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Using infrared absorption spectroscopy, the frequency and linewidth of the H-stretching vibration on the
Si(111):H-(1Xx 1) surface has been measured over a temperature range of 14—350K.iditio calculation of
the temperature dependence of the anharmonic frequency shift and the intrinsic linewidth of this mode has
been carried out, which fully accounts for the quantum nature of the atomic vibrations by using interacting
phonon theory. The theoretical results show that at temperatures greater than 200 K, both line shift and
linewidth of the stretching mode are primarily due to strong anharmonic coupling to the bending modes, which
suffer decay into substrate modes via cubic anharmonicity. At low temperatures, direct coupling to various
phonon modes of the substrate dominates the temperature dependence of the line shift. In addition, predictions
are made for the frequency shift due to zero-point motion of the atoms. A strong sensitivity of the frequency
on the shape of the Si-H potential has been found that makes quantitative predictions of the influence of
zero-point motion very difficult. As a byproduct, the temperature dependence of the interatomic distances near
the surface has been obtained and a decrease of the H-Si distance with increasing temperature is predicted.
[S0163-182699)02016-0

. INTRODUCTION frozen phonon calculatioff:?® Others used molecular dy-
namics within a semiempirical tight-binding appro&t#f or
The physical properties of low-index surfaces of siliconwith first-principles forces on the basis of the Car-Parinnello
crystals have been extensively studied in recent yearsmethod?*2® Full phonon dispersion curves along symmetry
Among them, the $111) surface has probably received directions in the surface Brillouin zone have been deter-
more attention than any other semiconductor surface. Thmined using lattice-dynamical mod€t$® a semiempirical
strongly covalent character of the silicon-silicon bonds leadsight-binding approacf? and ab initio using density-
to the well-known reconstruction patterns of these surfacedunctional perturbation theord/. The phonon modes of the
The advent of wet chemical preparation techniguémade hydrogen-coveredl11) surface of a silicon substrate can be
it possible to generate silicon surfaces covered with ongrouped into bulk and surface modes of the substrate mate-
monolayer of hydrogen.The hydrogen atoms saturate the rial, which have been determined theoretically in very good
dangling bonds giving rise to a surface structure that is alagreement with experimental data, and into adsorbate vibra-
most ideal in the sense that the silicon atoms near the surfa¢®ns, namely, the hydrogen stretching and bending modes.
take almost the positions that would correspond to their bulkrhe hydrogen stretching mode has a frequency of more than
equilibrium positions. four times the maximum frequency of the silicon phonon
In addition to basic scientific interests, there is also a techmodes. While this frequency is known experimentally to a
nological motivation for studying the structure as well as thevery high precision, the corresponding theoretical values
dynamics of hydrogenated silicon surfaces. Electronic profound in the literature scatter considerably. One goal of this
cesses occurring at the surfaces of semiconductor devicgmper is to clarify the reasons for these discrepancies and
sometimes involve surface and adsorbate phonon modes ardpecially to assess the role of anharmonicity.
their relaxation into substrate phondhs. Beyond phonon frequencies and associated displacement
Dynamical properties of the @i11):H surface have been characteristics, which in most cases may be described within
studied by helium atom scatterid§ high-resolution electron the harmonic approximation with possible anharmonic cor-
energy loss spectroscopy’ and infrared absorption rections, several experiments in the past have focused di-
spectroscopyt* ¥ and sum frequency generatibtt'’ The  rectly on anharmonic properties of the adlayer mddég?
structure and the lattice vibrations of the systerfi8l):H-  The H/S{111) surface is very suitable for the study of such
(1x1) have been investigated theoretically by modelproperties because the electronic gap is much larger than the
calculation$'® (the second one without hydrogen termina- Si-H stretch vibrations considered here and the inhomoge-
tion), by semiempirical approachés® and by ab initioc  neous broadenifg®’(~0.05 cm!) is much smaller than in
methods’*~2” Some of these works investigated the vibra-other systems. The lifetime broadening is due only to mul-
tions of the hydrogen atoms on a rigid silicon substrate by diphonon relaxation and has been measured directly by time-
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resolved spectroscopg$>320On flat S{111), the monohy- copy. The UHV chamber is equipped with a load-lock sys-
dride relaxes extremely slowly<{ 1 nse¢ contributing less tem, through which the sample is introduced. To achieve the
than 0.01cm? to the linewidth. lowest temperatureg~14 K), the bevelled sample is

In particular, the temperature dependences of the Si-Hnounted onto a Cu holder with a Cu front shield, with the
stretch mode line position and linewidth has been measurednly exposed part of the sample being the bevels at each end.
by infrared absorptioA While in these earlier measurements The mounted samples are then introduced into the UHV part
an extrapolation of the frequency © K was difficult, fre-  of the chamber. The temperature is measured in two ways:
guency data have been taken over a much larger temperatungth a chromel/alumel thermocouple and with a Si diode
range down to much lower temperatures in the present workaccuracy+1 K below 100 K both attached to the Cu block.
Our new experimental results suggest that the anharmonithe temperature is varied by physically decoupling the
coupling between the adsorbate modes and vibrationaample holder block from the liquid-He reservoir. A high
modes of the silicon substrate is paramount for a proper despectral resolution is critical to this experiment since the line
scription of the temperature dependence of the stretchingan narrow to as low as 0.05crh The nominal resolution
mode frequency and its intrinsic linewidth. The contribution of the interferometer is 0.06 cmd. The actual resolution is
of zero-point motion to this frequency and its temperaturemeasured, using a CO cell and boxcar apodization, to be
dependence are calculated, usingadninitio technique that 0.04 cmi . Two or four times zero filling is applied to obtain
is free of any model parameters. Thereby the phonon modesmooth line shapes. The detector is a liquigtddoled InSb.
responsible for the temperature dependence of the stretchingo reference surface is necessary because the measured vi-
mode frequency are identified. brational features are much sharper than any fluctuation or

The paper is organized in the following way: In the nextoscillation in the spectrum over the range of Si-H stretch
section, the preparation of the(811):H surface and the ex- vibrations (2060—2150 cit), where a linear background is
perimental setup are briefly described, and infrared data falised.
temperatures between 14 and 350 K are presented. In the The line shape of a vibrational mode primarily is charac-
subsequent section, the structure of the system and the phrized by a center frequencw} and a linewidth ). Since
non spectrum, obtained within the harmonic approximationanharmonic coupling induces a temperature dependence of
are discussed. Here, we also give some technical details copoth quantities, we performed experiments measusi(ig)
cerning ourab initio calculations. The fourth section is de- and I'(T) as a function of surface temperature. Figure 1
voted to the anharmonic dynamics of the hydrogen atoms ighows vibrational spectra of they.,; mode taken at 294 and
the rigid substrate approximation, i.e., with the silicon atomsat 14 K. A marked red shift and line broadening ., is
kept fixed at their classical equilibrium pOSitiOﬂS. The infra- found with increasingT_ The data taken at very low tem-
red absorption spectrum of the system is calculated withifperatures T<50 K) can be used to quantify line broadening
this approximation, the appearance of multiphonon boungnechanisms other than the dephasing process and to deter-
states is diSCUSSEd, and the connection with intrinsic |Oca|mine the line position in the absence of anharmonic Coup"ng
ized modes or discrete breath&s!a much discussed phe- tg thermal fluctuations; it is found that for the samples used
nomenon of classical nonlinear dynamics, is established. Ity this work the vsiy line shape at lowT is very close to
Sec. V, the coupling of the adsorbate modes to the substrajsing Lorentzian ands(T) as well asI'(T) converge to-
modes is taken into account. Particular attention is paid tQyards the zero K values ab(0)=2085.99 cm* andI'(0)
the anharmonic shifts of the atomic equilibrium positions =g og cmi'?, respectively. These numbers are crucial in the
near the surface as they enter the calculations of the freanalysis of the data. The early fits of Dumas , Chabal, and
guency shift in a sensitive manner. Our theoretical results fOHigashi,z used »(0)=2086.25cm?, which they extrapo-
the temperature dependence of the anharmonic line shift angteq from their lowesT spectra taken at 140 K. The better
the linewidth of the stretching mode in the infrared absorp-ggtimate ofw(0) in our work is made possible by the exten-
tion spectrum are discussed and compared to the experimegipn to lower temperaturégd4 K). Also, the present data are
tal data of Sec_. Il. The paper ends with a final discussion angptained with much better spectral resolution (0.04&m
some conclusions. versus 0.3 cm?) on samples with substantially better homo-
geneity than originally measured in Ref. 2: we measure a full
width at half-maximum(FWHM) of 0.71cm ! instead of
0.85cm ! at 295 K, and of 0.08 cm* instead of an extrapo-

There are three important aspects of the experiment: thiated value of 0.2 cm'® at low temperatures. Note, however,
wet chemical preparation of the flat H($11), the ability to  that samples of different quality show the same temperature
mount, cool, and measure the sample in an ultrahigh vacuumlependence of the Si-H stretch peak position, with however
environment, and the high resolution of the IR spectrometerdifferent absolute frequency position, due to average domain
To achieve the best surfaces, a thick thermal oxide is growsize: The larger the average domain size, the higher the Si-H
on the Si sample, prior to the chemical preparation. Thestretch frequenc§®’ These differences, in particular the
sample is then thoroughly cleaned using the RCA steps fodiscrepancy ofs(0),%® are probably the main reasons for the
Si-Wafer cleaning®®® before the thick oxide is etched in extraction of a too low phonon frequency responsible for the
concentrated HF. The key step is the use of 40% ammoniurdephasing process in Ref. 2.
fluoride solution immediately after to remove atomic rough- There are two common ways to plot the data: a linear plot
ness from the already H-terminated surface. The best resultd  andI' as a function of temperature highlights the high
were obtained foa 3 1/2 min immersion in NEF at room  temperature behavior while a logarithmic plot Afw(T)
temperature as characterized by infrared absorption spectroso(T) — w(0) andI’ versus the inverse temperature )L/

Il. EXPERIMENT
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. made: the width Fig. 1(c)] levels off faster than expected
and decreases only very slowly towards lowWerThis is a
2084 - - . minor effect, of order 0.05cit, but it unfortunately pre-
. vents an effective use of the loWwdata?® Also a slight extra
redshift of vs.,; mode by approximately 0.01—0.02ch
1 with decreasingr is discernible.
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= ] On the(111) surface of silicon, the hydrogen atoms form
: a triangular lattice as displayed in Fig. 2. They saturate the
. I dangling bonds of the silicon atoms at the surface and hence
’ no reconstruction occurs. In fact even at and near the surface,
. the silicon atoms take almost the same positions they would
. hold in a bulk crystal. This has been verified in @lr initio
= calculations, which have been carried out for a repeated slab
" ] geometry?’*! Each slab consists of 10 layers of silicon and
gaenum B 1 .
: : . . i : . both the top and bottom surface are covered with hydrogen.
0 50 100 150 200 250 300 350 400 The vacuum distance between two adjacent slabs was chosen
TEMPERATURE [K] to be 8 A. This distance was large enough that no dispersion
. . , . was found for the electronic states along the direction normal
FIG. 1. (a) Set of infrared absorption spectra showing the S|-Hto the surface. In the framework of the local-density approxi-
stretch mode taken at room temperat(ife=294 K) and at 14 K . . X
mation, the Kohn-Sham equations were solved in a plane-

using a nominal spectral resolution of 0.12 and 0.06 tnrespec- basi t The int tion bet the i d val
tively. The temperature dependent line position and linewidth of theVave aSI§ Set. _e Intéraction between the ons an \{a ence
Si-H stretch mode are displayed i) and (c). electrons is described by soft nonlocal pseudopotentials of

the Kerkef? type for silicon and of the Troullier-Marti#d
emphasizes the low temperature behavior. The dependentge for hydrogen. A cutoff energy of 10 Ry was used with
at low temperatures is dominated by anharmonic coupling téest calculations going up to 16 Ry. Integrations over elec-
low frequency phonons, while the high temperature data ar&ronic states in reciprocal space have been carried out at
sensitive to all phonon frequencies. Both types of plots arseven special points in the irreducible part of the surface

LINEWIDTH [cm™]
o
T

0.0

therefore commonly used. Brillouin zone** The atomic positions have been relaxed by
Figures 1b) and Xc) show the linear dependence®fT)  finding the zeros of the Hellmann-Feynman forces.
[Fig. 4(b)] andT'(T) [Fig. 1(c)] versus the temperatuféhe Applying density-functional perturbation theory on the

logarithmic dependence dfw(T) andI'(T) versus 1T, for ~ basis of the local density approximatiéh® phonon fre-
H/Si(111)-(1x 1) is presented belowFigs. 13 and 15  quencies can be calculated for any wavevector in the surface
along with the results of our theoretical calculajioithe  Brillouin zone. In Fig. 3 the results of such a calculation are
data are obtained by a Lorentzian fit and a deconvolution o$hown for the relaxed structure along the boundary of the
the inhomogeneous broadening using the lowest-temperatuitteducible wedge of the surface Brillouin zone as indicated
data T=14K).*° in Fig. 2. They are compared with experimental data from

At temperatures below 4K a puzzling observation is high-resolution  electron energy loss spectroscopy
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TABLE I. Hydrogen stretching mode frequency in the harmonic

2100 o oo cooo ool oo oo booooooooo 3 approximation.R, rigid substrate approximatiors, this work, 10
2000 Ry cutoff, DFPT;b, this work, 30 Ry cutoff, molecular dynamics;
= = ¢, this work, 10 Ry cutoff, frozen phonon. The experimental fre-
Si-H stretch . . . .
L A TT T TEE T quency at 0 K(differing from the harmonic value by anharmonic

correctiong is 2086.0 cm* (see Fig. 1
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FIG. 3. Phonon dispersion along directions of high symmetry of 1965 26
the surface Brillouin zonglSymmetric slab with 46 substrate lay- 2071 20
ers) Circles: HREELS data by Stuhlmann, Bogga and Ibach 2133 a
(Ref. 9. SH stands for shear-horizontal polarization and SP for 2104 b
polarization parallel to the wave vectd®W denotes the Rayleigh 2101 ¢cR

branch,L,, L,, S5, Sg, and Sg label various surface phonon
branchesR; andR; denote surface resonandéef. 27).

approach applied to the steppedi8il):H surface and ex-
(HREELS.® The phonon modes with frequencies belowtrapolated to large terrace si22syields a value of
500cmi ! largely correspond to vibrations of the substratep Wayn = 7—8 cm! for the v bandwidth in close agree-
atoms with the hydrogen following the motion of the under- ment with the theoretical value.
lying substrate atoms adiabatically. Only two surface Wwhile the phonon frequencies in the band of the substrate
branches I(,,L,) near the upper edge of the projected bulkmodes are in good agreement with experimental data, there
phonon dispersion of silicon have eigenvectors with an apare visible discrepancies for the bending and stretching vi-

preciable contribution of hydrogen displacements. brations. A comparison of our harmonic stretching and bend-

Separated from the projected bulk spectrum of siliconing mode frequencies at tHé point with experimental and

there are three phonon branches that correspond to modgfer theoretical data is made in Table |.

where mostly the hydrogen atoms are vibrating with only  5ne may be tempted to attribute these discrepancies to
very small eigenvector components corresponding to the siligp,rtcomings of thab initio methods used. In particular, the

con atoms of the underlying substrate layers. At approxigescription of the interaction of the hydrogen ion with the

a1
mately 600 cm”, two branches are located that correspond, gjence electrons via a pseudopotential may appear unusual

to two bending modes. The hydrogen atoms are vibrating; first glance. Also, one may wonder whether the kinetic
parallel to the surface. At thE point, these two modes are cutoff energy of 10 Ry used in most of our calculations has
degenerate, while at the point, the two bending modes are been sufficiently high to guarantee convergence. In order to
not degenerate because of the lower symmetry of the subbest the latter point, the kinetic energy cutoff has been in-
strate as compared to the triangular adsorbate lattice. Thereased to 13 and 16 Ry. The values of the frequencies of the
degeneracy is lifted even within the rigid-substrate approxi-stretching and bending mode and the frequency of the Lucas
mation. The frequency splitting at the pbint is found to be  Modes at the Brillouin zone center and the silicon-hydrogen
24cmt in good agreement with the HREELS value of d|sta_nce are ;hown in Table Il for these three cases. The
20cm L. In the rigid substrate approximation, when the sili- relative deviations from one_cutoff value to the next is of the
con atoms are fixed at their equilibrium positions, the split-S&Me order for the frequencies of the three modes. In order to

. v _ . provide an independent test of caly initio scheme, we have
ting at the Mpoint reduces to 10cnt. The difference of 7, ) employed an alternative cddavith a different pseudo-

14 cm ! reflects the fact that the eigenvectors of the bendin%)otential generated by a scheme due to HarffaAhand
mOdeS have appreuabl_e_ components corre_spondlng o tuesed in fully separable forft. The stretching mode fre-
displacements of the silicon atoms of the first layer. The

remaining splitting and the remaining bandwidth of the UMY has been determined here by Car-Parinnello
bending mode branches may be due to dipole-dipole interac- _ .
tion of the hydrogen atoms as well as due to an indirec¥ TABLE_II. Convergence behavior of phonon frequencies and
. . . . - he Si-H distance.
interaction via the electronic system in the substrate.

Far above the frequency region of the substrate mode

the branch of the hydrogen stretching vibrations is located a utoff energy(Ry) 10 13 16
approximately 2100cm'. The total bandwidth of the v (cm™?) 2133 2127 2144
stretching modegincluding off-symmetry directionswas v, (cm™) 593 598 600
found to be around 9 ciit and the components in the asso- y,,..s(cm™ ) 493 498 499
ciated eigenvectors corresponding to displacements of sulgy,,, (A) 1.492 1.492 1.491

strate atoms are very small. The dynamic dipole coupling
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simulations!’ These calculations have been carried out at darge displacements. Therefore, the anharmonicity of the on-
kinetic energy cutoff of 30 Ry, although tests for the silanesite potential is very important and will be fully taken into
molecule showed that they should have been converged ataacount. The last term in Eql) is the intersite interaction.
lower cut-off. The resulting value for the stretching modelts smallness is reflected in the small bandwidths of the
frequency of Sil11):H was 2104cm?'. With this latter  stretching and bending mode dispersion curves. For a poten-
pseudopotential, it has also been possible to reproduce thil falling off as slowly as the 1/Coulomb potential, anhar-
experimental bond length and vibrational frequency of themonic contributions to physical quantities come into play at
hydrogen molecufé within 4% and 2%, respectively. first and higher orders ofu?)/d?,,, while the root mean
When assessing the remaining discrepancies between ogguare displacememfm of the hydrogen atoms is much
theoretical values for the stretching mode frequency in thgmaller than the distanag,.; between neighboring hydro-
harmonic approximation, we have to note that these discregyen atoms. Consequently, it suffices to account for the inter-
ancies are by orders of magnitude larger than the precision @fite interaction in harmonic approximation. In summary, we
0.1cmi ! that is reached in the infrared absorption spectrosmay characterize our systemasakly coupled strongly an-
copy (IRAS) experiments reported in Sec. Il. However, we harmonic quantum oscillators
also stress that our theoretical values for the hydrogen The on-site potential has been determirsddinitio on a
stretching mode frequency are consistently higher than thehesh of 2687 grid points by calculating the ground-state
experimental value. This fact will be explained through an-energy of the slab with the hydrogen film rigidly displaced.
harmonicity in the following section. Kerker and Martins-Troullier pseudopotentials were used
An approach going partly beyond the local-density ap-and a kinetic energy cutoff of 10 Ry. Figure&@@and 4b)
proximation (LDA) is the generalized gradient approxima- show the potentials for displacements in the direction normal
tion (GGA). A GGA impIementatio?r"’ is also provided in the to the surface(z) and along(llf), i.e.. thex direction, re-
code of the Fritz-Haber Institut. , , spectively. Obviously, the potential is very flat in the direc-
A comparison of the hydrogen on-site potential for theion haraliel to the surface. In order to test the precision of
two pseudopotential approaches based on the LDA and thg, nymerical calculations of the on-site potential, we have
one based on the generalized gradient approximd@®®A)  oneated the calculations for taendx directions shown in
(Ref. 53 is made in the next section, and very good agreerjg 4 with different pseudopotentidfs® as mentioned in

ment is found between them. _ , the previous section and a cutoff of 30 Ry within LDA and
On the other hand, the strong zero-point motion of th implemented in the code of the

hydrogen atoms is expected to cause non-negligible shifts tgji;_paper-institut”2 The results are practically identical
the baretharmonig frequencies of the adsorbate modes. This i, the data of the first calculation on the energy scale of
has partly served as a motivation to carry out the study rerigg 44), 4(b). They deviate only at large distances from the
ported on in this paper. potential minimum.
The force constantg,z(l1") for | #1" are obtained from
IV. RIGID SUBSTRATE APPROXIMATION a calculation of dynamical matrices on the basis of density-

The primary goal of our theoretical analysis is to provide functional perturbation theortDFPT), and

an understanding of the infrared absorption spectra of
Si(11D:H. In this system, infrared absorption is essentially bapl)=— > bapll’). 2
due to the changes of the dipole moment through variations 1#1’

Of. the .d.|stance between the hydrogen atoms a}nd the unde|"'he harmonic stretching and bending mode frequencies ob-
lying silicon layer. These changes of the Si-H distance OCCUL . od from the above on-site ootential by fitting to a pa-

primarily in the hydrogen stretching vibrations which have _ 1 _ Iy SS9
eigenvectors with negligible content of substrate displace[it()jogirr_?“islo\/%i?%h;mn thaenr?aar)rl;\or?iz:offemuénvc\:lhl(c:jgtlesrr?]izne d
ments. Therefore, the approximation of a rigid substrate wit DEPT in the full lattice-dvnamical slag calcﬁlation
the silicon atoms kept fixed at their equilibrium positions y , Lo y : : .

In a first approximation, we neglect the intersite coupling.

should be a reasonable first approach for the description Ofsne mav then trv to determine the stretching and bendin
the infrared absorption in this system. We may then star Y y o g : 9
mode frequencies as an expansion in powers.oFor this

with the following Hamiltonian for the displacement§l) of : .
the hydrogen atoms from their classical equilibrium positionsourpose' one ha_s to expand the on-site poteM(a:I). V.V'th
labelled by the index: respect to the. displacement componéﬁﬁhg coefﬁ_mgnts
of this expansion have been obtained by differentiating nu-
p2(1) merically total energies, Hellmann-Feynman forces or
HRS:E| [ +V(U(|))] second-order force constants determined by DFPT. At order

2my %, a frequency shift of about 100 ¢crh has been found for
1 the stretching mode. Only cubic and quartic anharmonicity
+5 2 2 bap(llHua(Dug(l’), (1)  enter in this calculation. At orde#?, fifth and sixth-order
LB terms in the expansion &f(u) are needed. They were found

wherem,, is the mass of a hydrogen atom and Greek indice4o contribute more than 50% of tHe® contribution. Its total
denote Cartesian components. The terms in the curly brackialue amounts to approximately 37 cm L. In the case of

ets constitute the on-site Hamiltonian with the kinetic energythe bending mode, the contribution of ordexis even larger
and with the on-site potential(u). Because of the small than that of first order ik because of strong compensations
mass of the hydrogen atoms, their zero-point motion leads tbetween the perturbation-theoretical expressions. It is also
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FIG. 5. Energy levels of the hydrogen on-site potentis).
Morse potential for displacements normal to the surfacewo-
dimensional(2D) harmonic oscillator for displacements parallel to
the surfacepB: anisotropic harmonic oscillato€: complete on-site
potential. (a) ground statej(b) second excited state of predomi-
nantly bending charactefg) first excited state of predominantly

stretching character(d) second excited state of predominantly
stretching character.

agonalize the full on-site Hamiltonian. For this purpose, we
decompose the on-site potential in the following way:

V(u)=D(1—-e “3)2+ imywi(ui+ud)+W(u), (3)

wherea?=m, wﬁ/(ZD) and the parametd has been given
the value 4 eV.w, and w,, are the harmonic stretching and
bending mode frequencies, respectively. Figufa 4hows
that for u; =u,=0, the on-site potential fits a Morse poten-
tial fairly well with the above values foox andD. On the
observation that for distances of the order of the root mean
square displacements of the hydrogen atoms due to their

zero-point motion)/(u) deviates very little from cylindrical
symmetry around the; axis, we letwW depend only on the

variablesu; and uj= \/u21+ u22, putting W(u)~\7V(uH ,Us)

FIG. 4. On-site potential of the hydrogen atonia). Potential
along the surface normaD, LDA, 10 Ry cutoff, Kerker(H) and

Tro_ullier-Martins (Si) pseudopotentialsQ , LQA, 30 Ry cutoff, =W(u;,0u3). The eigenfunctionsy, of the full on-site
Kleinman-Bylander separable pseudopotentidls; GGA, 30 Ry  Hamiltonian are then determined as linear combinations of
cutoff, Kleinman-Bylander separable pseudopotentials; dashed "“?)roducts of eigenfunctions of the Morse Hamiltonian,

Morse potential(b) Potential along the direction(pargllel to t_he @, (Us) with quantum numben, , and the Hamiltonian of
surface. O, LDA, 10 Ry cutoff, Kerker(H) and Troullier-Martins L . . . . .
isotropic  two-dimensional harmonic  oscillator,

(Si) pseudopotentialss> , LDA, 30 Ry cutoff, Kleinman-Bylander an ; A
separable pseudopotentials;, GGA, 30 Ry cutoff, Kleinman-  &nj.m(U|)€xp(m¢) with radial quantum numbem; and an-

Bylander separable pseudopotentials; dashed line, harmonic oscillgular quantum numben,
tor potential.

W= 3 Cnn, (Us) o m(upe™, (@)

instructive to compare the relative magnitudes of the differ- n,np.m

ent terms in a diagrammatic representation of the contribu- 5
tion of order? to the anharmonic frequency shift and to the where tanp=u,/u,. The matrix elements dfV have been
static displacementus). It turns out that the contributions determined numerically, and the basis set of Morse and os-
involving  third-order static cumulants((u,—(u,))(ug  cillator functions has been successively increased until con-
—(ug))(u,—(u,))) are not small. This indicates that self- vergence was reached for the eigenvalbgs The spectrum
consistent schemes which neglect these cumulants like thef eigenvalues determined in this way is shown in Fig. 5 and
renormalized harmonic approximation in its simplest formcompared to the energy spectrum of a three-dimensional har-
do not seem to be appropriate for the system Si:H. monic oscillator with frequenciesg,, and to the spectrum
Therefore, as long as coupling to substrate modes is nesorresponding to the potentigd) with W(u)=0.[In all three
glected, we go beyond low-order perturbation theory and dicasesV(0)=0.] Apart from a constant shift, the latter po-



11 002 R. HONKE et al. PRB 59

2 0.3 : :
_ T = 300.00K |
S 1
s 02} |
0.5}
1 '2., r 3
% 0.1} %3020 2080
E/h =1610 cm =
. 0 . |. .|
A o 0 1000 2000 3000 4000 5000

frequency (cm™)
N 0000000060000000 1 11111

n"0112223333444‘4401122
m o0-11-202-3-113-4-20240-11-20 2

FIG. 7. Theoretical infrared absorption spectrum for decoupled
hydrogen atoms on a rigid substrate.

N

Here u; denotes the displacement perpendicular to the sur-

face (z). Second-order contributions involving two different

lattice sites have been neglected in this expansion for the

same reason we neglect the intersite interaction in compari-

son with the on-site potential.

The first-order dipole mome$y has been determined

ab initio by differentiating numerically the dipole moment of

a slab as a function of the distance between the hydrogen
E/h = 2778 cm film and the substrate. Its v_alue was found to be_ 1_.3 Asim

In the same way, we have investigated the coefﬁu&h@s

and M), and found them smaller than the accuracy of our

numerical calculations. From these findings we conclude that
g a E the second-order infrared absorption from the hydrogen film
B e e e - Bt ._l_ should not exceed the background second-order absorption
Nl 0000000000000001 11111 of the substrate, and it is essentially the first-order spectrum
that is seen in the experiment. Having neglected intersite
coupling, the absorbed intensityw) is then proportional to
0-11-202 the displacement-displacement correlation function of a

single oscillator,

AN |

N 01 1222333344444011222
M o11202-3-113-4-20 2

IS

FIG. 6. Admixtures of basis states to the eigenstates with levels
aandb. n, , quantum number of the Morse potentia|;,m, radial | . J’w dt gt
. ) ! . € (us(t)us(0
and angular quantum numbers of the 2D isotropic harmonic oscil- (@) —» {us(t)uz(0))
lator potential.

27h BE T 2 o
tential reproduces the lowest six energy levels fairly well. Tz Z,e n(nfug|m)|® 8(hw+E,—Er),
However, strong deviations occur at higher energies. m.n

An important feature of the additional potentiMis that (6)

it couples the motion of the hydrogen atoms normal and . ,

parallel to the surface. This causes the eigenfunctions of pré¥here=1/(KgT), T being the temperature atbeing the
dominant stretching character to contain appreciable admixRartition function of the anharmonic oscillator. The matrix
tures of excited states of the bending motion and vice versa&lements(n|us/m) have been determined numerically with
Two examples are given in Fig. 6, where the modulus of théhe eigenfunctions introduced in the previous subsection.
expansion coefficients™ _is plotted as a histogram over N Fig. 7, the infrared spectrum is shown as obtained from

iy . ) an evaluation of expressio(6) involving basis functions
the quantum nur_nberrssL M), m, a’?d it has important conse- with nj=<10 andn, <4. In the harmonic approximation, the
quences on the infrared absorption spectrum. spectrum would consist of one peak only, situated at the bare
) stretching mode frequenays. Because of the anharmonic-
A. Infrared absorption spectrum ity of the on-site potential of the hydrogen atoms, the follow-

In our system, infrared absorption happens essentially viing new features occufi) The position of the main peak is
the dipole moment normal to the surfaddg, due to the down-shifted by 71 cm?. (i) Additional lines appear at fre-
presence of the hydrogen film. It may be expanded in powerguencies which are approximately higher harmonics of the
of the hydrogen displacements: frequency of the main peak, because the corresponding ma-
trix elements ofu; between the ground state and higher ex-
cited states no longer vanisfiii) Small additional maxima
appear around the strong peaks because the states of pre-
L pa(2pei2 5 5 dominantly stretching character have energy levels that are
+ 2 Mz ui(h) +u3(1)]+O(u®)}. (5 no longer equidistant(iv) As the on-site potential couples

M=M=+ 3 {MEBus(l)+ sMZuE()
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FIG. 8. Anharmonic shifts of interlayer distances. Solid lines, . -
y FIG. 9. Mean square displacements of the hydrogen atoms, rigid

Si-H distance @g.4~1.49A); upper curve, exact result within bstrat imati Solid h . it tential
rigid substrate approximation; center curve, first order perturbatior?u strate approximation. S01d, - ahharmonic - on-site - potential;
dashed, harmonic approximation.

theory without substrate modes; lower curve, first-order perturba-

tion theory including substrate modes; dashed lines, distances be-

tween adjacent Si-Si layersg§.s~0.77 A); upper curve, anhar- harmonic approximation. The anharmonic contribution is

monic shift of the distance between the first two substrate layerglose to 10%. Because of the flatness of the on-site potential

dsis),; lower curve: anharmonic shift of the distance between twoin the directions parallel to the surface, the corresponding

corresponding substrate layers in the bdk;s) . mean square displacements in these directions are much
larger W;~0.03 & at T=0), while the anharmonic contri-

displacements parallel and normal to the surface, the matrikution to this quantity does not exceed 6% in the temperature

element ofu; between the ground state and the second of theange betwes 0 K and 600 K.

excited states with predominantly bending chara@gee Fig.

6) is of considerable magnitude and gives rise to the lowest

of the four major peaks in Fig. 7. The difference between the C. Renormalized dispersion and multiphonon bound states

energies of the first excited state of predominantly bending |n our system, the intersite coupling is small in compari-

nature and the ground state corresponds to 575'¢cwhich  son to the on-site potential and may therefore be treated in

is very close to the bare bending mode frequency oberturbation theory. At lowest order, the wave functions of

570 cm ! in the rigid substrate approximation. the ground statel, and the first excited state of stretching

The spectrum at zero temperature looks very similar tQ:haracter\I'slq have the respective forms
the one at 300 K shown in Fig. 7 with the exception that the '

satellites near the four high peaks, which are due to transi-
tions from thermally excited states, have disappeared and the W 1—[ | 8
high maxima themselves have slightly grown in intensity. 04 Po(u(l)), (8)

B. Mean positions and square displacements

By evaluating the moments \I,sl,q:\/ix/.Z eiq-R(I)l/,Sl(u(l))H o)), (9

171

1 - —

(U= 2 e FEn(mi(u,)"m) (7) _
m where the indexl stands for the quantum numberof the

first excited state of the one-oscillator Hamiltonian having
epredominantly stretching character, the index 0 denotes the
ground stateR(l) is the equilibrium position of hydrogen
atoml, and N\ is the total number of unit cells. By evaluating
numerically matrix elements

one obtains the contributioAdg;. of the zero-point and
thermal motion of the hydrogen atoms to the Si-H distanc
(n=1, a=3) and the mean square displacements 2) of
the hydrogen atoms normal to the surfdd@ebye-Waller
factor W, =((uz—(ug))?)] and parallel to the surfacel|
=(u2)). The result forAdg;. is shown in Fig. 8 as the upper
solid curve. The zero-point motion enlarges the Si-H dis- S

tance by only 0.3%. With increasing temperature, this dis- J(am'”)=f Ym(uun(u) d3u, (10
tance decreases. This behavior is due to the anharmonic cou-

pling of the stretching mode to the bending vibrations.

Taking into consideration that at temperatures below 600 K __

the bending modes, but not the stretching modes can be ther- K%’”EJ Pr(U)U U gii(u) d3u, (11
mally excited and assuming that the bond length is conserved

in the bending vibration, this decreasedaf ,; can be under-

stood as a geometrical effect. On the whole, the anharmoniwe obtain the frequenciesqs=(Es1q— Eo)/A in first-order
effects on the Si-H distance are surprisingly small. In factperturbation theory. In writing Eq$10) and (11), we have
the root mean square displacement in thiirection (W, ) chosen the wave functiong, to be real. The difference of
is larger by almost a factor of 6. The temperature behavior othe energie<, ; and &, associated with the wave functions
W, is shown in Fig. 9 and compared to the prediction of the¥; , and¥ within this approximation is
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trix. Apart from the shift of 71cm?, the two dispersion
curves also differ by their bandwidths and partly their
shapes.

In the same way as for the energiég , one may use
perturbation theory to calculate higher vibrational energies of
our system of weakly coupled anharmonic oscillators. Due to
lattice translational invariance, these energies can be charac-
terized by a wave vectay, and the corresponding wavefunc-

T tions have Bloch form. In addition to wave functions of the
form (9) which is a linear combination of states with one
oscillator in an excited state while all the others being in the
ground statdstates of type)l there are also those with two
and more oscillators being in excited statsmtes of type )|,
which have to be taken into account as zero-order wave func-
tions in the perturbation calculation. In the case of harmonic
oscillators, the states of type | are degenerate with those of
type II, and for a given Bloch wave vectay, continuous
bands of energies arise. In the case of strongly anharmonic
oscillators, the zero-order energy of a state of type&h (
+E,—Eg), may differ from the zero-order energy of any
state of type Il €, plus a sum of integer multiples of one-
oscillator excitation energieg,—Eg) by much more than
the intersite interaction matrix elements. In this case, it is
obvious that the energy spectrum of the coupled many-
oscillator system for given wave vectgrcontains, in addi-
tion to continuous bands, isolated points corresponding to
states which are predominantly of type I, i.e., one oscillator
is in an excited state while the others are in their ground
state. These correspond to tNephonon bound states. Two-
phonon bound states have first been considered for bulk crys-
tals in the late sixties?®® Later, it has been recognized that
they are likely to occur in adsorbate systeths’ and in the

FIG. 10. Top and center, one-phonon dispersion curve of the fi thev h b found and i tigated .
hydrogen stretching mode within rigid substrate alpproximation.mean ime, they have been found and Investigated experi-

Top, harmonic approximation; center, with anharmonic on-site po_mentally and thsg%encally for 5[11):H’15'23 C(lll):H,58
tential; bottom, Dispersion of the “two-phonon bound state” en- &1d RU001):CO*>" Because of the complex structure of
ergy: thick solid, rigid-substrate Hamiltonian with full anharmonic the Single-oscillator spectrum, the condition that the zero-
on-site potential, first-order second-order perturbation theory Order energy of states of type I is sufficiently different from
with respect to intersite coupling; lower dashed, contribution of@ny zero-order energy of states of type Il can be met only for
first-order perturbation theory:; thin solid, Bose-Hubbard model withlow energy levels. We consider here the state of type | with
parameters fromab initio frozen phonon calculations by Li and one oscillator being in the second excited state of predomi-
Vanderbilt(Ref. 23; upper dashed, Bose-Hubbard model of Li and nantly stretching charactéwhich corresponds to the 23rd
Vanderbilt, second-order perturbation theory with respect to hopsingle-oscillator level We denote this level bg2. The state
ping parameter. All curves shifted to the same frequency value aof type Il coming closest to it in energy has seven oscillators
theT point. in the first excited state of predominantly bending character.
The energy difference is 13.4 ¢rh which is still consider-
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1 ably larger than the bandwidth of the stretching mode due to
Es1g” S0~ Ea1mEot 5 2, ¢ap(l0) the intersite interaction, but of the same order of magnitude
1#0 as the bandwidth of the bending modes. However, coupling
X[2cogq- R(1))JLO (L0 4 5(sLsD) 5(00 between these two states occurs only in high-order perturba-
a B a B .
tion theory and may therefore be neglected. Consequently,
+J20JGLD — 2500300 — K (ZSV + KO0, there is a single branch separated from the continuous bands

in the energy spectrum of the many-oscillator system. We
(12 calculate the dispersioi,q of this branch using perturba-
Here, E, and Eg; are the ground state energy and energytion theory up to second order. The first-order contribution is
value of the first excited state of predominantly stretchingof the form (12) with sl replaced bys2. It is very small
character of a single oscillator with no intersite coupling.since the matrix elementt*>? are small(They would van-
The quantitiesfi wqs, Which may be regarded as vibronic ish in the case of harmonic oscillatprsn second order of
quasiparticle energies of the anharmonic system, are dighe intersite interaction, we take into account only the domi-
played in Fig. 10 and compared to the harmonic phonomant contribution, which is the coupling to states of type |l
frequencies as obtained by diagonalizing the dynamical mawith two oscillators being in the first excited state of pre-
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dominantly stret_ching charactes]), while the qther oscil- Hrs=H,+ 7H3+ 7?Hy, (16)
lators are in their ground state. It has the explicit form
whereH, represents the harmonic on-site partfs, ZHg
B 2 stands for the cubic anharmonic part of E§5), and »“H,
26529~ Egt Eq,— 2E., ;0 $3301){1+codq-R(1]}. consists of the quartic anharmonic part and of the intersite
(13) interaction. Starting from a unitary operat@=1+inA
+ 7°B+0O(#%°) and choosing the operatofsand B appro-

A |J(351,32)Jgsl,0)|2

Figure 1Qc) shows the dispersion of the “two-phonon N th ‘ iHtonidhe S
bound state” which is extremely weak if compared even toP'iately, the transformed Hamiltoniah=S""HgsS does not

the one-phonon dispersion of the stretching modes. The di€ontain any terms of first order i, and the second-order
persion results mainly from the coupling to states of type jterms all commute with the number operators and are of the

treated in second-order perturbation theory, but the firstform
order contribution is not negligible. However, the small sili-

con displacements accompanied by the displacements of t _ h_ 2 m(a*)z(a )2
hydrogen atoms and neglected in the rigid substrate approxi- 4 9 2w§ ! !
mation may in fact have a larger effect on the dispersion of N
the two—'pho_non bound state” than the intersite coupling in L2 atalbib+cic]
the Hamiltonian(1). Wswy
In Fig. 10c) our results are also compared to an earlier, M M
pioneering calculation of the dispersion of the “two-phonon L b 2(b2 4 (e (e 2T+ —2pthet
bound state” by Li and Vanderbfit on the basis of amd 2w§[(b' )7(b)"+(e) (e’ oL brbiey e

hoc Ansatz for an effective Hamiltonian, namely, the boson

Hubbard Hamiltonian + S byl Natay + o D [yl )b by,
2wg WL 2wy T
— + +312 2 +
Hormeods aa I (0% (@)"+t2, arar. + 621100 b+ a1 B C by} (A7)
(14

. . o The coefficients in Eq(17) are related to the coefficients in
Here,a,” anda, are creation and annihilation operators. Thepe expansion of the on-site potent{ab) via

last sum is running over nearest-neighbor pairs. The three

parameters occurring in this Hamiltonian were obtained from N, =12a,— 30(as/w)? (18)
frozen-phonon calculations. In particular, the relatians ! 4 3T
=Eg—Ep and A'=Eg,+E,—2E,; were used and the en- ab

grg|esEn of thg on-site Ham|llton|an were calculated by us- N2=4b4—123—23+(2b3)2[
ing an expansion of the on-site potentiain powers of the wg
displacement components truncated after the fourth order,

2_ 2
(wst wp) — wp

1
+ e —
V()= my[ @f(ul+ud) + 0231+ agu3+ by(ud+ ud)ug (s an)— wZ] * 19

+asui+by(u2+u)ud+cy(u+ud) (15)
ot e o R M1=12c,~ (2bs/wy)? (20
The numerical determination of the lowest eigenvalt&gs
for this Hamiltonian is affected by the complication that the
potential is unstable for certain directionswf As the hop-
ping parametet is much smaller than the anharmonicity This effective Hamiltonian may also be obtained in a differ-

parametet”, second-order perturbation theory describes ac- - . : L
curately the dispersion of the “two-phonon bound state” asem way, that highlights the underlying physical approxima

o . tion. One may start with the classical equations of motion for
az%cijl?jr?igtneidn I{]htlazlrgiléi(ljegﬂgsntlrlzfetgp?ptrroezglnaetinotnozr:r;?ef?s”nothe displacements(l). Introducing a stretched time coordi-

y — 2 . . . .
contribution of first-order perturbation theory. A boson Hub- hater=»"t and extracting the fast oscillations by expanding
bard Hamiltonian has also been applied to the infrared prop- o 1 (0 @ it
erties of the system Gi11):H-(1x1) by Perssoi? us(lL,t)=A(n)e s+ p{za; (1) + e (1)e" s

A straightforward derivation of an effective Hamiltonian

M2:M1_4C4. (21)

of the form(14) from the original Hamiltoniar(1) seems to +af? (e 2+ c.c4 O(77), (22
be possible only in the regime of weak anharmonicity. Fol-

lowing Refs. 61 and 63 one may carry out a unitary trans- uy(1,t)=B(r)e 1+ pf{ BT (r)e (wsT@n)t
formation in the form of an expansion in powers of a small .

parametery, which may be chosen as the ratio of the root +B(ne s rcec+0(5?), (29
mean square displacements due to zero-point motion and a

length that is a typical ratio of force constants ih and Up(1,t)=C(r)e @bt (24)

(n+21)th order, e.g.Jas/a,|. We use the expansiofl5) in
the rigid substrate Hamiltoniafl) and decompose the latter one is led to three nonlinearly coupled discrete nonlinear
as Schralinger equations:
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J ) V. COUPLING TO SUBSTRATE MODES
H — !
Ao A ,2 aalll DA+ N A A, For a proper description of temperature effects on the in-
frared spectrum of our system, the coupling to substrate vi-
+No(|By[>+]C1H)A;, (25  prational modes is paramount. In order to include the dis-
placements of the silicon atoms in the theory, we extend our
notation in the following wayl continues to label the el-

N ementary cell of the slab. In addition, we introduce a sublat-
_ ! ! 2 1]
z'wba_TB'_; [A1a(11")Byr+ 1l ) Cy ] +[My|B)| tice indexx. k=0 stands for the hydrogen sublattice. When
referring to the silicon sublattices, we use the index
+M,|C|2+ Ny A 2B, . (26) Because of their comparatively large atomic mass, the

mean square displacements of the silicon atoms is much

The third equation is obtained from the second by intersmaller than those of the hydrogen atoms and consequently,
changingB andC. Discrete nonlinear Schdinger equations we may truncate the expansion of the lattice potertiah
have been studied extensively in the literattff®In particu-  powers of the displacement components after the third order
lar, stationary spatially localized solutions have beenof the silicon displacements:
found3* It has been pointed out that multi-phonon bound
states may be regarded as quantum signatures of such intrin- _
sically localized mode8:%*~¢"For our system $111):H, in- P{ulth = Prd{ul0)h)
trinsic localized modes have been predicted on the basis of S oW
the original HamiltoniarH g5 with an on-site potential of the +| ~ @, {ul0)}lo)u(lo)
form (15).%8 o

Canonical quantization of the coupled nonlinear Sehro
dinger equation$25),(26) yields directly the expressions of
Eq. (17) for the anharmonic and intersite part of the Hamil-
tonian. Both ways of derivation of this Hamiltonian are XU (lo)ug(l’o’)
based on the elimination of nonresonant couplings, while the 3
resonant ones, which commute with the number operator, +Owu(lo)?). @7
have been kept. The Hamiltonidf7) is obviously not the Here, dis the rigid substrate part of the potential that we
same as the one used by Li and Vandefbiits it contains  have considered in the previous section. The quantiigs,
explicitly the degrees of freedom associated with the bendin@g)(m), and @&2[30 ol’o') are functions of the hydrogen
motion. We will refer to this Hamiltonian in the next section. displacements. To determine the latter two fudlip initio

The effect on the infrared absorption spectrum is the folwould go beyond our current numerical resources. Therefore,
lowing: at zero temperature, the “two-phonon bound state”we have expanded the three functions in powers of the hy-
is visible as a sharp peak at frequend,—&o)/A with drogen displacements and have retained in(Eg. terms up
intensity proportional t¢J*S?)|2, which vanishes in the har- to quartic anharmonicity. This may not always be adequate
monic approximation. The continuum of states of type Ilin view of the large mean square displacements of the hy-
remains invisible at zero temperature. Only if “one-phonondrogen atoms. However, it has been found that on the basis
states” of the type(9) are populated, these states will be- of this approximation, results for the temperature depen-
come visible. We note that due to the smallness of th&l€nce of the stretching mode frequency and linewidth can be
second-order dipole moments in our system as found in Segained that are in quite good agreement with experiment.
IV A, a two-phonon continuum af=0 K will not be exhib- 1 ransforming to phonon normal coordinaiédj) via
ited by second-order infrared absorption, either.

In the case of the bending modes, the frequency shift due B iq-R() ) h
to zero-point motion and the bandwidth of the dispersion ulx)=2 e e(«|aj) M 20
curve are of the same order of magnitude. Consequently, 4 o
perturbation theory with respect to the intersite coupling canand the components, ; of the deformation tensor account-
not be done in the same way as for the stretching vibratioling for homogeneous deformations, the lattice potential may
described above. be written in the form

—+

N| =

> 2 d@dudoliel o)

howa 1”07

12
A(qj) (28

eaB Sa,B nv E,LLV+ EB 2 daﬁ(j )EaﬁA(oj )

h 1
D=7 2 wgADA(-a))+5 >
4 < “ai a an+3 i

h L : : T R A,
tar 2 Va(@haT A TAGDA@TA@T) T 5 2 2 Ves(alq') - AGDAD ] Den

“aj.g’i’g"" b qj.q'j’

ﬁ H 1y’ nyn "y m H 1yt nyn "y mn
et 20 20 Va(@ha'lai g i ADAE T AT AE )+ (29

A

" aig’i’ q"",q"]
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Here,q is the wave vector in the surface Brillouin zone, the used to calculate, as function of temperature. For practical
index j labels the phonon branches, aje{«|qj)] denotes reasons, mean sublattice displacement vedtirg) instead
the eigenvector associated with the phonon magig.(In  of the (quantum-thermally averaged normal coordinates
Eqg. (29), only those terms have been stated explicitly that{A(Qj)) are used as variables in the calculations. In this way,
occur in the perturbation-theoretical results discussed in theur procedure of derivation becomes very similar to the one

following subsections. by Dobrzynski and Maradudiff, except that we expand
around the classical equilibrium positiofise., around the
A. Temperature dependent equilibrium positions equilibrium positions of the relaxed systgmather than

Before considering the anharmonic effects on the fre_antqrgur:ﬁetzebfzaelcp;(;s]ltg);esd ;Ze static displacem@unig! «))
guency and linewidth of the hydrogen adsorbate vibrations, y P
we first address the role of the zero-point motion and the

thermal fluctuations of the atoms on the equilibrium posi- (Up(1K)) =2 €apRe(1K) +U 4(x). (33
tions as they turn out to have an important influence on the A

anharmonic frequency shift. The static equilibrium condi-Symmetry requires that the additional displacemesifs)
tions are obtained from Eq29) by performing the deriva- can only have a nonzero component normal to the surface,
tives of the potential energy with respect to the quantitiedy ,(«)=6,3U(«). Equation(30) then takes the form

€,z and to the coordinate&(0j) and equating to zero the
guantum-statistical averages of these derivatives. If we con-
fine ourselves to lowest order in the anharmonicity, i.e., if we
retain only those terms that give corrections of orti¢o the
static displacements in the limi—0, the following equa- +F® (k) €. (34
tions are obtained:

O=2 G(KK')U(K’)+2 F(O)(K|qj)(2nqj+l)
! qJ

The coefficients occurring in E¢34) have been determined
7 ab initio in the following way.
0=—wo,-(A(0j)>+E dap(i)€ap U§|ng d_ensny—functlonal perturbation theory, dynamical
2 ap matrices with componen® , 5(x «' |g) have been calculated
7 for the atoms at their classical equilibrium positigns., for
+= > Vi0j,qi’,—qj A A(=Aj"))er the relaxed slabas well as for reference configurations with
aj’ " layers displaced from their equilibrium positions in the di-
(30) rection normal to the surface. The coefficie@é«x«’) are
simply equal to the componenBss5(««’|0) of the dynami-
cal matrix at the center of the Brillouin zone, evaluated at the
0=Sug ur€urt 2 dap(i)(A0))) equilibrium configuration and multiplied byM M ., with
J M, being the mass of an atom of sublattice The coeffi-

# . . . _ cientsF(O(k|qj) are obtained by taking numerical deriva-
t3 2 Veap(dj',—aj”, = )(A] A= d]"))o tives of dynamical matrices with respect to layer displace-
4 ments,
(31 5
The bracketg---) stand for the quantum-statistical average F(¥(«|qj)= S > > e(«’|aj)
and the index o indicates that this average has to be per- @Waj @B k"
formed with the statistical operator that corresponds to the P
harmonic part of the Hamiltonian. X U—Daﬁ(K’K”|q) es(«"|aj).
The variables occurring in Eq$30,31) are partly redun- U () U(x)=0
dant since a homogeneous deformation of a finite slab with (35)

€,5= 0,3053€33 Can also be described by a superposition of L) ) o

normal displacements with wave vectpe 0. With increas-  1he quantities='"/(«x) €, are simply the derivatives of the
ing size of the slab, the effect of the surfaces on the homotiellmann-Feynman forces with respect to a homogeneous
geneous deformation induced by zero-point motion and theidilatation of all bond lengths. Because of translational invari-
mal fluctuations diminishes. The only possible homogeneoudnce, we may fixJ(«)=0 at the center of the slab. The
deformations of an infinite crystal consistent with the cubicStatic layer displacementd(x) may be expected to have
symmetry of silicon are of the forra, ;= &,4€,. Therefore, non-negligible values only for the adsorbate layer and the

bulk silicon, our calculations, we have allowedi(«) to be nonzero only

for the hydrogen layer and the top substrate lag€or prac-
1 . tical reasons, the derivatives in E@®5) have been carried

BOEO:G_QO qE} Y(Q)) e wqj(2ng;+1), (32 out with respect to displacements of the first substrate layer

’ and with respect to the amplitude of the hydrogen stretching

whereB,, is the bulk modulus of siliconf}, is the crystal mode rather than the displacement of the adsorbate Jayer.
volume, y(qj) is the Gruneisen constant of the bulk phonon The resulting behavior of the hydrogen-silicon distance and
mode @j) and ny; its Bose factor.Ab initio data for the the layer spacing between the first two substrate layers as

Grineisen constants of silicon are availdBland have been function of temperature is shown in Fig. 8. The inclusion of
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The contribution of the “tadpole diagram” to the anhar-

9 Q monic frequency shift is given by
a b c

0-'(1)05
(Qwor=2 | 7575 00t

07(1)03:|
e €0
(760 60:0

(39

Inserting the solution of Eq.34) for U(kx) and the expres-
—@‘ _CI)— “8_ sion Eq.(32) for ¢ in Eq. (39), the contribution of the tad-
d e f pole diagram is easily arranged in the fo(&®6). We empha-
size that the sum in E¢36) is over all surface/adsorbate and
‘®_ _@_ bulk phonon modes.
Due to the very high value of the stretching-mode fre-
9 h guency, the denominator in E¢38) can never be zero. It

. L -
FIG. 11. Self-energy diagrams considered in the calculation ofhnay become small if one of t_he two branch indigesr j

the anharmonic frequency shift and linewidth of the hydrogenrefers to the hydrogen stretching mpde and the other one to

stretching mode. an acoustic mode for smal|. In this case, however, the

coupling coefficients are very small and the contribution of

the coupling to the substrate modes modifies the behavior dfiS combination of modes turns out to be negligible.

the Si-H distance quantitatively, but does not alter the gen- The anharmonic coupling coefficientés(0s,qj, - aj’)
eral tendency found in the rigid substrate approximation. Orf"dV4(0s,0s,qj,—aj) have again been determinall initio
the other hand, the distance between the first two silico®y combining density functional perturbation thedBFPT)
layers monotonously increases with temperature, unlike th@"thlthe frozen phonon method. Using DFPT, dyngmlcal
interatomic distances in the bulk which show a well-knownmatrices have been calculated for a grid of wave vedjdrs
minimum as function of temperature. The zero-point motionthe irreducible segment of the surface Brillouin zone for

sponding to the classical equilibrium positions. for slabs with the displacement pattern of the zone-center

hydrogen stretching mode frozen in with amplitudl€0s).
We then obtain

B. Anharmonic frequency shift

The anharmonic contribution to the frequency of the hy-
drogen stretching mode is calculated from the self-energy of ) ., 1 . ,
this mode. There are three contributions to the phonon self-  V3(0s,0j,—qj’)= 2\/: E es(xlaj")
energy that are of first order i at zero temperature. They @ Pqj P o

are symbolized by the first three diagrams in Fig. 11. The d
sum of these three contributions may be arranged in the form X WDHB(KK' la)
A(0s)=0
Xe,@(K,Mj) (40)
Aw05=2 Q(qgj)(2ng+1) (36)  from numerical derivatives of the dynamical matrices. To
aj

determineV,(0s,0s,9j,—qj), one has to sef=j’ in Eq.

(40) and replace the first by the second derivative with re-
spect toA(0s). To illustrate the quartic anharmonic coupling
of the zone-center hydrogen stretching mode with the other

with coefficientsQy=Q, + Qg+ that do not depend on
temperature. The contribution of the loop diagram to the co

efficient {2 is phonon modes of the system, we display in Fig. 12 the quan-
tity
QL(gj)=3V4(0s,0s,qj,— qj). (37)
The bubble diagram yields V<4)(q,w)=2 V,(0s,08,qj,— qj ) X /[ €2+ (w— wqj)z]
J

(42)

for wave vectorsy along the edges of the irreducible triangle
of the surface Brillouin zone. The widthhas been chosen to

be 2 cm'L. A corresponding representation of the cubic an-
{ wgj+ wg;j harmonic coupling constant¥;(0s,qj,—qj) looks very

(wqj+wqu)2—w§s similar. As expected, the anharmonic coupling of the zone-

0g(a))=—2 3|V5(0s,0,~qj")|?
]!

center stretching mode is mainly to the modes of the stretch-

wgjr— 0g ] ing and bending branches. In addition, there are appreciable

(380  contributions from a branch near the upper edge of the bulk

2 2 . . h .
(wgjr — wgj) "~ ©os phonon spectrum having a relative content of vibrational am-
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_ a Figure 14 shows the contribution of Figs.(ak-11(c) to
r i ‘V‘ the frequency shift of the stretching mode. They are found to
0 100 200 300 400 500 2000 2200 ; :
be all of the same order of magnitude. They strongly differ
frequency (cm'1) from each other in their behavior as functions of temperature,

and the contribution of the tadpole diagram even changes

sign at higher temperatures. Apparently, the contributions of

the loop and tadpole diagrams vary much more strongly with

temperature than the total frequency shift. Neglecting one of

FIG. 12. Quartic anharmonic coupling coefficients. The functionthe three contributions, would give a result that is not only
V®(q,w) is defined in the text. guantitatively wrong, but also produces a qualitatively incor-

rect temperature dependence.

At zero temperature, all three contributions to the fre-

plitudes of the hydrogen atoms higher than in other substratgueéncy of the stretching mode have the same sign. This is

modes(Lucas mode, see Sec).lICoupling to the Rayleigh not the case for the bending mode. Here, strong compensa-

mode and another surface mod&) can also be detected. tions occur between the three different diagrams, which
Inspired by theoretical work on adsorbate dynamics thathakes quantitative predictions very difficult.

was mainly focused on CO on metal surfaéks? earlier Experimental information on the frequency shift due to
interpretations of experimental data on temperature deperzero-point motion can be gained through the isotope effect,
dent frequency and linewidth of the stretching modtrib-  i.e., by comparing the experimental frequencies for hydrogen

uted the temperature dependence of these quantities to th@d deuterium adsorbate atoms. In order to extract this infor-
anharmonic coupling of the stretching mode to a flat branchmation from the difference between the hydrogen and deute-
of surface phonons with a frequency of approximatelyrium stretching frequencig®r bending frequencigsknowl-
210cnT . Our ab initio calculations do in fact verify the edge of the harmonic interplanar force constants between the
existence of such a brancbee Fig. 3 However, as is ap- first few layers is required. Harmonic frequencies for the

parent from Fig. 12, there is no anharmonic coupling of thesystem Sj111):D have been calculated by several
zone-center stretching mode to this branch of surfacgihorgl®7475

phonons.

Evaluating the expressiorn87), (38), and (39) with the
anharmonic coupling coefficients determiradal initio in the
way described above, we obtain results for the temperature
dependence of the stretching mode frequency in quite good
agreement with the experimental data, as shown in Fig. 13. The intrinsic width of the infrared absorption line at the
These results are compared with those of an analogous catretching-mode frequency results from the imaginary part of
culation carried out within the rigid substrate approximation.the self-energy associated with this phonon mode. At zero
This comparison clearly shows that at low temperaturestemperature, a nonzero imaginary part arises from spontane-
when the Bose factors for the bending modes become smalhus decay. Because of the high value of the stretching mode
the substrate modes govern the temperature dependence. @aguency as compared to other phonon modes and the en-
the other hand, the contribution of the substrate modes to thergy conservation condition, such decay processes require at
anharmonic frequency shift t=0 is negligible compared least four phonon modes as decay products. Therefore, a
to that of the adsorbate modes. nonzero imaginary part of the self-energy arises only at order

C. Intrinsic linewidth
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#3. However, at finite temperatures, scattering processes

may occur that correspond to self-energy diagrams that are- Syj(w)=~2(1+ nqj)%

formally of order4? at T=0. All diagrams of this sort that (@qj = )"+

give a nonzero contribution to the imaginary part of the self- r.

energy of the stretching mode are represented by Figs. +2ng; S (42)
11(d)-11(h). Explicit expressions for the contributions of (wqj+w)2+ ng

these diagrams are given in Ref. [&part from(f) which )
may be easily evaluated following the rules given thepein Furthermore, we make use of the smaliness of the damping
In the temperature range where the infrared absorption ex¢onstantd’q; in comparison with the mode frequencieg; . -
periments have been carried out, the thermal occupatiohh€ contributions of the diagrams represented in Figs.
number of the stretching mode is negligibly small. We ac-11(d)—11(h) to the imaginary part—1I'g(w) of the self-
count for this fact and use the following simple Lorentzianenergy at frequencies in the neighborhood of the fre-
form for the spectral function§,(w) associated with the quency of the stretching mode,s may then be written in the
phonon lines occurring in these diagrams: compact form

FqS+ Fq’] + Fq//j/l

Fos(w) =ar E E |V2ﬁ(OS,qs,q'j ! ,q”j ”)|2nqul‘u(l+ nqu' r)

NN (U)—U) —Wyir Tt )2+(F +F +1—‘ ')2' (43)
a.9".9" j'.j gs q’j’ q"j” gs q'j’ q"j”

(See also Burket al,”” who use somewhat different arguments to arrive at an effective quartic ueFtex effective quartic
anharmonic coupling coefficient consists of bare cubic and quartic coupling constants:

2w,
N 5
VE (N1 N2 A8 M) =Va(A 1 A2 hg M) = 2 | Va(h1, A4, A5)Va(N o N3, hs)— >
A5 oy, ~ (0, o))
— 2“))\5 — 2(0)\5
+V3(A1, A3, 5)V3(A2,Ng,h5)— 5t Va(A1, A2, A5)V3(A3, Mg, 5)— 51
wxs_(wxz_wM w>\5_(w>\3_w>\4)

(44)

To simplify the notation, we have abbreviatgfl by X and  damping constantE ;s and Ty, with wave vectorg is negli-
—qgj by \ in Eq. (44). gible. The sum of three damping constants on the right-hand
An ab initio calculation of all the anharmonic coupling side of Eq.(43) may then be replaced b+ 2I'g,. The
coefficients occurring in Eq44) would be quite impossible intrinsic damping of the bending modes is predominantly
at present. Instead, we resort to the following approximationdue to decay into two substrate modes. The damping con-
On the observation that the dominant anharmonic couplingtant of the zone-center bending modég, has therefore
of the stretching modes is to bendinig) (and stretching g) been calculated by using the formula
modes, we restrict the branch indices in E4S8) and(44) to
the adsorbate modes. Furthermore, we evaluate the effective _m S 2
quartic coupling coefficients within the rigid substrate ap- Foo=3 % % [V3(0b,qj, —aj")]
proximation to obtain
X(1+nqj+nqj/) 5(w0b—wqj—wqj/), (46)

where the branch indicgsand |’ refer to substrate modes

ff ’ MR’ — ’ ”
Vi'(0s,as,0'b,q"b’) = ANTE oo N2A(g+q'+q") only. The cubic anharmonic coupling coefficients
H™s™b V3(0b,qj,—qj’) have again been calculated initio by de-
X[e(q'b)-e(q’b’)]. (45)  termining via density-functional perturbation theory dynami-

cal matrices for a slab with a frozen-in displacement pattern

Here, N is again the number of unit cells. The coefficiét  of a zone-center bending mode with amplitudlgdb). The
is defined in Eq(19), A(---) is the Born-Huangs function  cubic coupling coefficient is then obtained by determining
ande(gb) is the eigenvector of the bending mode with wavethe numerical derivative with respect A{0b) [according to
vector g of branch(polarization index b. We note that the Eq. (40) with sreplaced byb]. The damping constait, of
same expression may be obtained in an alternative way whethe bending modes was found to vary between 2 and 8'cm
starting from the Hamiltoniar{17), into which the anhar- in the temperature range, 0-500(&ee Fig. 1%
monic interaction with substrate modes may be included. Having calculated’y, from Eq. (46), the damping con-

To evaluate the imaginary pa3) of the self-energy we stantT'y of the stretching mode has then been determined
make the additional assumption that the variation of theself-consistently from the equation
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where summation indicas’ andb” run over the two bend- perature. Experimental dat_ERAS), Expl, Ref. 2; Exp2, this work.
Theory: (1) with I'y, determined from two-phonon decay processes

g mgde t_)ra,'nCheS' I.quiatlc(pw) fOHO_WS_ fror_n_ Eq' (43), into substrate mode@ight upper cornerand I'g determined self-
when identifyingT"o; with I'os(ws). This identification can  ¢ongjstently. In the effective quartic coupling constants, experimen-
be made, because the imaginary part of the self-energy g values have been used for the stretching and bending mode
function of frequencyw varies little in the neighborhood of  frequencies(2) same ag1) with T',=4 cm™ = const.(3) same as

wgs over a frequency range of the order of magnitude of(1) with harmonic frequencies used in the effective quartic coupling

T“Os(wOS). This justifies the approximation of the spectral constants.

function for the stretching mode by a Lorentzian and thus th?emperature range 14—350 K. A theoretical analysis has been

introduction of a damping constant for this mode. We em-_ i .
phasize that this would not be the case if the finite dampin iven for the peak positions in the splelctrum as'welllas for the
constants of the bending modes had not been taken into a emperature dependence of the position and linewidth of the

count main peak resulting from the nonlinear dynamics of the

Figure 15 compares the experimental data for the temgoupled system of adsorbate and substrate atoms. All quan-

perature dependence of the FWHM of the infrared absorptioﬁ't'.es that govern this nonlinear dynamics have been deter-
line with the theoretical results forIZ gained from Eq.

mined ab initio by a plane-wave pseudopotential scheme
(47). In the expressior(19) for the coefficientN,, strong based on the local-density approximation. Not only the elec-
compensations occur between the different terms. As a r

tronic system, but also the anharmonic atomic vibrations
sult, it is very sensitive to the values of the stretching an ave been treated fully quantum mechanically to properly
bending mode frequencies. When using the experiment

aqescribe the large quantum fluctuations of the hydrogen ad-
values forwg andwy, in the constant factdiN, /(wswy,) ]2 of

Sorbate atoms. In earlier work based on classical molecular-
) dynamics simulations, quantum fluctuations had been ac-
and experment However, the theoretcal inewidihs woulckOUnIed for only 10 a cerain degree of approximation by
P L ' . . rescaling the temperature and depositing additional energy
be much larger, if the baréharmonig frequencies were .\ "o qi 1y pond o by using Bloch-Redfield theof§/
used. Flgure_ 15 also shows that the temperature dgpendenc%ich is limited to coupling between substrate and adsorbate
of the damping constant for the bending modes is |mportanq:‘agrees of freedom that is linear in the latter

for the correct description of the temperature dependence 0 In our treatment of the problem, we have followed two

Tos. routes that correspond to two different approximations. In
the rigid-substrate approximation, we were able to treat the
on-site anharmonicity of the hydrogen vibrations exactly and
The infrared absorption spectrum of the hydrogen-expand with respect to the weak intersite coupling. However,
covered Si111)(1x1) surface has been measured over awithin this approximation, it is not possible to properly de-

VI. CONCLUSION
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scribe the measured temperature dependences of the stretohede frequency that meets the precision of the experimental
ing mode frequency and linewidth at low temperatures. Alsodata in both the treatment of the electronic problem and the
the rigid-substrate approximation ignores the presence of viguantum and thermal fluctuations of the atomic positions re-
brational modes near the upper edge of the silicon bulk phomains a challenge for the theory.
non spectrum that have an appreciable content of hydrogen
motion.

When abandoning the rigid-substrate approximation and
including the coupling to the vibrations of the substrate at- We are indebted to Dieter Strauch for a very helpful sug-
oms, we had to retreat to perturbation theory valid for weakgestion, and we would like to thank Matthias Scheffler and
anharmonicity which may not give quantitatively reliable re- his group at the Fritz-Haber-Institut for having made avail-
sults in view of the large mean square displacements of thable theirab initio molecular dynamics code. Financial sup-
hydrogen atoms in their zero-point motion. Nevertheless, iport by the Deutsche Forschungsgemeinsch#firough
has been possible within this approximation to obtain result&rants Nos. Ja524/1-1, Ja524/1-2, Mal074/6, and Gra-
for the temperature dependence of the stretching mode fretuiertenkolleg “Komplexitain Festkopern: Phononen, Ele-
qguency and linewidth that are in quite good agreement wittktronen und Strukturen’is gratefully acknowledged. We
our experimental data. These data have been measured witlould also like to thank the HLRZ at the KFA™lith
an accuracy of a few percent of an inverse centimeter extProject No. K2710000and the Leibniz Rechenzentrum in
ceeding the accuracy of the corresponding theoretical valugdunich for granting us Cray computing time. A.P.M. thanks
partly by orders of magnitude. A calculation of the stretchingthe MPIPKS Dresden for its kind hospitality.
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