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Density matrix of inelastically scattered fast electrons
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The kinetic equation for the evolution of a fast electron’s density matifter single inelastic scattering is
solved in the one-beam approximation. The solution holds for any type of inelastic interaction and for any
scatterer. It relateg directly to the mixed dynamic form fact§MDFF) for inelastic scattering, which in turn
is the Fourier transform of an energy-loss dependent density correlation function. This approach allows simu-
lations of both energy-filtered diffraction patterns and high-resolution energy spectroscopic ifEegihas
well as access to the mutual coherence and the density autocorrelation function of the probe electron, all under
the same formalism and the same approximation. A criterion for the maximum attainable resolution in ESI is
derived. As an example, we discuss dipole-allowed atomic transitions for the Si-K ionization.
[S0163-182609)08615-4

I. INTRODUCTION at the exit plane of the specimen after an ionization of a
single atom.

The key quantity for the description of inelastic scattering
of fast electrons in crystals is the mixed dynamic form factor Il. THE MIXED DYNAMIC FORM FACTOR
(MDFF). It is a generalization of the more familiar dynamic
form factor that describes single inelastic scattering of a
single incident plane wave. The generalization is stipulate&v
because in crystals, the inelastically scattered wave consists
of a number of mutually coherent plane waves, and interfer-
ence terms should occur. These very terms are described by
the MDFF. They are particularly important in core-loss spec- _ _ )
trometry. whereay=4meohi?/mé is the Bohr radius, ang is a rela-

Although the MDFF has been used for nearly half a cenlivistic factor. S(q,q’,E) is the mixed dynamic form factor.
tury in electron microscopy in different contexts and dis- The more often used dynamic form factor—which actually
guises(see Refs. 1%t still seems to be considered merely appears in Eq(1l)—is the diagonal elementi=q’) of the
as a mathematical expression without much relevance to tHdDFF. For reasons which become clear in the following, we
underlying physics. We grant that for the calculation of in-Prefer to use here the more general MDFF. The three-
elastic scattering cross sections in crystals it is not necessafijmensional variable is a vector in reciprocal space, related
to understand what the MDFF represents. However, an uri0 the solid angl& appearing on the left hand side by the
derstanding of its physical significance sheds light onto whagcattering geometryi is the angle between the incident
is important in inelastic interactions. Moreover, it describeselectrons’ wave vectok, and ko+q. Energy conservation
the formation of both energy filtered images and energyequires that for a given energy logsthe dynamic form
spectroscopic  diffraction patterns under the samdactorS(q,q,E) vanishes except when the wave vector of the
formalism?8 scattered electron ik=q+ky. We shall distinguish the

The aim of this paper is to provide a physical understandgquantity Q=k—k, from an arbitrary vectoq in reciprocal
ing of the MDFF and its relation to the density matrix, and tospace. Note that-#Q is the momentum transferred to the
demonstrate what can be achieved therefrom. We shall décatterer in the inelastic interaction.
liberately choose a simple demonstration example. For ann-electron system the MDFF redds

In the first Born approximation, and for an incident plane
ave, the double differential scattering cross sectioh is

Po _4'y2 k E X
M_q“_agk_os(q’q’ ) 1

We begin with a definition of the MDFF, which lends
itself to a clear physical interpretation. We shall see that it is ' ey o A _
closely related to the density mattiX? of the scatterer. S(a.9".E)=s(E+E, Ef)Ei p.Z (1=po)

Thereafter, we discuss the relation between the MDFF and . .

the densiy matrix of the scattered electron. This has impor- ) iaR. Cid' Rl

tant consequences for the simulation of electron spectro- X<' 2 el f ) f zl: e R (2
scopic diffraction patterns and high resolution images ob-

tained from inelastically scattered electrons. Finally, weEach term in the sum is the product of two transition prob-
demonstrate the applicability of this concept for inelasticability amplitudes of the target, from an initial stdt¢ to a
electron scattering by discussion of the electron distributiorfinal state| f) with occupation probabilitiep; , p; . The tran-
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sitions are caused by the respective operaﬂfrejq'ij, and s B)=3S pS (1-py)
SMeldRi_ The delta function guarantees that the energy dif- v T f
ference between initial and final states be constapt; E;

—E. R, is the space operator of thjéh particle. ><J d®R¢} (R)8%(r—R) ¢¢(R)

A. The r MDFF for one-electron transitions X f d®R’ ¢;(R")8%(r' —R")

In the remaining section, we restrict the discussion to one-
electron transitions, in order to facilitate the interpretation. In
this case, the sums over space operators reduce to on&‘term,
and|i),|f) are one-electron wave functions. =Z pid; (r)gi(r')

We shall make use of Fourier transforms in the following. :

For convenience we use the notation

X ¢f (R")S(E+E;—Ey)

XZ (1—ps) s(r) dF (') S(E+E;—Ey).
®)

The sum over collects all occupied states, the sum of/aH
unoccupied states of the system, with the important con-
straint of a fixed energy differendebetween initial and final
wherenis 1, 2, 3, depending on the dimension of the vectorstates imposed by the delta function. This latter sum then
g. The inverse transform is includes exactly the states the scatterer can be in after tran-
sitions with fixed energy difference.

We define the energy—dependent density matrix of the

1 .
f(r)=FTq[f(Q)]==( fd”qf(Q)e'qr, )

2m)"

_i target initial state consisting of all originally occupied eigen-
f(q)=FTr[f(r)]=J d"rf (rye i, @ e e g ginally oceupied elg
Henceforthr, x, and the primed quantities denote vectors in Pi(”’,E):; P (N gi(r')S(E-Ey), ©)

two- or three-dimensional space, agdk, and the primed
quantities are two- or three-dimensional vectors in reciprocavhereEg; is the energy level of state;. An equivalent ex-
space. The Fourier transform of the MDFF with respeaf,to pression holds for the final state. When the scatterer is in
—q’ shall be denoted asMDFF, in order to distinguish it thermal equilibrium, each term is weighted with the thermo-
from its usual form in reciprocal space. With dynamic factof pj=(1/2)e” Ej/kgT
Since at room temperature or below the thermal smearing
of the Fermi edge is negligible as compared to the energy
FTq[e‘q§]=5“(r—I§) (5)  scale between atomic levelg;~®(Er—E), the density
matrix of the target final state can be approximated by

and P E)= 3 1(DG(NHE-E). (10
i~ Er

FTf(Q)]* =FT_[f*(q)] (6) Note that Eq.(9) is also valid for nonequilibrium conditions
a a when the proper occupation numbers are Used.
With Egs.(9) and(10) ther MDFF, Eq.(8) can be written
ther MDFF—the Fourier transform of Eq2)—is as an integral over energy of two matrix elements of density
matrices. As the zero level, we choose the Fermi energy.
Collecting terms in Eq(8),

S(r,r',E)= FTq,—q’[S(q!qI!E)]

0
R S(r,r’,E)=J pi(r,r',e)ps(r',r,e+E)de. (11
=2 pi 2 (1-p(i|(r=RIf) F
Ther MDFF is the energy correlation function between the
X (f|8%(r'—R)|i)8(E+E;—E;). (7)  denstity matrices of occupiehitial) states and unoccupied
(final) states, with energy differende between these states.
E equals the energy loss of the probe electron. This is the
Note that we transformed with respect toq’. This was physical meaning of the MDFF.
necessary because the matrix element contaiging the This is an important result because it relates the rather
complex conjugate of the matrix element containopgln ~ abstract quantity of the MDFF to electron densities of the
real-space representation—usually achieved by insertion cfcatterer. It is the overlap of initial and final electron densi-
Jd3R|R){R|—this is ties and correlations that governs the outcome of inelastic
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scattering experiments. Given that the initial-state wavediagonal elements of its energy dependent density matrices.
functions are known, Eq11) can be used to extract infor- But we can also put it the other way around: the dynamic
mation on final-state wave functions from scattering experistructure factor of the scatterer determines the momentum
ments. distribution of the probe electron. The general question is
then: given the MDFF, what information on the energy de-
B. The MDFF in a crystal pendent density matribof the probe electrorcan be ex-

Equation (11) | " i lied to sinale at tracted? And can we tell whether the probe electron after
quation IS most €asily applied 10 sSingle aloms i, q 4 qic scattering is in a pure or in a mixed state? In elastic
where the wave functions can be calculated without toq

e . . “scattering, the first problem is equivalent to the problem of
much difficulty. The MDFF of an ensemble of noninteracting, /" '+4 simulate diffraction patterns or high-resolutiéti)
atoms can as well be calculated from Edl). Since the

N ) ) images from a model potential of the scatterer, related to the
initial wave functions of adjacent atoms don’t show phase g b

. static form (or structurg factor F(q). Knowledge of the
relations(they dont see each othegher MDFF of such an . : . )
ensemble is simply the sum over atomisDFF's: complex quantityF allows calculation of the scattering pro

file via |F(q)|? as well as of HR images vi& (r)|? whereF

N andF are related by a Fourier transform.
S E)ctuster= 2 Si(r=ri.r' =11, E). (12 Here, we encounter the phase problem: in order to obtain
' information on the spatial charge distribution, we need the
Invoking the shift theorem for Fourier transforms, we trans-phase ofF [or, differently posed, the matrik(q)-F*(q’].
form Eq.(12) to The second problem is immediately solved for elastic scat-
N tering: Since F(q)-F*(q’) factorizes into g- and
, oo , g’'-dependent functions, the same is true for the density ma-
S(4.0" B)etuster= EI eTIS(q.qE). (139 trix of the scattered electron, so the electron is in a pure state.
The difference to inelastic scattering is t1#{,q’ ,E) does
In a crystal, the final states are no longer atomic wave funcnot, in general, decompose into two factors each of which
tions, but include the full electronic band structure deriVEddependS on a Sing|e momentum variable 0n|y, and the elec-
from the periodic potential; the initial states can be considron might be in a mixed state.
ered to remain unchanged. We can then still addDFF’s
asin Eq.(1_2) whefe theS; has to be repilaced by the MDFF A. The single-scattering one-beam case
of the motif in a single elementary cell:
We shall now derive a relation between the MDFF of the
, (a—a’ , scatterer and the density matrix of the probe electron, under
Smotif(d,d 'EFE e@9S,(q,q",E), (14 particular conditions that allow a simplepinterpretation of the
MDFF, namely the single inelastic scattering, one-beam case
whereS, is the MDFF of theuth atom in the elementary cell, (j.e., we assume that the incident electron is a monochro-
calculated with the full electronic band structure. Lettmg matic p|ane wave, and that the Specimen is so thin that On|y
—c0 in Eq. (13), the sum becomes a Dirac comb in recipro- one inelastic scattering process takes place, and there is no

cal space: elastic scattering, neither before nor after the inelastic inter-
action. This is fulfilled when the specimen thickness is
S(qvq’vE)crystaI:Smotif(qq’vE); 8q-q'—g). much smaller than the extinction distance for the excited

Bragg beams. Although our primary aim is to provide physi-
(15  cal insight into the concept of the MDFF, and thus the ap-

In other words, the MDFF of such a crystal vanishes excepproximations are chosen mainly for didactic reasons, our
wheng—q’ equals a vectog; of the reciprocal lattic&.For above assumptions are more realistic than one would believe
i :

4=0', Eq. (15) reduces t0Sqysia=Smodr. The diagonal at first glang:e. Quantific_ation routines, e.g., are based on ex-
element of the MDFF in a crystabr, the direct term, as we actly th_e s_lngle-scatterlng one-beam case. F_urtherr_nore, a
call it) equals that of the elementary motif. Contrary to thegenerallzatmn to Fhe case of Bragg scattering Is straightfor-
elastic case, the lattice periodicity is directly visible only in Ward: but would hide the physical significance of our results.

the skew diagonal elements, i.e., it changes only the mutur?:l We stgrtv\;‘;]orln%t]hed kine.tti)c eqhuation give_n bny#d%reV’
coherence of the outgoing electron by the delta function i eng, an elanlt describes the propagation of the den-

Eq. (15). Its angular distribution is the same as that obtained!ty matrix of an |nC|der_\t wave in a cryst_ql, including mela_ls-
after scattering on the elementary motif. tic scattering, under fairly general conditions. Here we sim-

plify by assuming a thin crystal of only a few atomic layers,
and fast incident electrons of 100 keV or more. In this re-
lll. THE DENSITY MATRIX OF THE INCIDENT gime, the single-scattering approximation is vdhadean free
ELECTRON paths for inelastic scattering are of the ordex50 nm) It
The double differential Scattering Cross section as giveri's further assumed that the incident electrons are monochro-
by Eq. (1) measures the momentum probability distributionmatic, and we look at one fixed energy Idss 0. Then, the
after inelastic scattering of a fast electron that can be dekinetic equation for the energy dependent density matrix of
scribed by an incident plane wave. It relates to the diagondhe inelastically scattered electron after energy Bss
element of the MDFF. Thus from scattering experiments we
get important information on the scatterer, namely on the pe(r,r’):==p(r,r’' ,Eg—E), (16
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is wherea is a proportionality constant. The differential current
. of scattered particles is similarly
pe(r,r’)
(92
=J d3Xd®x Gy (r,X) Gy (r' , X" )K(X,X",E) po(X,X"). EF =akpe(gy,0x)- (29
Ox

(17)  We obtain for the cross section
The inelastic scattering is described by the function

e4

Po_akpe(dy,0,) 0% k( 2mé )ZS(Q,Q,E)

S(q,9',.E EoQ ] Q ko 2 4
KX E)= —=FTq —(qquz ) ag =7 Jo A Kol 4meoh Q
€0 aq With the definition of the Bohr radius this is again Ed).
with the elementary chargeand the vacuum permittivity,,. Eqg. (21) relates the density matrix after single inelastic

(In cgs units,eq=1/47r.) The incident wave is given by its scattering to the MDFF. This allows calculation of high-
density matrixpy(x,x’) which for a single incident plane resolution images obtained from inelastically scattered elec-

wave of wave vectok is trons. In practice, the one-beam approximation will not hold,
_ _ and a more realistic Green function for wave propagation in
po(X,X") = e'koxg ko<, (19  a periodic potential must be us&d Still, the one-beam

single-scattering approximation for atomic transitions might
The functionK accounts for inelastic scattering at posi- be useful for very thin specimens where dynamical scattering
tions x,x’, and the two Green functions propagate the scatis unimportant. Preliminary estimates set the limit to a crys-
tered state from positionsx’ to positionsr,r’. We calculate  tal thickness of about 30% of the extinction distance.
now the density matrix of the probe electron in reciprocal Egs.(8) and(21) allow in principle to calculate the den-

space, after inelastic scattering: sity matrix of the probe electron from knowledge of the
, , wave functions of the scatterer. The diagonal elements de-

pe(Q.Q) =FT; —p[pe(r.r’)] (20 scribe the momentum distribution of the inelastically scat-

by Fourier transforming the kinetic E¢L7). tered electron. But there is much more information con-

The density matrigE(qX,q)’() of the probe electron in the f[ained_. W(_e a_Iso_have the mutu_al coherence in the angular
diffraction plane with two-dimensional coordinatsis then intensity distribution after scattering. So to speak, knowledge

[see Appendix A, Eq(A8)] of the density matrix solves the phase problem for inelastic
electron scattering. The density matrix shows immediately
o 2 rme? ZS(Q,Q’,E) the angular difference over which two beams leaving the
pe(0y,0y) = 5 ) P (21)  specimen are mutually coherent. Moreover, as we shall see, a
eoh kK Q°Q’ double Fourier transform delivers the density matrixrin
with space, i.e., both the charge density distribution at the exit
plane of the specimen, as well as the mutual coherence be-
Oy tween two positions.
Q=( ) (22)
Qe

C. The density matrix in real space
and equivalently for the primed variablge=k—Kk, is the

: . " We return now to the density matrix in real space. The
negative difference of radii of the Ewald spheres before and ) . . ' .

) . . density matrix of the scattered electronrispace, immedi-
after inelastic scattering. For small energy losEesE, we

have approximatelye~ — koE/2E,. ately after the exit plane of the specimen, is Etj7) for z

This is our basic result. It relates the density and the mu-:.O’ 2 =0. Equ_|valently, we can c.:alculate the - two-
. . dimensional Fourier transform of E¢R1):
tual coherence of the inelastically scattered electron to the
MDFF of the scatterer, in a simple and clear manner. It al- — N — ,
lows calculation of both the density and the coherence of the pe(X,X") = Fqu'—q;[PE(qX )] (26)

robe electron when the MDFF is known, and vice versa. . . .
P This corresponds to the transform from the diffraction plane

to the image plane in the electron microscope, provided we
have a perfect lens.

The scattering cross section is the differential current of With the convolution theorem, E§21) reads
scattered particles divided by the incident-particle current
density

B. The differential scattering cross section

2
FTo[Q ?IFT_g[Q' 2"

— 2m7me?
pE(x,X’)=(

Soﬁzk

Jo= (qxaQX)dqu- (23
o= XFTo, _q[SQ.Q ). @7

According to the normalization of the incident wave, Eq. _ _ _
(19), The asterisk denotes convolution. The Fourier transform of

the prefactor is easily found to be the modified Bessel func-
jo=(2m)*ako, (24)  tion K, (see Appendix B
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og 0; 0; A. The dipole approximation
3;2/ \ SEJK g For calculation of the density matrix, we need Eqs(8)
02 02 02 and(21). For single atoms and core-level excitations an ex-
s s 095 05 9 5 1 pansion of the wave functions into spherical harmonics
yields’

FIG. 1. Contrast of an object with pointlikeMDFF and perfect
imaging system, for an energy loss(af 17 eV;(b) 100 eV; andc) S«{(Q.,Q",E)=2(21+1)
1850 eV. Abscissa in atomic units.

©

FTo[Q 21=Ko(xdg). (28) Xzo P, (cOSa)(2\+1)

Noting that -
g X X (2/7+1)

I"=0

X Qe {in(Q Nner s rr s (30)

/*)\/’)2
0 0 O

FTLf(N]=FTq [T(a)] (29

for any functionf(r) and its Fourier transforni(q), we  where

obtain

2 <j)\(Q)>n5’//’:fdRLh/(R)j)\(QR)Ue’/’(R) (32
Ko(Xge)Ko(X'dg)*

2mmé?
Soﬁzk

FE<x,x'>=(

is a radial integral involving initial- and final-state radial
wave functions and the spherical Bessel function. The vari-
able « in the Legendre polynomial is the angle betwe@n
and Q'. The variablex denotes the change of the angular
momentum quantum number during the transition. At mod-
Thus, given ther MDFF, we can calculate the density erate scattering angles the term with=1 is most
matrix of the inelastically scattered electron at the exit planémportant'® These dipole-allowed transitions represent the
of the specimen. This may serve as a starting point for furlargest contribution to the scattering cross section because
ther processing, e.g., taking account of the contrast transféhe Lorentzian prefactor is large at small angles. It is there-
function of the microscope in order to compute inelastic im-fore a good approximation for atomic transitions.
ages, or the coherence between different points, an informa- For the sake of simplicity, we now discuss such a dipole-
tion particularly important in electron interferometry. allowed transition, say, from thesistate of a silicon atom to
We can also estimate the ultimate resolution in energya final state witlp-wave symmetry right above the ionization
filtered images. Even when tlreMDFF is a delta function edge at 1850 eV. According to the triangular property of the
corresponding to a pointlike atom, the contrast would be lim-Wigner three- symbols( : : : ) Eq. (31) collapses to
ited by Ky. To calculate the contrast, we must define an _ )
upper limit for the momentum. Roughly, this can be identi- Suip(Q:Q",E)=6P1(c0sa)(j1(Q))ner01{j1(Q")nero1-
fied with the cutoff wave number given by the Bethe ridge. (33
This maximum limits the spatial resolution, and removes aFor the Si :B_>8’p transitions, the expectation value of the
the same time the infinity &,(0). Figure 1 shows the con- Bessel function can be approximated by
trast of a pointlike object for three valuesaf, correspond-
ing to the Si plasmon energy, the Si-L ionization and the (j1(Q)>n6101~b(E)Qe*°Ql'5= b(E)f(Q). (34)
Si-K ionization, with the corresponding cutoff wave num- . o )
bers. The plasmon and the L-edge signal shows very weakhe fit parameter for Si-K ig=0.0234, ancb is an energy
contrast according to the broad tail of the modified Besseflépendent normalization constant. Observing that acos
function K,. Only the Si-K edge approaches the half width =Q-Q'/QQ’, we can simplify Eq(33) to
atomic dimensions(The abscissa is in atomic units, i.e., 0.0’
Bohr radii) ’ Ry ' /
Note that examplé€a) should not be taken literally. The Saip(Q.Q",B)=a(E) QQ’ HQITQY. (35)
plasmon is collective in nature, contrary to our assumption of ) )
one-electron transitions. It is merely thought to elucidate thelhe density matrix Eq(21) of the fast electron after an en-
energy-loss dependence of the contrast. ergy loss via a dipole transition is then
In the next section, we discuss an example. 5
27Tme2) Q-Q

——f(Q)f(Q’). (36)
Sk ) oigs (@M@
Ther MDFF for atomic core losses is important for simu-  The dipole approximatidnconsists of replacing(Q) in
lation and interpretation of energy filtered element-specificegs. (35) and (36) by Q, i.e., the exponential factor is ap-
images. We restrict the discussion to dipole-allowed transiproximated by a step function

tions. They change the angular momentum quantum number

by one unit. S(Q,.Q",E)=a(E)®(Q—Qy)Q-Q". (37)

xfdzdze*in<Z*Z’>5(r,r',E). (30)

pE(qx,q;)=a(E)(
IV. ATOMIC CORE LOSSES: SI-K IONIZATION
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FIG. 2. The factorf(Q) for dipole-allowed transitiongSi-K FIG. 4. Skew diagonal of the one-dimensional density matrix
ionization, compared to the dipole approximatigdashegt Ab-  p1(d,q’) for Si-K ionization, showing the mutual coherence in the
scissa in atomic units, ordinate in arbitrary units. diffraction plane. Abscissa in atomic units, ordinate in arbitrary
units.

This is a good approximation for sm&)l,Q’. How good is it

for higher Q? Each of the twdQ-dependent factors would The scalar produc®-Q’ causes the elements along the
then increase linearly up to the cutoff moment@p; the skew diagonal to become negative within a large range of
maximum of the Bethe ridg®.=2mE/#4? is a natural Mmomenta. This means that the phases of at least some elec-
choice.(For Si-K, Q.=11.66 atomic units Figure 2 shows trons contained in the mixed state leaving at angdleand

the exactq, dependence of one factor and the dipole ap-— v are shifted relative to each other. In dipole-allowed tran-
proximation. We see that it is only good for very sma/l. sitions, conservation of parity causes the probe electron to
However, the cross section which is proportional to the di-change parity since the scatterer does also. Consequently, the
agonal element of the density matrix is quite well approxi-Phase shift for dipole-allowed scattering on a single atom
mated(see Fig. 3, in logarithmic units This is because the between scattering angles and — ¢ is . This is a result

denominators in Eq36) intensify rapidly for higheiQ. that cannot be derived from inspection of the diffraction pat-
tern which is radially symmetric.

B. Mutual coherence

An important consequence can be drawn from &#). C. The r MDFF

We fix a directione, in the diffraction plane. This restricts ~ We derive now the MDFF, by directly performing the
the six-dimensional (6D) density matrix to a two- Fourier transform of the MDFF for a dipole-allowed atomic
dimensional subspace(q’). The “1D density matrix”p,  transition of a Si & electron into the continuum. The MDFF,
in this subspace still denotes the density or the mutual cohekEqg. (35), factorizes into terms containing ontyor g’, so it
atom. For instance, the values on the skew diagonad,of
show the mutual coherence of the electron in directions f - gf(qg)

FT, ane éq)}:J’ d3qe'qr—q éq : (38
that electrons leaving in opposite directions relative to the
direction of incidence are mutually coherent up to angles e choser asz direction and givey in spherical coordi-
This coherence extending to high angles is responsible for
the narrow charge distribution inspace, as we shall see.

ence, just along a fixed straight line through the center of thsuffices to evaluate
0.9’ = —q. Inspection of the skew diagonal, Fig. 4, tells us
corresponding to much more than the cutoff momentym  nates. The Fourier transform is

af(q) 1 J
FTy —|= d
10 g " 2m) T
1 T . 27 f
xJ sinﬁdﬁe'qmsﬁj Mdfp. (39)
§ o1 0 o Q
3
a 001 By performing theg integral, thex andy components vanish
2 0.001 for reasons of symmetry. There remains only the component
5 parallel tor. The vectorial property is retained: the Fourier
0.0001 transform of a vector field<q is a vector fieldocr. With
cosd=¢ the (9, @) integral is
0.01 0.1 1 10

q 2i(sinqr—qr cosqr)

1
2 edréde=2 =2 r
FIG. 3. Differential cross sectionf(Q)?/Q* for dipole-allowed Wfflg ¢=2m (qr)? m9(ar)
transitions for Si-K ionization, compared to the dipole approxima- (40)

tion (dashegl Abscissa in atomic units, ordinate in arbitrary units,
both log scale. and we obtain
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FIG. 5. r MDFF for Si-K ionization. Dipole-allowed transition FIG. 6. Exit plane density of the outgoing fast electron for a
(full lline) and dipole approximation with cutoff momentumt  Sj-K dipole-allowed transition, compared to the modified Bessel
=11.6 a.u. Ordinate in arbitrary units. function K, according to Eq(28) (thin full line) and to the dipole
approximation(dashedl Abscissa in atomic units, ordinate in arb.
af(q)] r 1 f units.
FT [ == g’g(qnf(a)dg. (41
9 q r(2m)2

by an objective lens, as is the case in electron microscopy,
With the abbreviation the collection aperture has a similar effect. In a 200 kV mi-
croscope, the cutoff momentum for the Si-K edge corre-

1 w sponds to a collection angle 6§90 mrad. Spherical aber-
h(r)= zf 9°g(qr)f(q)dq (42 ration would broaden the image and probably damp the
(2m)=Jo oscillations.
ther MDFF reads
D. The density matrix of the probe electron
rr' In order to discuss the charge distribution in the exit plane
", E)=a(E)——h(r)h(r"). 43 )
S(r.r,B)=a(g) rr’ (rh(r’) “3) of the specimen, we could use E@Q7) and calculate the

density matrix of the fast electron. Alternatively, one can
We can compare this with E¢11) for an infinitely nar-  transform directly from the two-dimensional diffraction
row range of initial energies, as is the case for core ionizaplane. We do this for dipole-allowed transitions, as before.
tion, Since the density matrix E36) factorizes into two terms
depending on the primed respectively the nonprimed vari-
S(ror’ B) = pe (1.1 pg +e(rr). (44 aples, its Fourier transform(x,x') does also. The Fourier

Forr=r’, this is the product of densities of the initial and ransform of the first factor is

the energetically allowed final states. f
In dipole approximation, Eq37), the functionh(r) can ET QfQ =ive+we,. (46)
be calculated in closed form, yielding % 3

1 [3=(q.r)?]sing.r — 3q.r cosqr Here, e, is a unit vector in directiox in the exit plane, and

h(r)= 5 5 . (45 €, is perpendicular to the exit plane. The two functions are
(2) (gcr)
% n2
Ther MDFF is a universal function of a dimensionless vari- v= i a7J3:(a0f(Q) da, (47)
able, scaling with the cutoff wave numbgy. Figure 5 com- 2m]o Q3
pares exact results of threMDFF with the dipole approxi-
mation, Eq.(45), for Si-K ionization. The cutoff wave de (= qJ(ax)f(Q)
numberqg, was taken as the maximum of the Bethe ridge. w=5— —5 dg (48
atomic units,q.=+2E.) The overestimation of the radial 0 Q

approximation underestimates the extensio8(@f,q’,E) by  the second factor is the complex conjugate of that of the

imposing a cutoff momentum. The so-induced discontinuityformer, the inner product of the two vector fields is
causes the oscillation seen at 0.6 a.u. The dipole approxima-

tion thus gives a radial exten_sion of theMDl_:F that is by a ;E(x,x’)zv(x)v(x’)ex-e)<,+w(x)w(x’). (49)
factor of two too large. As will be seen, this causes also an

overestimation of the lateral dimension of the image of aNote that the scalar product &- e,, = cos¢ where ¢ is the
single atom, by a slightly smaller factor of 1(5ee Fig. 8. angle between directions x'.

The oscillations seen in Figs. 5 and 6 are artifacts. However, The terms in Eq(49) factorize inx- and x’-dependent
when the outgoing electron is projected into an image plandactors, but the sum does not. This shows, by the way, that a
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-1:3.°6.5 0 0.5 1..° “19.20.5 0 0.5 1. Ly 0.5 0 0.5 1.0

FIG. 7. Contour plot of the one-dimensional density magrixx,x’) of the outgoing electron in the exit plane of the specimen, after a
Si-K ionization. Left: in-plane component; middle: perpendicular componewf; right: sum of both. Atomic units.

position measurement along a radial line as described by this still a useful estimate for the ultimate spatial resolution
1D density matrix projects the fast electron onto a superpothat can be achieved in energy filtered atomic-resolution im-

sition of two pure states. ages. Outside the exact maximum, the distribution is well
In the dipole approximation, the diagonal element ofdescribed, but contrast is overestimated by the modified
pe(x,x") is Bessel function Eq(28).
Figure 9 shows the directional autocorrelation functian
o 1 ac G2J1(gX) 2 of the probe electron at the exit plane of the specimen
PE(XX ) =—— f —
(27) o Q
2 ac(x)zf p1(x+x’,x")dx". (52
+jchquo(qx)dq ] 50
0 Q? For a pure state, this would indeed bd (x

+x")y* (x")dx'. Herex,x' are distances from the center of
collection angle in the objective lens of an electron micro—the atom, both taken along the same radial trace. It is impor-
9 ) tant not to mix up the directional autocorrelation function

SCOpe, we obtain gxactly the radial i'ntensity in t'he imagquth the usual one, also called internally folded den$ty
plane, as it was derived earlier for the image of a single aton) ' '

Where the correlation integral is taken over three space.
by Kohl and Rosé_and Berger and KoHit As these authors From the figure, we see that the correlation length in the
showed, decreasing the aperture would eventually remMoVe; \ inelastic image is approximately 0.2 bohr radi
the central dip, thus transforming the ring-shaped image into ' ’
one with a central maximum.
Equation(49) renders the 1D density matrix V. CONCLUSIONS

When we replaceg; by the momentum corresponding to the

We have shown that the MDFF is related to the density
matrix of the excited target states in a simple manner. Equa-
Its two components are shown for Si-K in Fig. 7. Note tion (11) could be used to relate variations in the final-state

wave functions caused by the crystal potential to details in
the scattering cross section or in the off-diagonal terms of the
MDFF. How these latter are accessible, at least partly, has
en shown recentff:?2
We have explicitly given the solution of the kinetic equa-

p1(X, X)) =v(X)v(X") +W(X)W(X"). (51

that the “perpendicular” term has a maximum &&0

whereas the “in plane” term vanishes @t 0. This can be
explained by the odd parity of the fingl state. Another
consequence is that the skew diagonal contains negati\;%e

values—the wave function is anticorrelated with itself under .

inversion at the center. The perpendicular component is vergOn for'the density matrix of the probe eIe.ctron in t_he single-
small for Si-K. It does not much influence the overall shape: cattering one-beam case. It makes possible the simulation of

of the density matrix as can be seen from a comparison of thltglelastic scattering cross sections and energy filtered high-

in-plane(or paralle) componentleft in the figure with the
sum(right in the figure. This is better visible in Fig. 8 which 14
is a trace through the in-plane and perpendicular components 12
along the main diagonal qf;(x,x"), i.e., the density distri-
bution of the outgoing wave field.

Figure 6 is a comparison between the densities obtained 8
from the exact expression E¢36) and the dipole approxi-
mation Eq.(50) (dashed The sharp cutoff induces oscilla-
tions which are missing in the exact expression. The maxi-
mum is shifted by~50% to the right, i.e., the dipole 2
approximation overestimates the spatial extension of the 0
charge distribution after core-loss scattering. A similar effect
was found in the MDFF, Fig. 5. We also show a compari-
son of the rough estimate for pointlike scatterers, &), FIG. 8. Exit plane density of the outgoing fast electrdhick
already shown in Fig. @), with the exact result. The charge- full line), its in-plane component? (thin full line), and its perpen-
density distribution is narrower now than the exact result butiicular component? (dashedl Units are as in Fig. 6. .

10
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80 Npe(th Gz 1)) = | GPRER IO pe(r,r)
60 3y A3y’
= | d°xdX'FTR[G(r,X)]FT_g/
® 40
X[G(r',x")* IK(x,x",E) po(x,X").
20 (A1)
0 The two-dimensional Fourier transform of the free particle’s
= oF 5 05 : Green function,
X
FIG. 9. Autocorrelation functiomc(x), Eq. (52) for Si-K ion- Gy(r,x)=— T glklr=xI, (A2)
ization. Units as in Fig. 8. 2mh? [r—x|
wherek®=2mE/#?, is?
resolution electron micrographs within the same framework
and the same approximations. The advantage is that both —im iqaik(T—x,)
image and diffraction information is available at the same FTRGK(r,X)]= 12|k |e rere T, (A3)
z

time to be compared with experiments. As shown recéfitly,

the dynamical effects after the inelastic interaction introducavherek,= \/kz—qxz, Observing thaFT_,[G* |=FT,[G]*,
phase contrast anew, a fact that makes interpretation of filand inserting the density matrix of the incident electpgn
tered high-resolution images more difficult when the speciEg. (19), we find

men is thicker than roughly a third of the extinction distance

of the Bragg reflections that contribute to the image. How- , , m? k(-1
ever, for very thin specimens the proposed solution should PE(Qx’qx’rz’rz):ﬁ4kze aer
still hold. z

The contrast in inelastic images can be estimated via the
modified Bessel functions in order to judge whether a par-
ticular ionization edge is suitable for imaging. The concept ,
of the 1D density matrix allows to interpret the coherence X e koX'K (x,x",E). (Ad)
properties of the inelastically scattered probe electron in th . . . .
most direct way. In imaging, we would have almost incoher—izei'nnéfagsrt?é I:craetfgr?r?ézl?udnitsicigeggu(glse) Faotuggsri:irgr?ssform of
ent conditions. This fact should facilitate interpretation of e '
energy filtered images since phase contrast plays a minor q q.
role. Q:( * )Q'_( X )

Besides taking account of dynamical diffraction condi- k=Ko
tions (as mentioned aboye two generalizations appear ;
straightforward:(1) inclusion of the effect of the objective
lens, and(2) extension toL-shell ionization and to dipole- m?e* S(Q,Q’,E)
forbidden transitions. pe(Gy, 0y .5, r2)= A

% f dBxdBx’ e~ kX~ x;) g~ i(ax—ko)x

= A
K—kq (A5)

.e.,

eikz(rzfré).
ﬁ4k§83 Q2Q12

(A6)
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The Fourier transforms of the exponentials are?4(q,

—k,) 8(q,—k,). Integration of Eq(A7) over the unobserved

APPENDIX A variablesq,,q, yields eventually

2 li
We first transform the kinetic Eq.17) in the planeR ;E(qX,q,):(ZWmez) SQ.Q ’E)_ (A8)
perpendicular tdk,: “ \eh?k,]  Q%Q'2
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APPENDIX B The ¢ integral is done separately for the three components:
We calculate For the first componen(in x direction we substitute cosp
=¢. This yields
FTo[(a+ag) 1= f Cha d?q,.
e (2m)? (gf+ap) o1 i
Bl —
5-31(0x). (3

In cylindrical coordinates, p, wheree is the angle between
x anddgy, this is

The second component vanishes for reasons of symmetry.
ixp cosg The z component is

1 o p m
FTo[(ai+0d) 1= fd—fde
qx[(qx qE) ] (277)2 0 p(p2+Qé) . ¢

— o[ do T o0 =Koae0 L
2m)o " (prqe) O O 5-30(0x). (Ca)

(B2)

Jo, K, are the Bessel function and the modified Bessel func-

. Theq integral is therefore a vector with components par-
tion of order zero.

allel to x and toz:

APPENDIX C
For integration, we choose theaxis of theq space par- £Q)
allel to x. In cylindrical coordinates the unit vect@/Q ET Qf(Q =ive +we,
Ox 3 ’
reads Q
g cos¢
Q1 gsing (C1) 2
Q Q ' 1 (=q Jl(CIX)f(Q)d
Qe v= E 0 Q3 a
The Fourier transform Eq46) is
0 cos(¢)
1 f . . f(Q) de [~ 9Jo(gx)f(Q)
d2q,e'®¥ qsin(¢) w= —EJ = da. C5
(277)2 qX Q3 277 0 Q3 q ( )
Qe
qcog @)
B 27 axcoss| o f(Q) The Fourier transform of the second factor of the density
= qdq| dg¢e gsin(¢) : NP A .
(27)? 0 Q8 matrix is with respect to-q’. This is the complex conjugate
e of the former integral, that is; changes sign, and is iden-
(C2) tical to the previous result.
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