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It is shown that pseudodipolar interaction allows one to explain static and dynamic properties of the non-
collinear antiferromagnets,R2CuO4 , in the temperature range where the rare-earth~RE! angular momenta are
slightly polarized by the antiferromagnetic~AF! ordered Cu21 spins. The spin-wave spectrum is determined
and the inelastic neutron scattering cross section is evaluated taking into account interference related to the
noncollinear arrangement of the copper spins in the adjacent CuO2 planes. The detailed experimental data for
low-energy inelastic neutron scattering in Pr2CuO4 are presented. Two in-plane spin-wave branches are ob-
served in accordance with the theoretical predictions. Parameters of the intraplane and interplane pseudodipolar
interactions are determined. The former appears by one order of magnitude larger than the theoretically one
predicted for an isolated CuO2 plane. We confirm this result by the analysis of the elastic neutron scattering
data in magnetic field. Comparison of the spin-wave neutron scattering in Pr2CuO4 and Nd2CuO4 published
earlier reveals the strong dependence of the in-plane anisotropy on the type of the RE ion. General expression
for the ground-state energy in magnetic field applied parallel to the CuO2 planes is derived and analyzed. It is
shown that the spin-flop transition is of second order if the field is applied along the@1,1,0# direction.
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I. INTRODUCTION

During last decade magnetic properties of dielectric
prates, which are parent compounds for the high-Tc super-
conductors were extensively investigated. In particular, co
poundsR2CuO4 (R5Pr, Nd, Sm, and Eu! were studied.1–5

In these materials as well as in other insulating cupra
La2CuO4 and YBa2Cu3O61x (x<0.4) the long-range three
dimensional~3D! antiferromagnetic order stabilizes belo
TN;2502410 K due to very strong in-plane exchange int
action between Cu21 S51/2 spins and weak interplane co
pling. The easy-plane anisotropy retains spins within Cu2

planes. However some structural peculiarities distinguish
R2CuO4 family as well as Sr2CuO2Cl2 ~Refs. 6 and 7 from
other antiferromagnetic cuprates. For the following it is im
portant thatR2CuO4 materials have a tetragonal structu
where Cu21 ions form a body-centered lattice@see Fig. 1~a!#.
As a result in the antiferromagnetic state Cu21 ions in the
adjacent CuO2 planes do not interact in the mean-field a
proximation if one assumes conventional isotropic excha
coupling. Therefore some weak interactions may mani
themselves, which are masked in other cuprates. This
gestion is confirmed by noncollinearity of the magne
structure revealed by the neutron scattering in magn
PRB 590163-1829/99/59~2!/1079~26!/$15.00
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field1–5 @see Fig. 1~b!#. In Refs. 1 and 8 the noncollinearit
has been attributed to the biquadratic exchange. Howe
this exchange gives equal contributions to the ground-s
energy of both structures shown in Fig. 1~b!. Hence, it
should be some other interaction which distinguish them.
suggest that it is the pseudodipolar~PD! interaction.

The magnetic moments of rare earth~RE! ions is the sec-
ond peculiarity of theR2CuO4 family. Recently it has been
thoroughly reviewed in Ref. 9, where it was shown that ma
netic properties of the material strongly depends on the t
of RE ion. In the case of Pr2CuO4 the Pr31 ions have a
nonmagnetic singlet ground state and the first excited sta
a doublet at 18 meV.1 Hence well below the Ne´el tempera-
tureTN.280 K the Pr31 momenta are slightly polarized du
to the interaction with Cu21 ordered spins and remain inac
tivated thermally.1 As a result at lowT they give some tem-
perature independent contribution to the effective Cu-Cu
teraction.

The ground states of Nd31 and Sm31 ions are Kramers
doublets that are split slightly due to interaction with copp
spins. For Nd2CuO4, the Nd spin excitation spectrum i
ranged between 0.1 and 0.8 meV~Refs. 16 and 17! and that
would correspond to a characteristic splitting,d;3.0 K.9

Neglecting this splitting one has the single-ion susceptibi
1079 ©1999 The American Physical Society
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in the formx5C/T. In the case of Nd2CuO4, this suscepti-
bility is likely responsible for the two spin reorientation
transitions atT1.80 K andT2.30 K ~Refs. 9 and 10! ~see
Sec. IX!. In the case of Sm2CuO4 there is some additiona
transition at 20 and that awaits further investigation4,9

Eu2CuO4 is the last member of the considered family wi
noncollinear spin structure. The Eu31 ion hasJ50 and do
not contribute to the low-temperature magnetism of the co
pound. Unfortunately, there is a structural phase transitio
T5140 K ~Refs. 11 and 12! @of lower symmetry identical to
that observed in Gd2CuO4 ~Ref. 13! and the spin ordering
below it has not been yet fully determined.

This paper is devoted to the low-temperature propertie
the Cu subsystem in the temperature range, where RE
menta are slightly polarized by the interaction with Cu21

spins. We assume that in this temperature range the influ
of the RE ions on the Cu21 spins may be properly taken int
account by renormalization of the constants of the we
Cu-Cu interactions such as the easy-plane anisotropy
parameters of the pseudodipolar Hamiltonian. Hence,
Pr2CuO4 our theoretical consideration should be applica
in the whole temperature range well belowTN.280 K with
temperature-independent parameters. In the case
Nd2CuO4 it holds atT@3 K ~Ref. 9! and according to Ref
14 the parameters strongly depend onT ~see Secs. VI and
IX !. For Sm2CuO4 the temperature range of the theory
restricted byT.20 K. The theory is hardly applicable t
Eu2CuO4 due to the above-mentioned phase transition aT
5140 K. We note also that low-temperature spin waves
Nd subsystem below 1.5 K has been studied recently in R
9 and 15–17. There is also low-energy (v&2 MeV) quasi-
elastic scattering on the Nd subsystem18 but we do not con-
sider it.

The noncollinearity may be easily explained if one a
sumes the dependence of the interaction on the directio
the bonds connecting two Cu21 spins~see below, Sec. II and
Ref. 9!. This interaction may be represented as the pseu
dipolar ~PD! one proposed by Van Vleck in 1937,

FIG. 1. ~a! Crystallographic structure of the tetragonal com
poundsR2CuO4 (R5Pr, Nd, Sm, and Eu!; Cu ions form a body-
centered tetragonal lattice.~b! Two observed noncollinear magnet
structures: I (La2NiO4 type! left; Pr, Nd~I,III !, Sm and II (La2CuO4

type! right; Eu, Nd~II ! and their projections on the basal plane. F
Nd2CuO4 phases I, II, and III are observed atTN.250 K.T
.80 K, 80 K.T.30 K, and 30 K.T, respectively.
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l l 8
V~Rl l 8!~Sl 8R̂l l 8!~Sl R̂l l 8!, ~1!

wherel andl 8 label the lattice sites and the functionV(R)
decreases faster thanR23 asR→`.

The PD interaction between Cu21 and Nd31 ions has
been first considered in Refs. 19. Recently it has been u
for the complete description of the spin structure of t
R2CuO4 family.9 In particular, it has been shown that it
responsible for the noncollinear structure of Cu as well as
RE subsystems. It was used also for an explanation of w
ferromagnetism of the tetragonal compound SrCu3O4Cl2.20

Microscopic derivation of the PD interaction between C
spins in CuO2 planes has been done in Refs. 21–23 in
frame of the Hubbard model using on-site Coulomb e
change and spin-orbit interactions. It should be noted a
that the PD interaction appears in metals as a result of
skew scattering24 that is a consequence of the ordinary e
change interaction between ions withLÞ0 and conducting
band.25 The result may be easily generalized for interacti
of d and f electrons via oxygen 2p orbitals.26 The PD inter-
action has been used also for explanation spin-wave dis
sion in metallic Pr.27

In this paper we develop spin-wave theory for the nonc
linear cuprates above RE ordering temperature taking
account both interplane and intraplane pseudodipolar in
actions. We demonstrate that the former splits the in-pl
spin-wave spectrum into acoustic and optical branc
whereas the latter~intraplane PD interaction! gives rise to the
fourfold ~square! anisotropy.21,22As a result the in-plane spin
wave gap appears due to the interaction between spin-wa
This gap has been obtained in Ref. 22 using a phenome
logical Hamiltonian. We confirm this result by microscop
calculations and determine its dependence on the subla
orientation in the (a,b) plane. This dependence is essent
for determination of the spin configuration in magnetic fie

Next, we present detailed neutron scattering data
Pr2CuO4. We observed acoustic and optical spin-wa
branches and determined the in-plane and out-of-plane s
wave gaps. We demonstrated a destructive interference in
neutron scattering on the acoustic branch, which is a con
quence of the noncollinear spin structure and the PD in
action between adjacent CuO2 planes. From these data w
determine the parameters of the PD interaction. In particu
the intraplane PD interaction appears to be by one orde
magnitude larger than calculated in Refs. 22 and 23. Co
paring this result with the strongT dependence of the gaps i
Nd2CuO4 observed previously14 we conclude that along with
the PD interaction and anisotropic exchange considere
Refs. 22 and 23 there is an additional contribution to
square and uniaxial anisotropies connected with the RE io

The spin orientation in magnetic field, experimenta
studied in Refs. 1–5 is the next problem considered in
paper. We derive the ground-state energy, which gove
this orientation for the magnetic field arbitrarily directed
the CuO2 planes. In particular, we show that if the field
along the@1,1,0# direction the spin-flop transition is of sec
ond order and the following relation holds
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gmHc5D0 , ~2!

whereHc is the critical field of the transition andD0 is the
in-plane spin-wave gap atH50. Using this equation we ana
lyze the data of Ref. 1 and confirm the large value ofD0
obtained in our inelastic scattering experiments. The sp
wave spectrum in magnetic field is considered too. We sh
that one of the branches becomes gapless at the spin
transition.

Analysis of the ground-state energy in magnetic field
veals a new phenomenon: Bose condensation of the unif
spin waves in magnetic field canted to the sublattice mag
tization. Related crossover of the sublattice orientation
function of H near the spin-flop transition was observed
cently in Pr2CuO4.28

This paper is organized in the following way. In Sec.
we formulate the model used below. Section III is devoted
the linear spin-wave theory. The intraplane anisotropy a
in-plane spin-wave gap is considered in Section IV. In t
section we present also expressions for the spin-w
branches along the magnetic rod. Theoretical expression
the neutron scattering cross sections are derived in Sec
Inelastic neutron scattering data on Pr2CuO4 are presented in
Sec. VI, where we also discuss them as well as corresp
ing data for Nd2CuO4.14 Section VII is devoted to consider
ation of the spin configuration of the noncollinear antiferr
magnets in magnetic field arbitrarily directed in the ba
plane. The spin-wave spectrum in magnetic field and ine
tic neutron scattering is considered in Sec. VIII. In the l
section we summarize principal results of the paper and g
additional comments for some of them. In Appendix A w
derive the expression for the ground state energy in magn
field. The Green’s functions in magnetic field are calcula
in Appendix B.

II. MODEL

We represent the Hamiltonian of the Cu21 spin system in
the following form:

H5Hex1HA1HPD1gmH(
nl

Sl , ~3!

whereHex is the isotropic exchange interaction,HA is the
uniaxial anisotropy,HPD is the pseudodipolar interaction
and the last term is the interaction with external magne
field andgm.0.

Below we consider the interaction between the nea
neighbors only. In this caseHex can be written as

Hex5
1
2 (

l ,l 8,n

Jl l 8Sl nSl 8n2 1
2 (

l nn8
I nn8Sl nSl n8

1 1
2 (

l ,l 1 ,n
M l l 1

Sl nSl 1n , ~4!

wherel and l 8 denote sites in CuO2 planes andn enumer-
ates planes;Jl l 8 , I nn8 , andM l l 1

are the nearest-neighbo

exchange interactions within CuO2 planes, along thec axis
and between Cu21 ions in the adjacent planes, respective
In particular, the indexl 1 in the last term of Eq.~4! is equal
to l 1(6a,6b,6c)/2.
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The uniaxial anisotropy in Eq.~3! we consider as a part o
the anisotropic exchange and represent it as

HA52 1
2 (

l ,l 8,n

Al l 8Sl n
c Sl 8n

c ~5!

and the easy-plane anisotropy takes place ifAl l 8.0.
It is convenient to divide the PD interaction into inte

plane and intraplane parts. For the former we have

HI5
1
2 (

l ,l 1 ,n
Ql l 1

~Sl nR̂l l 1
!~Sl 1nR̂l l 1

!, ~6!

where R̂l l 1
5Rl l 1

/Rl l 1
. Slightly modifying Eq. ~1! we

represent the intraplane PD interaction in the traceless f
as in Refs. 21–23:

HP5 1
2 (

l ,l 8
Pl l 8@~Sl R̂l l 8!~Sl 8R̂l l 8!

2 1
2 ~Sl

a Sl 8
a

1Sl
b Sl 8

b
!#, ~7!

wherea and b are coordinate axes in CuO2 plane@see Fig.
1~a!#. The interaction~7! may be represented in the form~1!
with corresponding change of both interactionsJl l 8 and
Al l 8 .

Interplane PD interaction~6! explains the observed spi
structure.19 Indeed, let us consider in the mean-field appro
mation interaction between the central spin and corner s
shown in Fig. 2. Simple calculations get

Ei54S2Q0sin~w11w2!,
~8!

Q05Q
a2

2a21c2
,

where Q is the nearest-neighbor interplane PD interact
and anglesw1 and w2 are shown in Fig. 2. This energy i
minimal if w11w252(p/2)sgnQ0 . In this case the noncol
linear ordering is fixed by the intraplane square anisotro
which appears as a result of zero-point contribution to
ground-state energy~Refs. 21 and 22 and below in Sec. IV!.
It should be noted also that the interplane PD interact
leads to ferromagnetic ordering of the neighboring sp
along thec axis shown in Fig. 1~b! because the interaction
of the central spin with lower and upper planes have the fo
given by Eq.~8!. Hence, we do not need any further ferr

FIG. 2. Ground-state antiferromagnetic spin configuration in
unit cell of R2CuO4 . The spin orientation in the adjacent layers a
given by anglesw1 andw2 .
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1082 PRB 59PETITGRAND, MALEYEV, BOURGES, AND IVANOV
magnetic exchange between copper spins alongĉ axis given
by the second term in Eq.~4! and, actually, the observe
spin-wave spectrum does not reveal this interaction~see Sec.
VI !.

We divide the whole system of CuO2 planes in two sub-
systems 1, and 2, which include the corner and central C21

ions in Figs. 1~a! and 1~b!, respectively. They are connecte
by the vectord5(a,b,c)/2. In every subsystem Cu21 spins
are arranged antiferromagnetically in planes and ferrom
netically along thec axis. For the in-plane spin orientatio
we assign anglesw1 and w2 for the first and the secon
subsystems, respectively as shown in Fig. 2.

The whole spin system may be considered now as c
sisting of four sublattices and needing four sets of the s
operators. It is quite inconvenient. So we, rather, use ano
type of description involving one set of spin operators p
subsystem and the antiferromagnetic~AF! propagating vec-
tor k0 for which we have two equivalent forms:

k0
~1!5

p

a
~1,1,0!, k0

~2!5
p

a
~21,1,0!. ~9!

We will set below k05k0
(2) ; in this case we have

exp(ik0d)51. In each system of planes the spins may
represented in the following form:

Sl m
~l!5~Sl mz

~l! êzl1Sl my
~l! êyl!eik0Rl

~l!
1Sl mx

~l! ĉ, ~10!

wherel51,2; Rl
(1)5Rl , Rl

(2)5Rl 1d, l andm enumer-
ate unit cells in (a,b) planes and along thec axis, respec-
tively, and

êzl5~coswl ,sinwl ,0!,

êyl5~2sinwl ,coswl ,0!, ~11!

ĉ5~0,0,1!,

wherez1 andz2 are directions at the sublattice magnetiz
tion for subsystems 1 and 2. Vectork0 and unit vectors
êzl , êyl , and ĉ determine the frame of reference for th
components of the spin operators. Below we will use
them the well-known representation

Sl mz
~l! 5S2al ml

1 al ml ,

Sl ml
1 5Sl ml

~c! 1 iSl ml
~y! 5A2S~al ml2al ml

1 al ml
2 /2S!, ~12!

Sl ml
2 5Sl ml

~c! 2 iSl ml
~y! 5A2Sal ml

1 .

Now we rewrite Eqs.~4!–~7! in momentum space,

Hex5
1
2 (

k
~Jk2I k!~Sk1S2k11Sk2S2k2!1(

k
M kSk1S2k2 ,

~13!

HA52 1
2 (

k
Ak~Sk1

c S2k1
c 1Sk2

c S2k2
c !, ~14!

HI5 (
k,a,b

Qk
abSk1

a S2k2
b , ~15!
g-

n-
in
er
r

e

-

r

HP5
P

2(
k

~coska2coskb!

3~Sk1
a S2k1

a 1Sk2
a S2k2

a 2Sk1
b S2k1

b 2Sk2
b S2k2

b !,

~16!

where P is the nearest-neighbor intraplane PD interact
and we define the Fourier transform as

Skl5N21/2(
l m

Sl mlexp~2 ikRl m! ~17!

and similar expressions for the operatorsal ml andal ml
1 .

HereN is the total number of unit cells and

Jk52J~coska1coskb!,

I k52Icoskc ,
~18!

Ak52A~coska1coskb!,

M k58Mcos
ka

2
cos

kb

2
cos

kc

2
,

where ka5k(a)a, etc. andJ054J. For components of the
symmetrical tensorQab we have

Qk
aa5Qk

bb5u2Qk
cc58Q0cos

ka

2
cos

kb

2
cos

kc

2
,

Qk
ab528Q0sin

ka

2
sin

kb

2
cos

kc

2
,

~19!

Qk
ac528

Q0

u
sin

ka

2
cos

kb

2
sin

kc

2
,

Qk
bc528

Q0

u
cos

ka

2
sin

kb

2
sin

kc

2
,

where u5a/c and Q05a2Q/(2a21c2). Diagonal compo-
nents ofQab renormalize interplane exchangeM and give
rise to small additional uniaxial anisotropy that may be n
glected. The nondiagonal componentsQk

ac andQk
bc are zero

at the magnetic rods whereka,b50 or ka,b56p/a; the only
lines near which the PD interaction may be important, b
cause in other parts of thek space it is negligible comparing
with the strong intraplane exchange coupling. Thus bel
we will take into account the nondiagonalQk

ab component
only.

III. LINEAR SPIN-WAVE THEORY

In this section we present results of the linear spin-wa
theory in zero magnetic field. For an isolated plane, th
coincide with results of Refs. 21 and 22. However, we
write them in a form convenient for the further considerati
of the spin-wave interaction. The interplane PD coupli
splits the spin-wave spectrum into acoustic and opti
branches that are observed experimentally. Correspon
results are presented in Sec. VI.

Using Eqs.~12!–~17! and neglecting higher-order term
we obtain the spin-wave Hamiltonian consisting of ze
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order, linear and bilinear terms. The zero-order term gi
the classical ground-state energy. Its part depending on
spin orientations has the form

DE125NS2Qk0

absin~w11w2!58NS2Q0sin~w11w2!.

~20!

Here we have taken into account our choice ofk05k0
(2) .

The equilibrium spin configuration is determined by t
minimum of this expression,19 if one neglects other
w-depended contributions to the ground state energy~see
below Secs. IV and VI!. It should be noted also that Eq.~20!
determines the spin configuration regardless of choices ok0
given by Eq.~9!. Indeed, according to Eq.~10! the definition
of the frame of reference for the adjacent plane contain
factor exp(ik0d), which is equal to21 and 11 for k0

5k0
(1) and k05k0

(2) , respectively. In the first case we hav
an additional rotation on anglep which should be compen
sated by the replacementw2→w21p.

The linear term of the Hamiltonian is given by

W15F iSQk0S NS

2 D 1/2Gcos~w11w2!~a01
1 2a011a02

1 2a02!.

~21!

It should be eliminated in the same way as the linear te
related in presence of a magnetic fieldH ~see Appendix A!.
However atH50 as well as atH along the@1,1,0# direction
we havew11w256p/2 andW150 ~see Sec. VI!. The same
holds if Hi@1,0,0# below the spin-flop transition~see Sec.
VII !.

The bilinear spin-wave Hamiltonian may be represen
as follows:

HSW5H11H21V,

Hl5(
k

@Ek,lak,l
1 ak,l1 1

2 Bk,l~ak,l
1 a2kl

1 1ak,la2k,l!#,

~22!

V5(
k

@Ck~ak,1
1 ak,21ak,2

1 ak,1!1Dk~ak,1
1 a2k,2

1 1ak,1a2k,2!#,

wherel51,2 and ifH50, it gives

Ekl5S~J01I 02I k2 1
2 Ak1 1

2 gkcos 2wl!1R0 ,
~23!

Bkl5S~Jk2 1
2 Ak2 1

2 gkcos 2wl!,

where

gk5P~coska2coskb!,
~24!

R052SQk0

absin~w11w2!528SQ0sin~w11w2!.0,

and

Ck5 1
2 S@M k1M k1k0

cos~w12w2!2Qk1k0

ab sin~w11w2!#,

~25!
Dk5 1

2 S@M k2M k1k0
cos~w12w2!1Qk1k0

ab sin~w11w2!#.

In Eqs.~22!, the terms that containQk
ac andQk

bc are omit-
ted because on the magnetic rod we haveQac5Qbc50.
s
he

a

s

d

It is well known that all observable quantities may b
evaluated using corresponding Green’s functions determ
as

GAB~v!52 i E
0

`

dt eivt^@A~ t !,B~0!#&. ~26!

They satisfy equations of motion,

vGAB~v!1G[H,A],B~v!5^@A,B#&. ~27!

We will use below the following Green’s functions:

Gl8l5Gal8 ,a
l
1, Fl8l

1
5Ga

l8
1 a

l
1;

~28!
Gl8l

1
5Ga

l8
1 al

; Fl8l5Gal8al
.

Using these definitions and Eqs.~22! and ~27! we get

~v2E1!G112B1F11
1 2CG212DF21

1 51,

B1G111~v1E1!F11
1 1DG211CF21

1 50,
~29!

2CG112DF11
1 1~v2E2!G212B2F21

1 50,

DG111CF11
1 1B2G211~v1E2!F21

1 50,

where we omit the subscriptk. Solution of these equation
has the following form:

G115@~v1E1!~v22E2
21B2

2!1~D22C2!v

1~D21C2!E222B2CD#D21,

F11
1 52@B1~v22E2

21B2
2!2B2~C21D2!12CDE2#D21,

~30!

G215@~v1E1!~v1E2!C2B1D~v1E2!2B2D~v1E1!

1B1B2C1CD22C3#D21,

F21
1 52@~v1E1!~v2E2!D2B1C~v2E2!

1~v1E1!B2C2B1B2D1D32C2D#D21,

where

D~v!5~v22E1
21B1

2!~v22E2
21B2

2!

22v2~C22D2!22~E1E21B1B2!~C21D2!

14~B1E21B2E1!CD1~C22D2!2. ~31!

The interaction between subsystems is very weak, and in
expression we should retain the terms containingC and D
only if these quantities are multiplied by the large fact
SJk . Hence, we have to omit the second and last terms
Eq. ~31!. The solution of the equationD(v)50 determines
the spin-wave spectrum and may be represented as follo

e6
2 5

1

2
$e1

21e2
26@~e1

22e2
2!218~E1E21B1B2!~C21D2!

216~B1E21B2E1!CD#1/2%, ~32!

wheree1,2
2 5E1,2

2 2B1,2
2 .
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In the chosen convention, each subsystem is divided
two sublattices and the spin-wave spectrum consists of
branches known as in-plane and out-of-plane excitations
teraction between subsystems 1 and 2 splits these excita
and we obtain four branches. Our expression~32! determines
two branches only. It is a result of our approach based on
chemical cell instead of the magnetic one. The Brillou
zone is shown in Fig. 3 and its hatched part is the conv
tional magnetic zone. The in-plane and out-of-plane s
waves belong to hatched and unhatched parts of the Brillo
zone, respectively.

If we restrict thek space by the magnetic zone, the i
plane and out-of-plane spin waves will be determined by
~32! as ek

(6) and ek1k0

(6) respectively. We then obtain fou

branches as expected. Neglecting the interaction betwee
two subsystems (C5D50,R050), we get

ek,1,2
2 5S2~J02Jk1I 02I k1gkcos 2w1,2!

3~J01Jk1I 02I k2Ak!, ~33!

wheregk is given by Eq.~24!. This expression may be re
written as

ek,in 1,2
2 5S2~J02Jk1I 02I k1gkcos 2w1,2!~J01Jk!

ek out
2 5S2~J02Jk1I 02I k1Ak!~J01Jk!, ~34!

where we neglectedI 0 ,Ak andP comparing toJ01Jk andk
belongs to the magnetic zone. These expressions coin
with those given in Refs. 21 and 22, if according to Ref.
we set J5Jav , A5Jav2Jz , P5dJ and neglectI k . We
see that the in-plane branch remains gapless despite the
that the PD interaction violates the rotational invarian
around thec axis. As we will show below a correspondin
gap appears as a result of the interaction between spin wa
The out-of-plane gap has the form

Dout
2 58S2J0A532S2JA. ~35!

Let us consider now the interaction between adjac
planes. It is very small and has to be taken into account o
along the directions (0,0,kc) and (k0a ,k0b ,kc). Otherwise it
is masked by the dispersion connected with the huge in

FIG. 3. Chemical Brillouin zone. The in-plane and out-of-pla
spin waves correspond to hatched and unhatched parts of the
respectively. The former one coincides with the magnetic zone
to
o

n-
ns

e

n-
n
in

.

the
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act
e

es.

t
ly
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plane exchange. As a result the in-plane mode splits
acoustic and optical branches and using Eqs.~18!, ~19!,
~23!–~25!, and~32! we obtain

eac
2 ~kc!52SJ0H 2SI~12coskc!1R0F12cos

kc

2 G J
~36!

eopt
2 ~kc!52SJ0H 2SI~12coskc!1R0F11cos

kc

2 G J .

In the considered approximation the out-of-plane mo
remains unsplit and instead of Eq.~35! we get

Dout
2 52SJ0~4SA1R0!. ~37!

Thus, we see that the interplane PD interaction gives a c
tribution to the out-of-plane spin-wave gap too.

IV. INTRAPLANE ANISOTROPY

In this section, we obtain thew-dependent contribution to
the ground-state energy that gives rise to the square an
ropy considered in Refs. 21 and 22. This anisotropy is
sponsible for the spin-wave gap in the in-plane mode.
Refs. 21 and 22 this gap has been calculated using an e
tive Hamiltonian. We demonstrate that it appears as a re
of interaction between spin waves and determine thew de-
pendence of the gap, which is important in the case of n
zero magnetic field~see Sec. VII!. We show also that this
interaction leads to replacement in Eq.~35! the spin valueS
by ^Sz& as has been assumed in Ref. 22.

According to Refs. 21 and 22 the first correction to t
ground-state energy is given by zero-point motion and
the form

DE5 1
2 (

k
~ek2Ek!, ~38!

where the sum is extended over the whole Brillouin zone;ek
andEk are given by Eqs.~23! and~33!. Neglecting all small
interactions~except for the intraplane PD for a single plan!
we get thew-dependent part of this energy in the followin
form:

DEw5
ND0

2

16J0
sin22w, ~39!

where we replacedw1,2 on w and

D0
25

2SP2

~2p!2E2p

p

dkadkb

~21coska1coskb!1/2

~22coska2coskb!3/2

3~coska2coskb!2.1.28SP2. ~40!

These expressions coincide with the results of Refs. 21
22.

Using Eqs.~20! and ~39! for the energy that determine
the ground-state configuration of the system we get

ne,
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E05S2NJ0F D0
2

4~2SJ0!2
~sin22w11sin22w2!

1
8Q0

J0
sin~w11w2!G . ~41!

Here the first two terms are minimal atw1,250,p/2 and de-
termineâ and b̂ as easy axes. The second term has a m
mum atw11w252p/2 for positiveQ0 and w11w25p/2
for Q0,0. As a result the whole expression~41! determines
the first (La2NiO4) and the second (La2CuO4) types of the
structure shown in Fig. 1~b! for Q.0 and Q,0, respec-
tively.

From Eq.~39!, one sees that the PD interaction gives r
to square anisotropy, which should be responsible for the
in the in-plane spin-wave mode. In Ref. 22 this gap has b
determined using a specially constructed effective Ham
tonian. We will demonstrate now that the lowest order p
turbation theory gives the same result. We will determ
also thew dependence of the gap, which is essential
description of the system in magnetic field~see Sec. VII!.

Using Eqs.~10!–~16!, we represent the interaction energ
in the following form:

V5V31V41V51V6 , ~42!

whereVn is responsible for the interaction betweenn spin
waves. We restrict ourselves to the one-plane problem
this case we have

V35 i S S

2ND 1/2

sin 2w( gk1
ak11k2

1 ak2
~ak1

2a2k1

1 !.

~43!

The fourth-order interaction is a sumV45V4
(1)1V4

(2)

1V4
(3) , where

V4
~1!52

1

2N( Vk3

~1!ak31k1

1 a2k31k2

1 ak1
ak2

,

V4
~2!52

1

2N( Vk3

~2!ak31k11k2

1 ak1
ak2

ak3
, ~44!

V4
~3!52

1

2N( Vk3

~3!ak3

1a2k31k11k2

1 ak1
ak2

.

Here

Vk
~1!5Jk1gkcos 2w,

Vk
~2!5Jk2 1

2 Ak2 1
2 gkcos 2w, ~45!

Vk
~3!52 1

2 Ak1 1
2 gkcos 2w,

andgk is determined by Eq.~24!. The interactionsV5 andV6
will not be used below and we do not give here correspo
ing expressions.

Now, it is worth pointing out the non-Hermiticy of th
interactionsV4

(2,3), which is a direct consequence of the re
resentation~12! for the spin operators. As a result in th
intermediate steps of the calculations some quantities do
exhibit the conventional properties. For example, the eq
i-

e
ap
n

l-
-
e
r

In

-

-

ot
l-

ity Fk
1(v)5Fk(2v) is broken, whereF1 and F are the

Green’s functions determined by Eq.~28!. The consequence
of the Hermiticity of the initial physical problem is restore
in the final results only. For example the spin Green’s fun
tion contains the sumF11F. The similar situation takes
place in the spin techniques by Vaks, Larkin, and Pikin29 too.
It may be shown that forT!TN both techniques are equiva
lent.

Below we will use the conventional diagrammat
techniques30 for calculations of the Green’s functions and w
take into account diagrams containing one sum over inter
diate momenta. This approximation gives the first term
1/S expansion and has been used in Refs. 31 and 32
determination corrections to the spin-wave spectrum in
exchange approximation. The real justification of this a
proximation is some small numerical coefficients that sho
appear at each additional momentum summation. Obviou
the interactionsV5 andV6 should be omitted in this approxi
mation.

Above we did not diagonalize the Hamiltonian~22! and
had two kinds of Green’s functionsG, G1, F, and F1

determined by Eq.~28!. As a result diagrammatic technique
used below should be similar to the Beliaev one,30,33 which
has been developed for the diluted Bose-Gas belowTc . The
only distinction is related to the non-Hermiticity of the inte
action due to which we haveG1(v)ÞG(2v) andF1(v)
ÞF(v). In this case we have a system of Dyson equatio
determining self-energy partsS, S1, P, and P1. Equa-
tions forG andF1 are shown in Fig. 4. Other two equation
for G1 andF have similar structure. Solution of these equ
tions is given by

G5~v1jk!D21, G15~2v1jk
1!D21

~46!
F152bkD

21, F52bk
1D21,

where

jk5Ek1Sk , jk
15Ek1Sk

1 ,

bk5Bk1Pk , bk
15Bk1Pk

1 , ~47!

D5v22~jkjk
12bkbk

1!.

Here Ek and Bk are given by Eqs.~23!. NeglectingS, P,
andP1 we have

G5~v1Ek!~v22ek
2!21,

~48!
F5F152Bk~v22ek

2!21.

These equations actually follow from Eq.~30! if one neglects
the interaction between subsystems.

FIG. 4. Belyaev’s equations for the Green’s functionsG and
F1. The left and right broken arrows represent the bare Gree
functions G0k(v) and G0k

1 (v)5G0k(2v), respectively, where
G0k(v)5(v2Ek)

21. The valuesEk andBk are given by Eq.~23!.
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From Eqs.~47! for the spin-wave energy in the first ap
proximation described above we have

ekR
2 5ek

21dek
2 ,

~49!
dek

25Ek~Sk1Sk
1!2Bk~Pk1Pk

1!.

Corresponding diagrams forSk5(Sk
1)* , Pk , andPk

1 are
shown in Fig. 5. They are divided on the one-vertex Hartr
Fock and two-vertex propagative diagrams related to in
actionsV4 andV3 , respectively.

Analytical expressions for the Hartree-Fock diagrams
given by

Sk5Sk
152

1

N(
k1

H @V0
~1!1Vk2k1

~1! 1Vk
~3!1Vk1

~3!#nk1

1F1

2
Vk

~2!1Vk1

~2!G f k1J , ~50!

Pk52
1

N(
k1

@Vk2k1

~1! 1Vk2k1

~3! # f k1
,

Pk
152

1

N(
k1

$@Vk1

~2!12Vk
~2!#nk1

1@Vk2k1

~1! 1Vk1

~3!# f k1
%,

~51!

whereVk
( i ) are determined by Eqs.~45! and

nk5^ak
1ak&5

Ek2ek

2ek
,

~52!

f k5^ak
1a2k

1 &5^aka2k&52
Bk

2ek
.

If we neglect the anisotropy and the PD interaction, E
~49!, ~50!, and ~51! give the well-known expression to th
first-order renormalization of the spin-wave energy:31,32

ekR
2 5ek

2H 11
1

S
2

1

2SN(k
@42~coska1cosb!2#1/2J

.ek
2~120.16/S!. ~53!

FIG. 5. The first-order diagrams for the self-energiesS, P, and
P1, which contribute atk5(0,0,qc) and k5(k0,qc). The self-
energyS1 is determined by the same set of diagrams asS with
inversion of the directions of all arrows.
-
r-

e

.

Equations~49! and~50! at k5k0 give renormalization of the
out-of-plane gap assumed in Ref. 22 and instead of Eq.~35!
we have

Dout
2 58^S&2J0A, ~54!

where^S& is the averagez component of the spin, reduced b
the zero-point fluctuations

^S&5SF12
1

NS(k
nkG.SS 12

0.20

S D . ~55!

At k50 the Hartree-Fock contribution to the in-plane g
is given by

DHF
2 5D01

2 5D0
2cos22w, ~56!

whereD0
2 is determined by Eq.~40!.

The two-vertex diagrams shown in Fig. 5 atk50 andv
50 give the expressions

S05~S0
1!* 5

S

2N
T(

k,v
gk

2@4Fk~ iv!Gk~ iv!

22Gk
2~ iv!2Fk

2~ iv!

2Gk~ iv!Gk~2 iv!#sin22w, ~57!

P05P0
15

S

2N
T(

k,v
gk

2$3Fk
2~ iv!1Gk~ iv!G2k~2 iv!

22Fk~ iv!@Gk~ iv!1Gk~2 iv!#%sin22w,

wherev is Matsubara frequency. After simple calculation
we obtain the following contribution to the in-plane gap:

D02
2 52D0

2sin22w. ~58!

As a result we have the final expression for the in-pla
gap:

de0
25D in

2 5D0
2cos 4w, ~59!

where D0
2 is given by Eq.~40!. For w50 this expression

coincides with the result of Ref. 22. However as we will s
in Sec.VII thew dependence of the in-plane gap becom
important in magnetic field. Proportional toP2 correction to
Dout

2 appears too@see Eq.~109! in Sec. IX!#. However as we
will see belowDout

2 @D in
2 and it may be neglected. For th

ground-state configuration we havew150 andw256p/2.
In this case instead of Eqs.~36! for acoustic and optica
spin-wave branches along (0,0,kc) direction we get

eac
2 52SJ0F2SI~12coskc!1R0S 12cos

kc

2 D G1D0
2 ,

~60!

eopt
2 52SJ0F2SI~12coskc!1R0S 11cos

kc

2 D G1D0
2 ,

whereR0 is given by Eq.~24!. Summarizing results given by
Eqs.~37! and~54! for the out-of-plane mode along the sam
direction we obtain

Dout
2 58^S&2J0A12SJ0R0 , ~61!
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where^S& is determined by Eq.~55!.
It should be emphasized that thew dependence of the

in-plane gap given by Eq.~59! is not a specific result of the
PD interaction~7!. In fact it is a direct consequence of th
square symmetry of CuO2 planes. Indeed, in a general for
the square anisotropy is given by

Hsq5 (
k11k21k31k450

3@l1~S1
aS2

aS3
aS4

a1S1
bS2

bS3
bS4

b!1l2S1
aS2

aS3
bS4

b#,

~62!

where Si5Ski
. This expression may be represented in

following form:

Hsq5 (
k11k21k31k450

@l1~S1
aS2

a1S1
bS2

b!

3~S3
aS4

a1S3
bS4

b!1lS1
aS2

aS3
bS4

b#, ~63!

where l5l222l1 . Here the first term is invariant unde
rotation in the (a,b) plane and then contributes to th
uniaxial anisotropy only. From the second term using E
~11! and linear spin-wave theory we get

Hsq5
lNS4

4
sin22w1lS3

3(
k

@~cos4w1sin4w28sin2wcos2w!ak
1ak

1 1
2 ~aka2k1a2k

1 ak
1!~4sin2wcos2w2cos4w2sin4w!#.

~64!

Here the first term should be added to the ground-state
ergy ~41! and the second one contributes toEk andBk in Eq.
~22!. As a result the spin-wave gaps given by Eqs.~59! and
~61! acquire the following additional terms:

dD in
2 54S4J0lcos 4w, ~65!

dDout
2 522S4J0lsin22w. ~66!

We see thatdD in
2 is proportional to cos4w as in expression

~59!. If Eq. ~64! gives only the contribution to the anisotrop
we have theâ and b̂ as easy directions (w50,6p/2) for
positive l and dDout

2 50. For l,0 the direction@1,1,0# is
the easy axis (w56p/4) and both expressions~65! and~66!
are positive.

As we will see in the end of Sec. IX the value of th
in-plane gap depends strongly on the environment of
CuO2 planes and particularly on the type of rare-earth io
This dependence may be attributed to the PD interaction
well as to an additional square anisotropy.

V. NONCOLLINEARITY AND NEUTRON SCATTERING

In this section, we present expressions for the elastic
inelastic neutron scattering cross sections, which have s
peculiarities connected with the noncollinear magnetic str
ture of theR2CuO4 family. Corresponding experimental re
e

.

n-

e
.
as

d
e
-

sults will be considered in the next section.
We begin with the elastic scattering cross section, norm

ized on the chemical unit cell, which has the following form

ds

dV
5@r 0^S&F~Q!#2H 22

~Q•êz1
!2

Q2
2

~Q•êz2
!2

Q2

12F ~ êz1
•êz2

!2
~Q•êz1

!~Q•êz2
!

Q2 G
3cos~Q•d!J ~2p!3

V0
d~Q1tAF!, ~67!

wherer 0
250.292 barns for magnetic scattering,F(Q) is the

magnetic form factor of Cu21 ions,^S& is their average spin
êz1,2

are directions of the subsystem magnetization given

Eq. ~11!, andV0 is the unit-cell volume,tAF5t1k0 wheret
and k0 are reciprocal vectors of the chemical and magne
lattices respectively.

The magnetic structure factor is determined by anglesw1
and w2 , which depend on the magnetic fieldH ~see Sec.
VII !. If H50, we havew150 andw25(21)tp/2 wheret
51 andt52 for the first and the second type of the structu
shown in Fig. 1~b!, respectively.

In this case, for the reflectionsQ5(k/2,6k/2,l ), wherek
is an odd number, the expression inside brackets in Eq.~67!
is given by

2, l 1t is even;
~68!

2
Qc

2

Q2
5

2~a/c!2l 2

k2/21~a/c!2l 2
, l 1t is odd.

In particular, if l 50, the elastic scattering is forbidden fo
the first type of the structure witht51.

The anglesw1 and w2 are complicated functions of th
field. However, ifH is along the@110# direction according to
the results of Sec. VII, we havew25(21)tp/22w1 , 0
.w1.2p/4 if gmH,gmHc5D0 and w152p/4 if H
>Hc .

In this case for the reflectionsQ5(k/2,2k/2,l ) instead
of Eq. ~68! we get

2~11sin 2w1!, l 1t is even;

2~12sin 2w1!
Qc

2

Q2
5

2~a/c!2l 2

k2/21~a/c!2l 2
~12sin 2w1!,

~69!

l 1t is odd.

The consequences of these expressions have been us
Refs. 1–5 for establishing the spin structu
@La2CuO4 /La2NiO4 type, see Fig. 1~b!# observed in the dif-
ferent members of theR2CuO4 family. In addition, Eq.~69!
has allowed one to establish the noncollinearity by apply
a field slightly off from theâ direction.3,4

We now consider the inelastic neutron scattering. It w
studied inR2CuO4 systems in zero magnetic field only an
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here we mainly restrict ourselves to this case. Results
HÞ0 are considered briefly in Sec. VIII. The main proble
is the consideration of the interference between adjac
planes with noncollinear magnetic ordering. This interf
ence is important for the in-plane spin-wave scattering
along the directionsQ5(h/2,k/2,qc) only whereh andk are
odd integer numbers and contribution to the spin-wave
ergy of the very strong intraplane exchange interaction
appears. Corresponding experimental results are present
the next section.

In inelastic neutron scattering, the measured cross
tions can be always written in terms of the scattering fu
tion, S(Q,v), as

S d2s

dVdv D5r 0
2F~Q!2

kF

kI
S~Q,v! ~70!

with the notations of Eq.~67! and wherekF /kI is the usual
kinematic ratio of final neutron wave vectorkF to the inci-
dent onekI . We begin with the general expressions for t
spin-wave scattering function. For the out-of-plane s
waves, it has the form

Sout~Q,v!5S 12
Qc

2

Q2D $Sc1 ,c1
~q,v!1Sc2 ,c2

~q,v!

1@Sc1 ,c2
~q,v!1Sc2 ,c1

~q,v!#cos~Q•d!%,

~71!

where Q5t1q, t is the reciprocal lattice vector andQc
5(2p/c)qc .

For the in-plane spin waves, the scattering function m
be represented as

Sin~Q,v!5H Sy1 ,y1
~q,v!S 12

Qy1

2

Q2 D
1Sy2 ,y2

~q,v!S 12
Qy2

2

Q2 D
1@Sy1 ,y2

~q,v!1Sy2 ,y1
~q,v!#

3S êy1
êy2

2
Qy1

Qy2

Q2 D cos@~Q2k0!•d#J ,

~72!

wherey1,2 arey axes for subsystems 1 and 2,êy1 andêy2 are
corresponding units vectors given by Eq.~11!, and Q5t
1q1k0 . According to our choicek05k0

(2) @see Eq.~10!#,
andk0•d50. However, it is convenient to retain this term
Eq. ~72!.

In Eqs. ~71! and ~72!, the partial scattering functions ar
determined by application of the fluctuation-dissipation th
rem,

Sl8,l~q,v!5
1

p

1

12exp~2v/kBT!
Im xl8,l~q,v!,

~73!
or

nt
-
d

-
s-

in

c-
-

n

y

-

wherexl8l is the associated susceptibility, which is dete
mined by Eq.~26! with change of sign and ifA andB are the
spin operators,Sl8 and Sl , respectively. Using this defini
tion we get from Eqs.~12! and ~28!

xcl8 ,cl
~v!52

S

2
@Gl8,l~v!1Gl8,l~2v!

1Fl8,l~v!1Fl8,l
1

~v!#

~74!

xyl8 ,yl
~v!52

S

2
@Gl8,l~v!1Gl8,l~2v!

2Fl8,l~v!2Fl8,l
1

~v!#.

The functionsG,F,F1 in a magnetic field are given by
Eqs. ~B13! and ~B20!. However, forH50, we can use Eq
~30! replacingD by

D1~v!5~v22eac
2 !~v22eopt

2 !, ~75!

whereeac
2 andeopt

2 are given by Eqs.~60! if qa5qb50, and
D1(v)5(v22Dout

2 )2 for qa56qb51/2. As a result, we
have

xc1 ,c1
5xc2 ,c2

52S2~J02Jq!~v22e2!/~2D1!,

xc1 ,c2
5xc2 ,c1

52S2~J02Jq!~C1D !/~2D1!,

~76!
xy1 ,y1

5xy2 ,y2
52S2~J01Jq!~v22e2!/~2D1!,

xy1 ,y2
5xy2 ,y1

52S2~J01Jq!~C2D !/~2D1!,

wheree25(eac
2 1eopt

2 )/2, C andD are given by Eq.~25!.
For the out-of-plane spin waveQ5t1q and if qa5qb

50, we havexcl8 ,cl
50 and the neutron scattering is forbid

den. It becomes maximal forqa56qb51/2, i.e., at the AF
Bragg rods. However, along these lines we haveC1D50
and the interference disappears. As a result forQ.tAF and
v.0 we obtain

Sout~Q,v!5S 12
Qc

2

Q2D 1

Dout

S2J0d~v2Dout!

12exp~2v/kBT!
. ~77!

For the in-plane spin waves,Q5tAF1q and along the mag-
netic lines, we haveq5(0,0,qc). Taking into account that
eopt

2 2eac
2 54SJ0(C2D) @see Eqs.~25! and ~60!#, the cross

section forv.0 may be represented as follows:

Sin~Q,v!5
S2J0

2@12exp~2v/kBT!#

3H F11
Qc

2

Q2
22

Qy1
Qy2

Q2
cos~tAF•d!Gd~v2eopt!

eopt

1F11
Qc

2

Q2
12

Qy1
Qy2

Q2
cos~tAF•d!Gd~v2eac!

eac
J .

~78!
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This expression is written for all values ofqc . We below
refer to the branches that have a minus and a plus sig
Eqs. ~60! as acoustic and optical excitations, respective
For the first (La2NiO4) and the second (La2CuO4) type sys-
tems shown in Fig. 1~b!, we havew252p/2, êy2

5â and

w25p/2, êy2
52â, respectively. As a result, the interfe

ence terms in Eq.~78! have different sign in these two cas
and this equation may be rewritten as

Sin~Q,v!5
S2J0

2@12exp~2v/kBT!#

3H F11
Qc

2

Q2
12~21! t

QaQb

Q2
cos~tAF•d!G

3
d~v2eopt!

eopt
1F11

Qc
2

Q2
22~21! t

QaQb

Q2

3cos~tAF•d!Gd~v2eac!

eac
J , ~79!

where t51 stands for the La2NiO4 case andt52 for the
La2CuO4 case.

The interference becomes very important atQ
5(1/2,1/2,0). In this case cos(tAF•d)521, and acoustic
and optical branches do not contribute to the neutron c
section fort51 andt52, respectively. The disappearance
the scattering on the acoustic branch observed
Pr2CuO4 (t51) and discussed in the next section.

VI. EXPERIMENTAL RESULTS

In this section, we present results of the inelastic neut
scattering experiments in Pr2CuO4. We deduce from them
the main theoretical parameters: the strength of the in
plane ~P! and interplane~Q! pseudodipolar interactions
Available experimental results for the inelastic neutron sc
tering in Nd2CuO4 ~Ref. 14! will be discussed too.

A. Experimental procedure

The Pr2CuO4 single crystal of very good mosaicity~less
than 108) and with TN5247 K was grown in air from the
melt in a crucible. The sample, already used in higher-ene
spin-wave experiments35 as well as in Ref. 18, was a plate o
about a volume of 0.5 cm3. It was mounted with the recip
rocal directions~110! and ~001! within the scattering plane
Inelastic neutron scattering experiments were performed
ing the triple-axis spectrometers at the thermal neutron b
2 T and at the cold neutron beam 4F1 of Laboratoire Le´on
Brillouin at the reactor Orphe´e ~Saclay!. Monochromator and
analyzer were of pyrolytic graphite. The analyzer was
cussed horizontally on 4F1 and horizontally and vertically
2 T to improve the intensity using no collimation. On the
mal beam, we worked in constant-kF mode with kF
52.662 Å21 leading to typical energy resolution of 1 meV
A graphite filter was put in the scattered beam to remo
neutrons with wave vectors 2kF . Cold neutron experiment
were performed on spectrometer 4F1 in the range 0.1–
meV. We used both constant-kF and constant-kI modes with
in
.

ss
f
in

n

a-

t-

y

s-
m

-
n

e

.0

kI ,F51.55 Å21 for the higher-energy part and constant-kF
mode atkF51.15 Å21 for the lowest energies investigate
This gives a typical energy resolution at\v50 ~full width at
half-maximum! of 0.2 and 0.1 meV, respectively. Multiple
order contamination in the scattered beam was removed
beryllium filter and the results are corrected for efficien
and influence of multiple order on the monitor as a functi
of kI .

B. In-plane q integration due to the ellipsoid resolution

The strong in-plane superexchange coupling in cupra
(J.100 meV), implying very large in-plane spin-wave v
locity c0 put severe constraints on the neutron scatter
methods. A typical in-plane dispersion curve is schem
cally drawn in Fig. 6. The key point is that the in-planeq
resolution~the size of the ellipse in Fig. 6!, is always larger
than the in-plane wave vector of the spin wavesqSW
5v/c0 . That is the case for the whole energy range~0.1–12
meV! investigated here. The separation of the counterpro
gating spin waves~from q and 2q) in the (qa ,qb) plane
may be done in the high-energy region1 or using an adapted
focalized geometry.35 Accordingly, in our case spin-wave
branches do not show up as two individual peaks in an
planeq scan at constant energy. The measured intensity
suchq scans is rather a single peak of roughly theq width of
the resolution centered on the magnetic rod~see Fig. 9!.
Such sharp peaks around the AF wave vector sign the m
netic origin of the scattering. A further consequence is t
the scattered intensity measured at the antiferromagn
line, Q5(1/2,1/2,qc), is not simply proportional to the spin
wave cross section, given by Eqs.~77!,~79!. Indeed, the el-
lipsoid of the triple axis spectrometer performs a 2D integ
tion over in-plane (qa ,qb) wave vectors. The measure
intensity is then proportional to the 2D integrated spin s
ceptibility,

S̄~Q,v!5E d2qS~Q,v!. ~80!

Since the neutron cross sections generally behave in
antiferromagnet aseq

21}1/q for low energies~but above

FIG. 6. Left part: In-plane spin-wave dispersion curves for A
undoped cupratesR2CuO4 along the magnetic rod. The ellips
sketches the experimental resolution function. Right part: schem
representation of the energy dependence of the measured integ
intensity, see text for details. The temperature factor is not includ
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1090 PRB 59PETITGRAND, MALEYEV, BOURGES, AND IVANOV
gaps! @see, e.g., Eq.~79!#, the 2D integration gives a resu
that is essentially energy independent apart from the t
perature factor,@12exp(2v/kBT)#21. Therefore, in an en-
ergy scan at constant wave vector, the measured inten
would increase when the energy enters the spin-wave dis
sion surface and would then remain constant at higher en
~apart from the multiplicative temperature factor!. This situ-
ation is sketched atT50 on the right part of Fig. 6. The
existence of a spin-wave branch having a minimum energ
thus detected as a step. This technique has been appli
investigate both the out-of-plane and the in-plane branch

C. Thermal neutron experiment

On the thermal flux neutron spectrometer only t
‘‘high’’-energy part of the spectrum~energy transferv
>1 meV) can be measured due to limitations of instrum
tal energy resolution. The typical neutron scattering spe
at T551 K measured on the magnetic rod, i.e., forQ
5(1/2,1/2,qc), are depicted in Figs. 7 and 8. Similar data
T510 K were reported in Ref. 14.

At the magnetic zone boundary, which corresponds t
semi-integerqc , the obtained magnetic scattering signal
veals two steps corresponding to energy transfers
;2 meV and;829 meV ~Fig. 8!. The higher energy step
becomes practically indistinguishable at large values of s
tered wave vectors (qc.2.5) while the lower one survive
even at those values ofqc .

Such dependences on scattered wave vector manifes
‘‘in-plane’’ polarization of the excitations that appear ju

FIG. 7. Energy dependence of the measured neutron intensi
Pr2CuO4 at T551 K at a zone boundary~upper panel! and a zone
center~lower panel!. Diamonds and squares correspond to intens
as measured, respectively, on the magnetic rod,Q5(1/2,1/2,qc),
and out of rod,Q5(h,h,qc) with h50.4220.44 and 0.5620.58
~‘‘background’’! for the upper and lower panels, respectively. T
filled symbols, corresponding to constant-energy scans acros
magnetic rod, give more precise values of the background an
the magnetic scattering. Lines are guides through experime
points.
-

ity
er-
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-
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-
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above 2 meV in contrast to the ‘‘out-of-plane’’ polarizatio
of the other component of magnetic intensity coming up w
the second energy step. The different behavior of the
plane and the out-of-plane components of the scattered
tensity is explained by the geometrical factor in magne
neutron scattering cross section@see Eqs.~77! and~79!#, im-
plying a suppression of the fluctuations polarized along
scattered wave vector. This means that at largeqc , whenQ
is getting more and more perpendicular to the basis plan
the crystal lattice, the out-of-plane~or the tetragonal axis
polarized! component diminishes while there is always
contribution from the in-plane component. In addition, t
magnetic form factor of copper ions controls the continuo
decrease of magnetic scattering intensity at largerQ; thus
small values ofqc are preferably chosen for neutron scatte
ing measurements.

Qualitatively, the observed energy and wave-vector
pendence of the magnetic signal at the magnetic zone bo
ary correspond to that of Nd2CuO4.14 The remarkable dif-
ference is the large width of the higher-energy step in
case of Pr2CuO4, which is significantly broader than th
instrumental resolution. This could signify an essent

in

y

the
of
tal

FIG. 8. Energy dependence of the magnetic signal divided
the thermal factor measured at different values ofqc50.5, 1.0, and
2.5. The corrections of the signal taken from the data similar to F
7 are made for the high-order scattering contribution to the incid
beam monitor counts. The corrections are especially significant
the zone center (qc51.0) because the signal spreads to lower en
gies as compared to the zone boundaries (qc50.5,2.5). Lines are
guides through experimental points. Arrows point to the positio
of the observed energy gaps. Broken lines represent constant l
of the signal corresponding to each component of magnetic ex
tion spectrum.
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damping of the out-of-plane excitations in Pr-copper ox
with presently unclear origin. On the other hand, the de
mination of the value of the out-of-plane energy gap is co
plicated by the presence of the strong background ab
;12 meV energy transfer~Fig. 8! and essential increase o
the intensity of the ‘‘on-rod’’ signal in this energy rang
~Fig. 7!. Our measurements show that such an incre
which was not observed in Nd2CuO4,14 could be related to
the effect of the interaction between copper spin waves
the 18-meV crystal-field excitation of the Pr ions.1

We mention that the appearance of the out-of-plane s
fluctuation component in Pr2CuO4 was inscribed in Ref. 1 to
an observed energy step at;5 meV at the temperature o
10 K and it was claimed that it is a value of the out-of-pla
spin-wave gap. Our data on Pr-copper oxide taken at dif
ent temperatures between 1.8 and 51 K, including thos
T510 K ~see Ref. 14!, do not show remarkable temperatu
dependence of the out-of-plane energy gap, which is equ
8.560.5 meV. Comparing the experimental conditions
the two experiments we claim that our data are taken wit
better contrast, i.e., ratio of magnetic signal to nonmagn
background, and with much better statistical accuracy tha
Ref. 1.

In Nd2CuO4, a qualitatively different behavior from
Pr2CuO4 is observed at the magnetic zone center (qc51).
Indeed, as pointed out in Ref. 14, in Nd2CuO4 both the in-
plane and out-of-plane spin fluctuation components did
show measurableqc dependence of the corresponding ene
gaps. In the case of Pr2CuO4, only the out-of-plane energy
gap remains largely unchanged as compared to the z
boundary scans alongc, while the intensity of scattering
from low-frequency in-plane polarized magnetic fluctuatio
drastically changes~Fig. 7!. Now in the accessible energ
range we do not see a clear step signifying an energy
down to at least 1 meV energy transfer~Fig. 8!. One can
conclude that the in-plane component of magnetic fluct
tions in Pr2CuO4 exhibits a certain dispersion that is n
present in the case of the brother compound Nd2CuO4 and
that evidently develops in the low-energy scalev

FIG. 9. Q scans along the (qq1) direction for two fixed energy
transfers: open circles at\v50.2 meV ~right scale! and closed
circles at\v50.4 meV~left scale!. Lines are fit by the Gaussian
e
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<3 meV. This energy range, which corresponds to essen
changes of the in-plane copper spin fluctuations in Pr2CuO4,
is discussed in more detail below.

D. Cold neutron experiment

We now present the low energy results~below 4 meV!
where only the in-plane spin components occur. In contr
to the out-of-plane component, the in-plane one exhibit
clear dispersion. We first show the experimental evidence
an in-plane gap that appears as a result of the breaking o
rotational invariance in the (a,b) plane. Figure 9 displaysq
scans across the magnetic rod at the AF Bragg wave ve
Q5(0.5,0.5,1). Atv50.4 meV, a magnetic signal centere
aroundq50.5 is sizeable above a flat background. At low
energy, here atv50.2 meV, this signal is clearly reduced
This demonstrates the existence of small energy gap of
spin excitations spectrum. Figure 10 depicts the peak in
sity versus energy at 18 K. It corresponds to the in-pla
scattering function,S̄in(Q,v) @see Eq.~80!#, which exhibits
an asymmetric maximum at 0.4 meV. Here, the therm
population factor enhances the lower energy excitations le
ing to the observed asymmetric shape. A similar result
qc51.7 is shown in Fig. 11, where two clear steps are o
served. These steps correspond to an acoustic and an o
excitation@see Eqs.~60!#. We have repeated such measu
ments for several representative values ofqc and obtained
the results plotted in Fig. 12. A clear dispersion along the
line is observed for both acoustic and optical branches.
wave vectors corresponding to integer value ofqc , a small
gap is always visible demonstrating the breakdown of
rotation invariance in the (a,b) tetragonal plane with eas
directions alonga andb axes. Atqc50, no point is reported
below 2.5 meV because no magnetic scattering is sizeab

FIG. 10. In-plane scattering functions at the AF wave vec
Q5(0.5,0.5,1). Measurements performed using different exp
mental conditions~i! fixed kF51.15 Å21 ~squares! and ~ii ! fixed
kI51.55 Å21 ~circles! have been rescaled. Closed symbols ha
been obtained fromq scans~see Fig. 9!. Open squares have bee
obtained from energy scan at the AF wave vector where the b
ground has been subtracted. The line is a fit of Eq.~79! convoluted
with the resolution function and small damping is included~see
text!.
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1092 PRB 59PETITGRAND, MALEYEV, BOURGES, AND IVANOV
low energy. This vanishing of the low-energy scattering
qc50 is confirmed in the upper part of Fig. 13. This scan h
been performed along the AF line for an energy transfer
0.6 meV as sketched by the dashed arrow in Fig. 12. It t
crosses the acoustic dispersion curves near integer valu
qc yielding observed peaks. However, atqc50, the acoustic
excitation is not observed.

In order to describe further these results, we now cons
theoretical expressions for the spin-wave neutron cross
tions for the in-plane component given in the preceding s
tion. In the case of Pr2CuO4, the structure is of La2 NiO4

FIG. 11. In-plane scattering functions at the wave vectorQ
5(0.5,0.5,1.7). Measurements performed using different exp
mental conditions~i! fixed kF51.55 Å21 ~open circles! and ~ii !
fixed kI51.55 Å21 ~closed circles! have been rescaled. All point
have been obtained fromq scans. The line is a fit of Eq.~79!
convoluted with the resolution function.

FIG. 12. In-plane spin components dispersion curves along
c* direction. The arrow indicates the path of the scan reporte
Fig. 13. Lines are fit to Eqs.~60!, corresponding to low-energy
acoustic~full line! and high-energy optical~dashed line! excita-
tions, respectively.
r
s
f
n
of

er
c-

c-type with t51 in Eq. ~79!. The magnetic scattering is max
mal along wave vectorsQ5(0.5,0.5,qc) for which
cos(Q•d)52cos(pqc). The in-plane scattering function ca
then be written as

Sin~QW ,v!5
S2J0

2@12exp~2v/kBT!#

3H Aopt

eopt
d~v2eopt!1

Aac

eac
d~v2eac!J ,

~81!

whereAac,opt511Qc
2/Q27(12Qc

2/Q2)cos(pqc) where the
signs (2) and (1) stand for the acoustic and optica
branches, respectively, andQc5(2p/c)qc . Let us notice
that the factord(v2eac,opt)/eac,opt is usual for antiferro-
magnetic spin-wave cross sections whereas theAac,opt terms
result from the noncollinear spin structure. This expressi
when convoluted with the spectrometer resolution, can
scribe the measured in-plane scattering functions. It acco
very well for its observed shape and lines in Figs. 10 and
represent the best fits. In this expression, no damping is
cluded due to the sharpness of the steps, which corresp
to the energy resolution. However, atqc51 ~Fig. 10! a weak
magnetic scattering extends up to the lowest energy inve
gated (v50.1 meV). As a matter of fact, one can accou
for this tail by including a damping of about 0.2 meV int
Eq. ~81!.

i-

e
in

FIG. 13. Upper part:Q scan along thec* axis at a fixed small
energy transfer. The spin-wave scattering persists near all integqc

except atqc50. The line is a guide to the eye. Lower part: dynam
cal structure factor for in-plane spin components for acoustic~full
line! and optical excitations~dashed line! where according to the
suggestion below Eq.~78! we refer to as acoustic and optical th
branches with plus and minus sign in Eqs.~60! for all qc . The
atomic form factor of copper spins,F(Q), has been included for
comparison with the experimental result. We note the absenc
any scattering on the acoustic branch atqc50 due to the interfer-
ence effect discussed in the text.
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PRB 59 1093PSEUDODIPOLAR INTERACTION AND . . .
TheAac,opt terms are reported in the lower part of Fig. 1
they display striking interference effect. The lower-ener
branch~acoustic excitations! has a structure factor given b
the full line: clearly, for qc50, the acoustic scattering i
forbidden. This exactly explains the observedqc dependence
~upper part in Fig. 13!. Thus our model with pseudodipola
interactions in noncollinear spin structure satisfactorily e
plains the vanishing of the acoustic mode structure facto
qc50.

E. Determination of the magnetic interactions

We now deduce magnetic parameters:~i! the pseudodipo-
lar intraplane interactionP responsible for the in-plane gap
~ii ! the pseudodipolar interplane interactionQ responsible for
the dispersion along thec* axis, ~iii ! the planarXY anisot-
ropy A related to the out-of-plane gap. Figure 14 resumes
whole dispersion scheme alongc* axis within the first mag-
netic Brillouin zone. The two in-plane components and
twice degenerated out-of-plane component are presen
The out-of-plane branch does not depend onqc and the out-
of-plane gap, which is found to be atDout58.560.5 meV at
10 K. It is a larger value than the one previously reporte1

As we have pointed above, our data are taken with m
better statistical accuracy than in Ref. 1 and thus we beli
that they are more reliable. The in-plane spin compon
exhibits clear dispersion alongc* . Lines in Fig. 14 as well as
dashed and full lines in Fig. 12 correspond to the calcula
dispersion on the basis of Eqs.~60! with I 50. Clearly, de-
scription in terms of pseudodipolar interactions only rep
duces very accurately the observed dispersion. Having
mind the discussion after Eq.~8! we conclude that the
pseudodipolar interaction between neighboring planesQ is
the interaction responsible for the observed 3D long-ra
magnetic order and one does not need to consider the i
action I between copper spins along theĉ axis.

From the measurements at integer valuesqc51 and 2, we
obtain a value ofD050.3660.03 meV for the lowest gap o

FIG. 14. Spin-wave dispersion curves along thec* direction in
noncollinear Pr2CuO2 . The lines are fit by Eqs.~60! and ~61! for
the in-plane and the out-of-plane excitations, respectively.
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the in-plane excitations atT518 K. Applying Eq.~40! for
S51/2, we obtainP50.4560.04 meV for the intraplane
pseudodipolar interaction. This value is one order of mag
tude larger than the value theoretically estimated in Refs
and 23. Furthermore, this value is confirmed by an analy
of the spin-flop transition data of Ref. 1 given below in Se
VII as well as the AFR data.34 We discuss this problem in
the last section of this paper.

According to Eqs.~60! and ~61! all other spin-wave pa-
rameters depend on the strong in-plane nearest-neighbo
perexchange interactionJ. Hence, in order to determine thes
magnetic interactions, a precise value ofJ is required.

Knowing the spin-wave velocityc0 one can determineJ
using renormalized spin-wave energy~53! where ek

52SJA2ka anda is the lattice constant. Corresponding va
ues given in Ref. 1 are follows:c050.8560.08 eV Å and
J5130613 meV. Recent, more precise experiments ba
on the localization effect in the momentum space
Pr2CuO4 gavec050.8160.02 eV Å andJ512463 meV.35

Our results only slightly depend on the difference inJ values
given in Refs. 1 and 35. However, below we will use the la
one.

From our experimental data and Eqs.~60! with I 50, the
total amplitude for the dispersion isA16SJR052.860.05
meV, and for S51/2, one obtainsR057.960.0531023

meV. Then, using the determination ofR0 given by Eq.~24!
and the lattice constantsa53.958 Å andc512.19 Å, we
get the interplane pseudodipolar constant asQ50.023
60.001 meV. This value is one order of magnitude larg
than the corresponding dipolar magnetic interactions~see last
section!. From the out-of-plane gap,Dout58.560.5 meV
given above and Eq. ~61! we get A5@6.960.5
31022#(S/^S&)2 meV and using the experimental value
the ratio ^S&/S50.81 we obtain A5(10.860.1)
31022 meV. This value of the easy-plane anisotropy
three times larger than that discussed in Refs. 22 and 23

We compare now these results for Pr2CuO4 with available
data for Nd2CuO4 and point out the following striking dif-
ferences.~i! In Nd2CuO4 there are two spin reorientatio
transitions atT1.80 K andT2.30 K ~Refs. 2,3,10! @see
Fig. 1~b!#. It means that the interplane PD interactionQ
changes sign twice.19 ~ii ! Both in-plane and out-of-plane
gaps are stronglyT dependent and the former is one order
magnitude larger than in the case of Pr2CuO4. ~iii ! The dis-
persion of the in-plane excitations along the (1/2,1/2,qc) di-
rection has not been observed.14

The first and the second peculiarities are related to
Kramers ground state of the Nd31 ions and will be discussed
in Sec. IX. The latter may be explained by the large value
the in-plane gap. Indeed, in this case from Eqs.~60! with I
50 we obtain the following extremal values of the in-pla
spin-wave energy:

e in
~max!.D01

8SJR0

D0
,

~82!
e in

~min!5D0 .

According to Ref. 14 the smaller value ofD0 is approxi-
mately 2.5 meV at high temperature and the experime
error is60.25 meV. Hence, the dispersion cannot be visi
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if (16SJR0)1/2<1.6 meV, i.e., the same order of magnitu
as determined above for Pr2CuO4.

VII. SPIN CONFIGURATION IN MAGNETIC FIELD

In this section we examine the copper spin configurat
of the noncollinear AFR2CuO4 in magnetic field applied in
the basal plane atT50. We obtain the corresponding expre
sion for the ground-state energy and analyze it in two pr
tically important limiting cases studied in Refs. 1–5:~i! H
along the@1,1,0# direction and~ii ! H at small angle to the
a (b) axis. We demonstrate that in the former case the tr
sition is second order, with a critical field given by Eq.~2!.

The spin configuration in magnetic field is shown in F
15. At the first sign we obtain the ground-state energy of
system adding to Eq.~41! terms that describe a change of t
energy connected with relative rotations of the sublattices
the anglesq1 and q2 in the corresponding perpendicula
magnetic fields~see Fig. 15 and Appendix A!. These terms
are given by

DE1,25S2J0NF S q1,21
gmH',1,2

2SJ0
D 2

2S gmH',1,2

2SJ0
D 2G ,

~83!

whereH',1,25Hsin(c2w1,2) andq1,2!1. As is well known
~see also Appendix A!, at equilibrium we have

q1,252q01,252
gmH',1,2

2SJ0
,

~84!

DE1,252S2J0NS gmH'1,2

2SJ0
D 2

.

However, rotations of sublattices on anglesq1,2 give rise
to simultaneous rotations of the correspondingy axes and an
additional interaction appears betweeny spin components
and magnetic field. This interaction is linear in operato
(a02a0

1)/ i and (ak0
2ak0

1 )/ i . It should be excluded as we

as the interactionW1 given by Eq.~21!. It was done in Ap-
pendix A. As a result we have Bose condensation of

FIG. 15. Spin configuration in magnetic field. Indices~1I!,~1II!
and ~2I!,~2II! label neighboring spins I and II in the subsystems
and 2, respectively.
n

-

n-

.
e
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s

e

in-plane spin waves withk50 andk5k0, the ground-state
energy acquires an additional term and is represented as
lows:

E5S2NJ0F D0
2

16~SJ0!2
~sin22w11sin22w2!

2S gmH',1

2SJ0
D 2

2S gmH',2

2SJ0
D 2

2
R0

SJ0
G

2S2NJ0$X1
2@D in,2

2 12SJ0R02~gmH i ,2!
2#

1X2
2@D in,1

2 12SJ0R02~gmH i ,1
2 !#24SJ0R0X1X2%

3$@D in,1
2 12SJ0R02~gmH i ,1!

2#

3@D in,2
2 12SJ0R02~gmH i ,2!

2#2~2SJ0R0!2%21,

~85!

whereR0 is given by Eq.~24! and

D in,1,2
2 5D0

2cos4w1,21~gmH',1,2!
2,

~86!

X1,25SQk0
cos~w11w2!1~gmH'1,2!~gmH i1,2!/~2SJ0!.

The minimum of this energy as a function ofw1 and w2
determines the ground-state spin configuration. IfgmH
!D0 the last term in Eq.~85! is small and may be neglected
In the end of Appendix B we will show that the denominat
of this term is a squared product of the in-plane spin-wa
energies atk50. As is well known the spin-flop transition
takes place when one of the spin-wave branches beco
gapless. Hence, near the transition this denominator is s
and the second term in Eq.~85! becomes essential.

If we neglect the interplane PD interaction, the energyE
becomes a sum of two terms corresponding to indepen
subsystems 1 and 2. In particular, the ground-state energ
conventional two-sublattice tetragonal antiferromagnets
determined by

E5S2NJ0H D0
2

16~SJ0!2
sin22w2S gmH'

2SJ0
D 2

2
~gmH'gmH i!

2

~2SJ0!2@D in
2 2~gmH i!

2#
J ~87!

if â(b̂) is an easy axis. According to the end of Sec. V t
same expression remains valid for the@1,1,0# easy direction
if one changes the sign in front ofD0

2 in Eqs.~86! and~87!.
It should be noted also that Eq.~87! is applicable to the

AF compound YBa2Cu3O61x ~YBCO! with antiferromag-
netically coupled adjacent planes (CuO2 bilayers!. Indeed in
magnetic-field neighboring spins alongĉ axis rotate in oppo-
site directions without violation their mutual antiparallel or
entation. Hence experimental studies similar to Refs. 1
provide a possibility to determine magnetic anisotropy
undoped YBCO compound as well as the value of the
plane spin-wave gap. It has been done recently.36

Let us consider now the ground-state spin configuration
two important limiting cases that have been stud
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experimentally.1–5 ~1! The field is along the@1,1,0# direction
(c5p/4). ~2! Field is applied at the anglec!1 of the
@1,0,0# direction.

We begin with the casec5p/4. Due to the symmetry the
spins of two subsystems rotate in opposite directions by
same anglew5w1 , the sumw11w2 remains unchanged an
R0 is a constant. As a result from Eqs.~85! and~86! we get

E52S2NJ0H D0
2

16~SJ0!2
sin22w2S gmH

2SJ0
D 2

sin2S p

4
2w D

2
~gmH !4cos22w

4~2SJ0!2@D0
2cos 4w2~gmH !2sin 2w#

J . ~88!

This energy differs by the factor 2 only from the ener
of the collinear system given by Eq.~87!. Hence, the subse
quent analysis is applicable to both collinear and nonc
linear systems. It is a result of a particular symmetry of
problem atc5p/4.

For small field, one can neglect the second term in
~88! and obtain

sin 2w52S gmH

D0
D 2

. ~89!

This field dependence of sin2w has been used in Ref. 5 fo
description low-temperature neutron scattering data
Pr2CuO4. From Eq.~89! we get also Eq.~2! for the critical
field of the transition. However, at sin2w521 the denomi-
nator in the second term of Eq.~88! is equal to zero and the
problem needs more careful consideration.

Let us rewrite Eq.~88! in the following form:

E

2S2J0N
52h21

d2

4
cos22a2 1

2 h2cos 2a

2
h4sin22a

4~2d2cos 4a1h2cos 2a!
, ~90!

where a5w1p/4, d5D0 /(2SJ0) and h5gmH/(2SJ0).
From the conditiondE/da50 we get

F ~2d2cos 2a1h2!Z22h4Zcos 2a

1
h4

2
sin 2a~2d2sin 4a2h2sin 2a!Gsin 2a50,

~91!

whereZ52d2cos 4a1h2cos 2a. The solutiona50 corre-
sponds to the collinear state.

If h2!d2 we can take into account the first term onl
which gives Eq.~89! again. In the near transition regio
whered22h2!d2 anda!1 we obtain after simple calcula
tions

a5H D0
22~gmH !2

2D0
2 J 1/4

.S D02gmH

D0
D 1/4

~92!
e

l-
e

.

n

instead of a5$@D0
22(gmH)2#/(2D0)2%1/2.@(D02gmH)/

D0#1/2, which follows from Eq.~89!. This crossover from
a;(D02gmH)1/2 to a;(D02gmH)1/4 behavior near the
transition has been observed recently in Pr2CuO4.28 It
should be noted that Eq.~92! is not applicable at the very
vicinity of the transition where the critical fluctuations b
come important@see discussion in Appendix A after Eq
~A.21!#.

We consider now the case of the field directed alm
along â axis, i.e., whenc!1. It is the case, studied exper
mentally in Refs. 3 and 4. Ifc50 the second term in Eq
~85! disappears. However the spin-flop field may be det
mined from the condition of the positiveness of the denom
nator ~see Appendix B!. As a result forc50 we get

gmHc5@D0
2~D0

214SJ0R0!#1/4. ~93!

Obviously, the spin-flop transition is of the first-order on
and if H.Hc we have the state with all spins alongb̂ direc-
tion.

If c!1, for small field we can neglect the second term
Eq. ~85! and obtain for the ground-state energy the followi
expression:

E5S2NJ0H D0
2

16~SJ0!2
~sin22w1sin22h!2

8uQ0u
J0

cos~w1h!

2S gmH

2SJ0
D 2

@sin2~c2w!1cos2~c2h!#J , ~94!

wherew5w1 , h5w27p/2, and we used the definition~24!
for R0 . The energyE depends now on two independent va
ables, and from the conditions]E/]w5]E/]h50 we have

w52
~gmH !2~D0

2124S2J0uQ0u!c

D0
2~D0

2132S2J0uQ0u!
.2

3~gmH !2

4D0
2

c,

~95!

h5
~gmH !2~D0

2148S2J0uQ0u!c

2D0
2~D0

2132S2J0uQ0u!
.

3~gmH !2

4D0
2

c. ~96!

We see thatw and h are proportional to the anglec in
agreement with experimental data of Ref. 3 andw1h.0 if
D0

2!8S2J0uQ0u. With increasingc the spin flop remains the
first-order transition and smoothly approaches the seco
order one atc5p/4.

Using Eq.~2! and data of Ref. 1 one can determine t
in-plane spin-wave gap for Pr2CuO4 independently from the
inelastic scattering. Indeed from Fig. 4 Ref. 1 we obtain
critical field Hc54.4T at 4.2 K andD050.51 meV, if g
52. This value is slightly larger thanD050.3660.03 meV
given above. However, from the same figure we getHc
52.0T andD050.23 meV atT525 K. Assuming linearT
dependence ofHc we obtainD050.33 meV atT518 K in
satisfactory agreement with inelastic scattering data. Ho
ever, we need to be careful about this comparison as
samples used in Ref. 1 and this study have different N´el
temperatures:TN5284 K andTN5247 K, respectively. In
this respect we wish to point out that, in a sample withTN
5249 K, a reentrant behavior ofHc has been observed wit
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a maximum atTm.5 K.28 Nevertheless, the observedT de-
pendence of the critical fieldHc is actually confirmed by
preliminary inelastic neutron scattering, which indicates
similar T dependence at low temperature~below ;20 K).
Although its theoretical explanation is still unclear, it
probably related to the interactions between spin waves.

Hence, we conclude that the data of Ref. 1 confirm
large value of the in-plane gap in comparison with the th
retical calculations of Refs. 22 and 23. Interestingly,
should be emphasized that, in the undoped YBCO co
pound, a similar valueD0.0.3 meV has been recently de
duced from the field dependence of the AF Bragg intensit36

VIII. SPIN-WAVE SPECTRUM IN MAGNETIC FIELD
AND INELASTIC NEUTRON SCATTERING

Similarly to the above discussion we restrict ourselves
consideration of the spin-wave spectrum in magnetic fi
along theĉ direction only, whenka5kb50. The spin-wave
modes are the solutions of the equationZ(v)50, whereZ is
given by Eq.~B12!. In the considered case, it may be rep
sented as follows:

d1~v!d2~v!2F2SJ0R0cos
kc

2 G2

@v22Dout
2 1~gmH i1!2#

3@v22Dout
2 1~gmH i2!2#50, ~97!

whereDout
2 is given by Eq.~61! and

d1,2~v!5~v22Dout
2 !~v1

22e1,2
2 !2~gmH i1,2!

2

3~2v21Dout
2 1e1,2

2 !1~gmH i1,2!
4, ~98!

e1,2
2 5D0

2cos4w1,21~gmH'1,2!
212SJ0R0 .

At H50 from ~97! we get Eqs.~60! and ~61!.
As we will see below in real systems such as Pr2CuO4 the

out-of-plane gapDout
2 is much larger thanD0

2 , 2SJ0R0 , and
gmH&D0 . Hence, the field corrections to the out-of-pla
mode are negligibly small. At the same time for evaluati
of the in-plane modes we may neglect (gmH i)

2 andv2 com-
paring withDout

2 . As a result, instead of Eq.~97! we get

@v22e1
21~gmH i1!2#@v22e2

21~gmH i2!2#

2F2SJ0R0cos
kc

2 G2

50. ~99!

The solution of this equation is given by

e6
2 5

1

2
@e1

21e2
22~gmH i1!22~gmH i2!2#

6
1

2H @e1
22e2

21~gmH i2!22~gmH i1!2#2

14F2SJ0R0cos
kc

2 G2J 1/2

. ~100!

As in the previous section we consider the two casec
50 andc5p/4.
a

e
-

t
-

o
d

-

a. c50. Below the spin-flop transition wheregmH,D0
the spin structure is determined by anglesw150 and w2
56p/2. In this case, instead of Eq.~60!, we have

e6
2 5D0

212SJ0R014S2J0I ~12coskc!

6H F2SJ0R0cos
kc

2 G2

1~gmH !4J 1/2

. ~101!

We see that now there is a gap atkc5p equal to
(gmH)2(D0

212SJ0R0)21/2 if I 50 between acoustic and op
tical branches. At the same time the spin-flop field is det
mined by the conditione2

2 (kc50)50, which coincides with
Eq. ~93!. In the spin-flop phase we havew152p/2,
w256p/2 andR050 asw11w250,p, and we obtain the
doubly degenerate in-plane mode with energy given by

ek
25D0

21~gmH !21ekR
2 14S2J0I ~12coskc!, ~102!

whereekR
2 is given by Eq.~53!. We see that the spin-wav

spectrum remains stable at all values ofH, and, in particular,
for H,Hc . It means that the metastable state should e
that may be achieved if after the spin-flop transition o
lowers the field belowHc , as it should be in the case of th
first-order transition. It should be noted also thatD0 in Eq.
~102! may not coincide with the in-plane gap atH50 due to
an additional contribution related to the Bose condensa
of the uniform spin waves~see discussion in the end of Ap
pendix A!.

b. c5p/4. In this case two subsystems rotate in oppos
directions at the same anglew52p/21a and R0 remains
constant. Near the transition wheregmH,D0 the anglea
5p/41w is given by Eq.~92! and we obtain

e6
2 5$18D0

2@D0
22~gmH !2#%1/212SJ0R0F16cos

kc

2 G
14S2J0I ~12coskc!. ~103!

In the collinear phase we havew52p/4 and

e6
2 5~gmH !22D0

212SJ0R0F16cos
kc

2 G
14S2J0I ~12coskc!. ~104!

The e2 mode is a gapless one exactly at the transit
field gmH5D0 as it should be in the case of the secon
order transition. However, due to critical fluctuations t
field dependence of the gaps may deviate from the sim
expressions given by Eqs.~103! and ~104! @see discussion
after Eq.~A.21!#.

Let us consider now the neutron scattering byR2CuO4
systems in applied magnetic field. The elastic scattering
been discussed in Sec. IV. The out-of-plane spin-wave s
tering remains unchanged@see Eq.~77!#. It may be easily
shown using Eqs.~71! and ~B18!.

From Eqs.~72!, ~74!, and~B10! for the scattering function
Sin at v.0 we get
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Sin~Q,v!5
S2J0

12e2v/kBTH @v22e2
21~gmH i2!2#S 12

Qy1
2

Q2 D
1@v22e1

21~gmH i1!2#

3S 12
Qy2

2

Q2 D 14SJ0~C2D !

3S êy1êy22
Qy1Qy2

Q2 D cos~tAF•d!J
3F 1

2e1
d~v2e1!2

1

2e2
d~v2e2!G , ~105!

wheree1,2
2 is given by Eq.~98!. As above we consider agai

two limiting casesc50 andc5p/4.
a. c50. We do not analyze here cumbersome express

for Sin below the spin-flop transition. Above this transitio
as well as in the metastable state below it we haveH i 1,2
50, e15e25ek , whereek is given by Eq.~102! and we
obtain

Sin~Q,v!5
S2J0d~v2ek!

ek@12exp~2ek /kBT!#
. ~106!

b. c5p/4. Again we do not analyzeSin below the tran-
sition. Above it we have collinear spin structure that co
cides with the structure of La2NiO4 type at t51 and
La2CuO4 at t52. For the scattering function we obtain

Sin
~6 !5

S2J0

12exp~2v/kBT!S 12
Qy1

2

Q2 D
3@17~21! tcos~tAF•d!#

1

2e6
d~v2e6!.

~107!

We see that in this collinear structure the interplane in
ference remains and disappears if one neglects the interp
PD interaction. It should be noted that this interference i
consequence of a monodomain state after the transition
deed, in the applied field directions of the spin rotations
fixed @see Fig. 15# and as a result the monodomain sta
appears in contrast with the conventional collinear syste
~see Ref. 3!.

It should be noted also that in the considered casey1 and
y2 axes are parallel to the field. As a result the intens
strongly depends on the projection ofQ on the (a,b) plane.

In particular if Q5( 1
2 ,2 1

2 ,0) we haveQy1
2 /Q251 and the

spin-wave scattering is forbidden. At the same time the s
tering connected with the longitudinalz fluctuations is maxi-
mal. The intensity of this scattering calculated in the on
loop approximation displays the infrared divergence a
Im xzz in the gapless case atQ5t1k0 and v→0 diverges
as 1/v and T/v2 at T50 and TÞ0, respectively.37 Obvi-
ously this divergence should be screened by the higher-o
terms. However, this very complex theoretical problem is
from the solution. It appears more demanded if one ta
into account that similar infrared divergence appears in m
n
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other physical problems, such as the longitudinal spin fl
tuations in ferromagnets with dipolar interaction.38 Thus ex-
perimented investigation of the longitudinal fluctuations
the considered case is related to the important problem of
many-particle physics.

IX. RESULTS AND DISCUSSION

We investigated magnetic properties of noncollinear
tragonal antiferromagnetsR2CuO4 with particular attention
to Pr2CuO4 and Nd2CuO4. We obtain the following main
results.~1! The noncollinear Cu21 spin ordering below the
Néel temperature is explained on the assumption of PD
teraction between copper spins in CuO2 planes as well as
between the adjacent planes. Corresponding expression
the ground-state energy atH50 is given by Eq.~41!. ~2! We
demonstrate that the interplane PD interaction contribute
the out-of-plane spin-wave gap@Eq. ~61!# and splits the in-
plane spin-wave mode into acoustic and optical branc
@Eqs.~60!#. ~3! Interaction between spin waves gives rise
the in-plane spin-wave gap, which depends on the orienta
of the sublattice magnetization in the (ab) plane @see Eq.
~59!#. This dependence is crucial for determination of t
spin orientation in a magnetic field. In the end of Sec. IV it
shown that thew dependence of the gap given by Eq.~59! is
not a specific result connected to the PD interaction, bu
actually a consequence of the square symmetry of Cu2
planes.~4! We present the expressions for the neutron sc
tering cross sections, which take into account the nonc
linear spin structure of theR2CuO4 compounds.~5! Detailed
inelastic neutron scattering data are presented for Pr2CuO4 in
the case of the transferred momentum along the (1/2,1/2qc)
direction. In particular, we demonstrate that acoustic sp
wave scattering is forbidden atQ5(1/2,1/2,0) due to de-
structive interference occurring in the noncollinear struct
with pseudodipolar interactions.~6! We determine the out-
of-plane spin-wave gapDout5(8.560.5) meV. This value
is larger than previously reported.1 However, as shown in
Sec. VI, our data are taken with much better statistical ac
racy and our value ofDout is more reliable.~7! We observe
acoustic and optical spin-wave branches and determine
dispersion~Fig. 14!. It is well described by Eqs.~60!. ~8!
From these data we determine that the in-plane spin-w
gap D050.3660.03 meV and using Eq.~40! calculate the
intraplane PD interactionP50.4560.04 meV. This value is
one order of magnitude larger than the theoretically p
dicted in Ref. 22 and 23. However, it is confirmed by AF
~Ref. 34! and analysis of the transition data of Ref. 1 given
Sec. VII. Discussion of this disagreement is given below.~9!
From the observed acoustic and optical branches we fin
value of the interplane PD interactionQ5@0.023
60.001# meV. This value is much larger than the corr
sponding magnetic dipolar interaction between neighbor
Cu spins in the adjacent planes, which is given by

Qmag-dip52
24~gmB!2

@2a21c2#3/2
522.231023 meV

~108!

using the same definition asQ in Eq. ~8!. ~10! The spin
configuration of the noncollinear spin structure is analyzed
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magnetic field parallel to the (ab) plane. For the field along
the @1,1,0# direction the transition is of second order and t
critical field is given by Eq.~2!. For other directions the
transition is of first order. It is shown also that for the@1,0,0#
direction the metastable spin-flop state should exist aH
,Hc whereHc is given by Eq.~93!. ~11! Analysis of the
data of Ref. 1 confirms large value of the in-plane gap
Pr2CuO4 determined in the neutron scattering experimen
However, strong temperature dependence of the critical fi
Hc observed in Ref. 1 and confirmed in Ref. 28 rema
unexplained. Presumably it is related to the nonlinear in
action between spin waves and canted magnetic field~see the
end of Sec. VII!. This interaction gives rise to a contributio
to the free energy that is essential atT.D0 . However, con-
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sideration of this problem is beyond the scope of this pap
~12! The spin-wave spectrum in magnetic field is conside
and expressions for the inelastic neutron scattering cross
tions are given.

The results listed above are discussed in the main pa
the paper. Hence, here we present some additional c
ments. First of all, we wish to point out that the intrapla
PD interaction maintains the long-range AF order atTÞ0 in
the isolated CuO2 plane in contrast with the fact that in th
linear theory the spin-wave spectrum is gapless and the
deviationS2^S& diverges. Indeed, we have seen in Sec.
that interaction between spin waves gives rise to the in-pl
gap. By the same token the gap appears in the out-of-p
branch too, ifA50. It has the following form:
Dout
2 5

SP2

~2p!2E2p

p

dkadkb

~coska2coskb!2@614~coska1coskb!227~coska1coskb!#

~22coska2coskb!5/2~21coska1coskb!1/2
.0.0334SP2. ~109!
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These gapsD in andDout prevent the divergence of the sp
deviation and maintain long-range magnetic order. Hen
we have a new example of the so-called ordering from
disorder~see Refs. 39 and 40 and references therein!.

Comparison of the spin-wave gaps in Pr2CuO4 deter-
mined in this study and in Nd2CuO4 ~Ref. 14! reveals the
following important features.~i! The in-plane gap in
Pr2CuO4, as well as in antiferromagnetic undoped YBC
compound,36 is one order of magnitude less than
Nd2CuO4. ~ii ! In Nd2CuO4, both gaps are stronglyT depen-
dent, D in,out

2 ;1/T, whereas in Pr2CuO4 only the in-plane
gap has a noticeableT dependence,41 which is clearly differ-
ent from the Nd-compound case. As a result we concl
that the values of both gaps are determined not only by
intrinsic properties of CuO2 planes but also by the type of th
RE ion. It may explain the difference of the value of th
intraplane PD interaction determined above and calculate
Refs. 22 and 23. In particular, in addition to the intrapla
PD interaction, the square anisotropy mediated by an
tropic interaction of the copper spins with RE ions in t
form of Eq. ~62! may contribute to the values of both gap
In this respect it would be very important to determine t
in-plane spin-wave gap in compounds without RE ions s
as Sr2CuO2Cl2 and the spin-flop experiments are urgent w
magnetic field along the@1,1,0# and@1,0,0# directions. In this
way one can find out if the magnetic structure of Sr2CuO2Cl2
is noncollinear. In any case, Eq.~2! allows us to determine
the in-plane gap. Indeed, this equation holds forHi@1,1,0#
andHi@1,0,0# for the @1,0,0# and @1,1,0# easy axes, respec
tively.

As we have mentioned in the Introduction the Nd31

crystal-field ground state is a Kramers doublet and its lo
susceptibility roughly behaves as 1/T. It explains9 spin reori-
entation transitions in Nd2CuO4 observed in Refs. 2, 3 an
10 ~see Fig. 1!. In Fig. 1~a!, we see that there are two supe
exchange paths through one and two Nd ions, respectiv
which connect neighboring Cu21 ions in the adjacent planes
Corresponding contributions to the PD interaction betwe
e,
e

e
e

in
e
o-

.

h

l

ly,

n

these ions are proportional2Q1 /T and Q2 /T2 where Q1
andQ2 are positive. As a result the strength of the interpla
PD interaction has the form

Q5Q02
Q1

T
1

Q2

T2
5Q0S 12

T1

T D S 12
T2

T D , ~110!

whereT1.80 K andT2.30 K are temperatures of the sp
reorientation transitions. Hence, ifQ0.0 the magnetic struc-
ture is of the first type (La2NiO2) if T.T1 andT,T2 and is
of the second type (La2CuO4) for T1.T.T2 @see text after
Eq. ~41!#.

In the end of Sec. VIII we have pointed out the proble
of the infrared divergence of the longitudinal spin fluctu
tions in antiferromagnets. Cuprates and, in particu
Pr2CuO4, are very convenient candidates for experimen
investigation of these fluctuations. Indeed, there are ra
small gaps comparing to the very strong intraplane excha
that is responsible for the quasi-2D infrared divergence37 that
should manifest itself atv just above 2D in where the spin-
wave contribution becomes negligible. Corresponding
perimental studies would be highly desirable.

In conclusion we present a theoretical description of
spin configuration and spin-wave spectrum of the nonc
linear tetragonal AFR2CuO4 assuming the PD interaction i
CuO2 planes as well as between them. The inelastic neu
scattering data for Pr2CuO4 are presented. They confirm th
existence of the PD interaction in this compound and all
us to determine the main parameters of the theory. Comp
son of the data for Pr2CuO4 and Nd2CuO4 ~Ref. 14! as well
as the undoped AF YBCO~Ref. 36! with the theoretical
results of Refs. 22 and 23 reveals a strong dependence o
anisotropic interactions between Cu21 spins on the type of
RE ion. The spin configuration of the noncollinearR2CuO4
antiferromagnets in canted magnetic field is analyzed
well.
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APPENDIX A: GROUND-STATE ENERGY IN MAGNETIC
FIELD

Here we derive Eq.~85! for the ground-state energy of th
system in magnetic field applied in parallel CuO2 planes. We
begin with the collinear case. Then we consider two nonc
linear subsystems with the PD interaction between them

External field rotates neighboring spins in I and II subl
tices as shown in Fig. 15. As a result the spin operators m
be represented as follows:

SW r5êrzSrz1êrySry1 ĉSrx , ~A1!

wherer5I ,II , Sr i are given by Eqs.~12! and unit vectors
êr,z(y) have the form@cf. Eq. ~11!#

êzI5@cos~w1q!,sin~w1q!,0#,

êzII5@2cos~w2q!,2sin~w2q!,0#,
~A2!

êyI5@2sin~w1q!,cos~w1q!,0#,

êyII5@sin~w2q!,2cos~w2q!,0#.

Substituting these expressions in Eqs.~13!,~14!,~16! and the
Zeeman term of Eq.~3! we obtain in the Hamiltonian con
sisting from three terms

H5E01H11H2 , ~A3!

where

E05NS2J0@2 1
2 1~q1q0!22q0

2# ~A4!

H15
1

i
ASN

2
@gmH iq~a0

12a0!

2~gmH'12SJ0q!~ak0

1 2ak0
!# ~A5!

H25(
k

@jkak
1ak1 1

2 ~bkak
1a2k

1 1bk
1aka2k!

2gmH iak1k0

1 ak#, ~A6!

where H i5Hcos(c2w) and H'5Hsin(c2w) are compo-
nents of the field parallel and perpendicular to the stagge
magnetization,q05gmH/(2SJ0), q!1. The linear termH1
appears as a result of the interaction between the canted
with y components of the sublattice magnetization. Here
retain the linear ina anda1 terms only. Cubic terms shoul
be important atT.D0 ~see the end of Sec. VII! as well as at
the very vicinity of the spin-flop transition~see below!. In
Eq. ~A6!, we should take into account the spin rotation d
termined by Eq.~A2! and instead of Eqs.~47! we have
l-

-
y

d

eld
e

-

jk5S@J0~122q2!1Jkq
22 1

2 Ak1 1
2 gkcos 2w#

2gmH'q1Sk,

bk5S@Jk~12q2!2 1
2 Ak2 1

2 gkcos 2w#1Pk, ~A7!

bk
15S@Jk~12q2!2 1

2 Ak2 1
2 gkcos 2w#1Pk

1 ,

whereJk , Ak , gk , Sk , Pk, andPk
1 are given by Eqs.~18!,

~24!, ~50!, and ~57!. Hence, Eq.~A6! may be considered a
an effective non-Hermitian Hamiltonian.

The interactionH1 is linear in operatorsa and a1. It
should be eliminated using the substitution

ap→ap2 i S NS

2 D 1/2

mp ,

~A8!

ap
1→ap

11 i S NS

2 D 1/2

mp
1 ,

wherep50,k0 ; mp andmp
1 arec numbers. Similar substitu

tion appears in the theoretical consideration of the dilu
Bose gas below Tc and is a result of the Bose
condensation.30,33 The linear term in the Hamiltonian disap
pears ifmp andmp

1 satisfy the following equations:

j0m02b0m0
12Kmk0

52Kq,

2b0
1m01j0m0

12Kmk0

152Kq,

~A9!
2Km01jk0

mk0
2bk0

mk0

15L,

2Km0
12bk0

1mk0
1jk0

mk0

15L,

whereK5gmH i and L5gmH'q12SJ0 . The solution of
this system is given by

m052$Kq@~j01b0!~jk0

2 2bk0
bk0

1 !2~jk0
2bk0

!K2#

1KL@j0~jk0
1bk0

!1bk0
~jk0

1bk0

1 !2K2#%d0
21 ,

~A10!

mk0
5$2K2q@~j0jk0

1j0bk0
1jk0

b01bk0
b0

1!2K2#

1L@~jk0
1bk0

!~j0
22b0b0

1!1~b02j0!K2#%d0
21 ,

where

d05~j0
22b0b0

1!~jk0

2 2bk0
bk0

1 !

2K2~2j0jk0
1b0bk0

11b0
1bk0

!1K4 ~A11!

and expressions form0
1 andmk0

1 follow from Eqs.~A10! after

replacementb→b1 and b1→b. At the same time, from
Eq. ~A8! we have

mp
15mp* . ~A12!

According to Eqs.~49! and ~A7! in our approximation we
have
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j0
22b0b0

152SJ0~2j02b02b0
1!5D in

2 ~w,H !,
~A13!

jk0

2 2bk0
bk0

152SJ0~2jk0
1bk0

1bk0

1 !5DR out
2 ,

where

D in
2 ~w,H !5D0

2cos 4w2~2SJ0q!~gmH'!. ~A14!

Using these expressions and Eq.~50! we get

d05~DR out
2 2K2!@D in

2 ~w,H !2K2#, ~A15!

m05m0
15~gmH igmH'!@D in

2 ~w,H !2K2#21. ~A16!

At the same time we obtain

mk0
5d0

21H 2K2q~DR out
2 2K2!1LFD in

2 ~DR out
2 2K2!

3~2SJ0!212~D in
2 2K2!2J0N21(

k
nkG J ~A17!

and the expression formk0

1 that differs by sign in front of the

last term in the square brackets. Hence, the condition~A12!
may be fulfilled only ifL50 and we have

q52q052
gmH'

2SJ0
. ~A18!

Using this expression and Eqs.~A10!, ~A13!–~A15! we get

m05m0
15

gmH igmH'

D0
2cos 4w1~gmH'!22~gmH i!

2
,

~A19!

mk0
5mk0

15
gmH i

2SJ0
m0 .

Substitution ~A8! gives rise to a contribution to th
ground-state energy that may be represented in the follow
general form:

DE5 1
2 m iCikmk1Dim i .

It is easy to show that Eqs.~A9! coincide with the conditions

]DE

]m i
5Cikmk1Di50. ~A20!

As a result we have from Eqs.~A5!

DE5
Dim i

2
52

SNgmH iq0m0

2
~A21!

and using Eqs.~39!, ~A4!, and ~A19! for the ground-state
energy we obtain Eq.~87! in Sec. VII.

These results are based on the linear approximationSy0

5 i (S/2)1/2(a0
12a0) and are valid ifm0!1. Meanwhile for

the field along the@1,1,0# direction close to the spin-flop
transition when r 5(gmH/D0)→1 we have m5r 2/@2(1
2r 4)1/2# and m5r 2/@6(12r )1/4# for the rotation anglew
determined by Eqs.~89! and~92!, respectively, and the linea
approximation fails. In this case the nonlinear term in t
expression forSy0 becomes important. This term follow
from Eqs. ~12! and after substitution~A8! Sy0 acquires a
g

e

factor f 5(12m2/8), which becomes important very close
the transition only. Indeed, setting for example,r 50.9 we
get f 50.94 andf 50.993 for the two cases mentioned abov
respectively. Moreover, in the second case wherea5w
1p/4 is given by Eq.~92! if r 50.99 we getm50.52 and
f 50.97. Hence, we may use the linear approximation n
the transition too except for a very narrow region where
critical fluctuations become important. However, consid
ation of this problem is beyond the scope of our paper.

For the noncollinear spin structure one has to take i
account the interaction between two subsystems given
Eqs.~22! and~25!. As above the magnetic field gives rise
linear terms in the Hamiltonian in the form given by E
~A5! that acquire an additional indexi 51,2 labeling the sub-
systems. The interactionW1 given by Eq.~21! should be
taken into account too. These linear terms should be eli
nated by the substitution~A8! where nowp is equal to 0,i
andk0 ,i , respectively, andi 51,2. As a result instead of fou
Eqs.~A9! we get

j̃01m012b01m01
1 2K1mk011C0m202D0m20

1 5X1,

2b01
1 m011 j̃01m01

1 2K1mk01
1 2D0m201C0m20

1 5X1,

2K1m011 j̃k01mk012bk01mk01
1 1Ck0

m2k0
2Dk0

m2k0

1 5L1,

2K1m01
1 2bk01

1 mk011 j̃k01mk01
1 2Dk0

m2k0
1Ck0

m2k0

1 5L1,

~A22!

and another four equations which follow from Eq.~A22! by
replacement (1
2). Here

j̃k1,25jk1,21R0 , R052SQk0

absin~w11w2!;

K1,25gmH i ,1,2, L1,25gmH',1,212SJ0q1,2;

C05 1
2 ~SM01R0!, D05 1

2 ~SM02R0!; ~A23!

X1,252gmH'1,2q1,21SQk0
cos~w11w2!;

Ck0
52Dk0

5
S

2
M0cos~w12w2!.

It may be shown that as above from the conditions~A12!
one obtainsL1,250 and we get

q1,252q01,252
gmH'1,2

2SJ0
. ~A24!

This point will be discussed below.
For the solution of eight equations formp and mp

1 we
define a vector

m05~m1 ,m1
1 ,m2 ,m2

1 ,m̄1 ,m̄1
1 ,m̄2 ,m̄2

1!5~m,m̄ !,
~A25!

wherem15m01, m̄15mk01, etc. Here and below the bar de

notes states withk1k0 . In Eqs. ~A22! the K terms mixm

and m̄ and we may write
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F S Z, 0

0, Z̄
D 2S 0, K

K, 0 D G S m

m D5S U

U D , ~A26!

where

Z5S j̃1 ,2b1 ,C0 ,2D0

2b1
1 ,j̃1 ,2D0 ,C0

C0 ,2D0 ,j̃2 ,2b2

2D0 ,C0 ,2b2
1 ,j̃2

D , Z̄5S jD 1 ,2b̄1 ,C̄,C̄

2b̄1
1 ,j̄1 ,C̄,C̄

C̄,C̄,jD 2 ,2b̄2

C̄,C̄,2b̄2 ,jD 2

D ;

K5S K̃1 , 0

0, K̃2
D , K̃1,25S K1,2 0

0 K1,2
D ; ~A27!

U5~X1 ,X1 ,X2 ,X2!

and from Eq.~A24! it follows that Ū50. As a result we
obtain

~Z2KZ̄21K !m5U,
~A28!

m̄5Z̄21Km.

Using the above-mentioned approximation we have

Z̄215S Z̄1
21 0

0 Z̄2
21D , Z1,2

215
1

ē2S jD 1,2, 2b̄1,2

2b̄1,2
1 , jD 1,2

D ,

~A29!

where ē25Dout
2 and Dout

2 is given by Eq.~61!. By these
expressions we reduce our problem to the solution of f
linear equations that may be easily done and we get

m0,15$X1@~E11B1!~E2
22B2B2

1!2~C01D0!2E2

1~C01D0!~C0B21D0B2
1!#

1X2@D0~E1E21E1B2
11E2B11B1B2!

2C0~B1E21B1B2
11E1B21E1E2!

1~C02D0!~C0
22D0

2!#%d21, ~A30!

where E1,25 j̃01,22K1,2
2 jD 1,2/ ē2, B1,25b01,21K1,2

2 b̄1,2/ ē2

and similar expression forB1,2
1 . The determinantd is given

by

d5~E1
22B1B1

1!~E2
22B2B2

1!2~C02D0!2

2C0
2~2E1E21B1B2

11B1
1B2!

2D0
2~2E1E21B1B21B1

1B2
1!

12C0D0@E1~B21B2
1!1E2~B11B1

1!#. ~A31!

The expression form0,1
1 follows from Eq. ~A30! if one re-

placesB1,2 with B1,2
1 and vice versa.

As pointed in Sec. III the interaction between subsyste
is very weak andC and D terms should be retained if the
are multiplied by the large factorSJ0 only. As a result, from
Eqs.~A30!,~A31! we obtain final expressions in the form
r

s

m0,15m0,1
1 52SJ0$X1@D in,2

2 12SJ0R02~gmH i ,2!
2#

22SJ0R0X2%$@D in,1
2 12SJ0R02~gmH i ,1!

2#

3@D in,2
2 12SJ0R02~gmH i ,2!

2#2~2SJ0R0!2%21,

~A32!

whereD in,1,2
2 are determined by Eqs.~A14!,~A24! and simi-

lar expression form0,25m0,2
1 .

In the same way as above using Eqs.~A5!,~A8! and con-
ditions L1,250 we get

DE52
NS

2
~X1m̄0,11X2m̄0,2!~2SJ0!21 ~A33!

and Eq. ~85! in Sec. VII immediately follows from Eqs
~A32! and ~A33!.

We justify now Eqs.~A24!. In our approximation parts o
m andm1 that depend on the interaction between subsyste
are independent on the small difference betweenb andb1.
Meanwhile,m andm1 have terms proportional toL1,2 as in
Eq. ~A17! and condition~A12! may be fulfilled if L1,250
only.

It should be noted that Eqs.~A32! and ~A33! as well as
the expression~85! for the ground-state energy are valid fo
m01,2!1 only. If m01,2*1 one has to extract condensate co
tribution from the interaction energy~44! as in the case of
the Bose gas30,32and lower-order terms. Then the condens
amplitudesm01,2 should be determined self-consistently. T
second-order terms give rise to an additional contribution
the parametersj1,2, b1,2, and b1,2

1 of the effective Hamil-
tonian and the gaps acquire corrections proportional tom01,2

2 .
However, detailed investigation of this problem is beyo
the scope of this paper. We comment only on two ca
considered in the main text:~i! Hi@1,1,0# and ~ii ! Hi â. In
the former case we have cos(w11w2)50 and the problem is
the same as for two noninteracting systems of planes~see
above and Sec. VII!. For H along theâ axis below the spin-
flop transition we havem01,250. However, in the flopped
state cos(w11w2)561 and

m01,2562SJ0Qk0
@D0

21~gmH !2#21. ~A34!

Taken into account Eq.~93! for the flop field we obtain
um01,2u@1 near the transition, and the theory should be
vised as it stated above. In particular,D0 in Eq. ~102! does
not have to coincide with the in-plane gap atH50.

APPENDIX B: GREEN’S FUNCTIONS IN MAGNETIC
FIELD

Here we evaluate expressions for the Green’s function
magnetic field using the non-Hermitian Hamiltonian~A6!,
which takes into account the interaction between spin wav
From Eqs.~27!, ~A5!, and~A6! we get
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~v2 j̃1!G112b1F11
1 2CG212DF21

1 1K1Ḡ1151,

b1
1G111~v1 j̃1!F11

1 1DG211CF21
1 2K1F̄11

1 50,

2CG112DF11
1 1~v2 j̃2!G212b2F21

1 1K2Ḡ2150,

DG111CF11
1 1b2

1G211~v1 j̃2!F21
1 2K2F̄21

1 50,
~B1!

K1G111~v2jD 1!Ḡ112b̄1F̄11
1 2C̄Ḡ212D̄F̄21

1 50,

2K1F11
1 1b̄1

1Ḡ111~v1jD 1!F̄11
1 1D̄Ḡ211C̄F̄21

1 50,

K2G212C̄Ḡ112D̄F̄11
1 1~v2jD 2!Ḡ212b̄2F̄21

1 50,

2K2F̄21
1 1D̄Ḡ111C̄F̄11

1 1b̄2
1Ḡ211~v1jD 2!F̄21

1 50,

where as above 1 and 2 label the subsystems and the
denotes substitution of onek by k1k0 . For example,jD 1

5 j̃1,k1k0
andḠ215G21 k1k0 ,k .

Due to the non-Hermiticity of the Hamiltonian~A6! for
calculation of final physical results we need also the solut
of the system conjugated to Eqs.~B1!. Corresponding
Green’s functions may be obtained from the solution of E
~B1! by the replacementv→2v, b→b1, andb1→b.

Equations~B1! may be solved in the same way as~A22!
if one takes into account that onlyK terms in the left-hand
side mix functions with and without the bar. As a result E
~B1! may be rewritten as follows:

S m, K

K, m̄
D S g11,g12

g21,g22
D 5S I , 0

0, 0D , ~B2!

where

m5S m1 , L

L, m2
D ; K5S K̃1 , 0

0, K̃2
D ; I 5S I 0 , 0

0, 0D
~B3!

and

m1,25S v2 j̃1,2, 2b1,2

b1,2
1

v1 j̃1,2
D ; L5S 2C, 2D

D, C D ;

K̃1,25S K1,2, 0

0 2K1,2
D ; I 05S 1, 0

0, 0D . ~B4!

From Eq.~B2! we get

~m2Km̄21K !g115I . ~B5!

The corresponding equation forḡ11 has the form

~m̄2Km21K !ḡ115I . ~B6!

Taking now into account thatgmH!SJ0 we have to cal-
culate matrix elements of (m̄21) ik and (m21) ik , neglecting
in numerators terms that are proportional to interplane c
pling C̄(C) and D̄(D). As a result we get
bar

n

.

.

-

m̄215S m̄1
21 , 0

0, m̄2
21D , ~B7!

where

m̄1,2
215

1

v22 ē2S v1jD 1,2, b̄1,2

2b̄1,2
1 , v2jD 1,2

D ~B8!

and ē25 ē1,2
2 5DR out

2 1S2(J02Jk
2) whereDR out

2 is given by
Eq. ~61!. As a result we obtain the following equation:

S m12K̃1m̄1
21K̃1 , L

L, m22K̃2m̄2
21K̃2

D g115I . ~B9!

This system of four equations may be solved directly and
the approximation used above@see text before Eq.~A32!# we
have

G115
d2

Z
@~v1j1!~v22 ē2!2K1

2~v2 j̄1!#,

F11
1 52

d2

Z
@b1

1~v22 ē2!2K1
2b̄1

1#, ~B10!

G2152F21
1 5

2

Z
~v22 ē21K1

2!~v22 ē21K2
2!~SJ0!2~C2D !,

where we setJk5J0 where

d2~v!5~v22e2
2!~v22 ē2!2K2

2~2v21e2
21 ē2!1K2

4

~B11!

is the determinant of the matrixm22K̃2m̄2
21K̃2 multiplied

by (v22 ē2), e1,2
2 5 j̃1,2

2 2b1,2b1,2
1 and

Z~v!5d1~v!d2~v!2@2SJ0~C2D !#2

3~v22 ē21K1
2!~v22 ē21K2

2!. ~B12!

Obviously the equationZ(v)50 determines the spin-wav
spectrum along theĉ direction atHÞ0, which has now four
branches. However, taking into account that in real syste
Dout

2 @K1,2
2 ,e1,2

2 we may strongly simplify these expression
Neglecting small splitting of two modes withv.Dout

2 we
obtain

G11.2F11
1 .

SJ0~v22e2
21K2

2!

~v22e1
2 !~v22e2

2 !
,

~B13!

G21.2F21
1 .

2~SJ0!2~C2D !

~v22e1
2 !~v22e2

2 !
,

where

e6
2 5 1

2 $e1
21e2

22K1
22K2

2

6@~e1
22e2

22K1
21K2

2!2116~SJ0!2~C2D !2#1/2%.

~B14!
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In particular, for the field along the@1,1,0# direction e1

ande2 coincide with optical and acoustic branches given
Eqs. ~60! with D0

2 replaced byD0
2cos 4w. We must remind

that these results are valid forka,b!p/a only.
We need also the functionsḠ and F̄ which are solutions

of Eq. ~B6!. In this case we have

m215
d1d2

d S m1
21 0

0 m̄2
21D , ~B15!

whered1,25v22e1,2
2 and

d5d1d22@2SJ0~C2D !#2 ~B16!

and Eq.~B6! may be represented as follows:

S m̄12
d1d2

d
K̃1m1

21K̃1 , L̄

L̄, m̄22
d1d2

d
K̃2m2

21K̃2

D ḡ115I .

~B17!

Solution of this equation is given by

Ḡ115F̄11
1 5

SJ0

Z1
~d1d1K1

2!,

~B18!
Ḡ215F̄21

1 50,
.I.

J

ev

pl

.N

n

t-

O.

r-
M

v,

te

A

y
where

Z1,25~v22Dout
2 !d2Dout

2 K1,2
2 d1,2. ~B19!

Using the same approximations as above we obtain the
expression in the form

Ḡ115F̄11
1 5

SJ0

v22Dout
2

, ~B20!

which holds fork5(k0 ,kc).
The spin-wave spectrum in magnetic field is determin

by the conditionZ(v)50 whereZ(v) is given by Eq.~B12!
andZ(0) is a product of squared spin-wave frequencies a
should be positive. For this value we have

Z~0!5~ ē22K1
2!~ ē22K2

2!

3@~e1
22K1

2!~e2
22K2

2!2~2SJ0Rk!2#. ~B21!

Here atk50 the expression in the square brackets coinci
with the denominator of the second term in Eq.~85!. Experi-
mentally the out-of-plane gap is much larger than the
plane one and we conclude that the positiveness of
square brackets is the necessary condition of the stabilit
the system, which has been used in derivation of Eq.~93!.
od,

ish,

olid
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