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Density matrix of inelastically scattered fast electrons

P. Schattschneider
Institut für Angewandte und Technische Physik, University of Technology Wien, A-1040 Vienna, Austria

M. Nelhiebel and B. Jouffrey
LMSSMat, CNRS-URA 850, E´ cole Centrale Paris, F-92295 Chaˆtenay-Malabry, France

~Received 15 May 1998!

The kinetic equation for the evolution of a fast electron’s density matrixr after single inelastic scattering is
solved in the one-beam approximation. The solution holds for any type of inelastic interaction and for any
scatterer. It relatesr directly to the mixed dynamic form factor~MDFF! for inelastic scattering, which in turn
is the Fourier transform of an energy-loss dependent density correlation function. This approach allows simu-
lations of both energy-filtered diffraction patterns and high-resolution energy spectroscopic imaging~ESI!, as
well as access to the mutual coherence and the density autocorrelation function of the probe electron, all under
the same formalism and the same approximation. A criterion for the maximum attainable resolution in ESI is
derived. As an example, we discuss dipole-allowed atomic transitions for the Si-K ionization.
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I. INTRODUCTION

The key quantity for the description of inelastic scatteri
of fast electrons in crystals is the mixed dynamic form fac
~MDFF!. It is a generalization of the more familiar dynam
form factor that describes single inelastic scattering o
single incident plane wave. The generalization is stipula
because in crystals, the inelastically scattered wave con
of a number of mutually coherent plane waves, and inter
ence terms should occur. These very terms are describe
the MDFF. They are particularly important in core-loss sp
trometry.

Although the MDFF has been used for nearly half a c
tury in electron microscopy in different contexts and d
guises~see Refs. 1–6!, it still seems to be considered mere
as a mathematical expression without much relevance to
underlying physics. We grant that for the calculation of
elastic scattering cross sections in crystals it is not neces
to understand what the MDFF represents. However, an
derstanding of its physical significance sheds light onto w
is important in inelastic interactions. Moreover, it describ
the formation of both energy filtered images and ene
spectroscopic diffraction patterns under the sa
formalism.7,8

The aim of this paper is to provide a physical understa
ing of the MDFF and its relation to the density matrix, and
demonstrate what can be achieved therefrom. We shall
liberately choose a simple demonstration example.

We begin with a definition of the MDFF, which lend
itself to a clear physical interpretation. We shall see that i
closely related to the density matrix9–12 of the scatterer.
Thereafter, we discuss the relation between the MDFF
the densiy matrix of the scattered electron. This has imp
tant consequences for the simulation of electron spec
scopic diffraction patterns and high resolution images
tained from inelastically scattered electrons. Finally,
demonstrate the applicability of this concept for inelas
electron scattering by discussion of the electron distribut
PRB 590163-1829/99/59~16!/10959~11!/$15.00
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at the exit plane of the specimen after an ionization o
single atom.

II. THE MIXED DYNAMIC FORM FACTOR

In the first Born approximation, and for an incident pla
wave, the double differential scattering cross section is13

]2s

]E]V
5

4g2

q4a0
2

k

k0
S~q,q,E!, ~1!

wherea054p«0\2/me2 is the Bohr radius, andg is a rela-
tivistic factor.S(q,q8,E) is the mixed dynamic form factor
The more often used dynamic form factor—which actua
appears in Eq.~1!—is the diagonal element (q5q8) of the
MDFF. For reasons which become clear in the following,
prefer to use here the more general MDFF. The thr
dimensional variableq is a vector in reciprocal space, relate
to the solid angleV appearing on the left hand side by th
scattering geometry:q is the angle between the inciden
electrons’ wave vectork0 and k01q. Energy conservation
requires that for a given energy lossE the dynamic form
factorS(q,q,E) vanishes except when the wave vector of t
scattered electron isk5q1k0. We shall distinguish the
quantity Q5k2k0 from an arbitrary vectorq in reciprocal
space. Note that2\Q is the momentum transferred to th
scatterer in the inelastic interaction.

For ann-electron system the MDFF reads7

S~q,q8,E!5d~E1Ei2Ef !(
i

pi(
f

~12pf !

3K iU(
j

n

eiqR̂jU f L K fU(
l

n

e2 iq8R̂lU i L . ~2!

Each term in the sum is the product of two transition pro
ability amplitudes of the target, from an initial stateu i & to a
final stateu f & with occupation probabilitiespi , pf . The tran-
10 959 ©1999 The American Physical Society
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sitions are caused by the respective operators( j
neiqR̂j , and

( l
neiq8R̂l. The delta function guarantees that the energy

ference between initial and final states be constant,Ef2Ei

5E. R̂j is the space operator of thej th particle.

A. The r MDFF for one-electron transitions

In the remaining section, we restrict the discussion to o
electron transitions, in order to facilitate the interpretation.
this case, the sums over space operators reduce to one te14

and u i &,u f & are one-electron wave functions.
We shall make use of Fourier transforms in the followin

For convenience we use the notation

f ~r !5FTq@ f ~q!#ª
1

~2p!nE dnq f~q!eiqr, ~3!

wheren is 1, 2, 3, depending on the dimension of the vec
q. The inverse transform is

f ~q!5FTr@ f ~r !#5E dnr f ~r !e2 iqr. ~4!

Henceforthr , x, and the primed quantities denote vectors
two- or three-dimensional space, andq, k, and the primed
quantities are two- or three-dimensional vectors in recipro
space. The Fourier transform of the MDFF with respect toq,
2q8 shall be denoted asr MDFF, in order to distinguish it
from its usual form in reciprocal space. With

FTq@eiqR̂#5dn~r 2R̂! ~5!

and

FTq@ f ~q!#* 5FT2q@ f * ~q!# ~6!

the r MDFF—the Fourier transform of Eq.~2!—is

S~r ,r 8,E!5FTq,2q8@S~q,q8,E!#

5(
i

pi (
f

~12pf !^ i ud3~r2R̂!u f &

3^ f ud3~r 82R̂!u i &d~E1Ei2Ef !. ~7!

Note that we transformed with respect to2q8. This was
necessary because the matrix element containingq8 is the
complex conjugate of the matrix element containingq. In
real-space representation—usually achieved by insertio
*d3RuR&^Ru—this is
f-

-

,

.

r

al

of

S~r ,r 8,E!5(
i

pi(
f

~12pf !

3E d3Rf i* ~R!d3~r2R!f f~R!

3E d3R8f i~R8!d3~r 82R8!

3f f* ~R8!d~E1Ei2Ef !

5(
i

pif i* ~r !f i~r 8!

3(
f

~12pf !f f~r !f f* ~r 8!d~E1Ei2Ef !.

~8!

The sum overi collects all occupied states, the sum overf all
unoccupied states of the system, with the important c
straint of a fixed energy differenceE between initial and final
states imposed by the delta function. This latter sum th
includes exactly the states the scatterer can be in after t
sitions with fixed energy difference.

We define the energy—dependent density matrix of
target initial state consisting of all originally occupied eige
functions as

r i~r ,r 8,E!ª(
j

pjf j* ~r !f j~r 8!d~E2Ej !, ~9!

whereEj is the energy level of statef j . An equivalent ex-
pression holds for the final state. When the scatterer is
thermal equilibrium, each term is weighted with the therm
dynamic factor8 pj5(1/Z)e2Ej /kBT.

Since at room temperature or below the thermal smea
of the Fermi edge is negligible as compared to the ene
scale between atomic levels,pf'Q(EF2E), the density
matrix of the target final state can be approximated by

r f~r ,r 8,E!8 (
Ej .EF

f j* ~r !f j~r 8!d~E2Ej !. ~10!

Note that Eq.~9! is also valid for nonequilibrium conditions
when the proper occupation numbers are used.15

With Eqs.~9! and~10! ther MDFF, Eq.~8! can be written
as an integral over energy of two matrix elements of den
matrices. As the zero level, we choose the Fermi ene
Collecting terms in Eq.~8!,

S~r ,r 8,E!5E
2E

0

r i~r ,r 8,«!r f~r 8,r ,«1E!d«. ~11!

The r MDFF is the energy correlation function between t
denstity matrices of occupied~initial! states and unoccupie
~final! states, with energy differenceE between these states
E equals the energy loss of the probe electron. This is
physical meaning of ther MDFF.

This is an important result because it relates the rat
abstract quantity of the MDFF to electron densities of t
scatterer. It is the overlap of initial and final electron den
ties and correlations that governs the outcome of inela
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scattering experiments. Given that the initial-state wa
functions are known, Eq.~11! can be used to extract infor
mation on final-state wave functions from scattering exp
ments.

B. The MDFF in a crystal

Equation ~11! is most easily applied to single atom
where the wave functions can be calculated without
much difficulty. The MDFF of an ensemble of noninteracti
atoms can as well be calculated from Eq.~11!. Since the
initial wave functions of adjacent atoms don’t show pha
relations~they dont see each other! the r MDFF of such an
ensemble is simply the sum over atomicr MDFF’s:

S~r ,r 8,E!cluster5(
i

N

Si~r2r i ,r 82r i ,E!. ~12!

Invoking the shift theorem for Fourier transforms, we tran
form Eq. ~12! to

S~q,q8,E!cluster5(
i

N

ei ~q2q8!r iSi~q,q8,E!. ~13!

In a crystal, the final states are no longer atomic wave fu
tions, but include the full electronic band structure deriv
from the periodic potential; the initial states can be cons
ered to remain unchanged. We can then still addr MDFF’s
as in Eq.~12! where theSi has to be replaced by the MDF
of the motif in a single elementary cell:

Smoti f~q,q8,E!5(
u

ei ~q2q8!uSu~q,q8,E!, ~14!

whereSu is the MDFF of theuth atom in the elementary cel
calculated with the full electronic band structure. LettingN
→` in Eq. ~13!, the sum becomes a Dirac comb in recipr
cal space:

S~q,q8,E!crystal5Smoti f~q,q8,E!(
j

d3~q2q82gj !.

~15!

In other words, the MDFF of such a crystal vanishes exc
whenq2q8 equals a vectorgj of the reciprocal lattice.7 For
q5q8, Eq. ~15! reduces toScrystal5Smoti f . The diagonal
element of the MDFF in a crystal~or, the direct term, as we
call it! equals that of the elementary motif. Contrary to t
elastic case, the lattice periodicity is directly visible only
the skew diagonal elements, i.e., it changes only the mu
coherence of the outgoing electron by the delta function
Eq. ~15!. Its angular distribution is the same as that obtain
after scattering on the elementary motif.

III. THE DENSITY MATRIX OF THE INCIDENT
ELECTRON

The double differential scattering cross section as gi
by Eq. ~1! measures the momentum probability distributi
after inelastic scattering of a fast electron that can be
scribed by an incident plane wave. It relates to the diago
element of the MDFF. Thus from scattering experiments
get important information on the scatterer, namely on
e
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diagonal elements of its energy dependent density matri
But we can also put it the other way around: the dynam

structure factor of the scatterer determines the momen
distribution of the probe electron. The general question
then: given the MDFF, what information on the energy d
pendent density matrixof the probe electroncan be ex-
tracted? And can we tell whether the probe electron a
inelastic scattering is in a pure or in a mixed state? In ela
scattering, the first problem is equivalent to the problem
how to simulate diffraction patterns or high-resolution~HR!
images from a model potential of the scatterer, related to
static form ~or structure! factor F(q). Knowledge of the
complex quantityF allows calculation of the scattering pro
file via uF(q)u2 as well as of HR images viauF̃(r )u2 whereF

and F̃ are related by a Fourier transform.
Here, we encounter the phase problem: in order to ob

information on the spatial charge distribution, we need
phase ofF @or, differently posed, the matrixF(q)•F* (q8#.
The second problem is immediately solved for elastic sc
tering: Since F(q)•F* (q8) factorizes into q- and
q8-dependent functions, the same is true for the density
trix of the scattered electron, so the electron is in a pure st
The difference to inelastic scattering is thatS(q,q8,E) does
not, in general, decompose into two factors each of wh
depends on a single momentum variable only, and the e
tron might be in a mixed state.

A. The single-scattering one-beam case

We shall now derive a relation between the MDFF of t
scatterer and the density matrix of the probe electron, un
particular conditions that allow a simple interpretation of t
MDFF, namely the single inelastic scattering, one-beam c
~i.e., we assume that the incident electron is a monoch
matic plane wave, and that the specimen is so thin that o
one inelastic scattering process takes place, and there i
elastic scattering, neither before nor after the inelastic in
action!. This is fulfilled when the specimen thickness
much smaller than the extinction distance for the exci
Bragg beams. Although our primary aim is to provide phy
cal insight into the concept of the MDFF, and thus the a
proximations are chosen mainly for didactic reasons,
above assumptions are more realistic than one would bel
at first glance. Quantification routines, e.g., are based on
actly the single-scattering one-beam case. Furthermor
generalization to the case of Bragg scattering is straight
ward, but would hide the physical significance of our resu

We start from the kinetic equation given by Dudare
Peng, and Whelan.8 It describes the propagation of the de
sity matrix of an incident wave in a crystal, including inela
tic scattering, under fairly general conditions. Here we si
plify by assuming a thin crystal of only a few atomic layer
and fast incident electrons of 100 keV or more. In this
gime, the single-scattering approximation is valid~mean free
paths for inelastic scattering are of the order of.50 nm.! It
is further assumed that the incident electrons are monoc
matic, and we look at one fixed energy lossE.0. Then, the
kinetic equation for the energy dependent density matrix
the inelastically scattered electron after energy lossE,

rE~r ,r 8!ªr~r ,r 8,E02E!, ~16!
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is

rE~r ,r 8!

5E d3xd3x8Gk~r ,x!Gk* ~r 8,x8!K~x,x8,E!r0~x,x8!.

~17!

The inelastic scattering is described by the function

K~x,x8,E!5
e4

«0
2

FTq,2q8FS~q,q8,E!

q2q82 G ~18!

with the elementary chargeeand the vacuum permittivity«0.
~In cgs units,«051/4p.! The incident wave is given by its
density matrixr0(x,x8) which for a single incident plane
wave of wave vectork0 is

r0~x,x8!5eik0xe2 ik0x8. ~19!

The functionK accounts for inelastic scattering at pos
tions x,x8, and the two Green functions propagate the sc
tered state from positionsx,x8 to positionsr ,r 8. We calculate
now the density matrix of the probe electron in recipro
space, after inelastic scattering:

rE~q,q8!5FTr ,2r8@rE~r ,r 8!# ~20!

by Fourier transforming the kinetic Eq.~17!.
The density matrixr̄E(qx ,qx8) of the probe electron in the

diffraction plane with two-dimensional coordinatesqx is then
@see Appendix A, Eq.~A8!#

r̄E~qx ,qx8!5S 2pme2

«0\2k
D 2

S~Q,Q8,E!

Q2Q82
~21!

with

Q5S qx

qE
D ~22!

and equivalently for the primed variable.qE5k2k0 is the
negative difference of radii of the Ewald spheres before
after inelastic scattering. For small energy lossesE!E0 we
have approximatelyqE'2k0E/2E0.

This is our basic result. It relates the density and the m
tual coherence of the inelastically scattered electron to
MDFF of the scatterer, in a simple and clear manner. It
lows calculation of both the density and the coherence of
probe electron when the MDFF is known, and vice versa

B. The differential scattering cross section

The scattering cross section is the differential current
scattered particles divided by the incident-particle curr
density

j 05E r0~qx ,qx!d
2qx . ~23!

According to the normalization of the incident wave, E
~19!,

j 05~2p!4ak0 , ~24!
t-

l

d

-
e

l-
e

f
t

.

wherea is a proportionality constant. The differential curre
of scattered particles is similarly

]2J

]E]2qx

5akrE~qx ,qx!. ~25!

We obtain for the cross section

]2s

]E]V
5

akrE~qx ,qx!

j 0

d2qx

dV
5

k

k0
S 2me2

4p«0\2D 2
S~Q,Q,E!

Q4
.

With the definition of the Bohr radius this is again Eq.~1!.
Eq. ~21! relates the density matrix after single inelas

scattering to the MDFF. This allows calculation of hig
resolution images obtained from inelastically scattered e
trons. In practice, the one-beam approximation will not ho
and a more realistic Green function for wave propagation
a periodic potential must be used.8,16 Still, the one-beam
single-scattering approximation for atomic transitions mig
be useful for very thin specimens where dynamical scatte
is unimportant. Preliminary estimates set the limit to a cr
tal thickness of about 30% of the extinction distance.

Eqs.~8! and ~21! allow in principle to calculate the den
sity matrix of the probe electron from knowledge of th
wave functions of the scatterer. The diagonal elements
scribe the momentum distribution of the inelastically sc
tered electron. But there is much more information co
tained. We also have the mutual coherence in the ang
intensity distribution after scattering. So to speak, knowled
of the density matrix solves the phase problem for inela
electron scattering. The density matrix shows immediat
the angular difference over which two beams leaving
specimen are mutually coherent. Moreover, as we shall se
double Fourier transform delivers the density matrix inr
space, i.e., both the charge density distribution at the
plane of the specimen, as well as the mutual coherence
tween two positions.

C. The density matrix in real space

We return now to the density matrix in real space. T
density matrix of the scattered electron inr space, immedi-
ately after the exit plane of the specimen, is Eq.~17! for z
50, z850. Equivalently, we can calculate the two
dimensional Fourier transform of Eq.~21!:

r̄E~x,x8!5FTqx ,2q
x8
@ r̄E~qx ,qx8!#. ~26!

This corresponds to the transform from the diffraction pla
to the image plane in the electron microscope, provided
have a perfect lens.

With the convolution theorem, Eq.~21! reads

r̄E~x,x8!5S 2pme2

«0\2k
D 2

FTqx
@Q22#FT2q

x8
@Q822#*

3FTqx ,2q
x8
@S~Q,Q8,E!#. ~27!

The asterisk denotes convolution. The Fourier transform
the prefactor is easily found to be the modified Bessel fu
tion K0 ~see Appendix B!:
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FTqx
@Q22#5K0~xqE!. ~28!

Noting that

FTz@ f ~r !#5FTqx
@ f̃ ~q!# ~29!

for any function f (r ) and its Fourier transformf̃ (q), we
obtain

r̄E~x,x8!5S 2pme2

«0\2k
D 2

K0~xqE!K0~x8qE!*

3E dzdz8e2 iqE~z2z8!S~r ,r 8,E!. ~30!

Thus, given ther MDFF, we can calculate the densit
matrix of the inelastically scattered electron at the exit pla
of the specimen. This may serve as a starting point for
ther processing, e.g., taking account of the contrast tran
function of the microscope in order to compute inelastic i
ages, or the coherence between different points, an infor
tion particularly important in electron interferometry.

We can also estimate the ultimate resolution in ene
filtered images. Even when ther MDFF is a delta function
corresponding to a pointlike atom, the contrast would be l
ited by K0. To calculate the contrast, we must define
upper limit for the momentum. Roughly, this can be iden
fied with the cutoff wave number given by the Bethe ridg
This maximum limits the spatial resolution, and removes
the same time the infinity atK0(0). Figure 1 shows the con
trast of a pointlike object for three values ofqE , correspond-
ing to the Si plasmon energy, the Si-L ionization and t
Si-K ionization, with the corresponding cutoff wave num
bers. The plasmon and the L-edge signal shows very w
contrast according to the broad tail of the modified Bes
function K0. Only the Si-K edge approaches the half wid
atomic dimensions.~The abscissa is in atomic units, i.e
Bohr radii.!

Note that example~a! should not be taken literally. The
plasmon is collective in nature, contrary to our assumption
one-electron transitions. It is merely thought to elucidate
energy-loss dependence of the contrast.

In the next section, we discuss an example.

IV. ATOMIC CORE LOSSES: SI-K IONIZATION

The r MDFF for atomic core losses is important for sim
lation and interpretation of energy filtered element-spec
images. We restrict the discussion to dipole-allowed tran
tions. They change the angular momentum quantum num
by one unit.

FIG. 1. Contrast of an object with pointliker MDFF and perfect
imaging system, for an energy loss of~a! 17 eV;~b! 100 eV; and~c!
1850 eV. Abscissa in atomic units.
e
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A. The dipole approximation

For calculation of the density matrixr, we need Eqs.~8!
and ~21!. For single atoms and core-level excitations an e
pansion of the wave functions into spherical harmon
yields17

Sat~Q,Q8,E!52~2l 11!

3 (
l50

`

Pl~cosa!~2l11!

3 (
l 850

`

~2l 811!S l l l 8

0 0 0 D 2

3^ j l~Q!&ne8l l 8^ j l~Q8!&ne8l l 8 , ~31!

where

^ j l~Q!&ne8l l 85E dRunl ~R! j l~QR!ue8l 8~R! ~32!

is a radial integral involving initial- and final-state radi
wave functions and the spherical Bessel function. The v
able a in the Legendre polynomial is the angle betweenQ
and Q8. The variablel denotes the change of the angul
momentum quantum number during the transition. At mo
erate scattering angles the term withl51 is most
important.18 These dipole-allowed transitions represent t
largest contribution to the scattering cross section beca
the Lorentzian prefactor is large at small angles. It is the
fore a good approximation for atomic transitions.

For the sake of simplicity, we now discuss such a dipo
allowed transition, say, from the 1s state of a silicon atom to
a final state withp-wave symmetry right above the ionizatio
edge at 1850 eV. According to the triangular property of t
Wigner three-j symbols( : : : ) Eq. ~31! collapses to

Sdip~Q,Q8,E!56P1~cosa!^ j 1~Q!&ne801^ j 1~Q8!&ne801.
~33!

For the Si 1s→«8p transitions, the expectation value of th
Bessel function can be approximated by

^ j 1~Q!&ne801'b~E!Qe2cQ1.5
5b~E! f ~Q!. ~34!

The fit parameter for Si-K isc80.0234, andb is an energy
dependent normalization constant. Observing that coa
5Q–Q8/QQ8, we can simplify Eq.~33! to

Sdip~Q,Q8,E!8a~E!
Q•Q8

QQ8
f ~Q! f ~Q8!. ~35!

The density matrix Eq.~21! of the fast electron after an en
ergy loss via a dipole transition is then

r̄E~qx ,qx8!5a~E!S 2pme2

«0\2k
D 2

Q•Q8

Q3Q83
f ~Q! f ~Q8!. ~36!

The dipole approximation7 consists of replacingf (Q) in
Eqs. ~35! and ~36! by Q, i.e., the exponential factor is ap
proximated by a step function

S~Q,Q8,E!5a~E!Q~Q2Qc!Q•Q8. ~37!
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This is a good approximation for smallQ,Q8. How good is it
for higher Q? Each of the twoQ-dependent factors would
then increase linearly up to the cutoff momentumQc ; the
maximum of the Bethe ridgeQc5A2mE/\2 is a natural
choice.~For Si-K, Qc511.66 atomic units!. Figure 2 shows
the exactqx dependence of one factor and the dipole a
proximation. We see that it is only good for very smallqx .
However, the cross section which is proportional to the
agonal element of the density matrix is quite well appro
mated~see Fig. 3, in logarithmic units!. This is because the
denominators in Eq.~36! intensify rapidly for higherQ.

B. Mutual coherence

An important consequence can be drawn from Eq.~36!.
We fix a directioneq in the diffraction plane. This restrict
the six-dimensional ~6D! density matrix to a two-
dimensional subspace (q,q8). The ‘‘1D density matrix’’ r1
in this subspace still denotes the density or the mutual co
ence, just along a fixed straight line through the center of
atom. For instance, the values on the skew diagonal or1
show the mutual coherence of the electron in directio
q,q852q. Inspection of the skew diagonal, Fig. 4, tells
that electrons leaving in opposite directions relative to
direction of incidence are mutually coherent up to ang
corresponding to much more than the cutoff momentumqc .
This coherence extending to high angles is responsible
the narrow charge distribution inr space, as we shall see.

FIG. 2. The factorf (Q) for dipole-allowed transitions~Si-K
ionization!, compared to the dipole approximation~dashed!. Ab-
scissa in atomic units, ordinate in arbitrary units.

FIG. 3. Differential cross section} f (Q)2/Q4 for dipole-allowed
transitions for Si-K ionization, compared to the dipole approxim
tion ~dashed!. Abscissa in atomic units, ordinate in arbitrary uni
both log scale.
-
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The scalar productQ•Q8 causes the elements along th
skew diagonal to become negative within a large range
momenta. This means that the phases of at least some
trons contained in the mixed state leaving at anglesq and
2q are shifted relative to each other. In dipole-allowed tra
sitions, conservation of parity causes the probe electron
change parity since the scatterer does also. Consequently
phase shift for dipole-allowed scattering on a single at
between scattering anglesq and 2q is p. This is a result
that cannot be derived from inspection of the diffraction p
tern which is radially symmetric.

C. The r MDFF

We derive now ther MDFF, by directly performing the
Fourier transform of the MDFF for a dipole-allowed atom
transition of a Si 1s electron into the continuum. The MDFF
Eq. ~35!, factorizes into terms containing onlyq or q8, so it
suffices to evaluate

FTqFqf ~q!

q G5E d3qeiqr
qf ~q!

q
. ~38!

We choser asz direction and giveq in spherical coordi-
nates. The Fourier transform is

FTqFqf ~q!

q G5
1

~2p!3E q2dq

3E
0

p

sinqdqeiqr cosqE
0

2p qf ~q!

q
df. ~39!

By performing thef integral, thex andy components vanish
for reasons of symmetry. There remains only the compon
parallel tor . The vectorial property is retained: the Fouri
transform of a vector field}q is a vector field}r . With
cosq5j the (q,f) integral is

2pE
21

1

jeiqr jdj52p
2i ~sinqr2qr cosqr !

~qr !2
52pg~qr !

~40!

and we obtain

-

FIG. 4. Skew diagonal of the one-dimensional density ma
r1(q,q8) for Si-K ionization, showing the mutual coherence in th
diffraction plane. Abscissa in atomic units, ordinate in arbitra
units.
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FTqFqf ~q!

q G5
r

r

1

~2p!2E q2g~qr ! f ~q!dq. ~41!

With the abbreviation

h~r !5
1

~2p!2E0

`

q2g~qr ! f ~q!dq ~42!

the r MDFF reads

S~r ,r 8,E!5a~E!
r•r 8

rr 8
h~r !h~r 8!. ~43!

We can compare this with Eq.~11! for an infinitely nar-
row range of initial energies, as is the case for core ioni
tion,

S~r ,r 8,E!5rEi
~r ,r 8!rEi1E~r 8,r !. ~44!

For r5r 8, this is the product of densities of the initial an
the energetically allowed final states.

In dipole approximation, Eq.~37!, the functionh(r ) can
be calculated in closed form, yielding

h~r !5
1

~2p!2

@32~qcr !2#sinqcr 23qcr cosqcr

~qcr !2
. ~45!

The r MDFF is a universal function of a dimensionless va
able, scaling with the cutoff wave numberqc . Figure 5 com-
pares exact results of ther MDFF with the dipole approxi-
mation, Eq. ~45!, for Si-K ionization. The cutoff wave
numberqc was taken as the maximum of the Bethe ridge.~In
atomic units,qc5A2E.! The overestimation of the radia
extension of ther MDFF is related to the fact that the dipo
approximation underestimates the extension ofS(q,q8,E) by
imposing a cutoff momentum. The so-induced discontinu
causes the oscillation seen at 0.6 a.u. The dipole approx
tion thus gives a radial extension of ther MDFF that is by a
factor of two too large. As will be seen, this causes also
overestimation of the lateral dimension of the image o
single atom, by a slightly smaller factor of 1.5~see Fig. 6!.
The oscillations seen in Figs. 5 and 6 are artifacts. Howe
when the outgoing electron is projected into an image pl

FIG. 5. r MDFF for Si-K ionization. Dipole-allowed transition
~full line! and dipole approximation with cutoff momentumqc

511.6 a.u. Ordinate in arbitrary units.
-

y
a-

n
a

r,
e

by an objective lens, as is the case in electron microsco
the collection aperture has a similar effect. In a 200 kV m
croscope, the cutoff momentum for the Si-K edge cor
sponds to a collection angle of'90 mrad. Spherical aber
ration would broaden the image and probably damp
oscillations.

D. The density matrix of the probe electron

In order to discuss the charge distribution in the exit pla
of the specimen, we could use Eq.~27! and calculate the
density matrix of the fast electron. Alternatively, one c
transform directly from the two-dimensional diffractio
plane. We do this for dipole-allowed transitions, as befor

Since the density matrix Eq.~36! factorizes into two terms
depending on the primed respectively the nonprimed v
ables, its Fourier transformr̄(x,x8) does also. The Fourie
transform of the first factor is

FTqxFQf ~Q!

Q3 G5 ivex1wez . ~46!

Here,ex is a unit vector in directionx in the exit plane, and
ez is perpendicular to the exit plane. The two functions a

v5
1

2pE0

` q2J1~qx! f ~Q!

Q3
dq, ~47!

w5
qE

2pE0

` qJ0~qx! f ~Q!

Q3
dq, ~48!

@see Appendix C, Eqs.~C5!#. Since the Fourier transform o
the second factor is the complex conjugate of that of
former, the inner product of the two vector fields is

r̄E~x,x8!5v~x!v~x8!ex•ex81w~x!w~x8!. ~49!

Note that the scalar product isex•ex85cosf wheref is the
angle between directionsx, x8.

The terms in Eq.~49! factorize in x- and x8-dependent
factors, but the sum does not. This shows, by the way, th

FIG. 6. Exit plane density of the outgoing fast electron for
Si-K dipole-allowed transition, compared to the modified Bes
function K0 according to Eq.~28! ~thin full line! and to the dipole
approximation~dashed!. Abscissa in atomic units, ordinate in arb
units.
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FIG. 7. Contour plot of the one-dimensional density matrixr1(x,x8) of the outgoing electron in the exit plane of the specimen, afte
Si-K ionization. Left: in-plane componentv2; middle: perpendicular componentw2; right: sum of both. Atomic units.
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position measurement along a radial line as described by
1D density matrix projects the fast electron onto a super
sition of two pure states.

In the dipole approximation, the diagonal element
r̄E(x,x8) is

r̄E~x,x8!5
1

~2p!2H U E0

qc q2J1~qx!

Q3
dqU2

1U E
0

qc qeqJ0~qx!

Q3
dqU2J . ~50!

When we replaceqc by the momentum corresponding to th
collection angle in the objective lens of an electron mic
scope, we obtain exactly the radial intensity in the ima
plane, as it was derived earlier for the image of a single a
by Kohl and Rose7 and Berger and Kohl.19 As these authors
showed, decreasing the aperture would eventually rem
the central dip, thus transforming the ring-shaped image
one with a central maximum.

Equation~49! renders the 1D density matrix

r1~x,x8!5v~x!v~x8!1w~x!w~x8!. ~51!

Its two components are shown for Si-K in Fig. 7. No
that the ‘‘perpendicular’’ term has a maximum atx50
whereas the ‘‘in plane’’ term vanishes atx50. This can be
explained by the odd parity of the finalp state. Another
consequence is that the skew diagonal contains nega
values—the wave function is anticorrelated with itself und
inversion at the center. The perpendicular component is v
small for Si-K. It does not much influence the overall sha
of the density matrix as can be seen from a comparison of
in-plane~or parallel! component~left in the figure! with the
sum~right in the figure!. This is better visible in Fig. 8 which
is a trace through the in-plane and perpendicular compon
along the main diagonal ofr1(x,x8), i.e., the density distri-
bution of the outgoing wave field.

Figure 6 is a comparison between the densities obta
from the exact expression Eq.~36! and the dipole approxi-
mation Eq.~50! ~dashed!. The sharp cutoff induces oscilla
tions which are missing in the exact expression. The ma
mum is shifted by'50% to the right, i.e., the dipole
approximation overestimates the spatial extension of
charge distribution after core-loss scattering. A similar eff
was found in ther MDFF, Fig. 5. We also show a compar
son of the rough estimate for pointlike scatterers, Eq.~28!,
already shown in Fig. 4~c!, with the exact result. The charge
density distribution is narrower now than the exact result
he
-

f
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to

ive
r
ry
e
he

ts
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t

t

is still a useful estimate for the ultimate spatial resoluti
that can be achieved in energy filtered atomic-resolution
ages. Outside the exact maximum, the distribution is w
described, but contrast is overestimated by the modi
Bessel function Eq.~28!.

Figure 9 shows the directional autocorrelation functionac
of the probe electron at the exit plane of the specimen

ac~x!5E r1~x1x8,x8!dx8. ~52!

For a pure state, this would indeed be*c(x
1x8)c* (x8)dx8. Herex,x8 are distances from the center o
the atom, both taken along the same radial trace. It is imp
tant not to mix up the directional autocorrelation functio
with the usual one, also called internally folded density20

where the correlation integral is taken over three space.
From the figure, we see that the correlation length in

Si-K inelastic image is approximately 0.2 bohr radii.

V. CONCLUSIONS

We have shown that the MDFF is related to the dens
matrix of the excited target states in a simple manner. Eq
tion ~11! could be used to relate variations in the final-sta
wave functions caused by the crystal potential to details
the scattering cross section or in the off-diagonal terms of
MDFF. How these latter are accessible, at least partly,
been shown recently.21,22

We have explicitly given the solution of the kinetic equ
tion for the density matrix of the probe electron in the sing
scattering one-beam case. It makes possible the simulatio
inelastic scattering cross sections and energy filtered h

FIG. 8. Exit plane density of the outgoing fast electron~thick
full line!, its in-plane componentv2 ~thin full line!, and its perpen-
dicular componentw2 ~dashed!. Units are as in Fig. 6. .
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resolution electron micrographs within the same framew
and the same approximations. The advantage is that
image and diffraction information is available at the sa
time to be compared with experiments. As shown recentl16

the dynamical effects after the inelastic interaction introdu
phase contrast anew, a fact that makes interpretation o
tered high-resolution images more difficult when the spe
men is thicker than roughly a third of the extinction distan
of the Bragg reflections that contribute to the image. Ho
ever, for very thin specimens the proposed solution sho
still hold.

The contrast in inelastic images can be estimated via
modified Bessel functions in order to judge whether a p
ticular ionization edge is suitable for imaging. The conce
of the 1D density matrix allows to interpret the coheren
properties of the inelastically scattered probe electron in
most direct way. In imaging, we would have almost incoh
ent conditions. This fact should facilitate interpretation
energy filtered images since phase contrast plays a m
role.

Besides taking account of dynamical diffraction con
tions ~as mentioned above!, two generalizations appea
straightforward:~1! inclusion of the effect of the objective
lens, and~2! extension toL-shell ionization and to dipole
forbidden transitions.
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APPENDIX A

We first transform the kinetic Eq.~17! in the planeR
perpendicular tok0:

FIG. 9. Autocorrelation functionac(x), Eq. ~52! for Si-K ion-
ization. Units as in Fig. 8.
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NrE~qx ,qx8 ,r z ,r z8!5E d2Rd2R8e2 i ~qxR2qx8R8!rE~r ,r 8!

5E d3xd3x8FTR@Gk~r ,x!#FT2R8

3@Gk~r 8,x8!* #K~x,x8,E!r0~x,x8!.

~A1!

The two-dimensional Fourier transform of the free particle
Green function,

Gk~r ,x!52
m

2p\2

1

ur2xu
eikur2xu, ~A2!

wherek252mE/\2, is8

FTR@Gk~r ,x!#5
2 im

\2ukzu
e2 iqxxeikz~r z2xz!, ~A3!

wherekz5Ak22qx
2. Observing thatFT2r@G* #5FTr@G#* ,

and inserting the density matrix of the incident electronr0,
Eq. ~19!, we find

rE~qx ,qx8 ,r z ,r z8!5
m2

\4kz
2

eikz~r z2r z8!

3E d3xd3x8e2 ikz~xz2xz8!e2 i ~qx2k0!x

3ei ~qx82k0!x8K~x,x8,E!. ~A4!

The integral is recognized as the double Fourier transform
the inelastic scattering functionK, Eq. ~18!, at positions

Q5S qx

kz2k0
DQ85S qx8

kz2k0
D , ~A5!

i.e.,

rE~qx ,qx8 ,r z ,r z8!5
m2e4

\4kz
2«0

2

S~Q,Q8,E!

Q2Q82
eikz~r z2r z8!.

~A6!

For small scattering angles,kz'k. k2k0 is the negative
difference of radii of the Ewald spheres before and af
inelastic scattering. For small energy lossesE!E0 we may
approximatek2k0'2k0E/2E0ªqE .

Now the transform with respect tor z ,r z8 is performed:

rE~q,q8!5
m2e4

\4kz
2«0

2

S~Q,Q8,E!

Q2Q82
FTr z ,2r

z8
@eikz~r z2r z8!#.

~A7!

The Fourier transforms of the exponentials are 4p2d(qz

2kz)d(qz82kz). Integration of Eq.~A7! over the unobserved
variablesqz ,qz8 yields eventually

r̄E~qx ,qx8!5S 2pme2

«0\2kz
D 2

S~Q,Q8,E!

Q2Q82
. ~A8!
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APPENDIX B

We calculate

FTqx
@~qx

21qE
2 !21#5

1

~2p!2E eixqx
1

~qx
21qE

2 !
d2qx .

~B1!

In cylindrical coordinatesw, r, wherew is the angle between
x andqx , this is

FTqx
@~qx

21qE
2 !21#5

1

~2p!2E0

`

dr
r

~r21qE
2 !
E

2p

p

dweixr cosw

5
1

2pE0

`

dr
r

~r21qE
2 !

J0~rx!5K0~qEx!.

~B2!

J0 , K0 are the Bessel function and the modified Bessel fu
tion of order zero.

APPENDIX C

For integration, we choose thex axis of theq space par-
allel to x. In cylindrical coordinates the unit vectorQ/Q
reads

Q

Q
5

1

QF q cosf

q sinf

qe

G . ~C1!

The Fourier transform Eq.~46! is

1

~2p!2E d2qxe
iqxxF q cos~f!

q sin~f!

qe

G f ~Q!

Q3

5
1

~2p!2E qdqE
0

2p

df eiqx cosfF q cos~f!

q sin~f!

qe

G f ~Q!

Q3
.

~C2!
ta
al-
-

The f integral is done separately for the three compone
For the first component~in x direction! we substitute cosf
5j. This yields

i

2p
J1~qx!. ~C3!

The second component vanishes for reasons of symm
The z component is

1

2p
J0~qx!. ~C4!

The q integral is therefore a vector with components p
allel to x and toz:

FTqxFQf ~Q!

Q3 G5 ivex1wez,

v5
1

2pE0

` q2J1~qx! f ~Q!

Q3
dq,

w5
qE

2pE0

` qJ0~qx! f ~Q!

Q3
dq. ~C5!

The Fourier transform of the second factor of the dens
matrix is with respect to2q8. This is the complex conjugate
of the former integral, that is,v changes sign, andw is iden-
tical to the previous result.
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