions
are made for the frequency shift due to zero-point motion of the atoms. A strong sensitivity of the frequency
on the shape of the Si-H potential has been found that makes quantitative predictions of the influence of
zero-point motion very difficult. As a byproduct, the temperature dependence of the interatomic distances near
the surface has been obtained and a decrease of the H-Si distance with increasing temperature is predicted.
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I. INTRODUCTION

The physical properties of low-index surfaces of silic
crystals have been extensively studied in recent yea1

Among them, the Si~111! surface has probably receive
more attention than any other semiconductor surface.
strongly covalent character of the silicon-silicon bonds le
to the well-known reconstruction patterns of these surfac
The advent of wet chemical preparation techniques2–4 made
it possible to generate silicon surfaces covered with
monolayer of hydrogen.5 The hydrogen atoms saturate th
dangling bonds giving rise to a surface structure that is
most ideal in the sense that the silicon atoms near the sur
take almost the positions that would correspond to their b
equilibrium positions.

In addition to basic scientific interests, there is also a te
nological motivation for studying the structure as well as
dynamics of hydrogenated silicon surfaces. Electronic p
cesses occurring at the surfaces of semiconductor dev
sometimes involve surface and adsorbate phonon modes
their relaxation into substrate phonons.6

Dynamical properties of the Si~111!:H surface have been
studied by helium atom scattering,7,8 high-resolution electron
energy loss spectroscopy,9,10 and infrared absorption
spectroscopy2,11–13 and sum frequency generation.14–17 The
structure and the lattice vibrations of the system Si~111!:H-
~131! have been investigated theoretically by mod
calculations7,18 ~the second one without hydrogen termin
tion!, by semiempirical approaches19,20 and by ab initio
methods.21–27 Some of these works investigated the vibr
tions of the hydrogen atoms on a rigid silicon substrate b
PRB 590163-1829/99/59~16!/10996~18!/$15.00
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frozen phonon calculation.22,23 Others used molecular dy
namics within a semiempirical tight-binding approach19,28 or
with first-principles forces on the basis of the Car-Parinne
method.24,26 Full phonon dispersion curves along symme
directions in the surface Brillouin zone have been det
mined using lattice-dynamical models,7,18 a semiempirical
tight-binding approach20 and ab initio using density-
functional perturbation theory.27 The phonon modes of the
hydrogen-covered~111! surface of a silicon substrate can b
grouped into bulk and surface modes of the substrate m
rial, which have been determined theoretically in very go
agreement with experimental data, and into adsorbate vi
tions, namely, the hydrogen stretching and bending mod
The hydrogen stretching mode has a frequency of more t
four times the maximum frequency of the silicon phon
modes. While this frequency is known experimentally to
very high precision, the corresponding theoretical valu
found in the literature scatter considerably. One goal of t
paper is to clarify the reasons for these discrepancies
especially to assess the role of anharmonicity.

Beyond phonon frequencies and associated displacem
characteristics, which in most cases may be described wi
the harmonic approximation with possible anharmonic c
rections, several experiments in the past have focused
rectly on anharmonic properties of the adlayer modes.2,14,15

The H/Si~111! surface is very suitable for the study of suc
properties because the electronic gap is much larger than
Si-H stretch vibrations considered here and the inhomo
neous broadening29,30('0.05 cm21) is much smaller than in
other systems. The lifetime broadening is due only to m
tiphonon relaxation and has been measured directly by ti
10 996 ©1999 The American Physical Society
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PRB 59 10 997ANHARMONIC ADLAYER VIBRATIONS ON THE . . .
resolved spectroscopy.16,31,32 On flat Si~111!, the monohy-
dride relaxes extremely slowly (' 1 nsec! contributing less
than 0.01 cm21 to the linewidth.

In particular, the temperature dependences of the S
stretch mode line position and linewidth has been measu
by infrared absorption.2 While in these earlier measuremen
an extrapolation of the frequency to 0 K was difficult, fre-
quency data have been taken over a much larger temper
range down to much lower temperatures in the present w
Our new experimental results suggest that the anharm
coupling between the adsorbate modes and vibratio
modes of the silicon substrate is paramount for a proper
scription of the temperature dependence of the stretch
mode frequency and its intrinsic linewidth. The contributi
of zero-point motion to this frequency and its temperat
dependence are calculated, using anab initio technique that
is free of any model parameters. Thereby the phonon mo
responsible for the temperature dependence of the stretc
mode frequency are identified.

The paper is organized in the following way: In the ne
section, the preparation of the Si~111!:H surface and the ex
perimental setup are briefly described, and infrared data
temperatures between 14 and 350 K are presented. In
subsequent section, the structure of the system and the
non spectrum, obtained within the harmonic approximati
are discussed. Here, we also give some technical details
cerning ourab initio calculations. The fourth section is de
voted to the anharmonic dynamics of the hydrogen atom
the rigid substrate approximation, i.e., with the silicon ato
kept fixed at their classical equilibrium positions. The infr
red absorption spectrum of the system is calculated wi
this approximation, the appearance of multiphonon bou
states is discussed, and the connection with intrinsic lo
ized modes or discrete breathers,33,34 a much discussed phe
nomenon of classical nonlinear dynamics, is established
Sec. V, the coupling of the adsorbate modes to the subs
modes is taken into account. Particular attention is paid
the anharmonic shifts of the atomic equilibrium positio
near the surface as they enter the calculations of the
quency shift in a sensitive manner. Our theoretical results
the temperature dependence of the anharmonic line shift
the linewidth of the stretching mode in the infrared abso
tion spectrum are discussed and compared to the experim
tal data of Sec. II. The paper ends with a final discussion
some conclusions.

II. EXPERIMENT

There are three important aspects of the experiment:
wet chemical preparation of the flat H/Si~111!, the ability to
mount, cool, and measure the sample in an ultrahigh vac
environment, and the high resolution of the IR spectrome
To achieve the best surfaces, a thick thermal oxide is gro
on the Si sample, prior to the chemical preparation. T
sample is then thoroughly cleaned using the RCA steps
Si-Wafer cleaning,35,36 before the thick oxide is etched i
concentrated HF. The key step is the use of 40% ammon
fluoride solution immediately after to remove atomic roug
ness from the already H-terminated surface. The best re
were obtained for a 3 1/2 min immersion in NH4F at room
temperature as characterized by infrared absorption spec
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copy. The UHV chamber is equipped with a load-lock sy
tem, through which the sample is introduced. To achieve
lowest temperatures~'14 K!, the bevelled sample is
mounted onto a Cu holder with a Cu front shield, with t
only exposed part of the sample being the bevels at each
The mounted samples are then introduced into the UHV p
of the chamber. The temperature is measured in two wa
with a chromel/alumel thermocouple and with a Si dio
~accuracy61 K below 100 K! both attached to the Cu block
The temperature is varied by physically decoupling t
sample holder block from the liquid-He reservoir. A hig
spectral resolution is critical to this experiment since the l
can narrow to as low as 0.05 cm21. The nominal resolution
of the interferometer is 0.06 cm21. The actual resolution is
measured, using a CO cell and boxcar apodization, to
0.04 cm21. Two or four times zero filling is applied to obtai
smooth line shapes. The detector is a liquid N2-cooled InSb.
No reference surface is necessary because the measure
brational features are much sharper than any fluctuation
oscillation in the spectrum over the range of Si-H stre
vibrations (2060– 2150 cm21), where a linear background i
used.

The line shape of a vibrational mode primarily is chara
terized by a center frequency (v) and a linewidth (G). Since
anharmonic coupling induces a temperature dependenc
both quantities, we performed experiments measuringv(T)
and G(T) as a function of surface temperature. Figure
shows vibrational spectra of thenSi-H mode taken at 294 and
at 14 K. A marked red shift and line broadening ofnSi-H is
found with increasingT. The data taken at very low tem
peratures (T,50 K! can be used to quantify line broadenin
mechanisms other than the dephasing process and to d
mine the line position in the absence of anharmonic coup
to thermal fluctuations; it is found that for the samples us
in this work thenSi-H line shape at lowT is very close to
being Lorentzian andv(T) as well asG(T) converge to-
wards the zero K values ofv(0)52085.99 cm21 andG(0)
50.08 cm21, respectively. These numbers are crucial in t
analysis of the data. The early fits of Dumas , Chabal, a
Higashi,2 used v(0)52086.25 cm21, which they extrapo-
lated from their lowestT spectra taken at 140 K. The bette
estimate ofv(0) in our work is made possible by the exte
sion to lower temperatures~14 K!. Also, the present data ar
obtained with much better spectral resolution (0.04 cm21

versus 0.3 cm21) on samples with substantially better hom
geneity than originally measured in Ref. 2: we measure a
width at half-maximum~FWHM! of 0.71 cm21 instead of
0.85 cm21 at 295 K, and of 0.08 cm21 instead of an extrapo
lated value of 0.2 cm21 at low temperatures. Note, howeve
that samples of different quality show the same tempera
dependence of the Si-H stretch peak position, with howe
different absolute frequency position, due to average dom
size: The larger the average domain size, the higher the S
stretch frequency.29,37 These differences, in particular th
discrepancy ofv(0),38 are probably the main reasons for th
extraction of a too low phonon frequency responsible for
dephasing process in Ref. 2.

There are two common ways to plot the data: a linear p
of v andG as a function of temperature highlights the hig
temperature behavior while a logarithmic plot ofDv(T)
[v(T)2v(0) andG versus the inverse temperature (1/T)
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10 998 PRB 59R. HONKE et al.
emphasizes the low temperature behavior. The depend
at low temperatures is dominated by anharmonic couplin
low frequency phonons, while the high temperature data
sensitive to all phonon frequencies. Both types of plots
therefore commonly used.

Figures 1~b! and 1~c! show the linear dependence ofv(T)
@Fig. 1~b!# andG(T) @Fig. 1~c!# versus the temperature~the
logarithmic dependence ofDv(T) andG(T) versus 1/T, for
H/Si~111!-(131) is presented below~Figs. 13 and 15!,
along with the results of our theoretical calculation!. The
data are obtained by a Lorentzian fit and a deconvolution
the inhomogeneous broadening using the lowest-tempera
data (T514 K).39

At temperatures below 140 K a puzzling observation is

FIG. 1. ~a! Set of infrared absorption spectra showing the S
stretch mode taken at room temperature~T5294 K! and at 14 K
using a nominal spectral resolution of 0.12 and 0.06 cm21, respec-
tively. The temperature dependent line position and linewidth of
Si-H stretch mode are displayed in~b! and ~c!.
ce
to
re
e

of
re

made: the width@Fig. 1~c!# levels off faster than expecte
and decreases only very slowly towards lowerT. This is a
minor effect, of order 0.05 cm21, but it unfortunately pre-
vents an effective use of the low-T data.40 Also a slight extra
redshift of nSi-H mode by approximately 0.01– 0.02 cm21

with decreasingT is discernible.

III. STRUCTURE AND PHONON SPECTRUM
IN THE HARMONIC APPROXIMATION

On the~111! surface of silicon, the hydrogen atoms for
a triangular lattice as displayed in Fig. 2. They saturate
dangling bonds of the silicon atoms at the surface and he
no reconstruction occurs. In fact even at and near the surf
the silicon atoms take almost the same positions they wo
hold in a bulk crystal. This has been verified in ourab initio
calculations, which have been carried out for a repeated
geometry.27,41 Each slab consists of 10 layers of silicon a
both the top and bottom surface are covered with hydrog
The vacuum distance between two adjacent slabs was ch
to be 8 Å. This distance was large enough that no dispers
was found for the electronic states along the direction nor
to the surface. In the framework of the local-density appro
mation, the Kohn-Sham equations were solved in a pla
wave basis set. The interaction between the ions and vale
electrons is described by soft nonlocal pseudopotentials
the Kerker42 type for silicon and of the Troullier-Martins43

type for hydrogen. A cutoff energy of 10 Ry was used w
test calculations going up to 16 Ry. Integrations over el
tronic states in reciprocal space have been carried ou
seven special points in the irreducible part of the surfa
Brillouin zone.44 The atomic positions have been relaxed
finding the zeros of the Hellmann-Feynman forces.

Applying density-functional perturbation theory on th
basis of the local density approximation,45,46 phonon fre-
quencies can be calculated for any wavevector in the sur
Brillouin zone. In Fig. 3 the results of such a calculation a
shown for the relaxed structure along the boundary of
irreducible wedge of the surface Brillouin zone as indica
in Fig. 2. They are compared with experimental data fro
high-resolution electron energy loss spectrosco

e

FIG. 2. Side view and top view of the hydrogenated Si~111!
surface, and surface Brillouin zone.
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PRB 59 10 999ANHARMONIC ADLAYER VIBRATIONS ON THE . . .
~HREELS!.9 The phonon modes with frequencies belo
500 cm21 largely correspond to vibrations of the substra
atoms with the hydrogen following the motion of the unde
lying substrate atoms adiabatically. Only two surfa
branches (L1 ,L2) near the upper edge of the projected bu
phonon dispersion of silicon have eigenvectors with an
preciable contribution of hydrogen displacements.

Separated from the projected bulk spectrum of silic
there are three phonon branches that correspond to m
where mostly the hydrogen atoms are vibrating with o
very small eigenvector components corresponding to the
con atoms of the underlying substrate layers. At appro
mately 600 cm21, two branches are located that correspo
to two bending modes. The hydrogen atoms are vibra
parallel to the surface. At theḠ point, these two modes ar
degenerate, while at the K¯point, the two bending modes ar
not degenerate because of the lower symmetry of the
strate as compared to the triangular adsorbate lattice.
degeneracy is lifted even within the rigid-substrate appro
mation. The frequency splitting at the M¯ point is found to be
24 cm21 in good agreement with the HREELS value
20 cm21. In the rigid substrate approximation, when the s
con atoms are fixed at their equilibrium positions, the sp
ting at the M̄point reduces to 10 cm21. The difference of
14 cm21 reflects the fact that the eigenvectors of the bend
modes have appreciable components corresponding to
displacements of the silicon atoms of the first layer. T
remaining splitting and the remaining bandwidth of t
bending mode branches may be due to dipole-dipole inte
tion of the hydrogen atoms as well as due to an indir
interaction via the electronic system in the substrate.

Far above the frequency region of the substrate mo
the branch of the hydrogen stretching vibrations is locate
approximately 2100 cm21. The total bandwidth of the
stretching modes~including off-symmetry directions! was
found to be around 9 cm21 and the components in the ass
ciated eigenvectors corresponding to displacements of
strate atoms are very small. The dynamic dipole coupl

FIG. 3. Phonon dispersion along directions of high symmetry
the surface Brillouin zone.~Symmetric slab with 46 substrate lay
ers.! Circles: HREELS data by Stuhlmann, Bogda´ny, and Ibach
~Ref. 9!. SH stands for shear-horizontal polarization and SP
polarization parallel to the wave vector.RW denotes the Rayleigh
branch, L1 , L2 , S6 , S8 , and S88 label various surface phono
branches,R1 andR3 denote surface resonances~Ref. 27!.
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approach applied to the stepped Si~111!:H surface and ex-
trapolated to large terrace sizes12 yields a value of
D vdyn5 7–8 cm21 for the nSi-H bandwidth in close agree
ment with the theoretical value.

While the phonon frequencies in the band of the subst
modes are in good agreement with experimental data, th
are visible discrepancies for the bending and stretching
brations. A comparison of our harmonic stretching and be
ing mode frequencies at theḠ point with experimental and
other theoretical data is made in Table I.

One may be tempted to attribute these discrepancie
shortcomings of theab initio methods used. In particular, th
description of the interaction of the hydrogen ion with t
valence electrons via a pseudopotential may appear unu
at first glance. Also, one may wonder whether the kine
cutoff energy of 10 Ry used in most of our calculations h
been sufficiently high to guarantee convergence. In orde
test the latter point, the kinetic energy cutoff has been
creased to 13 and 16 Ry. The values of the frequencies o
stretching and bending mode and the frequency of the Lu
modes at the Brillouin zone center and the silicon-hydrog
distance are shown in Table II for these three cases.
relative deviations from one cutoff value to the next is of t
same order for the frequencies of the three modes. In orde
provide an independent test of ourab initio scheme, we have
also employed an alternative code47 with a different pseudo-
potential generated by a scheme due to Hamann48–50 and
used in fully separable form.51 The stretching mode fre
quency has been determined here by Car-Parinn

f

r

TABLE I. Hydrogen stretching mode frequency in the harmon
approximation.R, rigid substrate approximation;a, this work, 10
Ry cutoff, DFPT;b, this work, 30 Ry cutoff, molecular dynamics
c, this work, 10 Ry cutoff, frozen phonon. The experimental fr
quency at 0 K~differing from the harmonic value by anharmon
corrections! is 2086.0 cm21 ~see Fig. 1!.

Frequency (cm21) Reference

2178 21R
1997 22R
2023 23R
2022 25R
2218 19
1984 24
1965 26
2071 20
2133 a
2104 b
2101 c R

TABLE II. Convergence behavior of phonon frequencies a
the Si-H distance.

Cutoff energy~Ry! 10 13 16

ns (cm21) 2133 2127 2144
nb (cm21) 593 598 600
nLucas(cm21) 493 498 499
dSi-H (Å) 1.492 1.492 1.491
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11 000 PRB 59R. HONKE et al.
simulations.47 These calculations have been carried out a
kinetic energy cutoff of 30 Ry, although tests for the sila
molecule showed that they should have been converged
lower cut-off. The resulting value for the stretching mo
frequency of Si~111!:H was 2104 cm21. With this latter
pseudopotential, it has also been possible to reproduce
experimental bond length and vibrational frequency of
hydrogen molecule52 within 4% and 2%, respectively.

When assessing the remaining discrepancies between
theoretical values for the stretching mode frequency in
harmonic approximation, we have to note that these disc
ancies are by orders of magnitude larger than the precisio
0.1 cm21 that is reached in the infrared absorption spectr
copy ~IRAS! experiments reported in Sec. II. However, w
also stress that our theoretical values for the hydro
stretching mode frequency are consistently higher than
experimental value. This fact will be explained through a
harmonicity in the following section.

An approach going partly beyond the local-density a
proximation ~LDA ! is the generalized gradient approxim
tion ~GGA!. A GGA implementation53 is also provided in the
code of the Fritz-Haber Institut.

A comparison of the hydrogen on-site potential for t
two pseudopotential approaches based on the LDA and
one based on the generalized gradient approximation~GGA!
~Ref. 53! is made in the next section, and very good agr
ment is found between them.

On the other hand, the strong zero-point motion of
hydrogen atoms is expected to cause non-negligible shift
the bare~harmonic! frequencies of the adsorbate modes. T
has partly served as a motivation to carry out the study
ported on in this paper.

IV. RIGID SUBSTRATE APPROXIMATION

The primary goal of our theoretical analysis is to provi
an understanding of the infrared absorption spectra
Si~111!:H. In this system, infrared absorption is essentia
due to the changes of the dipole moment through variati
of the distance between the hydrogen atoms and the un
lying silicon layer. These changes of the Si-H distance oc
primarily in the hydrogen stretching vibrations which ha
eigenvectors with negligible content of substrate displa
ments. Therefore, the approximation of a rigid substrate w
the silicon atoms kept fixed at their equilibrium positio
should be a reasonable first approach for the descriptio
the infrared absorption in this system. We may then s
with the following Hamiltonian for the displacementsu( l ) of
the hydrogen atoms from their classical equilibrium positio
labelled by the indexl :

HRS5(
l

H p2~ l !

2mH
1V„u~ l !…J

1
1

2 (
l ,l 8

(
a,b

fab~ l l 8!ua~ l !ub~ l 8!, ~1!

wheremH is the mass of a hydrogen atom and Greek indi
denote Cartesian components. The terms in the curly br
ets constitute the on-site Hamiltonian with the kinetic ene
and with the on-site potentialV(u). Because of the smal
mass of the hydrogen atoms, their zero-point motion lead
a
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large displacements. Therefore, the anharmonicity of the
site potential is very important and will be fully taken int
account. The last term in Eq.~1! is the intersite interaction
Its smallness is reflected in the small bandwidths of
stretching and bending mode dispersion curves. For a po
tial falling off as slowly as the 1/r Coulomb potential, anhar
monic contributions to physical quantities come into play
first and higher orders of̂u2&/dH-H

2 , while the root mean
square displacementA^u2& of the hydrogen atoms is muc
smaller than the distancedH-H between neighboring hydro
gen atoms. Consequently, it suffices to account for the in
site interaction in harmonic approximation. In summary,
may characterize our system asweakly coupled strongly an
harmonic quantum oscillators.

The on-site potential has been determinedab initio on a
mesh of 2687 grid points by calculating the ground-st
energy of the slab with the hydrogen film rigidly displace
Kerker and Martins-Troullier pseudopotentials were us
and a kinetic energy cutoff of 10 Ry. Figures 4~a! and 4~b!
show the potentials for displacements in the direction norm
to the surface(z) and along~112̄), i.e., thex direction, re-
spectively. Obviously, the potential is very flat in the dire
tion parallel to the surface. In order to test the precision
our numerical calculations of the on-site potential, we ha
repeated the calculations for thez andx directions shown in
Fig. 4 with different pseudopotentials48–51 as mentioned in
the previous section and a cutoff of 30 Ry within LDA an
GGA implemented in the code of th
Fritz-Haber-Institut.47,53 The results are practically identica
with the data of the first calculation on the energy scale
Figs. 4~a!, 4~b!. They deviate only at large distances from t
potential minimum.

The force constantsfab( l l 8) for lÞ l 8 are obtained from
a calculation of dynamical matrices on the basis of dens
functional perturbation theory~DFPT!, and

fab~ l l !52 (
lÞ l 8

fab~ l l 8!. ~2!

The harmonic stretching and bending mode frequencies
tained from the above on-site potential by fitting to a p
rabola arevs52101 cm21 and vb5570 cm21, which is 32
and 23 cm21 lower than the harmonic frequency determin
by DFPT in the full lattice-dynamical slab calculation.

In a first approximation, we neglect the intersite couplin
One may then try to determine the stretching and bend
mode frequencies as an expansion in powers of\. For this
purpose, one has to expand the on-site potentialV(u) with
respect to the displacement components.23 The coefficients
of this expansion have been obtained by differentiating
merically total energies, Hellmann-Feynman forces
second-order force constants determined by DFPT. At or
\, a frequency shift of about 100 cm21 has been found for
the stretching mode. Only cubic and quartic anharmonic
enter in this calculation. At order\2, fifth and sixth-order
terms in the expansion ofV(u) are needed. They were foun
to contribute more than 50% of the\2 contribution. Its total
value amounts to approximately137 cm21. In the case of
the bending mode, the contribution of order\2 is even larger
than that of first order in\ because of strong compensatio
between the perturbation-theoretical expressions. It is a
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PRB 59 11 001ANHARMONIC ADLAYER VIBRATIONS ON THE . . .
instructive to compare the relative magnitudes of the diff
ent terms in a diagrammatic representation of the contr
tion of order\2 to the anharmonic frequency shift and to t
static displacement̂u3&. It turns out that the contribution
involving third-order static cumulantŝ (ua2^ua&)(ub
2^ub&)(ug2^ug&)& are not small. This indicates that sel
consistent schemes which neglect these cumulants like
renormalized harmonic approximation in its simplest fo
do not seem to be appropriate for the system Si:H.

Therefore, as long as coupling to substrate modes is
glected, we go beyond low-order perturbation theory and

FIG. 4. On-site potential of the hydrogen atoms.~a! Potential
along the surface normal.s, LDA, 10 Ry cutoff, Kerker~H! and
Troullier-Martins ~Si! pseudopotentials;L, LDA, 30 Ry cutoff,
Kleinman-Bylander separable pseudopotentials;n, GGA, 30 Ry
cutoff, Kleinman-Bylander separable pseudopotentials; dashed
Morse potential.~b! Potential along thex direction ~parallel to the
surface!. s, LDA, 10 Ry cutoff, Kerker~H! and Troullier-Martins
~Si! pseudopotentials;L, LDA, 30 Ry cutoff, Kleinman-Bylander
separable pseudopotentials;n, GGA, 30 Ry cutoff, Kleinman-
Bylander separable pseudopotentials; dashed line, harmonic os
tor potential.
-
-

he

e-
i-

agonalize the full on-site Hamiltonian. For this purpose,
decompose the on-site potential in the following way:

V~u!5D~12e2au3!21 1
2 mHvb

2~u1
21u2

2!1W~u!, ~3!

wherea25mHvs
2/(2D) and the parameterD has been given

the value 4 eV.vs and vb are the harmonic stretching an
bending mode frequencies, respectively. Figure 4~a! shows
that for u15u250, the on-site potential fits a Morse pote
tial fairly well with the above values fora and D. On the
observation that for distances of the order of the root m
square displacements of the hydrogen atoms due to t
zero-point motion,V(u) deviates very little from cylindrical
symmetry around theu3 axis, we letW depend only on the
variables u3 and ui5Au1

21u2
2, putting W(u)'W̃(ui ,u3)

5W(u1,0,u3). The eigenfunctionsc n̄ of the full on-site
Hamiltonian are then determined as linear combinations
products of eigenfunctions of the Morse Hamiltonia
wn'

(u3) with quantum numbern' , and the Hamiltonian of
an isotropic two-dimensional harmonic oscillato
jni ,m(ui)exp(imf) with radial quantum numberni and an-

gular quantum numberm,

c n̄~u!5 (
n' ,ni ,m

Cn'nim
~ n̄! wn'

~u3! jni ,m~ui!e
imf, ~4!

where tanf5u2 /u1 . The matrix elements ofW̃ have been
determined numerically, and the basis set of Morse and
cillator functions has been successively increased until c
vergence was reached for the eigenvaluesEn̄ . The spectrum
of eigenvalues determined in this way is shown in Fig. 5 a
compared to the energy spectrum of a three-dimensional
monic oscillator with frequenciesvs,b and to the spectrum
corresponding to the potential~3! with W(u)50. @In all three
cases,V(0)50.] Apart from a constant shift, the latter po

e,

lla-

FIG. 5. Energy levels of the hydrogen on-site potential.A,
Morse potential for displacements normal to the surface1 two-
dimensional~2D! harmonic oscillator for displacements parallel
the surface;B: anisotropic harmonic oscillator;C: complete on-site
potential. ~a! ground state;~b! second excited state of predom
nantly bending character;~c! first excited state of predominantl
stretching character;~d! second excited state of predominant
stretching character.
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tential reproduces the lowest six energy levels fairly we
However, strong deviations occur at higher energies.

An important feature of the additional potentialW is that
it couples the motion of the hydrogen atoms normal a
parallel to the surface. This causes the eigenfunctions of p
dominant stretching character to contain appreciable adm
tures of excited states of the bending motion and vice ve
Two examples are given in Fig. 6, where the modulus of t

expansion coefficientsCn'nim
(n̄) is plotted as a histogram ove

the quantum numbersn' ,ni ,m, and it has important conse
quences on the infrared absorption spectrum.

A. Infrared absorption spectrum

In our system, infrared absorption happens essentially
the dipole moment normal to the surface,M3 , due to the
presence of the hydrogen film. It may be expanded in pow
of the hydrogen displacements:

M35M3
~0!1(

l
$M33

~1!u3~ l !1 1
2 M333

~2!u3
2~ l !

1 1
2 M311

~2! @u1
2~ l !1u2

2~ l !#1O~u3!%. ~5!

FIG. 6. Admixtures of basis states to the eigenstates with lev
a andb. n' , quantum number of the Morse potential;ni ,m, radial
and angular quantum numbers of the 2D isotropic harmonic os
lator potential.
.

d
e-
x-
a.
e

ia

rs

Here u3 denotes the displacement perpendicular to the s
face ~z!. Second-order contributions involving two differen
lattice sites have been neglected in this expansion for
same reason we neglect the intersite interaction in comp
son with the on-site potential.

The first-order dipole momentM33
(1) has been determine

ab initio by differentiating numerically the dipole moment o
a slab as a function of the distance between the hydro
film and the substrate. Its value was found to be 1.3 A s/2.
In the same way, we have investigated the coefficientsM333

(2)

and M311
(2) and found them smaller than the accuracy of o

numerical calculations. From these findings we conclude
the second-order infrared absorption from the hydrogen fi
should not exceed the background second-order absorp
of the substrate, and it is essentially the first-order spect
that is seen in the experiment. Having neglected inter
coupling, the absorbed intensityI (v) is then proportional to
the displacement-displacement correlation function of
single oscillator,

I ~v!}E
2`

`

dt eivt^u3~ t !u3~0!&

5
2p\

Z (
m̄,n̄

e2bEn̄z^n̄uu3um̄& z2 d~\v1En̄2Em̄!,

~6!

whereb51/(KBT), T being the temperature andZ being the
partition function of the anharmonic oscillator. The matr
elementŝ n̄uu3um̄& have been determined numerically wi
the eigenfunctions introduced in the previous subsection

In Fig. 7, the infrared spectrum is shown as obtained fr
an evaluation of expression~6! involving basis functions
with ni<10 andn'<4. In the harmonic approximation, th
spectrum would consist of one peak only, situated at the b
stretching mode frequencyvs . Because of the anharmonic
ity of the on-site potential of the hydrogen atoms, the follo
ing new features occur:~i! The position of the main peak i
down-shifted by 71 cm21. ~ii ! Additional lines appear at fre
quencies which are approximately higher harmonics of
frequency of the main peak, because the corresponding
trix elements ofu3 between the ground state and higher e
cited states no longer vanish.~iii ! Small additional maxima
appear around the strong peaks because the states of
dominantly stretching character have energy levels that
no longer equidistant.~iv! As the on-site potential couple

ls

il-

FIG. 7. Theoretical infrared absorption spectrum for decoup
hydrogen atoms on a rigid substrate.
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displacements parallel and normal to the surface, the ma
element ofu3 between the ground state and the second of
excited states with predominantly bending character~see Fig.
6! is of considerable magnitude and gives rise to the low
of the four major peaks in Fig. 7. The difference between
energies of the first excited state of predominantly bend
nature and the ground state corresponds to 575 cm21, which
is very close to the bare bending mode frequency
570 cm21 in the rigid substrate approximation.

The spectrum at zero temperature looks very similar
the one at 300 K shown in Fig. 7 with the exception that
satellites near the four high peaks, which are due to tra
tions from thermally excited states, have disappeared and
high maxima themselves have slightly grown in intensity

B. Mean positions and square displacements

By evaluating the moments

^~ua!n&5
1

Z (
m̄

e2bEm̄^m̄u~ua!num̄& ~7!

one obtains the contributionDdSi-H of the zero-point and
thermal motion of the hydrogen atoms to the Si-H distan
(n51, a53) and the mean square displacements (n52) of
the hydrogen atoms normal to the surface@Debye-Waller
factor W'5^(u32^u3&)

2&] and parallel to the surface (Wi
5^u1

2&). The result forDdSi-H is shown in Fig. 8 as the uppe
solid curve. The zero-point motion enlarges the Si-H d
tance by only 0.3%. With increasing temperature, this d
tance decreases. This behavior is due to the anharmonic
pling of the stretching mode to the bending vibration
Taking into consideration that at temperatures below 60
the bending modes, but not the stretching modes can be
mally excited and assuming that the bond length is conse
in the bending vibration, this decrease ofdSi-H can be under-
stood as a geometrical effect. On the whole, the anharm
effects on the Si-H distance are surprisingly small. In fa
the root mean square displacement in thez direction (AW')
is larger by almost a factor of 6. The temperature behavio
W' is shown in Fig. 9 and compared to the prediction of t

FIG. 8. Anharmonic shifts of interlayer distances. Solid line
Si-H distance (dSi-H'1.49 Å); upper curve, exact result withi
rigid substrate approximation; center curve, first order perturba
theory without substrate modes; lower curve, first-order pertur
tion theory including substrate modes; dashed lines, distances
tween adjacent Si-Si layers; (dSi-Si'0.77 Å); upper curve, anhar
monic shift of the distance between the first two substrate lay
d(Si-Si)1

; lower curve: anharmonic shift of the distance between t
corresponding substrate layers in the bulkd(Si-Si)bulk
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harmonic approximation. The anharmonic contribution
close to 10%. Because of the flatness of the on-site pote
in the directions parallel to the surface, the correspond
mean square displacements in these directions are m
larger (Wi'0.03 Å2 at T50), while the anharmonic contri
bution to this quantity does not exceed 6% in the tempera
range between 0 K and 600 K.

C. Renormalized dispersion and multiphonon bound states

In our system, the intersite coupling is small in compa
son to the on-site potential and may therefore be treate
perturbation theory. At lowest order, the wave functions
the ground stateC0 and the first excited state of stretchin
characterCs1,q have the respective forms

C05)
l

c0„u~ l !…, ~8!

Cs1,q5
1

AN (
l

eiq•R~ l !cs1„u~ l !…)
l 8Þ l

c0„u~ l 8!…, ~9!

where the indexs1 stands for the quantum numbern̄ of the
first excited state of the one-oscillator Hamiltonian havi
predominantly stretching character, the index 0 denotes
ground state,R( l ) is the equilibrium position of hydrogen
atoml , andN is the total number of unit cells. By evaluatin
numerically matrix elements

Ja
~m̄,n̄!5E cm̄~u!uac n̄~u! d3u, ~10!

Kab
~m̄,n̄!5E cm̄~u!uaubc n̄~u! d3u, ~11!

we obtain the frequenciesvqs5(Es1,q2E0)/\ in first-order
perturbation theory. In writing Eqs.~10! and ~11!, we have
chosen the wave functionsc n̄ to be real. The difference o
the energiesEs1,q andE0 associated with the wave function
Cs1,q andC0 within this approximation is

,

n
-
e-

rs
o

FIG. 9. Mean square displacements of the hydrogen atoms, r
substrate approximation. Solid, anharmonic on-site poten
dashed, harmonic approximation.



rg
in
g

ic
d
o

m

ir

of
to
rac-
-
e
e

the
o

nc-
nic
e of

onic
(
y
-

is
ny-

to
tor
nd
-
rys-
at

eri-

of
ro-
m
for
ith
mi-
d

ors
ter.

to
de

ling
rba-
ntly,
ands
We
-
is

i-
II

e-

th
on
po
n-
ic
y
o
ith

d
nd
op
e

11 004 PRB 59R. HONKE et al.
Es1,q2E05Es12E01
1

2 (
lÞ0

fab~ l0!

3@2cos~q•R~ l !!Ja
~s1,0!Jb

~s1,0!1Ja
~s1,s1!Jb

~0,0!

1Ja
~0,0!Jb

~s1,s1!22Ja
~0,0!Jb

~0,0!2Kab
~s1,s1!1Kab

~0,0!#.

~12!

Here, E0 and Es1 are the ground state energy and ene
value of the first excited state of predominantly stretch
character of a single oscillator with no intersite couplin
The quantities\vqs , which may be regarded as vibron
quasiparticle energies of the anharmonic system, are
played in Fig. 10 and compared to the harmonic phon
frequencies as obtained by diagonalizing the dynamical

FIG. 10. Top and center, one-phonon dispersion curve of
hydrogen stretching mode within rigid substrate approximati
Top, harmonic approximation; center, with anharmonic on-site
tential; bottom, Dispersion of the ‘‘two-phonon bound state’’ e
ergy; thick solid, rigid-substrate Hamiltonian with full anharmon
on-site potential, first-order1 second-order perturbation theor
with respect to intersite coupling; lower dashed, contribution
first-order perturbation theory; thin solid, Bose-Hubbard model w
parameters fromab initio frozen phonon calculations by Li an
Vanderbilt~Ref. 23!; upper dashed, Bose-Hubbard model of Li a
Vanderbilt, second-order perturbation theory with respect to h
ping parameter. All curves shifted to the same frequency valu

the Ḡ point.
y
g
.

is-
n
a-

trix. Apart from the shift of 71 cm21, the two dispersion
curves also differ by their bandwidths and partly the
shapes.

In the same way as for the energiesEs1,q one may use
perturbation theory to calculate higher vibrational energies
our system of weakly coupled anharmonic oscillators. Due
lattice translational invariance, these energies can be cha
terized by a wave vectorq, and the corresponding wavefunc
tions have Bloch form. In addition to wave functions of th
form ~9! which is a linear combination of states with on
oscillator in an excited state while all the others being in
ground state~states of type I!, there are also those with tw
and more oscillators being in excited states~states of type II!,
which have to be taken into account as zero-order wave fu
tions in the perturbation calculation. In the case of harmo
oscillators, the states of type I are degenerate with thos
type II, and for a given Bloch wave vectorq, continuous
bands of energies arise. In the case of strongly anharm
oscillators, the zero-order energy of a state of type I,E0

1En̄2E0), may differ from the zero-order energy of an
state of type II (E0 plus a sum of integer multiples of one
oscillator excitation energiesEn̄2E0) by much more than
the intersite interaction matrix elements. In this case, it
obvious that the energy spectrum of the coupled ma
oscillator system for given wave vectorq contains, in addi-
tion to continuous bands, isolated points corresponding
states which are predominantly of type I, i.e., one oscilla
is in an excited state while the others are in their grou
state. These correspond to theN-phonon bound states. Two
phonon bound states have first been considered for bulk c
tals in the late sixties.54,55 Later, it has been recognized th
they are likely to occur in adsorbate systems,56,57 and in the
meantime, they have been found and investigated exp
mentally and theoretically for Si~111!:H,15,23 C~111!:H,58

and Ru~001!:CO.59,60 Because of the complex structure
the single-oscillator spectrum, the condition that the ze
order energy of states of type I is sufficiently different fro
any zero-order energy of states of type II can be met only
low energy levels. We consider here the state of type I w
one oscillator being in the second excited state of predo
nantly stretching character~which corresponds to the 23r
single-oscillator level!. We denote this level bys2. The state
of type II coming closest to it in energy has seven oscillat
in the first excited state of predominantly bending charac
The energy difference is 13.4 cm21, which is still consider-
ably larger than the bandwidth of the stretching mode due
the intersite interaction, but of the same order of magnitu
as the bandwidth of the bending modes. However, coup
between these two states occurs only in high-order pertu
tion theory and may therefore be neglected. Conseque
there is a single branch separated from the continuous b
in the energy spectrum of the many-oscillator system.
calculate the dispersionEs2,q of this branch using perturba
tion theory up to second order. The first-order contribution
of the form ~12! with s1 replaced bys2. It is very small
since the matrix elementsJa

(s2,0) are small.~They would van-
ish in the case of harmonic oscillators!. In second order of
the intersite interaction, we take into account only the dom
nant contribution, which is the coupling to states of type
with two oscillators being in the first excited state of pr
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dominantly stretching character (s1), while the other oscil-
lators are in their ground state. It has the explicit form

D2Es2,q5
uJ3

~s1,s2!J3
~s1,0!u2

E01Es222Es1
(
lÞ0

f33
2 ~0l !$11cos@q–R~ l !#%.

~13!

Figure 10~c! shows the dispersion of the ‘‘two-phono
bound state’’ which is extremely weak if compared even
the one-phonon dispersion of the stretching modes. The
persion results mainly from the coupling to states of type
treated in second-order perturbation theory, but the fi
order contribution is not negligible. However, the small s
con displacements accompanied by the displacements o
hydrogen atoms and neglected in the rigid substrate appr
mation may in fact have a larger effect on the dispersion
the ‘‘two-phonon bound state’’ than the intersite coupling
the Hamiltonian~1!.

In Fig. 10~c! our results are also compared to an earli
pioneering calculation of the dispersion of the ‘‘two-phon
bound state’’ by Li and Vanderbilt23 on the basis of anad
hoc Ansatz for an effective Hamiltonian, namely, the bos
Hubbard Hamiltonian

Heff5«0(
l

al
1al1G(

l
~al

1!2~al !
21t (

^ l l 8&

al
1al 8 .

~14!

Here,al
1 andal are creation and annihilation operators. T

last sum is running over nearest-neighbor pairs. The th
parameters occurring in this Hamiltonian were obtained fr
frozen-phonon calculations. In particular, the relations«0
5Es12E0 and 2G5Es21E022Es1 were used and the en
ergiesEn̄ of the on-site Hamiltonian were calculated by u
ing an expansion of the on-site potentialV in powers of the
displacement components truncated after the fourth orde

V~u!5 1
2 mH@vb

2~u1
21u2

2!1vs
2u3

2#1a3u3
31b3~u1

21u2
2!u3

1a4u3
41b4~u1

21u2
2!u3

21c4~u1
21u2

2!2. ~15!

The numerical determination of the lowest eigenvaluesEn̄
for this Hamiltonian is affected by the complication that t
potential is unstable for certain directions ofu. As the hop-
ping parametert is much smaller than the anharmonici
parameterG, second-order perturbation theory describes
curately the dispersion of the ‘‘two-phonon bound state’’
demonstrated in Fig. 10~c!. Unlike the treatment of the ful
Hamiltonian in the rigid substrate approximation, there is
contribution of first-order perturbation theory. A boson Hu
bard Hamiltonian has also been applied to the infrared pr
erties of the system Si~111!:H-~131! by Persson.62

A straightforward derivation of an effective Hamiltonia
of the form ~14! from the original Hamiltonian~1! seems to
be possible only in the regime of weak anharmonicity. F
lowing Refs. 61 and 63 one may carry out a unitary tra
formation in the form of an expansion in powers of a sm
parameterh, which may be chosen as the ratio of the ro
mean square displacements due to zero-point motion a
length that is a typical ratio of force constants ofnth and
~n11!th order, e.g.,ua3 /a4u. We use the expansion~15! in
the rigid substrate Hamiltonian~1! and decompose the latte
as
is-
I
t-

he
xi-
f

,

e

-
s

o
-
p-

-
-
l
t

a

HRS5H21hH31h2H4 , ~16!

whereH2 represents the harmonic on-site part ofHRS, hH3
stands for the cubic anharmonic part of Eq.~15!, andh2H4
consists of the quartic anharmonic part and of the inter
interaction. Starting from a unitary operatorS511 ihA
1h2B1O(h3) and choosing the operatorsA and B appro-
priately, the transformed HamiltonianH̃5S21HRSS does not
contain any terms of first order inh, and the second-orde
terms all commute with the number operators and are of
form

DH̃5
\2

4 (
l

H N1

2vs
2 ~al

1!2~al !
2

1
N2

vsvb
al

1al@bl
1bl1cl

1cl #

1
M1

2vb
2 @~bl

1!2~bl !
21~cl

1!2~cl !
2#1

M2

vb
2 bl

1blcl
1cl J

1
\

2vs
(
l ,l 8

f33~ l l 8!al
1al 81

\

2vb
(
l ,l 8

$f11~ l l 8!bl
1bl 8

1f22~ l l 8!bl
1bl 81f12~ l l 8!@bl

1cl 81cl 8
1bl #%. ~17!

The coefficients in Eq.~17! are related to the coefficients i
the expansion of the on-site potential~15! via

N1512a4230~a3 /vs!
2, ~18!

N254b4212
a3b3

vs
2 1~2b3!2H 1

~vs1vb!22vb
2

1
1

~vs2vb!22vb
2J , ~19!

M1512c42~2b3 /vs!
2, ~20!

M25M124c4 . ~21!

This effective Hamiltonian may also be obtained in a diffe
ent way, that highlights the underlying physical approxim
tion. One may start with the classical equations of motion
the displacementsu( l ). Introducing a stretched time coord
natet5h2t and extracting the fast oscillations by expandi

u3~ l ,t !5Al~t!e2 ivst1h$ 1
2 a l

~0!~t !1a l
~2!~t !e22ivst

1a l
~b!~t !e22ivbt%1c.c.1O~h2!, ~22!

u1~ l ,t !5Bl~t!e2 ivbt1h$b l
~1 !~t !e2 i ~vs1vb!t

1b l
~2 !~t !e2 i ~vs2vb!t%1c.c.1O~h2!, ~23!

u2~ l ,t !5Cl~t!e2 ivbt1¯, ~24!

one is led to three nonlinearly coupled discrete nonlin
Schrödinger equations:
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2ivs

]

]t
Al5(

l 8
f33~ l l 8!Al 81N1uAl u2Al

1N2~ uBl u21uCl u2!Al , ~25!

2ivb

]

]t
Bl5(

l 8
@f11~ l l 8!Bl 81f12~ l l 8!Cl 8#1@M1uBl u2

1M2uCl u21N2uAl u2#Bl . ~26!

The third equation is obtained from the second by int
changingB andC. Discrete nonlinear Schro¨dinger equations
have been studied extensively in the literature.34,64In particu-
lar, stationary spatially localized solutions have be
found.34 It has been pointed out that multi-phonon bou
states may be regarded as quantum signatures of such in
sically localized modes.61,65–67For our system Si~111!:H, in-
trinsic localized modes have been predicted on the basi
the original HamiltonianHRS with an on-site potential of the
form ~15!.68

Canonical quantization of the coupled nonlinear Sch¨-
dinger equations~25!,~26! yields directly the expressions o
Eq. ~17! for the anharmonic and intersite part of the Ham
tonian. Both ways of derivation of this Hamiltonian a
based on the elimination of nonresonant couplings, while
resonant ones, which commute with the number opera
have been kept. The Hamiltonian~17! is obviously not the
same as the one used by Li and Vanderbilt23 as it contains
explicitly the degrees of freedom associated with the bend
motion. We will refer to this Hamiltonian in the next sectio

The effect on the infrared absorption spectrum is the
lowing: at zero temperature, the ‘‘two-phonon bound stat
is visible as a sharp peak at frequency (Es2,02E0)/\ with
intensity proportional touJ3

(0,s2)u2, which vanishes in the har
monic approximation. The continuum of states of type
remains invisible at zero temperature. Only if ‘‘one-phon
states’’ of the type~9! are populated, these states will b
come visible. We note that due to the smallness of
second-order dipole moments in our system as found in S
IV A, a two-phonon continuum atT50 K will not be exhib-
ited by second-order infrared absorption, either.

In the case of the bending modes, the frequency shift
to zero-point motion and the bandwidth of the dispers
curve are of the same order of magnitude. Conseque
perturbation theory with respect to the intersite coupling c
not be done in the same way as for the stretching vibra
described above.
-
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V. COUPLING TO SUBSTRATE MODES

For a proper description of temperature effects on the
frared spectrum of our system, the coupling to substrate
brational modes is paramount. In order to include the d
placements of the silicon atoms in the theory, we extend
notation in the following way:l continues to label the el
ementary cell of the slab. In addition, we introduce a sub
tice indexk. k50 stands for the hydrogen sublattice. Wh
referring to the silicon sublattices, we use the indexs.

Because of their comparatively large atomic mass,
mean square displacements of the silicon atoms is m
smaller than those of the hydrogen atoms and conseque
we may truncate the expansion of the lattice potentialF in
powers of the displacement components after the third o
of the silicon displacements:

F~$u~ lk!%!5FRS~$u~ l0!%!

1 (
l ,s,a

Fa
~1!~$u~ l0!%u ls!ua~ ls!

1
1

2 (
l ,s,a

(
l 8,s8,b

Fab
~2!~$u~ l0!%u ls l 8s8!

3ua~ ls!ub~ l 8s8!

1O„u~ ls!3
…. ~27!

Here,FRS is the rigid substrate part of the potential that w
have considered in the previous section. The quantitiesFRS,
Fa

(1)( ls), andFab
(2)( ls l 8s8) are functions of the hydrogen

displacements. To determine the latter two fullyab initio
would go beyond our current numerical resources. Theref
we have expanded the three functions in powers of the
drogen displacements and have retained in Eq.~27! terms up
to quartic anharmonicity. This may not always be adequ
in view of the large mean square displacements of the
drogen atoms. However, it has been found that on the b
of this approximation, results for the temperature dep
dence of the stretching mode frequency and linewidth can
gained that are in quite good agreement with experime
Transforming to phonon normal coordinatesA(qj ) via

u~ lk!5(
qj

eiq•R~ l !e~kuqj !S \

NMk2vqj
D 1/2

A~qj ! ~28!

and the componentseab of the deformation tensor accoun
ing for homogeneous deformations, the lattice potential m
be written in the form
F5
\

4 (
qj

vqjA~qj !A~2qj !1
1

2 (
a,b,m,n

eab Sab mn emn1(
a,b

(
j

dab~ j !eabA~0j !

1
\

3! (
qj ,q8j 8,q9j 9

V3~qj ,q8j 8,q9j 9!A~qj !A~q8j 8!A~q9j 9!1
\

2 (
ab

(
qj ,q8j 8

Vab~qj ,q8j 8,2 !A~qj !A~q8j 8!eab

1¯1
\

4! (
qj ,q8j 8

(
q9j 9,q-j-

V4~qj ,q8j 8,q9j 9,q-j -!A~qj !A~q8j 8!A~q9j 9!A~q-j -!1¯. ~29!
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Here,q is the wave vector in the surface Brillouin zone, t
index j labels the phonon branches, and@e(kuqj )# denotes
the eigenvector associated with the phonon mode (qj ). In
Eq. ~29!, only those terms have been stated explicitly th
occur in the perturbation-theoretical results discussed in
following subsections.

A. Temperature dependent equilibrium positions

Before considering the anharmonic effects on the f
quency and linewidth of the hydrogen adsorbate vibratio
we first address the role of the zero-point motion and
thermal fluctuations of the atoms on the equilibrium po
tions as they turn out to have an important influence on
anharmonic frequency shift. The static equilibrium con
tions are obtained from Eq.~29! by performing the deriva-
tives of the potential energy with respect to the quantit
eab and to the coordinatesA(0j ) and equating to zero th
quantum-statistical averages of these derivatives. If we c
fine ourselves to lowest order in the anharmonicity, i.e., if
retain only those terms that give corrections of order\ to the
static displacements in the limitT→0, the following equa-
tions are obtained:

05
\

2
v0j^A~0j !&1(

ab
dab~ j !eab

1
\

2 (
q, j 8, j 9

V3~0j ,qj 8,2qj 9!^A~qj 8!A~2qj 9!&o,

~30!

05Sab mnemn1(
j

dab~ j !^A~0j !&

1
\

2 (
q, j 8, j 9

Vab~qj 8,2qj 9,2 !^A~qj 8!A~2qj 9!&o.

~31!

The bracketŝ¯& stand for the quantum-statistical avera
and the index o indicates that this average has to be
formed with the statistical operator that corresponds to
harmonic part of the Hamiltonian.

The variables occurring in Eqs.~30,31! are partly redun-
dant since a homogeneous deformation of a finite slab w
eab5da3db3e33 can also be described by a superposition
normal displacements with wave vectorq50. With increas-
ing size of the slab, the effect of the surfaces on the hom
geneous deformation induced by zero-point motion and th
mal fluctuations diminishes. The only possible homogene
deformations of an infinite crystal consistent with the cu
symmetry of silicon are of the formeab5dabe0 . Therefore,
we may replace Eq.~31! by the corresponding equation fo
bulk silicon,

B0e05
1

6V0
(
q, j

g~qj !\vqj~2nqj11!, ~32!

whereB0 is the bulk modulus of silicon,V0 is the crystal
volume,g(qj ) is the Grüneisen constant of the bulk phono
mode (qj ) and nqj its Bose factor.Ab initio data for the
Grüneisen constants of silicon are available69 and have been
t
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used to calculatee0 as function of temperature. For practic
reasons, mean sublattice displacement vectorsU(k) instead
of the ~quantum-thermally! averaged normal coordinate
^A(0j )& are used as variables in the calculations. In this w
our procedure of derivation becomes very similar to the o
by Dobrzynski and Maradudin,70 except that we expand
around the classical equilibrium positions~i.e., around the
equilibrium positions of the relaxed system! rather than
around the ideal positions. The static displacements^ua( lk)&
may then be decomposed as

^ua~ lk!&5(
b

eabRb~ lk!1Ua~k!. ~33!

Symmetry requires that the additional displacementsU(k)
can only have a nonzero component normal to the surfa
Ua(k)5da3U(k). Equation~30! then takes the form

05(
k8

G~kk8!U~k8!1(
qj

F ~0!~kuqj !~2nqj11!

1F ~1!~k!e0 . ~34!

The coefficients occurring in Eq.~34! have been determine
ab initio in the following way.

Using density-functional perturbation theory, dynamic
matrices with componentsDab(kk8uq) have been calculated
for the atoms at their classical equilibrium positions~i.e., for
the relaxed slab! as well as for reference configurations wi
layers displaced from their equilibrium positions in the d
rection normal to the surface. The coefficientsG(kk8) are
simply equal to the componentsD33(kk8u0) of the dynami-
cal matrix at the center of the Brillouin zone, evaluated at
equilibrium configuration and multiplied byAMkMk8 with
Mk being the mass of an atom of sublatticek. The coeffi-
cientsF (0)(kuqj ) are obtained by taking numerical deriva
tives of dynamical matrices with respect to layer displa
ments,

F ~0!~kuqj !5
\

2vqj
(
a,b

(
k8,k9

ea* ~k8uqj !

3F ]

]U~k!
Dab~k8k9uq!G

U~k!50

eb~k9uqj !.

~35!

The quantitiesF (1)(k)e0 are simply the derivatives of the
Hellmann-Feynman forces with respect to a homogene
dilatation of all bond lengths. Because of translational inva
ance, we may fixU(k)50 at the center of the slab. Th
static layer displacementsU(k) may be expected to hav
non-negligible values only for the adsorbate layer and
first few substrate layers, where surface relaxation occurs
our calculations, we have allowedU(k) to be nonzero only
for the hydrogen layer and the top substrate layer.~For prac-
tical reasons, the derivatives in Eq.~35! have been carried
out with respect to displacements of the first substrate la
and with respect to the amplitude of the hydrogen stretch
mode rather than the displacement of the adsorbate lay!
The resulting behavior of the hydrogen-silicon distance a
the layer spacing between the first two substrate layers
function of temperature is shown in Fig. 8. The inclusion
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the coupling to the substrate modes modifies the behavio
the Si-H distance quantitatively, but does not alter the g
eral tendency found in the rigid substrate approximation.
the other hand, the distance between the first two sili
layers monotonously increases with temperature, unlike
interatomic distances in the bulk which show a well-know
minimum as function of temperature. The zero-point mot
enlarges all distances as compared to their values co
sponding to the classical equilibrium positions.

B. Anharmonic frequency shift

The anharmonic contribution to the frequency of the h
drogen stretching mode is calculated from the self-energ
this mode. There are three contributions to the phonon s
energy that are of first order in\ at zero temperature. The
are symbolized by the first three diagrams in Fig. 11. T
sum of these three contributions may be arranged in the f

Dv0s5(
qj

V~qj !~2nqj11! ~36!

with coefficientsV5VL1VB1VT that do not depend on
temperature. The contribution of the loop diagram to the
efficient V is

VL~qj !5 1
2 V4~0s,0s,qj ,2qj !. ~37!

The bubble diagram yields

VB~qj !52(
j 8

1
2 uV3~0s,qj ,2qj 8!u2

3F vqj1vqj 8

~vqj1vqj 8!
22v0s

2

1
vqj 82vqj

~vqj 82vqj !
22v0s

2 G . ~38!

FIG. 11. Self-energy diagrams considered in the calculation
the anharmonic frequency shift and linewidth of the hydrog
stretching mode.
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The contribution of the ‘‘tadpole diagram’’ to the anha
monic frequency shift is given by

~Dv0s!T5(
k

F ]v0s

]U~k!G
U~k!50

U~k!1F]v0s

]e0
G

e050

e0 .

~39!

Inserting the solution of Eq.~34! for U(k) and the expres-
sion Eq.~32! for e0 in Eq. ~39!, the contribution of the tad-
pole diagram is easily arranged in the form~36!. We empha-
size that the sum in Eq.~36! is over all surface/adsorbate an
bulk phonon modes.

Due to the very high value of the stretching-mode fr
quency, the denominator in Eq.~38! can never be zero. I
may become small if one of the two branch indicesj or j 8
refers to the hydrogen stretching mode and the other on
an acoustic mode for smalluqu. In this case, however, the
coupling coefficients are very small and the contribution
this combination of modes turns out to be negligible.

The anharmonic coupling coefficientsV3(0s,qj ,2qj 8)
andV4(0s,0s,qj ,2qj ) have again been determinedab initio
by combining density functional perturbation theory~DFPT!
with the frozen phonon method. Using DFPT, dynamic
matrices have been calculated for a grid of wave vectorsq in
the irreducible segment of the surface Brillouin zone
slabs with atoms at their classical equilibrium positions a
for slabs with the displacement pattern of the zone-cen
hydrogen stretching mode frozen in with amplitudeA(0s).
We then obtain

V3~0s,qj ,2qj 8!5
1

2Avqjvqj 8
(
a,b

(
k,k8

ea* ~kuqj 8!

3F ]

]A~0s!
Dab~kk8uq!G

A~0s!50

3eb~k8uqj ! ~40!

from numerical derivatives of the dynamical matrices.
determineV4(0s,0s,qj ,2qj ), one has to setj 5 j 8 in Eq.
~40! and replace the first by the second derivative with
spect toA(0s). To illustrate the quartic anharmonic couplin
of the zone-center hydrogen stretching mode with the ot
phonon modes of the system, we display in Fig. 12 the qu
tity

Ṽ~4!~q,v!5(
j

V4~0s,0s,qj ,2qj !3e/@e21~v2vqj !
2#

~41!

for wave vectorsq along the edges of the irreducible triang
of the surface Brillouin zone. The widthe has been chosen t
be 2 cm21. A corresponding representation of the cubic a
harmonic coupling constantsV3(0s,qj ,2qj ) looks very
similar. As expected, the anharmonic coupling of the zo
center stretching mode is mainly to the modes of the stre
ing and bending branches. In addition, there are appreci
contributions from a branch near the upper edge of the b
phonon spectrum having a relative content of vibrational a

f
n
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plitudes of the hydrogen atoms higher than in other subst
modes~Lucas mode, see Sec. II!. Coupling to the Rayleigh
mode and another surface mode (S6) can also be detected.

Inspired by theoretical work on adsorbate dynamics t
was mainly focused on CO on metal surfaces,71–73 earlier
interpretations of experimental data on temperature dep
dent frequency and linewidth of the stretching mode2 attrib-
uted the temperature dependence of these quantities to
anharmonic coupling of the stretching mode to a flat bra
of surface phonons with a frequency of approximat
210 cm21. Our ab initio calculations do in fact verify the
existence of such a branch~see Fig. 3!. However, as is ap-
parent from Fig. 12, there is no anharmonic coupling of
zone-center stretching mode to this branch of surf
phonons.

Evaluating the expressions~37!, ~38!, and ~39! with the
anharmonic coupling coefficients determinedab initio in the
way described above, we obtain results for the tempera
dependence of the stretching mode frequency in quite g
agreement with the experimental data, as shown in Fig.
These results are compared with those of an analogous
culation carried out within the rigid substrate approximatio
This comparison clearly shows that at low temperatur
when the Bose factors for the bending modes become sm
the substrate modes govern the temperature dependenc
the other hand, the contribution of the substrate modes to
anharmonic frequency shift atT50 is negligible compared
to that of the adsorbate modes.

FIG. 12. Quartic anharmonic coupling coefficients. The funct

Ṽ(4)(q,v) is defined in the text.
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Figure 14 shows the contribution of Figs. 11~a!–11~c! to
the frequency shift of the stretching mode. They are found
be all of the same order of magnitude. They strongly dif
from each other in their behavior as functions of temperatu
and the contribution of the tadpole diagram even chan
sign at higher temperatures. Apparently, the contributions
the loop and tadpole diagrams vary much more strongly w
temperature than the total frequency shift. Neglecting one
the three contributions, would give a result that is not on
quantitatively wrong, but also produces a qualitatively inc
rect temperature dependence.

At zero temperature, all three contributions to the fr
quency of the stretching mode have the same sign. Thi
not the case for the bending mode. Here, strong compe
tions occur between the three different diagrams, wh
makes quantitative predictions very difficult.

Experimental information on the frequency shift due
zero-point motion can be gained through the isotope eff
i.e., by comparing the experimental frequencies for hydrog
and deuterium adsorbate atoms. In order to extract this in
mation from the difference between the hydrogen and de
rium stretching frequencies~or bending frequencies!, knowl-
edge of the harmonic interplanar force constants between
first few layers is required. Harmonic frequencies for t
system Si~111!:D have been calculated by sever
authors.19,74,75

C. Intrinsic linewidth

The intrinsic width of the infrared absorption line at th
stretching-mode frequency results from the imaginary par
the self-energy associated with this phonon mode. At z
temperature, a nonzero imaginary part arises from spont
ous decay. Because of the high value of the stretching m
frequency as compared to other phonon modes and the
ergy conservation condition, such decay processes requi
least four phonon modes as decay products. Therefor
nonzero imaginary part of the self-energy arises only at or

FIG. 13. Temperature-dependence of the stretching mode
quency. Solid, including coupling to substrate modes; dashed, w
out coupling to substrate modes; circles, IRAS data~this work!.
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\3. However, at finite temperatures, scattering proces
may occur that correspond to self-energy diagrams that
formally of order\2 at T50. All diagrams of this sort tha
give a nonzero contribution to the imaginary part of the se
energy of the stretching mode are represented by F
11~d!–11~h!. Explicit expressions for the contributions o
these diagrams are given in Ref. 76@apart from~f! which
may be easily evaluated following the rules given therein#!.
In the temperature range where the infrared absorption
periments have been carried out, the thermal occupa
number of the stretching mode is negligibly small. We a
count for this fact and use the following simple Lorentzi
form for the spectral functionsSqj (v) associated with the
phonon lines occurring in these diagrams:
g

on
lin

ct
p

ve

h

.

th
es
e-

-
s.

x-
n

-

Sqj~v!'2~11nqj !
Gqj

~vqj2v!21Gqj
2

12nqj

Gqj

~vqj1v!21Gqj
2

. ~42!

Furthermore, we make use of the smallness of the damp
constantsGqj in comparison with the mode frequenciesvqj .
The contributions of the diagrams represented in Fi
11~d!–11~h! to the imaginary part2G̃0s(v) of the self-
energy at frequenciesv in the neighborhood of the fre
quency of the stretching modev0s may then be written in the
compact form
G̃0s~v!5p (
q,q8,q9

(
j 8, j 9

uV4
eff~0s,qs,q8j 8,q9j 9!u2nq9j 9~11nq8j 8!

Gqs1Gq8j 81Gq9j 9

~v2vqs2vq8j 81vq9j 9!
21~Gqs1Gq8j 81Gq9j 9!

2
. ~43!

~See also Burkeet al.,77 who use somewhat different arguments to arrive at an effective quartic vertex!. The effective quartic
anharmonic coupling coefficient consists of bare cubic and quartic coupling constants:

V4
eff~l1 ,l2 ,l3 ,l4!5V4~l1 ,l2 ,l3 ,l4!2(

l5
FV3~l1 ,l4 ,l5!V3~l2 ,l3 ,l̄5!

2vl5

vl5

2 2~vl2
1vl3

!2

1V3~l1 ,l3 ,l5!V3~l2 ,l4 ,l̄5!
2vl5

vl5

2 2~vl2
2vl4

!2
1V3~l1 ,l2 ,l5!V3~l3 ,l4 ,l̄5!

2vl5

vl5

2 2~vl3
2vl4

!2G .

~44!
and
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To simplify the notation, we have abbreviatedqj by l and
2qj by l̄ in Eq. ~44!.

An ab initio calculation of all the anharmonic couplin
coefficients occurring in Eq.~44! would be quite impossible
at present. Instead, we resort to the following approximati
On the observation that the dominant anharmonic coup
of the stretching modes is to bending (b) and stretching (s)
modes, we restrict the branch indices in Eqs.~43! and~44! to
the adsorbate modes. Furthermore, we evaluate the effe
quartic coupling coefficients within the rigid substrate a
proximation to obtain

V4
eff~0s,qs,q8b,q9b8!5

\

4NmH
3 vsvb

N2D~q1q81q9!

3@e~q8b!•e~q9b8!#. ~45!

Here,N is again the number of unit cells. The coefficientN2
is defined in Eq.~19!, D(¯) is the Born-Huangd function
ande(qb) is the eigenvector of the bending mode with wa
vector q of branch~polarization index! b. We note that the
same expression may be obtained in an alternative way w
starting from the Hamiltonian~17!, into which the anhar-
monic interaction with substrate modes may be included

To evaluate the imaginary part~43! of the self-energy we
make the additional assumption that the variation of
.
g

ive
-

en

e

damping constantsGqs andGqb with wave vectorq is negli-
gible. The sum of three damping constants on the right-h
side of Eq.~43! may then be replaced byG0s12G0b . The
intrinsic damping of the bending modes is predominan
due to decay into two substrate modes. The damping c
stant of the zone-center bending modesG0b has therefore
been calculated by using the formula

G0b5
p

2 (
q

(
j , j 8

uV3~0b,qj ,2qj 8!u2

3~11nqj1nqj 8! d~v0b2vqj2vqj 8!, ~46!

where the branch indicesj and j 8 refer to substrate mode
only. The cubic anharmonic coupling coefficien
V3(0b,qj ,2qj 8) have again been calculatedab initio by de-
termining via density-functional perturbation theory dynam
cal matrices for a slab with a frozen-in displacement patt
of a zone-center bending mode with amplitudeA(0b). The
cubic coupling coefficient is then obtained by determini
the numerical derivative with respect toA(0b) @according to
Eq. ~40! with s replaced byb]. The damping constantG0b of
the bending modes was found to vary between 2 and 8 cm21

in the temperature range, 0–500 K~see Fig. 15!.
Having calculatedG0b from Eq. ~46!, the damping con-

stantG0s of the stretching mode has then been determin
self-consistently from the equation



y
f
o
a
th
m
in
a

m
tio

r
n
nt

o
ul

e
ta
e

n

een
the
the
he
uan-
ter-
e

ec-
ns
rly
ad-
lar-
ac-
by
rgy

ate

o
In

the
nd
er,

e-

the

-

es

en-
ode

ing

PRB 59 11 011ANHARMONIC ADLAYER VIBRATIONS ON THE . . .
G0s5pF \

4NmH
3

N2

vsvb
G 2

3 (
q8,q9

(
b8,b9

ue~q8b8!•e~q9b9!u2nq9b9~11nq8b8!

3
G0s12G0b

~v0s2vq81q9s2vq8b81vq9b9!
21~G0s12G0b!2

,

~47!

where summation indicesb8 andb9 run over the two bend-
ing mode branches. Equation~47! follows from Eq. ~43!,
when identifyingG0s with G̃0s(v0s). This identification can
be made, because the imaginary part of the self-energ
function of frequencyv varies little in the neighborhood o
v0s over a frequency range of the order of magnitude
G̃0s(v0s). This justifies the approximation of the spectr
function for the stretching mode by a Lorentzian and thus
introduction of a damping constant for this mode. We e
phasize that this would not be the case if the finite damp
constants of the bending modes had not been taken into
count.

Figure 15 compares the experimental data for the te
perature dependence of the FWHM of the infrared absorp
line with the theoretical results for 2G0s gained from Eq.
~47!. In the expression~19! for the coefficientN2 , strong
compensations occur between the different terms. As a
sult, it is very sensitive to the values of the stretching a
bending mode frequencies. When using the experime
values forvs andvb in the constant factor@N2 /(vsvb)#2 of
Eq. ~47!, good agreement can be achieved between the
and experiment. However, the theoretical linewidths wo
be much larger, if the bare~harmonic! frequencies were
used. Figure 15 also shows that the temperature depend
of the damping constant for the bending modes is impor
for the correct description of the temperature dependenc
G0s .

VI. CONCLUSION

The infrared absorption spectrum of the hydroge
covered Si~111!~131! surface has been measured over

FIG. 14. Contributions to the anharmonic frequency shift of
three diagrams in Fig. 11 that are of first order in\ at T50.
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temperature range 14–350 K. A theoretical analysis has b
given for the peak positions in the spectrum as well as for
temperature dependence of the position and linewidth of
main peak resulting from the nonlinear dynamics of t
coupled system of adsorbate and substrate atoms. All q
tities that govern this nonlinear dynamics have been de
mined ab initio by a plane-wave pseudopotential schem
based on the local-density approximation. Not only the el
tronic system, but also the anharmonic atomic vibratio
have been treated fully quantum mechanically to prope
describe the large quantum fluctuations of the hydrogen
sorbate atoms. In earlier work based on classical molecu
dynamics simulations, quantum fluctuations had been
counted for only to a certain degree of approximation
rescaling the temperature and depositing additional ene
into the Si-H bonds19 or by using Bloch-Redfield theory78

which is limited to coupling between substrate and adsorb
degrees of freedom that is linear in the latter.

In our treatment of the problem, we have followed tw
routes that correspond to two different approximations.
the rigid-substrate approximation, we were able to treat
on-site anharmonicity of the hydrogen vibrations exactly a
expand with respect to the weak intersite coupling. Howev
within this approximation, it is not possible to properly d

FIG. 15. Linewidth of the stretching mode as function of tem
perature. Experimental data~IRAS!, Exp1, Ref. 2; Exp2, this work.
Theory: ~1! with Gb determined from two-phonon decay process
into substrate modes~right upper corner! and Gs determined self-
consistently. In the effective quartic coupling constants, experim
tal values have been used for the stretching and bending m
frequencies.~2! same as~1! with Gb54 cm215const.~3! same as
~1! with harmonic frequencies used in the effective quartic coupl
constants.



re
so
f v
h
g

an
at
a
e-
th
,
ul
fr
it
w
e
lu
ng

ntal
the
re-

g-
nd
il-

p-

ra-
-

n
ks

11 012 PRB 59R. HONKE et al.
scribe the measured temperature dependences of the st
ing mode frequency and linewidth at low temperatures. Al
the rigid-substrate approximation ignores the presence o
brational modes near the upper edge of the silicon bulk p
non spectrum that have an appreciable content of hydro
motion.

When abandoning the rigid-substrate approximation
including the coupling to the vibrations of the substrate
oms, we had to retreat to perturbation theory valid for we
anharmonicity which may not give quantitatively reliable r
sults in view of the large mean square displacements of
hydrogen atoms in their zero-point motion. Nevertheless
has been possible within this approximation to obtain res
for the temperature dependence of the stretching mode
quency and linewidth that are in quite good agreement w
our experimental data. These data have been measured
an accuracy of a few percent of an inverse centimeter
ceeding the accuracy of the corresponding theoretical va
partly by orders of magnitude. A calculation of the stretchi
i

,

tch-
,
i-

o-
en

d
-
k

e
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ts
e-
h
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x-
es

mode frequency that meets the precision of the experime
data in both the treatment of the electronic problem and
quantum and thermal fluctuations of the atomic positions
mains a challenge for the theory.
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