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It is shown that pseudodipolar interaction allows one to explain static and dynamic properties of the non-
collinear antiferromagnet&,CuQ,, in the temperature range where the rare-e@t angular momenta are
slightly polarized by the antiferromagnetidF) ordered Cé&" spins. The spin-wave spectrum is determined
and the inelastic neutron scattering cross section is evaluated taking into account interference related to the
noncollinear arrangement of the copper spins in the adjacent @la@es. The detailed experimental data for
low-energy inelastic neutron scattering in,@uQ, are presented. Two in-plane spin-wave branches are ob-
served in accordance with the theoretical predictions. Parameters of the intraplane and interplane pseudodipolar
interactions are determined. The former appears by one order of magnitude larger than the theoretically one
predicted for an isolated Cy(plane. We confirm this result by the analysis of the elastic neutron scattering
data in magnetic field. Comparison of the spin-wave neutron scattering@u®s and NgCuO, published
earlier reveals the strong dependence of the in-plane anisotropy on the type of the RE ion. General expression
for the ground-state energy in magnetic field applied parallel to the,@ledes is derived and analyzed. It is
shown that the spin-flop transition is of second order if the field is applied alond1tied direction.
[S0163-182698)02746-3

I. INTRODUCTION field' = [see Fig. 1b)]. In Refs. 1 and 8 the noncollinearity
has been attributed to the biquadratic exchange. However,
During last decade magnetic properties of dielectric cuthis exchange gives equal contributions to the ground-state
prates, which are parent compounds for the highsuper- energy of both structures shown in Fig(bL Hence, it
conductors were extensively investigated. In particular, comshould be some other interaction which distinguish them. We
poundsR,CuQ, (R=Pr, Nd, Sm, and Buwere studied™®  suggest that it is the pseudodipol®D) interaction.
In these materials as well as in other insulating cuprates The magnetic moments of rare eafRE) ions is the sec-
La,CuQ, and YBaCu;0g,  (x<0.4) the long-range three- ond peculiarity of theR,CuQ, family. Recently it has been
dimensional(3D) antiferromagnetic order stabilizes below thoroughly reviewed in Ref. 9, where it was shown that mag-
Tn~250-410 K due to very strong in-plane exchange inter-netic properties of the material strongly depends on the type
action between Gif S=1/2 spins and weak interplane cou- of RE ion. In the case of PEuQ, the PF* ions have a
pling. The easy-plane anisotropy retains spins within £uO nonmagnetic singlet ground state and the first excited state is
planes. However some structural peculiarities distinguish tha doublet at 18 meV.Hence well below the Na tempera-
R,Cu0, family as well as SICUO,Cl, (Refs. 6 and 7 from ture Ty=280 K the P#* momenta are slightly polarized due
other antiferromagnetic cuprates. For the following it is im-to the interaction with Ci" ordered spins and remain inac-
portant thatR,CuQ, materials have a tetragonal structure tivated thermally: As a result at lowT they give some tem-
where Cd" ions form a body-centered lattifsee Fig. {a)].  perature independent contribution to the effective Cu-Cu in-
As a result in the antiferromagnetic state?Cuions in the  teraction.
adjacent Cu@ planes do not interact in the mean-field ap- The ground states of Nd and Sni* ions are Kramers
proximation if one assumes conventional isotropic exchangdoublets that are split slightly due to interaction with copper
coupling. Therefore some weak interactions may manifesspins. For NdCuQ,, the Nd spin excitation spectrum is
themselves, which are masked in other cuprates. This suganged between 0.1 and 0.8 méRefs. 16 and 1j7and that
gestion is confirmed by noncollinearity of the magneticwould correspond to a characteristic splitting;- 3.0 K.°
structure revealed by the neutron scattering in magneti®leglecting this splitting one has the single-ion susceptibility
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o o% ' ® where/ and/”’ label the lattice sites and the functistfR)
‘c_:.r__('}'o_(_)_'_'é’ L Pl decreases faster th&1 3 asR— .
¢ ® The PD interaction between €U and N&* ions has
A ’oi O ‘o been first considered in Refs. 19. Recently it has been used
" for the complete description of the spin structure of the

b .w * f R,CuQ, family.® In particular, it has been shown that it is

responsible for the noncollinear structure of Cu as well as of
LasNiO 4 LayCu0y RE subsystems. It was used also for an explanation of weak
ferromagnetism of the tetragonal compound SGCI,.2°
@ (b) Microscopic derivation of the PD interaction between Cu
FIG. 1. (a) Crystallographic structure of the tetragonal com- SPINS in Cu@ planes has been done in Refs. 21-23 in the
poundsR,Cu0O, (R=Pr, Nd, Sm, and By Cu ions form a body- frame of the Hubbard model using on-site Coulomb ex-
centered tetragonal latticés) Two observed noncollinear magnetic change and spin-orbit interactions. It should be noted also
structures: | (LaNiO, type) left; Pr, Nd(1,lIl), Smand Il (LaCuQ,  that the PD interaction appears in metals as a result of the
type) right; Eu, Nd(I1) and their projections on the basal plane. For skew scatterintf that is a consequence of the ordinary ex-
Nd,CuOQ, phases I, I, and Ill are observed @\=250 K>T  change interaction between ions with«0 and conducting
>80 K, 80 K>T>30 K, and 30 K-T, respectively. band®® The result may be easily generalized for interaction
of d andf electrons via oxygen 2 orbitals?® The PD inter-
in the form=C/T. In the case of NgCuQ,, this suscepti- action has been used also for explanation spin-wave disper-
bility is likely responsible for the two spin reorientational sjon in metallic P#’
transitions aff; =80 K andT,=30 K (Refs. 9 and 1p(see In this paper we develop spin-wave theory for the noncol-
Sec. IX. In the case of SpCuU0, there is some additional finear cuprates above RE ordering temperature taking into
transition at 20 and that awaits further investigaftdn. account both interplane and intraplane pseudodipolar inter-
EwpCuQ, is the last member of the considered family with actions. We demonstrate that the former splits the in-plane
noncollinear spin structure. The Euion hasJ=0 and do  gpin.wave spectrum into acoustic and optical branches
not contribute to the low-temperature magnetism of the oMy hereas the lattdintraplane PD interactigrgives rise to the
pound. Unfortunately, there is a structural phas_,e transition g, 014 (squarg anisotropy?-22As a result the in-plane spin
=140 K(Ref_s. 11 and 1P{of lower symmetry |_dent|cal_ 0 \ave gap appears due to the interaction between spin-waves.
Lhea;;vzt;figseic;?bceizg:nu%t(fzﬁ; dlge?rrr]\(ijnter:je spin ordering This gap has been obtained in Ref. 22 using a phenomeno-
) I]pgical Hamiltonian. We confirm this result by microscopic

theT?_‘,IS zﬁggggednfviﬁt?ﬁﬁéfpfrg{ﬂer;n?aeﬁzteursvﬂggegg Smog_alculations and determine its dependence on the sublattice

menta are slightly polarized by the interaction with?Cu orientation in the 4,b) plane. This dependence is essential

spins. We assume that in this temperature range the influen(ﬁ%r determination of the spip configuration in magnetic field..
of the RE ions on the G spins may be properly taken into Next, we present detailed n_eutron sca_tterlng _data in
account by renormalization of the constants of the weal’2CuQ;. We observed acoustic and optical spin-wave
Cu-Cu interactions such as the easy-plane anisotropy arffanches and determined the in-plane and out-of-plane spin-
parameters of the pseudodipolar Hamiltonian. Hence, fowave gaps. We demonstrated a destructive interference in the
Pr,CuQ, our theoretical consideration should be applicableneutron scattering on the acoustic branch, which is a conse-
in the whole temperature range well bel@y=280 K with  guence of the noncollinear spin structure and the PD inter-
temperature-independent parameters. In the case @ction between adjacent Cy@lanes. From these data we
Nd,CuQ, it holds atT>3 K (Ref. 9 and according to Ref. determine the parameters of the PD interaction. In particular,
14 the parameters strongly depend Drisee Secs. VI and the intraplane PD interaction appears to be by one order of
IX). For SmCuQ, the temperature range of the theory is magnitude larger than calculated in Refs. 22 and 23. Com-
restricted byT>20 K. The theory is hardly applicable to paring this result with the stronfydependence of the gaps in
Eu,CuQ, due to the above-mentioned phase transitiolf at Nd,CuO, observed previoush} we conclude that along with
=140 K. We note also that low-temperature spin waves irthe PD interaction and anisotropic exchange considered in
Nd subsystem below 1.5 K has been studied recently in RefsRefs. 22 and 23 there is an additional contribution to the
9 and 15-17. There is also low-energy£2 MeV) quasi- square and uniaxial anisotropies connected with the RE ions.
elastic scattering on the Nd subsystédout we do not con- The spin orientation in magnetic field, experimentally
sider it. studied in Refs. 1-5 is the next problem considered in the

The noncollinearity may be easily explained if one as-paper. We derive the ground-state energy, which governs
sumes the dependence of the interaction on the direction dhis orientation for the magnetic field arbitrarily directed in
the bonds connecting two &l spins(see below, Sec. Il and the CuQ planes. In particular, we show that if the field is
Ref. 9. This interaction may be represented as the pseudalong the[1,1,0 direction the spin-flop transition is of sec-
dipolar (PD) one proposed by Van Vleck in 1937, ond order and the following relation holds
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guH=A4,, 2 4 3
whereH, is the critical field of the transition and is the
in-plane spin-wave gap &t=0. Using this equation we ana-
lyze the data of Ref. 1 and confirm the large valueAgf P2
obtained in our inelastic scattering experiments. The spin-

wave spectrum in magnetic field is considered too. We show
that one of the branches becomes gapless at the spin-flop

transition. /\ 0,
Analysis of the ground-state energy in magnetic field re- I«
veals a new phenomenon: Bose condensation of the uniform 1 /2
spin waves in magnetic field canted to the sublattice magne-
tization. Related crossover of the sublattice orientation as FIG. 2. Ground-state antiferromagnetic spin configuration in the
function of H near the spin-flop transition was observed re-unit cell of R,CuQ,. The spin orientation in the adjacent layers are
cently in PECUO4.28 given by anglesp; and ¢, .
This paper is organized in the following way. In Sec. Il . . ) .
we formulate the model used below. Section 11l is devoted to | "€ Uniaxial anisotropy in E¢3) we consider as a part of
the linear spin-wave theory. The intraplane anisotropy and€ @nisotropic exchange and represent it as
in-plane spin-wave gap is considered in Section IV. In this

section we present also expressions for the spin-wave Ha=—1% > A ,SS, 5
branches along the magnetic rod. Theoretical expressions for e

the neutron scattering cross sections are derived in Sec. Ving the easy-plane anisotropy takes plach,if. > 0.
Inelastic neutron scattering data on®uO, are presented in 1t js convenient to divide the PD interaction into inter-

Sec. VI, where we also discuss them as well as correspongyjane and intraplane parts. For the former we have

ing data for NgCuQ,.** Section VIl is devoted to consider-

ation of the spin configuration of the noncollinear antiferro- L . A

magnets in magnetic field arbitrarily directed in the basal HIZE/Z N Qrry (SR (SR /), 6)
plane. The spin-wave spectrum in magnetic field and inelas- o

tic neutron scattering is considered in Sec. VIII. In the lastwhere Ii//lzR//llR//l. Slightly modifying Eq. (1) we
section we summarize principal results of the paper and giVgepresent the intraplane PD interaction in the traceless form
additional comments for some of them. In Appendix A we 55 in Refs. 21-23:

derive the expression for the ground state energy in magnetic

field. The Green’s functions in magnetic field are calculated N N R

in Appendix B. Hp= z;/:, P, (SR, )(SHR, /1)

IIl. MODEL 42, +290)], 7)

wherea andb are coordinate axes in Cy@lane[see Fig.
1(a)]. The interaction(7) may be represented in the forih)
with corresponding change of both interactiohis,, and
A/// .

H=HextHat+Hpp+guHY S/, (€©)) Interplane PD interactiofi6) explains the observed spin

n structure'® Indeed, let us consider in the mean-field approxi-

whereH,, is the isotropic exchange interactiod, is the  mation interaction between the central spin and corner spins
uniaxial anisotropyHpp is the pseudodipolar interaction, shown in Fig. 2. Simple calculations get
and the last term is the interaction with external magnetic

We represent the Hamiltonian of the €uspin system in
the following form:

— 2 ;
field andgu>0. Ei=45°Qosin(¢1+ ¢2),
Below we consider the interaction between the nearest ) (8)
neighbors only. In this cadd., can be written as Q,=0Q
O <oa?+c?’
1 _1 . . . . .
Hem3 2 3,/SmSm=3 2 lawSmnS where Q is the nearest-neighbor interplane PD interaction

& /nn’ and anglesp; and ¢, are shown in Fig. 2. This energy is

1 minimal if ¢+ ¢,=—(7/2)sgrQ,. In this case the noncol-
+5//El’n M/ SaSin @ Jinear ordering is fixed by the intraplane square anisotropy
‘ o which appears as a result of zero-point contribution to the
where/ and/" denote sites in CuDplanes andh enumer-  ground-state energjRefs. 21 and 22 and below in Sec.)IV
ates planesj,,+, Inn, andM, are the nearest-neighbor |t should be noted also that the interplane PD interaction
exchange interactions within Cy@lanes, along the axis leads to ferromagnetic ordering of the neighboring spins
and between Cii ions in the adjacent planes, respectively.along thec axis shown in Fig. (b) because the interactions
In particular, the index’; in the last term of Eq(4) is equal  of the central spin with lower and upper planes have the form
to/+(*a,xb,*c)/2. given by Eq.(8). Hence, we do not need any further ferro-
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magnetic exchange between copper spins afoagis given
by the second term in Eq4) and, actually, the observed
spin-wave spectrum does not reveal this interactgme Sec.
VI).

We divide the whole system of Cy(Qlanes in two sub-
systems 1, and 2, which include the corner and centraf Cu
ions in Figs. 1a) and Xb), respectively. They are connected
by the vectoré=(a,b,c)/2. In every subsystem Cii spins
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P
Hp:§; (cosk,—
X(S,uS

cosky)

2t S ko~ SuS ki~ SeS ko)
(16)

where P is the nearest-neighbor intraplane PD interaction
and we define the Fourier transform as

are arranged antiferromagnetically in planes and ferromag-

netically along thec axis. For the in-plane spin orientation
we assign angleg; and ¢, for the first and the second
subsystems, respectively as shown in Fig. 2.

The whole spin system may be considered now as con

sisting of four sublattices and needing four sets of the spin
operators. It is quite inconvenient. So we, rather, use another

Sa= N’”Z/E S/mexp(—i1kR /) (17
/m

and similar expressions for the operatars,,, anda fy, -
HereN is the total number of unit cells and

Jy=2J(cosk,+cosk,),

type of description involving one set of spin operators per

subsystem and the antiferromagndi#d=) propagating vec-
tor kg for which we have two equivalent forms:

kgl>=g(1,l,0), k52>:g(—1,1,0). 9

We will set below ko=k{?; in this case we have

I =2lcoskg,

(18)
A =2A(cosk,+cosky),

ka kb kc
S-—COSCOS,

Mk=8Mco2 > COS5

expkod)=1. In each system of planes the spins may bewherek,=k®a, etc. andJ,=4J. For components of the

represented in the following form:

~ ()
S(}\)_(S< mzez)\+ /myey)\)elkoR/ +S(/mx (10

wheren=1,2; RM=R,, R®=R,+ 8, / andmenumer-
ate unit cells in &,b) planes and along the axis, respec-
tively, and

ézx: (cosp, ,sing, ,0),

ey, = (—sing, ,cosp, ,0), (12)

c=(0,0,2),

wherezl andz2 are directions at the sublattice magnetiza-
tion for subsystems 1 and 2. Vecté&p and unit vectors

ezx, eyx, and ¢ determine the frame of reference for the

components of the spin operators. Below we will use for

them the well-known representation

(N) _
S/r?]z

S;rm)\ S/m)\'HS/m)\ \/_S(a/mx a/m)\agmxlzs)!

S— a/mxa/mxv
(12)
S;mx S(/mA_IS/mA \/Z_S@J/rm)\'

Now we rewrite Eqs(4)—(7) in momentum space,

ex= %Ek: (k= 1) (S1Sk1t S2S-2) + Ek: M SiiS ko,

(13
Ha=—3 2 A(Sa Skt S8t k), (14
H|—E OHESHISAPS (15

symmetrical tensoQ,; we have

ka kb kc
S—COSCOS,

bb
Q}*=QR°= uQ{*=8Qqcos; cos cos;

ka . I(b I(c
I’I?SII'I?COSi ,

2°=—8Qpsi

(19
. ka I(b . kc
SINCOS-SIn—,

Qo
ac__
8 u 2 2 2

K=

- S%COSESin&Sinl&
u 2272

Qe

whereu=a/c and Q,=a?Q/(2a2+c?). Diagonal compo-
nents ofQ*? renormalize interplane exchand# and give
rise to small additional uniaxial anisotropy that may be ne-
glected. The nondiagonal compone@g° andQP° are zero
at the magnetic rods whekg ,=0 ork, ,= * «/a; the only
lines near which the PD interaction may be important, be-
cause in other parts of tHespace it is negligible comparing
with the strong intraplane exchange coupling Thus below
we will take into account the nondlagon@lk component
only.

lll. LINEAR SPIN-WAVE THEORY

In this section we present results of the linear spin-wave
theory in zero magnetic field. For an isolated plane, they
coincide with results of Refs. 21 and 22. However, we re-
write them in a form convenient for the further consideration
of the spin-wave interaction. The interplane PD coupling
splits the spin-wave spectrum into acoustic and optical
branches that are observed experimentally. Corresponding
results are presented in Sec. VI.

Using Egs.(12—(17) and neglecting higher-order terms
we obtain the spin-wave Hamiltonian consisting of zero-
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order, linear and bilinear terms. The zero-order term gives It is well known that all observable quantities may be
the classical ground-state energy. Its part depending on thevaluated using corresponding Green'’s functions determined

spin orientations has the form as
AE1,=NSQ2sin( ¢, + @) =8N i@+ @,). (L
12= NSQEsin( 1 + 02) =8N SFQqsin( ¢ + ¢3) GAB(w):_lf dt [ A(1),B(0)]). 26)
(20 0
Here we have taken into account our choicekg k(2. They satisfy equations of motion,
The equilibrium spin configuration is determined by the
minimum of this expressiott if one neglects other oGpp(®)+ Gy ap,8(w)=([A,B]). (27

¢-depended contributions to the ground state endsge
below Secs. IV and VI It should be noted also that E@O)
determines the spin configuration regardless of choicés of
given by Eq.(9). Indeed, according to E@10) the definition
of the frame of reference for the adjacent plane contains a N (28)
factor exp{kod), which is equal to—1 and +1 for kg Gyn=Cala; Fan=Gaa,:
= k(()l) and k0=k(2), respectively. In the first case we have o
an additional rotation on angle which should be compen- Using these definitions and E¢&2) and(27) we get
sated by the replacemegb— ¢, + 7. + +

The I>i/near teFr)m of thghar‘ﬁizltonian is given by (0=E1)G1y=B1Fy = CCumDFy=1,

We will use below the following Green’s functions:

+
= + = + _+
Gyn=Ga, af Fan Gawax’

B:G11+ (w+E;)F{;+DGy+CF5,=0,

cos @1+ @2)(ag;— g1+ ag,— agy).- . N (29
(21) —CG;;—DF 1+ (w—E3)Gy—ByF5=0,

It should be eliminated in the same way as the linear terms DGy;+CF{1+B,Gy1+ (w+Ey)F5=0,
related in presence of a magnetic fiégld(see Appendix A
However atH=0 as well as aH along the[1,1,0 direction
we havep; + ¢,= * 7/2 andW; =0 (see Sec. V| The same
holds if H||[1,0,0] below the spin-flop transitioiisee Sec.
VIl).

The bilinear spin-wave Hamiltonian may be represented +(D?+C?)E,—2B,CD]A 1,
as follows:

NS 1/2
W1=[iSQkO( 7)

where we omit the subscrift. Solution of these equations
has the following form:

Gp=[(w+E;)(w?—E3+B%)+(D?~-C?w

Fi1= —[B1(w?—E3+B3)—B,(C?+D?)+2CDE,]A %,
HSW:H1+H2+V, 1 1 2 2 2 2 (30)

H\= Ek: [Ek,xa;xak,x"‘ %Bk,x(a;xatm*' ag a1, Car=l(0+E)(0+E)C—BD(0+Ey)=BD(w+Ey)

22) +B,B,C+CD?>-C3]A™ 1,

V=2 [Cu(a) 8o+ a8 1)+ Di(ay a2t o+ acia_k2)], F21=—[(0+Ep)(w—E2)D—BiC(0—Ej)

+(w+E;)B,C—B;B,D+D3-C?D]A %,
wherex=1,2 and ifH=0, it gives

where
En=S(Jo+ 10—l — SAc+ 2 vcos 2p,) + Ry,
kX 0 0 k™= 27k 2 Yk N 0 (23) A(a)):(wz—E%-FB%)(Q)Z—Eg—FB%)
- _ip 1
Biov=S(Jk™ 2™ 2 7kC0S 2p)), — 20%(C?—D?)— 2(E,Ey+ B1B,)(C?+D?)
where +4(B4E,+B,E;)CD+(C?-D?)?2 (31)
vk= P(cosk,—cosky), The interaction between subsystems is very weak, and in this
o _ (24  expression we should retain the terms containth@nd D
Ro= =S sin(¢1+ ¢z) = —8SQsin( g1+ ¢2) >0, only if these quantities are multiplied by the large factor
and SJ.. Hence, we have to omit the second and last terms in

Eqg. (31). The solution of the equatioA(w)=0 determines
. the spin-wave spectrum and may be represented as follows:

Ck:%S[Mk‘*‘Mk+k0003¢’1_@2)_Q33k05'r‘(¢’1+¢2)]' P P Y P

(29

1
2_ti 2, 2 2 2\2 2,12
. 2 =21+ E+[(— €2)+8(E,E,+ B,B,)(C2+D?)
Dk:%S[Mk_Mk+kOCOE((P1_§02)+Qékl9rkosm(¢1+¢2)]- - 2{ terlla-e (E1E2+B1By)(

_ 1/
In Egs.(22), the terms that contai®2® andQP® are omit- 16(B;E,+B,E;)CD], (32)

ted because on the magnetic rod we h@#&=Q"°=0. wheree? ,=EZ ,—BZ,.
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plane exchange. As a result the in-plane mode splits to
acoustic and optical branches and using E({s®), (19,
(23)—(25), and(32) we obtain

k]'

Ke
1-cos;

egc(kc)zszo[2S|(1—coskc)+RO >

(36)

1+ cos=

€opi(Ke) = ZSJO( 2S1(1—cosk,)+ Ry >

In the considered approximation the out-of-plane mode
remains unsplit and instead of E@5) we get

FIG. 3. Chemical Brillouin zone. The in-plane and out-of-plane Agut: 2S}(4SA+Ry). (37)
spin waves correspond to hatched and unhatched parts of the zone,
respectively. The former one coincides with the magnetic zone. Thus, we see that the interplane PD interaction gives a con-

) o _tribution to the out-of-plane spin-wave gap too.
In the chosen convention, each subsystem is divided into

two sublattices and the spin-wave spectrum consists of two

branches known as in-plane and out-of-plane excitations. In- IV. INTRAPLANE ANISOTROPY

teraction between subsystems 1 and 2 splits these excitations In this section, we obtain the-dependent contribution to
and we obtain four branches. Our expresi@d) determines  yho ground-state energy that gives rise to the square anisot-
two bfa”Ches qnly. Itis a result of our ?‘proaCh based_ on .thF‘opy considered in Refs. 21 and 22. This anisotropy is re-
chemical cell instead of the magnetic one. The Br'llou'nsponsible for the spin-wave gap in the in-plane mode. In
z_onel IS Sho"“? in Fig. 3 ind.'ts lhatCheddpart 'Sfth? CONVeNRefs. 21 and 22 this gap has been calculated using an effec-
tional magnetic zone. The in-plane and out-of-plane spife Hamiitonian. We demonstrate that it appears as a result
waves belong to hatched and unhatched parts of the BnlIowa interaction between spin waves and determine ¢hee-
zone, respectively. pendence of the gap, which is important in the case of non-

If we restrict thek space by the magnetic zone, the in- zero magnetic fieldsee Sec. V). We show also that this
plane and out-of-plane spin waves will be determined by EQinteraction leads to replacement in E85) the spin values

(32) as ") and €l), respectively. We then obtain four py (s ) as has been assumed in Ref. 22,
branches as expected. Neglecting the interaction between the According to Refs. 21 and 22 the first correction to the

two subsystemsG=D=0,R,=0), we get ground-state energy is given by zero-point motion and has
5 ) the form
€ 12=S(Jo— I+ o= I+ ¥COS 201 5
X(J0+Jk+|0_|k_Ak), (33) AE:%E (Ek_Ek)i (38)
where vy, is given by Eq.(24). This expression may be re- :
written as

where the sum is extended over the whole Brillouin zasne;
andE, are given by Eqs23) and(33). Neglecting all small
interactions(except for the intraplane PD for a single plane
we get thep-dependent part of this energy in the following

eﬁ,in 1= S (Jo— I+l o= i+ %COS 21 ) (Jo+Ji)

€t ou=S2 o= It lo— I+ AD(Jo+3), (39

form:
where we neglectet}), A, andP comparing taly+J,, andk
belongs to the magnetic zone. These expressions coincide NA3Z
with those given in Refs. 21 and 22, if according to Ref. 23 AE¢:163_05'n22<P1 (39

we setJ=J,,, A=J,,—J,, P=4J and neglectl,. We

see that the in-plane branch remains gapless despite the faghere we replaced, , on ¢ and

that the PD interaction violates the rotational invariance '

around thec axis. As we will show below a corresponding e "
gap appears as a result of the interaction between spin waves. ~ y2_ 2S f’* (2+cosk,+cosky)

The out-of-plane gap has the form O (2m2) = * P(2—cosk,—cosky)¥?

A2, =8S2JoA=325%A. (35) X (cosk,—cosk,)?=1.28 . (40)
Let us consider now the interaction between adjacenThese expressions coincide with the results of Refs. 21 and

planes. It is very small and has to be taken into account onl@2.

along the directions (0,K,) and Koy, ,Kop ,Kc). Otherwise it Using EQgs.(20) and (39) for the energy that determines

is masked by the dispersion connected with the huge intrathe ground-state configuration of the system we get
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L (2) . . G=<—=<———+<——-®<—+<————>—<—
Eo=SNJo| ————— (si2¢; +5iM2¢,)
4(28 ) F+=—->—<—=——->®—>—<—+—-—-><——-

(41) FIG. 4. Belyaev's equations for the Green’s functidBsand
F*. The left and right broken arrows represent the bare Green's

) o functions Go (@) and Gg(w)=Gu(— ), respectively, where
Here th? first Ewo terms are minimal at ,=0,7/2 and de- Go(®) = (w—E,) L. The values, andB, are given by Eq(23.
terminea andb as easy axes. The second term has a mini-
mum ate; + @,=—7/2 for positive Qo and 1+ ¢,=7/2 ity F!(w)=F,(—w) is broken, whereF* and F are the
for Qu<<0. As a result the whole expressiofl) determines  Green’s functions determined by E@8). The consequence
the first (LgNiO,4) and the second (L,€uQ,) types of the  of the Hermiticity of the initial physical problem is restored
structure shown in Fig. (b) for Q>0 and Q<0, respec- in the final results only. For example the spin Green’s func-
tively. tion contains the sunf*+F. The similar situation takes

From EQ(?)Q), one sees that the PD interaction gives I’isep|ace in the Spin techniques by Vaks, Larkin, and F?ﬂ([no_
to square anisotropy, which should be responsible for the gag may be shown that fof < Ty both techniques are equiva-
in the in-plane spin-wave mode. In Ref. 22 this gap has beepnt.
determined using a specially constructed effective Hamil- Below we will use the conventional diagrammatic
tonian. We will demonstrate now that the lowest order pertechnique¥ for calculations of the Green's functions and we
turbation theory gives the same result. We will determinetake into account diagrams containing one sum over interme-
also the dependence of the gap, which is essential fordiate momenta. This approximation gives the first term of

8Qp .
+ J_Sln(€01+ ®2) |-
0

description of the system in magnetic fidkke Sec. VI 1/S expansion and has been used in Refs. 31 and 32 for
~ Using Eqs(10—(16), we represent the interaction energy determination corrections to the spin-wave spectrum in the
in the following form: exchange approximation. The real justification of this ap-

V=V Vot Ve + Ve, (42) proximation is some small numerical coefficients that should

appear at each additional momentum summation. Obviously,
whereV,, is responsible for the interaction betweerrspin  the interaction®/s andVg should be omitted in this approxi-
waves. We restrict ourselves to the one-plane problem. Imation.
this case we have Above we did not diagonalize the Hamiltoni&22) and
had two kinds of Green’s function&, G*, F, andF*
. + " determined by Eq(28). As a result diagrammatic techniques
sin 2p2, iy B+ By B~ Bi)- used below should be similar to the Beliaev 6f&° which
(43 has been developed for the diluted Bose-Gas bélgwThe
only distinction is related to the non-Hermiticity of the inter-
action due to which we have ™ (w)#G(— w) andF " (w)
#F(w). In this case we have a system of Dyson equations
. 1 . determining self;energy pars, =*, II, andII*. Equa-
VP=— WE Vf<3)ak3+k1a gty Bk, Ay tions IorG andF " are shown in Fig. 4. Other two equations
for G andF have similar structure. Solution of these equa-
tions is given by

1/2

V3—|(2N

The fourth-order interaction is a sunv,=V{+Vv{@
+V®, where

(29— _

Vi E Vk3 CHENIRIIR: DI TP (44) G=(w+£)D"1, G =(—w+&)D1

. . N (46)
=—-pD L F=-p/DY
Vi =— —2 Vk3 akaa Kk +k, Bk, By - P Br
where
Here
O =E+3y, &=Ect+3,
V= Jx+ ykCos 2p,

Bk:Bk+Hk1 ,8;=Bk+l_[;, (47)

Vi&'= 3~ $Ac— 3 nicos 2, (45)
D= w? = (ééx — BubBi)-
Vf(s) = A0S 2 HereE daB i by Eqs(23). Neglectings, II
ereEy an are given s(23). Neglecting,, II,
andy, is determined by Eq24). The interaction¥/s andVg andH*k we hali/e g yEd g g

will not be used below and we do not give here correspond-

ing expressions. G=(w+E)(w?— 65)71’
Now, it is worth pointing out the non-Hermiticy of the (48)
interactionsvflzﬁ), which is a direct consequence of the rep- F=F"=—By(w?—e) L

resentation(12) for the spin operators. As a result in the
intermediate steps of the calculations some quantities do ndthese equations actually follow from EQO) if one neglects
exhibit the conventional properties. For example, the equalthe interaction between subsystems.
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T Equationg49) and(50) atk=k, give renormalization of the
out-of-plane gap assumed in Ref. 22 and instead of(E5).
+ I we have
ST

out_ 8<S>2JOA (54)

where(S) is the average component of the spin, reduced by
the zero-point fluctuations
0.20
S|1-——]. (55)

1
<S>:5{1_N—S; Ny |= S

<>
P> _ At k=0 the Hartree-Fock contribution to the in-plane gap
is given by

FIG. 5. The first-order diagrams for the self-enerdiesII, and 2 2 2002
II*, which contribute atk=(0,09.) and k=(Kq,qc). The self- Afjp=Ag=ApCc0S 20, (56)
energyX " is determined by the same set of diagram<awith whereAZ2 is determined by Eq40)
0 - .

inversion of the directions of all arrows. The two-vertex diagrams shown in Fig. 5kat0 andw

From Eqgs.(47) for the spin-wave energy in the first ap- =0 give the expressions

proximation described above we have
So=(Z5H)*= TE 4F (i0)G(iw)
EER: ei—k 66% , 0 0 2N YK[ k
(49) ~2G¥(iw)—F(iw)

—G(iw)G(—iw)]sirt2e, (57)

=Ep (S +20) = Be(IL +110).

Corresponding diagrams f&,=(Z,)*, II,, andIl, are
shown in Fig. 5. They are divided on the one-vertex Hartree- S
Fock and two-vertex propagative diagrams related to inter- yj =11/ = TE Y2{3F2(iw)+Gy(i )G _y(—iw)
actionsV, andVj3, respectively.

Analytical expressions for the Hartree-Fock diagrams are 2R (1) Gl ) + Gyl — i @) ]}sirP2¢,

given by
wherew is Matsubara frequency. After simple calculations,
S =3 =— %E ([V81>+Vf(l_)lier(s)Jer(i)]nkl we obtain the following contribution to the in-plane gap:
Ad,=—AZsir2¢. (58)
Ev(k2)+v(k21 }fkl]’ (50) As a result we have the final expression for the in-plane
gap:
—-__ <1> v 2 —
= E (v 20 ]fkl 560 Af, A cos 4p, (59

where Aﬁ is given by Eq.(40). For ¢=0 this expression

@) - (1) Vi) coincides with the result of Ref. 22. However as we will see

I, = E {[Vi] +2VilIn + Vi, +Vid 1 b in Sec.VIl the ¢ dependence of the in-plane gap becomes
(51) important in magnetic field. Proportional R? correction to
ut appears togsee Eq(109 in Sec. IX]. However as we

whereV{ are determined by Eq#45) and WI|| see belowA2,>A?Z and it may be neglected. For the
ground-state configuration we hayg=0 and ¢,= * 7/2.
ne=(a; a)= Ek—fk’ In _this case instead of Eq$36) fqr a(_:oustic and optical
2ey spin-wave branches along (k@) direction we get
(52) "
fo=(aja’")=(aa_)=— ZB_:k_ €5c= 25| 2SI(1—coske) +Ro| 1-cosy | [+A§,

(60)

If we neglect the anisotropy and the PD interaction, Egs. )
+A§,

(49), (50), and(51) give the well-known expression to the eﬁpt= 2S% >
first-order renormalization of the spin-wave enefgy?

whereR; is given by Eq.(24). Summarizing results given by
Egs.(37) and(54) for the out-of-plane mode along the same
direction we obtain

k
2Sl(1—cosk,) + RO( 1+ cos~

1 1
€oR= €r 145~ 35 [4— (cosk,+ cog)?]*2

S 2§

=¢e2(1—0.165). (53) A2,,=8(S)2JA+2S IRy, (61)
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where(S) is determined by Eq55). sults will be considered in the next section.

It should be emphasized that the dependence of the We begin with the elastic scattering cross section, normal-
in-plane gap given by Eq59) is not a specific result of the ized on the chemical unit cell, which has the following form:
PD interaction(7). In fact it is a direct consequence of the

square symmetry of Cuplanes. Indeed, in a general form do , Q-e,)? (Qe)’
the square anisotropy is given by dq ~[r(SF QI 2- ? @
Hsq= .. (Qe)Qey)
k1+kot+kz+ks=0 +2 (ezl.ezz)_ T
X[\ 1(SISSSESE+ SISESES)) + A, SiS5S3S,],
62 (2m)°
(62 XGog Q- «»] T 5(Q 7). (67
where §=S§,. This expression may be represented in the 0
following form: wherer3=0.292 barns for magnetic scatterirfg(Q) is the
magnetic form factor of Cif" ions,(S) is their average spin,
Hsq= 2 [N (SiS5+ s‘l’sg) ézlz are directions of the subsystem magnetization given by
katkotkatks=0 Eq.(11), andV, is the unit-cell volumesa-= 7+ ko wherer
X (S3S3+ S0SD) + A S2S3ShSY, (63  andkg are reciprocal vectors of the chemical and magnetic

lattices respectively.
where A =\,—2\;. Here the first term is invariant under  The magnetic structure factor is determined by angles
rotation in the @,b) plane and then contributes to the and ¢,, which depend on the magnetic field (see Sec.
uniaxial anisotropy only. From the second term using EqviIl). If H=0, we havep;=0 and ¢,=(—1)'#/2 wheret

(12) and linear spin-wave theory we get =1 andt=2 for the first and the second type of the structure
shown in Fig. 1b), respectively.
H =)\NS43ir122<p+)\S°’ In this case, for the reflectior®= (k/2,+k/2,/), wherek
54 is an odd number, the expression inside brackets in(&%).
is given by
. 4 . +
x; [(cod o+ sin*e—8sirfocoSe)a, ay > /it iseven:
X e . (68)
+3(aa_+a’,a))(4sirfpcose—codo—sinte)]. Q2 2(alc)?/?
2—=—_———"_—_ /+t isodd.
(64) Q2 K22+ (alc)2/?

Here the first term should be added to the ground-state effy particular, if /=0, the elastic scattering is forbidden for
ergy (41) and the second one contributesfpandBy in Eq. 4 first type of the structure with=1.
(22). As a result the spin-wave gaps given by EG#) and The anglesp; and ¢, are complicated functions of the

(61) acquire the following additional terms: field. However, ifH is along thg110] direction according to

2 _ the results of Sec. VII, we have,=(—1)'7/2—¢,, 0
0Afy=4S"Johcos e, 65 o >— 74 if guH<guH,—A, and @,——m/4 if H
OAZ = —2S* I \sinP2¢. 66 He.

In this case for the reflection®=(k/2,—k/2,/) instead
We see thatsA2, is proportional to cosé as in expression ©f Eq. (68) we get
(59). If Eq. (64) gives only the contribution to the anisotropy

we have thea and b as easy directionsg=0,* 7/2) for
positive A and 5A2,,=0. For\<0 the direction[1,1,0] is 2

2(1+sin 2¢q), /+t iseven;

: ; . Q¢ 2(alc)?/? ,
the easy axis¢= = 7/4) and both expressiori65) and(66) 2(1-sin 2¢;)—=————"——(1—sin 2¢,),
are positive. Q* K2+ (alc)?/?
As we will see in the end of Sec. IX the value of the (69
in-plane gap depends strongly on the environment of the -
CuO, planes and particularly on the type of rare-earth ion. 7+t is odd.

This dependence may be attributed to the PD interaction as

well as to an additional square anisotropy. The consequences of these expressions have been used in

Refs. 1-5 for establishing the spin structure
[La,CuQ,/La,NiO, type, see Fig. (b)] observed in the dif-
ferent members of thR,CuQ, family. In addition, Eq.(69)

In this section, we present expressions for the elastic anfias allowed one to establish the noncollinearity by applying
inelastic neutron scattering cross sections, which have som&field slightly off from thea direction®*
peculiarities connected with the noncollinear magnetic struc- We now consider the inelastic neutron scattering. It was
ture of theR,CuQ, family. Corresponding experimental re- studied inR,CuQ, systems in zero magnetic field only and

V. NONCOLLINEARITY AND NEUTRON SCATTERING
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here we mainly restrict ourselves to this case. Results fowhere y,, is the associated susceptibility, which is deter-
H+0 are considered briefly in Sec. VIIl. The main problem mined by Eq.(26) with change of sign and & andB are the

is the consideration of the interference between adjacerdpin operatorsS,, andS,, respectively. Using this defini-
planes with noncollinear magnetic ordering. This interfer-tion we get from Eqs(12) and (28)

ence is important for the in-plane spin-wave scattering and
along the direction®=(h/2k/2,g.) only whereh andk are

odd integer numbers and contribution to the spin-wave en-
ergy of the very strong intraplane exchange interaction dis-

S
Xe, ¢, (@)=~ E[Gw,x(w)‘FGw,A(_ )

appears. Corresponding experimental results are presented in

the next section.

In inelastic neutron scattering, the measured cross sec-
tions can be always written in terms of the scattering func-

tion, S(Q,w), as

2

40 de (70

d )‘foF(Q)Z—FS(Q ©)

with the notations of Eq(67) and wherekg /k; is the usual
kinematic ratio of final neutron wave vect&g to the inci-
dent onek; .

We begin with the general expressions for the

+Fua(@)+F), (0)]
(74)

S
Xy 3, (©)= =[Gy 1 (©)+ Gy 1 ()

—Frua(@)=F) ()],

The functionsG,F,F* in a magnetic field are given by
Egs.(B13) and(B20). However, forH=0, we can use Eq.
(30) replacingA by
(79

Ay(w)=(0’— €2 (0’ — €55,

spin-wave scattering function. For the out-of-plane spin

waves, it has the form

- Qe
Q2
+ [Scl,cz(qrw) + Scz,cl(qw)]COE(Q' 5)}’

(72)

Soul(Q )= 1

){Scl cl(q w)+sc cz(q o)

where Q=7+, 7 is the reciprocal lattice vector an@,
=(27/c)q,.

For the in-plane spin waves, the scattering function may

be represented as

Q5.
Sn(Qu)=| Sy (@) 1= 7

Q:,
Q?

+Sy,.y,(00)]

+Sy2’y2(q,w)( 1-
T[Sy, y,(a0)

A leQyz
X eyleyz 0 2

)COS{(Q—ko)ﬁ]],
(72)

wherey, , arey axes for subsystems 1 andé;i andéyz are
corresponding units vectors given by Ed.l), and Q=17
+q+ky. According to our choicé,=k{? [see Eq.(10)],
andky- 6=0. However, it is convenient to retain this term in
Eq. (72.

In Egs.(71) and(72), the partial scattering functions are

determined by application of the fluctuation-dissipation theo-

rem,

1 1
= — | ,
S)\’,)\(q!w) T 1_eXF(_(1)/kBT)Im X\ ,}\(q!w)!

(73

wheree?. and e, are given by Eqs(60) if q,=q,=0, and
Ay (0)=(0?—A%5,)? for q,=+q,=1/2. As a result, we
have

Xcl,clzXcz,czz_SZ(JO_Jq)(wz_ez)/(ZAl)v
Xcq.cy™ Xeyiog ™ SZ(JO Jq)(C+ D)/(24,),
(76)
Xyl,ylszz,yzz_SZ(JO'I'Jq)(wZ_Ez)/(ZAl)y
Xy1¥o Xyoy, ™ SZ(J0+Jq)(C D)/(24,),
wheree?= (e +eo 012, C andD are given by Eq(25).

For the out-of- plane spin wav®=7+q and if q,=qy
=0, we havexcx, N =0 and the neutron scattering is forbid-
den. It becomes maximal fay,= +q,=1/2, i.e., at the AF
Bragg rods. However, along these lines we h&@«D=0
and the interference disappears. As a resulier - and
>0 we obtain

— Qc) 1 82305((1’_ Aouy)
Som(Q,w>—< 1= &) Agut 1—exp(—w/kgT)

(77

For the in-plane spin waveQ= 75+ q and along the mag-
netic lines, we havey=(0,09.). Taking into account that
€5p— €2c=4SH(C—D) [see Eqs(25) and (60)], the cross
section foro>0 may be represented as follows:

B 2,
Sn(Qu) = 5 wlka )]
Qc leQyz O(w— Eopt)
X{ 1+ Q—-Z COY TAr- 0) Tpt
Qc Q 1Q oo~ ac)
1+Q_+2¥ KTAF' % .
(78)
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This expression is written for all values qf . We below
refer to the branches that have a minus and a plus sign in
Egs. (60) as acoustic and optical excitations, respectively.
For the first (LaNiO,) and the second (L&uQ,) type sys-

tems shown in Fig. (b), we haveg,=—/2, e, =a and

Energy

Energy

¢,=l2, e, =—a, respectively. As a result, the interfer-

ence terms in Eq.78) have different sign in these two cases
and this equation may be rewritten as

~ SN
Sin(Q’w)_ 2[1—exq — w/kBT)]

|

q,, S(Q,w)

1+

2

% 1 2(— 1)t QaQbCOE(T ) FIG. 6. Left part: In-plane spin-wave dispersion curves for AF

QZ Q2 AF undoped cuprate®,CuQ, along the magnetic rod. The ellipse
sketches the experimental resolution function. Right part: schematic

S(w—€gp) Qg Q.Qs representation of the energy dependence of the measured integrated
xe—p +|1+ & —2(—1)" @ intensity, see text for details. The temperature factor is not included.
opt
Sw—€,0) k =1.55 A1 for the higher-energy part and const&nt-
X COY Tap- 6) ot (79  mode atke=1.15 A~! for the lowest energies investigated.
€ac This gives a typical energy resolutionfad = 0 (full width at

half-maximum) of 0.2 and 0.1 meV, respectively. Multiple-
order contamination in the scattered beam was removed by a
beryllium filter and the results are corrected for efficiency
and influence of multiple order on the monitor as a function

wheret=1 stands for the L#iO, case and=2 for the
La,CuQ, case.

The interference becomes very important &
=(1/2,1/2,0). In this case cos(r-6)=—1, and acoustic of Kk
and optical branches do not contribute to the neutron cross
section fort=1 andt=2, respectively. The disappearance of
the scattering on the acoustic branch observed in B. In-plane gintegration due to the ellipsoid resolution

Pr,CuQ, (t=1) and discussed in the next section. The strong in-plane superexchange coupling in cuprates
(J>100 meV), implying very large in-plane spin-wave ve-
VI. EXPERIMENTAL RESULTS locity ¢y put severe constraints on the neutron scattering

methods. A typical in-plane dispersion curve is schemati-
rEally drawn in Fig. 6. The key point is that the in-plage
resolution(the size of the ellipse in Fig.)pis always larger
%han the in-plane wave vector of the spin wavesy

= wl/cqy. That is the case for the whole energy rafgd—12
meV) investigated here. The separation of the counterpropa-
gating spin wavegfrom g and —q) in the (g,,q,) plane
may be done in the high-energy regtasr using an adapted

A. Experimental procedure focalized geometry® Accordingly, in our case spin-wave

The PECuO, single crystal of very good mosaicityess branches do not show up as two individual peal§s in an in-
than 10) and with Ty=247 K was grown in air from the planeq scan at constant energy. The measured intensity for
melt in a crucible. The sample, already used in higher-energ§uchd scans is rather a single peak of roughly theidth of
spin-wave experimeritsas well as in Ref. 18, was a plate of the resolution centered on the magnetic rsée Fig. 9.
about a volume of 0.5 cfn It was mounted with the recip- SUch sharp peaks around the AF wave vector sign the mag-
rocal direction110) and (001 within the scattering plane. netic origin of t_he scgtterlng. A further consequence is tha_t
Inelastic neutron scattering experiments were performed udh€ Scattered intensity measured at the antiferromagnetic
ing the triple-axis spectrometers at the thermal neutron beaf®: Q= (1/2,1/2q), is not simply proportional to the spin-

2 T and at the cold neutron beam 4F1 of LaboratoiferLe Wave Cross section, given by Ed37),(79). Indeed, the el-
Brillouin at the reactor Orplex(Saclay. Monochromator and I!p30|d of the triple axis spectrometer performs a 2D integra-
analyzer were of pyrolytic graphite. The analyzer was fo-tion over in-plane ¢,,q,) wave vectors. The measured
cussed horizontally on 4F1 and horizontally and vertically onntensity is then proportional to the 2D integrated spin sus-
2 T to improve the intensity using no collimation. On ther- Ceptibility,

mal beagl,l we worked in constakg- mode with kg

=2.662 A - leading to typical energy resolution of 1 meV. =y, _ 2

A graphite filter was put in the scattered beam to remove S(Q’w)_f dgSQ.). (80)
neutrons with wave vectorsk2 . Cold neutron experiments

were performed on spectrometer 4F1 in the range 0.1-4.0 Since the neutron cross sections generally behave in an
meV. We used both constakt-and constank; modes with — antiferromagnet as:, loc1/q for low energies(but above

scattering experiments in J&uQ,. We deduce from them

the main theoretical parameters: the strength of the intr
plane (P) and interplane(Q) pseudodipolar interactions.
Available experimental results for the inelastic neutron scat
tering in Ng,CuQ, (Ref. 14 will be discussed too.
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FIG. 7. Energy dependence of the measured neutron intensity in 200 1P l {> .
Pr,CuQ, at T=51 K at a zone boundarupper pangland a zone 100 l -
center(lower panel. Diamonds and squares correspond to intensity [ et - -~ i
as measured, respectively, on the magnetic e (1/2,1/2q.), 0 . . .
and out of rod,Q=(h,h,q,) with h=0.42-0.44 and 0.56 0.58 0 5 10 15

(“background”) for the upper and lower panels, respectively. The ENERGY TRANSFER (meV)

filed symbols, corresponding to constant-energy scans across the
magnetic rod, give more precise values of the background and ot
the magnetic scattering. Lines are guides through experiment
points. '

FIG. 8. Energy dependence of the magnetic signal divided by
e thermal factor measured at different valueg @£ 0.5, 1.0, and
5. The corrections of the signal taken from the data similar to Fig.
7 are made for the high-order scattering contribution to the incident

. . . beam monitor counts. The corrections are especially significant for
gaps [see, e.g., Eq(79)], the 2D integration gives a result the zone centerq,=1.0) because the signal spreads to lower ener-

that is essentially energy independent apart from the te”bies as compared to the zone boundarigs=0.5,2.5). Lines are
perature factor[1—exp(-w/kgT)]"*. Therefore, in an en- guides through experimental points. Arrows point to the positions
ergy scan at constant wave vector, the measured intensipf the observed energy gaps. Broken lines represent constant levels
would increase when the energy enters the spin-wave dispesf the signal corresponding to each component of magnetic excita-
sion surface and would then remain constant at higher energion spectrum.

(apart from the multiplicative temperature fagtofhis situ-
ation is sketched at=0 on the right part of Fig. 6. The
existence of a spin-wave branch having a minimum energy i

thus detected as a step. This technique has been applied &Bthe other component of magnetic intensity coming up with

investigate both the out-of-plane and the in-plane branches. e second energy step. The different behavior of the "_1'
plane and the out-of-plane components of the scattered in-

tensity is explained by the geometrical factor in magnetic
neutron scattering cross secti@ee Eqs(77) and(79)], im-
On the thermal flux neutron spectrometer only theplying a suppression of the fluctuations polarized along the
“high”-energy part of the spectrumenergy transferw scattered wave vector. This means that at largewhenQ
=1 meV) can be measured due to limitations of instrumenis getting more and more perpendicular to the basis plane of
tal energy resolution. The typical neutron scattering spectréhe crystal lattice, the out-of-plan@r the tetragonal axis
at T=51 K measured on the magnetic rod, i.e., Qr polarized component diminishes while there is always a
=(1/2,1/29.), are depicted in Figs. 7 and 8. Similar data atcontribution from the in-plane component. In addition, the
T=10 K were reported in Ref. 14. magnetic form factor of copper ions controls the continuous
At the magnetic zone boundary, which corresponds to alecrease of magnetic scattering intensity at laQerthus
semi-integerm, , the obtained magnetic scattering signal re-small values ofy. are preferably chosen for neutron scatter-
veals two steps corresponding to energy transfers oing measurements.
~2 meV and~8-9 meV (Fig. 8. The higher energy step Qualitatively, the observed energy and wave-vector de-
becomes practically indistinguishable at large values of scajpendence of the magnetic signal at the magnetic zone bound-
tered wave vectorsgi>2.5) while the lower one survives ary correspond to that of N@uQ,.* The remarkable dif-
even at those values of.. ference is the large width of the higher-energy step in the
Such dependences on scattered wave vector manifest tiease of PyCuQ,, which is significantly broader than the
“in-plane” polarization of the excitations that appear just instrumental resolution. This could signify an essential

gbove 2 meV in contrast to the “out-of-plane” polarization

C. Thermal neutron experiment
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FIG. 9. Q scans along theg(@l) direction for two fixed energy
transfers: open circles dw=0.2 meV (right scal¢ and closed
circles athw=0.4 meV (left scalg. Lines are fit by the Gaussian.
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FIG. 10. In-plane scattering functions at the AF wave vector
Q=(0.5,0.5,1). Measurements performed using different experi-
mental conditiondi) fixed ke=1.15 A~! (squaresand (i) fixed
k;=1.55 A™! (circles have been rescaled. Closed symbols have

been obtained frong scans(see Fig. 9. Open squares have been

damping of the out-of-plane excitations in Pr-copper oxideObtained from energy scan at the AF wave vector where the back-

with presently unclear origin. On the other hand, the detergr.or:’nﬁ| has bfef‘ su?trac_ted. Thde line |I|s§ fit of &§) c_oml/ohggd
mination of the value of the out-of-plane energy gap is com-tvé')t(t) the resolution function and small damping is includeee
plicated by the presence of the strong background above™™
~12 meV energy transfdiFig. 8) and essential increase of
the intensity of the “on-rod” signal in this energy range <3 meV. This energy range, which corresponds to essential
(Fig. 7). Our measurements show that such an increas€hanges of the in-plane copper spin fluctuations yCRO,,
which was not observed in NEuQ,,* could be related to is discussed in more detail below.
the effect of the interaction between copper spin waves and
the 18-meV crystal-field excitation of the Pr iohs.

We mention that the appearance of the out-of-plane spin
fluctuation component in PEUQ, was inscribed in Ref. 1to ~ We now present the low energy resuiteelow 4 meV
an Observed energy Step atb meV at the temperature Of Whel’e Only the in-plane Spil’l Components occur. In contrast
10 K and it was claimed that it is a value of the out-of-planet0 the out-of-plane component, the in-plane one exhibits a
Spin_wave gap. Our data on Pr-copper oxide taken at differClear diSperSion. We first show the eXperimental evidence of
ent temperatures between 1.8 and 51 K, including those &N in-plane gap that appears as a result of the breaking of the
T=10 K (see Ref. 14 do not show remarkable temperature rotational invariance in thea(b) plane. Figure 9 displayg
dependence of the out-of-plane energy gap, which is equal t8¢ans across the magnetic rod at the AF Bragg wave vector
8.5+0.5 meV. Comparing the experimental conditions of Q=(0.5,0.5,1). Atw=0.4 meV, a magnetic signal centered
the two experiments we claim that our data are taken with &roundg=_0.5 is sizeable above a flat background. At lower
better contrast, i.e., ratio of magnetic signal to nonmagneti€nergy, here ab=0.2 meV, this signal is clearly reduced.
background, and with much better statistical accuracy than id his demonstrates the existence of small energy gap of the
Ref. 1. spin excitations spectrum. Figure 10 depicts the peak inten-

In Nd,CuQ,, a qualitatively different behavior from Sity versus energy at 18 K. It corresponds to the in-plane
Pr,CuQ, is observed at the magnetic zone centgr=1). scattering functionS;,(Q,w) [see Eq.80)], which exhibits
Indeed, as pointed out in Ref. 14, in M2LIO, both the in-  an asymmetric maximum at 0.4 meV. Here, the thermal
plane and out-of-plane spin fluctuation components did nopopulation factor enhances the lower energy excitations lead-
show measurable, dependence of the corresponding energying to the observed asymmetric shape. A similar result for
gaps. In the case of guQ,, only the out-of-plane energy q.=1.7 is shown in Fig. 11, where two clear steps are ob-
gap remains largely unchanged as compared to the zorserved. These steps correspond to an acoustic and an optical
boundary scans along, while the intensity of scattering excitation[see Eqs(60)]. We have repeated such measure-
from low-frequency in-plane polarized magnetic fluctuationsments for several representative valuesggfand obtained
drastically changesFig. 7). Now in the accessible energy the results plotted in Fig. 12. A clear dispersion along the AF
range we do not see a clear step signifying an energy galine is observed for both acoustic and optical branches. For
down to at least 1 meV energy transf@gfig. 8. One can wave vectors corresponding to integer valueqgf a small
conclude that the in-plane component of magnetic fluctuagap is always visible demonstrating the breakdown of the
tions in PpCuQ, exhibits a certain dispersion that is not rotation invariance in thea,b) tetragonal plane with easy
present in the case of the brother compound®id), and directions alonga andb axes. Atq.= 0, no point is reported
that evidently develops in the low-energy scale below 2.5 meV because no magnetic scattering is sizeable at

D. Cold neutron experiment
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FIG. 11. In-plane scattering functions at the wave vedfor 0 ' '
=(0.5,0.5,1.7). Measurements performed using different experi- 0 0.5 1 1.5 2
mental conditions(i) fixed ke=1.55 A~* (open circlep and (ii) q,
fixed k,;=1.55 A~! (closed circleshave been rescaled. All points
have been obtained from scans. The line is a fit of Eq.79) FIG. 13. Upper partQ scan along the* axis at a fixed small
convoluted with the resolution function. energy transfer. The spin-wave scattering persists near all ingeger

except ag,=0. The line is a guide to the eye. Lower part: dynami-

low energy. This vanishing of the low-energy scattering forcal structure factor for in-plane spin components for acoustit
.= 0 is confirmed in the upper part of Fig. 13. This scan hadine) anql optical excitationgdashed ling where gccordlng _to the
been performed along the AF line for an energy transfer ofud9estion below Eq78) we refer to as acoustic and optical the
0.6 meV as sketched by the dashed arrow in Fig. 12. It thefifanches with plus and minus sign in EG80) for all qc. The
crosses the acoustic dispersion curves near integer values JpMic form factor of copper spin,(Q), has been included for

ieldina observed peaks. However ct=0. the acoustic comparison with the experimental result. We note the absence of
g;gitationgis not obserr)ved ’ REY, any scattering on the acoustic branchggt0 due to the interfer-

: ., ence effect discussed in the text.
In order to describe further these results, we now consider

theoretical expressions for the spin-wave neutron cross seg- . : L .
tions for the in-plane component given in the preceding secfype witht=1 in Eq.(79). The magnetic scattering is maxi-

: ; : mal along wave vectorsQ=(0.5,0.5q.) for which
tion. In the case of BCuQ,, the structure is of LaNiO, cosQ- &) = — cos(mgy). The in-plane scattering function can

then be written as

] . o
] SnlQ0) = S ex —wikeT)]

25 |

> Aopt

12, q) ] €opt

Aac
o(w— Eopt)+_ (w—€z0) |,
€ac
(81)

whereA,c opi= 1+ QZ/Q?F (1 - QZ/Q?)cos(mq,) where the
signs (~) and (+) stand for the acoustic and optical
branches, respectively, a@.=(2#/c)q.. Let us notice
that the factoré(w— €ac,0pt)! €ac,opt IS Usual for antiferro-
magnetic spin-wave cross sections whereashthg, ,; terms
result from the noncollinear spin structure. This expression,
4 : when convoluted with the spectrometer resolution, can de-
P Y S N B scribe the measured in-plane scattering functions. It accounts
0 0.5 1 1.5 2 very well for its observed shape and lines in Figs. 10 and 11
represent the best fits. In this expression, no damping is in-
¢ cluded due to the sharpness of the steps, which corresponds
FIG. 12. In-plane spin components dispersion curves along th&? the energy resolution. However,@t=1 (Fig. 10 a weak
c* direction. The arrow indicates the path of the scan reported ifmagnetic scattering extends up to the lowest energy investi-
Fig. 13. Lines are fit to Eqgs(60), corresponding to low-energy gated @=0.1 meV). As a matter of fact, one can account
acoustic(full line) and high-energy opticaldashed ling excita-  for this tail by including a damping of about 0.2 meV into
tions, respectively. Eqg. (81).

Energy (meV)
n

0.5 [
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the in-plane excitations at=18 K. Applying Eq.(40) for
_ S=1/2, we obtainP=0.45+-0.04 meV for the intraplane
Pr,Cu0, | pseudodipolar interaction. This value is one order of magni-
T=18 K | tude larger than the value theoretically estimated in Refs. 22
Q=@112124q) | and 23. Furthermore, this value is confirmed by an analysis
6 7 of the spin-flop transition data of Ref. 1 given below in Sec.
] VIl as well as the AFR dat¥* We discuss this problem in
the last section of this paper.
According to Egs(60) and (61) all other spin-wave pa-
] rameters depend on the strong in-plane nearest-neighbor su-
— perexchange inte_ractiQh Henqe, in order_to detgrmine these
* : magnetic interactions, a precise valuelds required.
X Knowing the spin-wave velocitg, one can determind
] using renormalized spin-wave energfp3) where ¢
| =2SJy2ka anda is the lattice constant. Corresponding val-
e TR ues given in Ref. 1 are follows:,=0.85+0.08 eV A and
J=130=13 meV. Recent, more precise experiments based
on the localization effect in the momentum space for
9. Pr,CuQ, gavec,=0.81+0.02 eV A andi=124+3 meV3®
FIG. 14. Spin-wave dispersion curves along tifedirection in Qur re;ults only slightly depend on the differen.ce] walues
noncollinear PICuO,. The lines are fit by Eqs(60) and (61) for given in Refs. 1 and 35. However, below we will use the last

the in-plane and the out-of-plane excitations, respectively. one. . .
From our experimental data and E¢480) with | =0, the

TheAg opt terms are reported in the lower part of Fig. 13: total amplitude for the dispersion i§16SJR,=2.8+0.05
they display striking interference effect. The lower-energymeV, and for S=1/2, one obtainsR,=7.9+0.05<10"°
branch(acoustic excitationshas a structure factor given by meV. Then, using the determination 8§ given by Eq.(24)
the full line: clearly, forg.=0, the acoustic scattering is and the lattice constans=3.958 A andc=12.19 A, we
forbidden. This exactly explains the obsengddependence get the interplane pseudodipolar constant @s-0.023
(upper part in Fig. 18 Thus our model with pseudodipolar =0.001 meV. This value is one order of magnitude larger
interactions in noncollinear spin structure satisfactorily ex-than the corresponding dipolar magnetic interactises last
plains the vanishing of the acoustic mode structure factor agection. From the out-of-plane gapd,,=8.5+0.5 meV

8 [ out-of-plane mode

Energy (meV)

optic

acoustic

q.=0. given above and Eq.(61) we get A=[6.9x0.5
X 10 2](S/{S))? meV and using the experimental value of
E. Determination of the magnetic interactions the ratio (S)/S=0.8" we obtain A=(10.8+0.1)

X102 meV. This value of the easy-plane anisotropy is
three times larger than that discussed in Refs. 22 and 23.
We compare now these results for,@uO, with available

data for NgCuQ, and point out the following striking dif-

' ferences.(i) In Nd,CuQ, there are two spin reorientation
ropy A related to the out-of-plane gap. Figure 14 resumes th?ransitions atT,~80 K andT,=30 K (Refs. 2,3,10 [see

whgle d!spe_rsion scheme alon_g axis within the first mag- Fig. 1(b)]. It means that the interplane PD interactiqn
netic Brillouin zone. The two in-plane components and the

ice d d . hanges sign twic®. (i) Both in-plane and out-of-plane
twice degenerated out-of-plane component are presenteaaps are strongly dependent and the former is one order of
The out-of-plane branch does not dependjgrand the out-

it I than in th . (iii) The dis-
of-plane gap, which is found to be At,,;=8.5+0.5 meV at magnitude larger than in the case ob®u0;. (iil) The dis

. ) ersion of the in-plane excitations along the (1/2 i-
10 K. It is a larger value than the one previously repotted. Fection has not bgen observ¥d. g (L/2ddpd
As we have pointed above, our data are taken with much 1. (it and the second peculiarities are related to the

better statistical accuracy than in Ref. 1 and thus we believ%ramers ground state of the Ritlions and will be discussed

that they are more reliable. The in-plane spin component, gec X The latter may be explained by the large value of

exhibits clear dispersion alor . Lines in Fig. 14 as well as e in-plane gap. Indeed, in this case from E@) with |
d.ashed. and full lines i.n Fig. 12 corrgspond to the calculateézho Wepobtaig tﬁe followi'ng extremal values o(??he in-plane
dispersion on the basis of Eq®0) with | =0. Clearly, de- spin-wave energy:

scription in terms of pseudodipolar interactions only repro-

We now deduce magnetic parametdisthe pseudodipo-
lar intraplane interactio® responsible for the in-plane gap,
(i) the pseudodipolar interplane interacti@mesponsible for
the dispersion along the* axis, (i) the planarXY anisot-

duces very accurately the observed dispersion. Having in 8SJR

mind the discussion after Eq8) we conclude that the €M = Ao+ A

pseudodipolar interaction between neighboring plaQeis 0

the interaction responsible for the observed 3D long-range (min) _ A (82)
magnetic order and one does not need to consider the inter- €in T 520

action | between copper spins along thexis. According to Ref. 14 the smaller value df, is approxi-

From the measurements at integer valggs 1 and 2, we mately 2.5 meV at high temperature and the experimental
obtain a value ofA;=0.36+0.03 meV for the lowest gap of erroris+=0.25 meV. Hence, the dispersion cannot be visible
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b ’ in-plane spin waves withk=0 andk=Kk,, the ground-state
\ energy acquires an additional term and is represented as fol-
lows:

2

A
E=SNJ, m(TOJO)Z(SinZZWF SirP2¢,)

_ ( gMHL,l)Z_(gMHL,z)Z_ &
2S ] 2S5 Sk

— SPNJG{XI[ AL o+ 2SHRo— (guH| 2)?]

+X3[ A% 1+ 2SHRo— (guHT ) 1-4SJHReX1 X5}
X{[Af 1+2SHRo— (guH) 1)?]

FIG. 15. Spin configuration in magnetic field. Indidds),(1I1) X[Aiznvzﬂ— ZSJORO—(g,uHM)z]—(ZSJORO)Z}_l,
and (21),(2lI) label neighboring spins | and Il in the subsystems 1

and 2, respectively. (89
whereR, is given by Eq.(24) and
if (165JR)¥?<1.6 meV, i.e., the same order of magnitude
as determined above for fBuOQ, . Af, 1 2= Afcosde o+ (guH | 19)%, (86)
VII. SPIN CONFIGURATION IN MAGNETIC FIELD X1~ SQ,CO8 @1+ @)+ (guH 12 (QuH |1 )/ (2S ).

In this section we examine the copper spin configurationrhe minimum of this energy as a function ¢f, and ¢,
of the noncollinear AFRR,CuQ, in magnetic field qpplied iN determines the ground-state spin configuration.gjH
the basal plane &t=0. We obtain the corresponding expres- <A  the last term in Eq(85) is small and may be neglected.
sion for the ground-state energy and analyze it in two pracy the end of Appendix B we will show that the denominator
tically important limiting cases studied in Refs. 18 H o this term is a squared product of the in-plane spin-wave
along the[1,1,0] direction and(ii) H at small angle to the gnergies ak=0. As is well known the spin-flop transition
a (b) axis. We demonstrate that in the former case the trangakes place when one of the spin-wave branches becomes
sition is second order, with a critical field given by B@).  gapless. Hence, near the transition this denominator is small
The spin configuration in magnetic field is shown in Fig. 3nd the second term in E¢B5) becomes essential.
15. At the first sign we obtain the ground-state energy of the | \ye neglect the interplane PD interaction, the enelgy
system adding to Eq41) terms that describe a change of the hecomes a sum of two terms corresponding to independent
energy connected with relative rotations of the sublattices ORybsystems 1 and 2. In particular, the ground-state energy of

the anglesd; and 9, in the corresponding perpendicular conventional two-sublattice tetragonal antiferromagnets  is
magnetic fielddsee Fig. 15 and Appendix)AThese terms determined by

are given by
2 2
H
guHL 12\% (gpHL 12| E=S?NJy| ————sir?2 —(gM l)
AE1’2282J0N|:(’[91’2+ 28\1) ) _( 28\1) y 0 1&8%)2 ¢ 28\1)
(83 2
. . (guH guH))
whereH, 1 ,=Hsin(@—¢; ) and ¥, ,<1. As is well known T oSIVAZ —(auH? 87
(see also Appendix A at equilibrium we have (2SJ1)TAin—(guH))7]
guH if a(b) is an easy axis. According to the end of Sec. V the
91— Vo1~ —m same expression remains valid for {tg1,0] easy direction
25 if one changes the sign in front (Afg in Egs.(86) and(87).
) (84) It should be noted also that E¢B7) is applicable to the
AE, )= — S2JoN gf“HLl,2) _ AF compound YBaCu;0g, , (YBCO) with antiferromag-
' 2S% netically coupled adjacent planes (Culilayers. Indeed in

magnetic-field neighboring spins alongxis rotate in oppo-
site directions without violation their mutual antiparallel ori-
. ) : ) entation. Hence experimental studies similar to Refs. 1-5
additional interaction appears betwegrspin components  rqide a possibility to determine magnetic anisotropy of
and miagr]etlc field. Trlls'mteractlon is linear in operatorsundoped YBCO compound as well as the value of the in-
(ag—ag)/i and (ako— ako)/l. It should be excluded as well plane spin-wave gap. It has been done recéftly.

as the interactioW; given by Eq.(21). It was done in Ap- Let us consider now the ground-state spin configuration in
pendix A. As a result we have Bose condensation of thewo important limiting cases that have been studied

However, rotations of sublattices on angi&s, give rise
to simultaneous rotations of the correspondyraxes and an
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experimentally:~ (1) The field is along th¢1,1,0] direction
(y=ml4). (2) Field is applied at the anglgg<1 of the
[1,0,0Q] direction.
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instead of a={[A§—(guH)?1/(240)%}*=[(Ao—guH)/
Ao]Y? which follows from Eq.(89). This crossover from
a~(Ay—guH)¥? to a~(Ay—guH)Y* behavior near the

We begin with the cas¢= /4. Due to the symmetry the transition has been observed recently inLG0O,.% It
spins of two subsystems rotate in opposite directions by thghould be noted that Eq92) is not applicable at the very
same angleo= ¢, the sume; + ¢, remains unchanged and vicinity of the transition where the critical fluctuations be-

Ry is a constant. As a result from E85) and(86) we get

AF gu
—16(8%)25|rF2¢ (ﬁ) S|r12(
B (guH)*cos2¢

4(2S%)’[Afcos 4p—(guH)?sin 2¢]

E:282NJ0|

} . (88)

This energy differs by the factor 2 only from the energy
of the collinear system given by E{7). Hence, the subse-
guent analysis is applicable to both collinear and noncol-

come important{see discussion in Appendix A after Eq.
(A.22)].
We consider now the case of the field directed almost

alonga axis, i.e., wheny<1. It is the case, studied experi-
mentally in Refs. 3 and 4. I§y=0 the second term in Eq.
(85) disappears. However the spin-flop field may be deter-
mined from the condition of the positiveness of the denomi-
nator(see Appendix B As a result forgy=0 we get

guH=[A5(AG+4SHRo) IV (93)

Obviously, the spin-flop transition is of the first-order one

linear systems. It is a result of a particular symmetry of theand if H>H_ we have the state with all spins alobglirec-

problem aty= /4.

For small field, one can neglect the second term in Eq.

(88) and obtain

2
9k H) . (89)

sin 2(p=—( A
0

This field dependence of sipZhas been used in Ref. 5 for
low-temperature neutron scattering data in

description
Pr,CuQ,. From Eq.(89) we get also Eq(2) for the critical

field of the transition. However, at sip2z—1 the denomi-

tion.

If y<<1, for small field we can neglect the second term in
Eqg. (85 and obtain for the ground-state energy the following
expression:

E=S?NJ, A—2(8|n22<p+3|n227])— |QO|COE{(p+77)
16(SJ)?
2 i+ cosu . (99

nator in the second term of E(B8) is equal to zero and the wherep=¢;, 7=¢,* 7/2, and we used the definitia24)

problem needs more careful consideration.
Let us rewrite Eq(88) in the following form:

52
=—h?+ —cos2a—

1h2cos 2
2S2J,N 4 :

h*sirf2a
4(— 8%cos 4a+h?cos )’

(90

where a=o¢+ml4, 6=A4/(2S)) and h=guH/(2SY).
From the conditiordE/da=0 we get

(— 8%cos 2x+h?)Z2—h*Zcos 2

h4
+ ?sin 2a(268%sin 4a—h?sin 2a) |sin 2a=0,
(9D

where Z= — §%cos 4+h?cos 2v. The solutiona=0 corre-
sponds to the collinear state.

If h?<$° we can take into account the first term only,
which gives Eq.(89) again. In the near transition region
where 6°—h?< 6% anda<1 we obtain after simple calcula-

tions

AZ—(guH)2| ™ [ Ag—guH| ¥4
a={———5— =|——— (92)
2A3 Ao

for Ry. The energ\E depends now on two independent vari-
ables, and from the conditionte/d¢=JE/Jdn=0 we have

__ (QuH)*(AGH+24535| Qo) 3(guH)?
AG(AG+325230| Qo) ang
(95)
H)?(A5+485%) 2
7]:(Q,U« )“(Ag+ o|Qo|)¢:3(g,U«H) (96)

2A3(AZ+325235|Qql) 4A3

We see thatp and n are proportional to the angle in
agreement with experimental data of Ref. 3 antl »=0 if
A3<8S215|Qy|. With increasingy the spin flop remains the
first-order transition and smoothly approaches the second-
order one aty=7/4.

Using Eq.(2) and data of Ref. 1 one can determine the
in-plane spin-wave gap for FEuQ, independently from the
inelastic scattering. Indeed from Fig. 4 Ref. 1 we obtain the
critical field H.=4.4T at 4.2 K andAy=0.51 meV, ifg
=2. This value is slightly larger than,=0.36+0.03 meV
given above. However, from the same figure we gkt
=2.0T andAy=0.23 meV afT =25 K. Assuming lineai
dependence ofl; we obtainAy;=0.33 meV atT=18 K in
satisfactory agreement with inelastic scattering data. How-
ever, we need to be careful about this comparison as the
samples used in Ref. 1 and this study have differenélNe
temperaturesTy=284 K and Ty=247 K, respectively. In
this respect we wish to point out that, in a sample with
=249 K, a reentrant behavior éf; has been observed with
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a maximum aff,,=5 K.?® Nevertheless, the observ@die- a. ¢=0. Below the spin-flop transition wheguH <A,
pendence of the critical fieltH is actually confirmed by the spin structure is determined by angles=0 and ¢,
preliminary inelastic neutron scattering, which indicates a=* #/2. In this case, instead of E¢0), we have

similar T dependence at low temperatufigelow ~20 K).

Although its theoretical explanation is still unclear, it is €2 =A2+2S}HRy+4S2Jol (1—cosk,)
probably related to the interactions between spin waves. -
Hence, we conclude that the data of Ref. 1 confirm the ke|? Nk
large value of the in-plane gap in comparison with the theo- *1|2ShRocos5 | +(guH)™r . (10D

retical calculations of Refs. 22 and 23. Interestingly, it
should be emphasized that, in the undoped YBCO comye see that now there is a gap &= equal to
pound, a similar value&\;=0.3 meV has been recently de- (g,uH)Z(ASﬂLZSJORO)’l’Z if 1=0 between acoustic and op-
duced from the field dependence of the AF Bragg interiSity. ica| pranches. At the same time the spin-flop field is deter-
mined by the conditiore? (k.=0)=0, which coincides with
VIIl. SPIN-WAVE SPECTRUM IN MAGNETIC FIELD Eg. (93). In the spin-flop phase we have,=— /2,

Similarly to the above discussion we restrict ourselves tdloUPly degenerate in-plane mode with energy given by
consideration of the spin-wave spectrum in magnetic field

along thec direction only, wherk,=k,=0. The spin-wave €e=A5+(guH)?+ egg+ 48235l (1-cosk), (102
modes are the solutions of the equatiffw) =0, whereZ is
given by Eq.(B12). In the considered case, it may be repre-where €2 is given by Eq.(53). We see that the spin-wave
sented as follows: spectrum remains stable at all valuedhfand, in particular,
for H<H.. It means that the metastable state should exist
that may be achieved if after the spin-flop transition one
lowers the field belowH, as it should be in the case of the
) .2 5 first-order transition. It should be noted also tiAgf in Eq.
X[ =AG+(guH|2)“]=0, (97) (102 may not coincide with the in-plane gaptt=0 due to
whereA? s given by Eq.(61) and an additiqnal con_tribution relatt_ed to the Bose condensation
out ' of the uniform spin wavesgsee discussion in the end of Ap-
(2 A2 2_ 2 2 pendix A).
di @)= ("= Aoy (01~ €1 )~ (guH) b. = /4. In this case two subsystems rotate in opposite
X (202 + A2+ €2 )+ (guH); )% (98  directions at the same angle= — m/2+ a and R, remains
’ ' constant. Near the transition whegetH <A, the angle«

2

kC 2 2 2
2SJRocosy | [0 —AG,+(guH|1)7]

dy(@)dy(w) >

fizzASCOS4<P1,2+(9MHL1,2)2+ 2S 3R, . =ml4+ ¢ is given by Eq.(92) and we obtain
At H=0 from (97) we get Eqs(60) and (61). ke
As we will see below in real systems such as@0, the 2 ={18A3[Af— (guH)? Y+ 2S 3Ry 1+ cos,”
out-of-plane gap\2,,, is much larger thann3, 2SJR,, and
guH=A,. Hence, the field corrections to the out-of-plane +48%3g1 (1—cosk,). (103
mode are negligibly small. At the same time for evaluation
of the in-plane modes we may negleg;L(HH)2 andw? com-  In the collinear phase we have= — /4 and
paring withA2 .. As a result, instead of E497) we get
k
[w?— €+ (guH)) 2l 02— 3+ (guH|2)?] €% =(guH)*~AJ+2S IRy 1= cos;
k 2
- [ZSJOROCOSEC =0. (99 +48%Jgl (1—cosk,). (104
The solution of this equation is given by The e_ mode is a gapless one exactly at the transition

field guH=A, as it should be in the case of the second-
1,0, ) ) order transition. However, due to critical fluctuations the
€+ 5[51+€2_(9MHH1) —(9uH|2)7] field dependence of the gaps may deviate from the simple
expressions given by Eq$103 and (104 [see discussion
i after Eq.(A.21)].
iz[[el—ézﬂgﬂan)z_(gMH1)2]2 Let us consider now the neutron scattering RyCuQ,

systems in applied magnetic field. The elastic scattering has
been discussed in Sec. IV. The out-of-plane spin-wave scat-
tering remains unchangddee Eq.(77)]. It may be easily
shown using Eqs(71) and (B18).

As in the previous section we consider the two cages From Eqs(72), (74), and(B10) for the scattering function
=0 andy= /4. S, at >0 we get

2S3R,COS~

+4 >

2) 1/2
] . (100
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23 Q2 other physical problems, such as the longitudinal spin fluc-
S (Q,w)= ﬁ [w?— €5+ (guH))?]| 1- _y21 tuations in ferromagnets with dipolar interactihrhus ex-
l1-e @7 Q perimented investigation of the longitudinal fluctuations in
2 2 P the considered case is related to the important problem of the
+lo— e+ (guH))?] many-particle physics.
QJ2
x| 1- =] +4S%(C-D) IX. RESULTS AND DISCUSSION
We investigated magnetic properties of noncollinear te-
~Aa Qy1Qy2 tragonal antiferromagnet®,CuQ, with particular attention
x| €y1€y2— Q2 cod 7ar- 9) to PLCuO, and NCuQ,. We obtain the following main
results.(1) The noncollinear C&i" spin ordering below the
1 1 Neel temperature is explained on the assumption of PD in-
X e, Slo—e)=5— Slw—e-)l, (109  teraction between copper spins in Guplanes as well as

between the adjacent planes. Corresponding expression for
wheree? , is given by Eq(98). As above we consider again the ground-state energy k=0 is given by Eq(41). (2) We
two limiting casesy=0 andy= =/4. demonstrate that the interplane PD interaction contributes to
a. y=0. We do not analyze here cumbersome expressiothe out-of-plane spin-wave gdiq. (61)] and splits the in-
for S;,, below the spin-flop transition. Above this transition plane spin-wave mode into acoustic and optical branches
as well as in the metastable state below it we hblyg, [Egs.(60)]. (3) Interaction between spin waves gives rise to
=0, e;=€,= €, Where e, is given by Eq.(102 and we the in-plane spin-wave gap, which depends on the orientation
obtain of the sublattice magnetization in thalf) plane[see Eq.
(59)]. This dependence is crucial for determination of the
 Spd(w—€) spin orientation in a magnetic field. In the end of Sec. IV it is
Sin(Q, @)= efl—exp—e/kgT)] (106 shown that thep dependence of the gap given by EB9) is
not a specific result connected to the PD interaction, but is
b. yy= /4. Again we do not analyz§,, below the tran- actually a consequence of the square symmetry of CuO
sition. Above it we have collinear spin structure that coin-planes.(4) We present the expressions for the neutron scat-
cides with the structure of LAIO, type att=1 and tering cross sections, which take into account the noncol-

La,CuQ, att=2. For the scattering function we obtain linear spin structure of thR,CuQ, compounds(5) Detailed
inelastic neutron scattering data are presented IR, in
- s2J, / Q;2/1 the case of the transferred momentum along the (1/2,/2,

direction. In particular, we demonstrate that acoustic spin-
wave scattering is forbidden &=(1/2,1/2,0) due to de-
1 structive interference occurring in the noncollinear structure
X[1F(—1)'coq 7ae- 63]2— Sw—e€x). with pseudodipolar interactiong6) We determine the out-
€= of-plane spin-wave gap,,;=(8.5+0.5) meV. This value
(107 is larger than previously reportéddowever, as shown in
Sec. VI, our data are taken with much better statistical accu-
We see that in this collinear structure the interplane interracy and our value oA, is more reliable(7) We observe
ference remains and disappears if one neglects the interplageoustic and optical spin-wave branches and determine their
PD interaction. It should be noted that this interference is alispersion(Fig. 14. It is well described by Eqs(60). (8)
consequence of a monodomain state after the transition. IfFrom these data we determine that the in-plane spin-wave
deed, in the applied field directions of the spin rotations argjap A,=0.36+0.03 meV and using Eq40) calculate the
fixed [see Fig. 1% and as a result the monodomain stateintraplane PD interactioR=0.45+0.04 meV. This value is
appears in contrast with the conventional collinear systemgne order of magnitude larger than the theoretically pre-
(see Ref. B dicted in Ref. 22 and 23. However, it is confirmed by AFR
It should be noted also that in the considered gasand  (Ref. 34 and analysis of the transition data of Ref. 1 given in
y, axes are parallel to the field. As a result the intensitySec. VII. Discussion of this disagreement is given bel(8y.
strongly depends on the projection @fon the @,b) plane.  From the observed acoustic and optical branches we find a
In particular if Q=(%,—3%,0) we haVeQil/szl and the Vvalue of the interplane PD interactionQ=[0.023
spin-wave scattering is forbidden. At the same time the scat*0.00] meV. This value is much larger than the corre-
tering connected with the longitudinafluctuations is maxi-  Sponding magnetic dipolar interaction between neighboring
mal. The intensity of this scattering calculated in the one-Cu spins in the adjacent planes, which is given by
loop approximation displays the infrared divergence and

Sin T 1-exp—wlkgT)| ! Q2

Im x,, in the gapless case &= 7+ky and w—0 diverges 24(gug)? ,
as 1k and T/w? at T=0 and T+#0, respectively’’ Obvi- Qmagdip= ~ [2a2+ 02]3/2: —2.2X10°= meV
ously this divergence should be screened by the higher-order (108

terms. However, this very complex theoretical problem is far
from the solution. It appears more demanded if one takesising the same definition a in Eq. (8). (10) The spin
into account that similar infrared divergence appears in mangonfiguration of the noncollinear spin structure is analyzed in
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magnetic field parallel to theap) plane. For the field along sideration of this problem is beyond the scope of this paper.
the[1,1,0] direction the transition is of second order and the(12) The spin-wave spectrum in magnetic field is considered
critical field is given by Eq.(2). For other directions the and expressions for the inelastic neutron scattering cross sec-
transition is of first order. It is shown also that for fie0,0]  tions are given.

direction the metastable spin-flop state should exisHat The results listed above are discussed in the main part of
<H. whereH, is given by Eq.(93). (11) Analysis of the the paper. Hence, here we present some additional com-
data of Ref. 1 confirms large value of the in-plane gap inments. First of all, we wish to point out that the intraplane
Pr,CuQ, determined in the neutron scattering experimentsPD interaction maintains the long-range AF ordef &0 in
However, strong temperature dependence of the critical fielthe isolated Cu@plane in contrast with the fact that in the
H. observed in Ref. 1 and confirmed in Ref. 28 remainglinear theory the spin-wave spectrum is gapless and the spin
unexplained. Presumably it is related to the nonlinear interdeviationS—(S) diverges. Indeed, we have seen in Sec. IV
action between spin waves and canted magnetic feeld the that interaction between spin waves gives rise to the in-plane
end of Sec. VIJ. This interaction gives rise to a contribution gap. By the same token the gap appears in the out-of-plane
to the free energy that is essentialTat A,. However, con- branch too, ifA=0. It has the following form:

dk,dk,

~0.0338P. (109
—7 (2—cosk,— cosky) 42+ cosk,+ cosk,) 2

_ SP fﬂ (cosk,—cosky)?[6+4(cosk,+ cosk,)?—7(cosk,+ coskpy)]
2

These gapa;, and A, prevent the divergence of the spin these ions are proportionatQ,/T and Q,/T? where Q,
deviation and maintain long-range magnetic order. HenceandQ, are positive. As a result the strength of the interplane
we have a new example of the so-called ordering from thd®D interaction has the form
disorder(see Refs. 39 and 40 and references therein

Comparison of the spin-wave gaps in,@uQ, deter-
mined in this study and in N€CuO, (Ref. 149 reveals the Q1 Q, T, 2
following important features.(i) The in-plane gap in Q=Q0—?+§:Qo<1—?><l—?), (110
Pr,CuQ,, as well as in antiferromagnetic undoped YBCO
compound® is one order of magnitude less than in
Nd,CuQy. (ii) In Nd,CuQy, both gaps are strongliydepen-  whereT,;=80 K andT,=30 K are temperatures of the spin
dent,Aiznyoup 1/T, whereas in RICuQ, only the in-plane reorientation transitions. Hence Qf,>0 the magnetic struc-
gap has a noticeablBdependencé: which is clearly differ-  ture is of the first type (LaNiO,) if T>T; andT<T, and is
ent from the Nd-compound case. As a result we concludef the second type (LL&uQ,) for T;>T>T, [see text after
that the values of both gaps are determined not only by th&q. (41)].
intrinsic properties of Cu@planes but also by the type of the  In the end of Sec. VIII we have pointed out the problem
RE ion. It may explain the difference of the value of the of the infrared divergence of the longitudinal spin fluctua-
intraplane PD interaction determined above and calculated itions in antiferromagnets. Cuprates and, in particular,
Refs. 22 and 23. In particular, in addition to the intraplanePr,CuQ,, are very convenient candidates for experimental
PD interaction, the square anisotropy mediated by anisonvestigation of these fluctuations. Indeed, there are rather
tropic interaction of the copper spins with RE ions in the small gaps comparing to the very strong intraplane exchange
form of Eq. (62) may contribute to the values of both gaps. that is responsible for the quasi-2D infrared divergéhtieat
In this respect it would be very important to determine theshould manifest itself ab just above 2;, where the spin-
in-plane spin-wave gap in compounds without RE ions suclwave contribution becomes negligible. Corresponding ex-
as SyCuO,Cl, and the spin-flop experiments are urgent with perimental studies would be highly desirable.
magnetic field along thgl,1,0] and[1,0,0] directions. In this In conclusion we present a theoretical description of the
way one can find out if the magnetic structure of&QrO,Cl,  spin configuration and spin-wave spectrum of the noncol-
is noncollinear. In any case, E(R) allows us to determine linear tetragonal AR,CuQ, assuming the PD interaction in
the in-plane gap. Indeed, this equation holds Hjf 1,1,0] CuG, planes as well as between them. The inelastic heutron
andH||[1,0,0] for the[1,0,0] and[1,1,0] easy axes, respec- scattering data for BEuQ, are presented. They confirm the
tively. existence of the PD interaction in this compound and allow

As we have mentioned in the Introduction the 3d us to determine the main parameters of the theory. Compari-
crystal-field ground state is a Kramers doublet and its locason of the data for B€uQ, and NgCuQ, (Ref. 14 as well
susceptibility roughly behaves asT1/t explain$ spin reori-  as the undoped AF YBCQRef. 3§ with the theoretical
entation transitions in N@CuO, observed in Refs. 2, 3 and results of Refs. 22 and 23 reveals a strong dependence of the
10 (see Fig. 1 In Fig. 1(a), we see that there are two super- anisotropic interactions between €uspins on the type of
exchange paths through one and two Nd ions, respective\RE ion. The spin configuration of the noncollindgsCuQ,
which connect neighboring €t ions in the adjacent planes. antiferromagnets in canted magnetic field is analyzed as
Corresponding contributions to the PD interaction betweenvell.
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whered,, Ay, vk, Sk, I, andIl; are given by Eqs(18),
APPENDIX A: GROUND-STATE ENERGY IN MAGNETIC (24), (50), and (57). Hence, Eq(A6) may be considered as
FIELD an effective non-Hermitian Hamiltonian.

Here we derive Eq(85) for the ground-state energy of the ~ The interactionH, is linear in operatorsa anda”. It
system in magnetic field applied in parallel Cuflanes. We ~ Should be eliminated using the substitution
begin with the collinear case. Then we consider two noncol- 2
linear subsystems with the PD interaction between them. a—a.—i N_S) P
External field rotates neighboring spins in | and Il sublat- L 2 P
tices as shown in Fig. 15. As a result the spin operators may (A8)

be represented as follows: 12
a;—>a;+i 7 M; ,

S,=€,:S,,1€,yS,y+ CS)x» (A1) . o _
wherep=1,I1, S, are given by Eqs(12) and unit vectors wherep=0ko; pp andu, arec numbers. Similar substitu-
- h the f ¢ Ea (11 tion appears in the theoretical consideration of the diluted
€,z(y) have the forn{cf. Eq. (11)] Bose gas belowT, and is a result of the Bose

& —[cog o+ 9).sin o+ 9).0 condensatiori®® The linear term in the Hamiltonian disap-
a=[coge Sin(e 01, pears ifu, andu, satisfy the following equations:
e =[~cose— 1), —sin¢—1).0], (A2) ‘fo,U«o_,BOMSr_K,U«kO:_Kﬁ,

ey =[—sin(¢+9),cog o+ ),0], Bt not et — Kt = — K9
0 0 ko ,

ey =[sin(¢—9),—cog ¢—9),0]. (A9)

—Kuo+ - L =A,
Substituting these expressions in E¢k3),(14),(16) and the #o gko'uko ’Bko’uko
Zeeman term of Eq(3) we obtain in the Hamiltonian con-

sisting from three terms ~Kag = Bt &gt = A
H=Ey+H;+H,, (A3)  whereK=guH and A=guH, 4+2SJ. The solution of
this system is given by
where
Ey= NS I — L+ (94 90)%— 92] (Ad) ro=—{KI[(£o+ Bo) (£k,~ BisBiy) — (£k,~ By K?
1 BN + KA €0yt Big) + B €k, Biey) — K?Thdg
Hl:i—\/T[gMH”ﬁ(ag—aO) (A10)
={-K?9 + + + B Bo ) —K?
~(guH, + 25 1) 8 ~ay,)] (A5) iy ={ [(£oék,T €0Bk,T EkBot BrBo) —K7]
+A[(éi, T Biy) (£6— BoBo )+ (Bo— €0)K?Thdg 1,
Ho= ; [&@ay at 3 (Brag al+ B aa i) where
—guH A ad, (A6) do= (&= BoBo ) (éic,~ BicoBr,)
where Hj=Hcos@—¢) and H, =Hsin(—¢) are compo- —K?(2&p6,,+ BOB;’O+ Bo B,) tK*  (A1D)

nents of the field parallel and perpendicular to the staggered

magnetization,=guH/(2S%), 9<1. The linear ternH,;  and expressions fqi, and,uk*0 follow from Eqs.(A10) after
appears as a result of the interaction between the canted fiejlplacementd— g* and g*— . At the same time, from
with y components of the sublattice magnetization. Here wesg, (A8) we have

retain the linear irm anda™ terms only. Cubic terms should

be important a > A, (see the end of Sec. Vlhs well as at wh =k (A12)
the very vicinity of the spin-flop transitiofsee below. In P P

Eqg. (A6), we should take into account the spin rotation de-According to Eqs.(49) and (A7) in our approximation we
termined by Eq(A2) and instead of Eqg47) we have have
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5(2)_ BoBa =2Sh(2£0— Bo— Ba )= Afﬂ(% H), factorf=(1— u?/8), which becomes important very close to
(A13) the transition only. Indeed, setting for examptes 0.9 we
gi — 'Bkoﬂlj = 25‘]0(2§ko+ ng0+ ,3k+ )= A% outs getf=0.94 andf = 0.993 for the two cases mentioned above,
0 0 0 respectively. Moreover, in the second case whare ¢
where + /4 is given by Eqg.(92) if r=0.99 we getu=0.52 and

5 5 f=0.97. Hence, we may use the linear approximation near
Ajn(p,H)=Agpc0s 4p—(2S%3)(guHL).  (Al4)  the transition too except for a very narrow region where the

Using these expressions and E§0) we get critical fluctuations become important. However, consider-
ation of this problem is beyond the scope of our paper.
d0=(A§0ut— KZ)[Aizn(go,H)—Kz], (A15) For the noncollinear spin structure one has to take into

account the interaction between two subsystems given by
o= g =(guHguH [AL(¢,H)—K?]"1. (A16)  Egs.(22) and(25). As above the magnetic field gives rise to
linear terms in the Hamiltonian in the form given by Eq.

At the same time we obtain (A5) that acquire an additional indéx 1,2 labeling the sub-
systems. The interactioWw; given by Eq.(21) should be
Hhic,= dotl —K29(AZ KD +A[ A2 (AZ . K?) taken into account too. These linear terms should be elimi-

nated by the substitutiofA8) where nowp is equal to Q,
andkg,i, respectively, and=1,2. As a result instead of four

X(ZSJO)‘l—(Aizn—Kz)ZJON*; Nk } (A17)  Egs.(A9) we get

7 + + _
and the expression fqzlfo that differs by sign in front of the Sortor~ Bortor~ Kastkgr+ Comao— Dopzo= X1,
last term in the square brackets. Hence, the condiddi®) N -~ . . N
may be fulfilled only ifA=0 and we have ~ Bowttort €orreor— Kapey 1~ Dopaot Comgo= X,
H ~
O=— o= — gz'LLSJ: . (A18) —Kaport+ Exgabigr — Brgrii,ut Crgheaky~ Digtak,= A1,
Using this expression and Eq#10), (A13)—(A15) we get —Kopgy— ’Bzoll’l’kol—’_nékolﬂlrol_ Dk0M2ko+ Ckol—L;kO:Aly
A22
o=t = guHguH . () )
0= Mo =" 2 2° and another four equations which follow from E&22) by
A +(guH, )%= (guH
0C0s dp+(guH, )"~ (grH)) replacement (£2). Here
y (A19)
gu ~ .
M= MIOZ F\]OHMO- €k12= k12T Ro,  Ro=— S@§S|m 1t ¢2);
Substitution (A8) gives rise to a contribution to the Kio=guHj12, A1,=0uH, 1,+2Sk0,;
ground-state energy that may be represented in the following
general form: Co=3(SMy+Rg), Dy=3(SMy—Ry); (A23)
AE=3uiCirpict Dipti - X12= —guH 120127 SQ( COL 01+ @2);
It is easy to show that Eq§A9) coincide with the conditions
S
JAE Ciy.=—Dy ==Mycoq o1~ @,).
W:Cikﬂk"'Di:O- (A20) ko o270 v
i

It may be shown that as above from the conditioh&2)

As a result we have from Eq$§A5) one obtainsh, ,— 0 and we get
1,2~

Dipmi  SNguHjdouo

AE= = (A21) guH 12
2 2 1= = o1=— 251 (A24)

and using Egs(39), (A4), and (A19) for the ground-state . ) . )
energy we obtain Eq87) in Sec. VIL. This point will be discussed below.

These results are based on the linear approximégjgn For the solution of eight equations fqr, and pp We
=i(Sl2)Y4ag —ay) and are valid ifuo<1. Meanwhile for ~ define a vector
the field along thd1,1,0] direction close to the spin-flop N [ _
transition whenr=(guH/Ay)—1 we have u=r?/[2(1 Moo= (M1 p oMo Mg MM M2 g )= (),
—r%¥2] and w=r?/[6(1—r)'] for the rotation anglep (A25)

determined by Eqg89) and(92), respectively, and the linear B —
approximation fails. In this case the noniinear term in theV1€T€41= to1, #1= i1, €IC. Here and below the bar de-
expression forS,, becomes important. This term follows Notes states wittk+ko. In Egs.(A22) the K terms mix u
from Egs.(12) and after substitutiofA8) S, acquires a andu and we may write
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o 2l o515
0, 7z \k, o) \u/ lu) (A26)
where
2:11_181!C01_D0 gla El,E,E
7_ _,BI,EL_DWCO = ﬁ;;zlyEyE )
CO!_D()’EZY_BZ , 6161521_E2 ,
_D01CO=_B£r 12:2 6161_?2152
K (Rl’ ° (Klz 0 (A27)
o k)T Mo Ky

U=(X1,X1,X2,X3)

and from Eq.(A24) it follows that U=0. As a result we
obtain

(Z-KZ *K)u=U,
o (A28)
u=Z"Ku.

Using the above-mentioned approximation we have

e

(A29)
where €?=A2 and A2, is given by Eq.(61). By these
expressions we reduce our problem to the solution of fou

linear equations that may be easily done and we get

0 _El,Z

21,2

51,2!

Tt
~Bia

zt
0

-1_

4 1

— 1‘2 ::2
Z, €

to1={X1[(E1+B1)(E5—B;B; ) —(Co+Do)’E,
+(Co+Dg)(CoB,+DgB3 )]
+X,[Do(E,E,+E B, +E,B;+B;B,)
—Co(B{Es+ BlBg +EB,+E E))
+(Co—Do)(C3—DY T} Y, (A30)

Where Elyzzz‘o]ﬂz— Kizgl'zl?, Bl,2: B01'2+ Kizﬁlvzl?
and similar expression fdB;,. The determinant! is given
by
d=(Ef—B1B{)(E3~B;B;)—(Co—Do)”
— C3(2E,E,+B;B; +B;B))
—D2(2E,E,+B,B,+B;B;)
+2CoDo[E1(B,+B,)+Ey(B;+B])]. (A31)

The expression fo;u&l follows from Eg. (A30) if one re-
placesB; , with By, and vice versa.

ERACTION AND . .. 1101

po1= to1=2S H{Xi[ A, ,+2SHRo— (guH 2]
—2SHRoXH[ A 1+2SHRo— (guH | 1)?]

X[AZ ,+2SHRo— (guH| )21~ (2SHRp)? 2,
(A32)

whereAﬁLl’2 are determined by Egq$A14),(A24) and simi-
lar expression fog o= g ,-

In the same way as above using E(s5),(A8) and con-
ditions A; ,=0 we get

NS —
AE=— 70(1#0,1+ Xat02)(2Sk) 1 (A33)

and Eq.(85) in Sec. VII immediately follows from Egs.
(A32) and(A33).

We justify now Eqs(A24). In our approximation parts of
wandut that depend on the interaction between subsystems
are independent on the small difference betwgesnd 8*.
Meanwhile,u andu™® have terms proportional td; , as in
Eq. (A17) and condition(A12) may be fulfilled if A; ,=0
only.

It should be noted that Eq$A32) and (A33) as well as
the expressior85) for the ground-state energy are valid for
o12<1 only. If ug; =1 one has to extract condensate con-
tribution from the interaction energi4) as in the case of
the Bose ga¥-*2and lower-order terms. Then the condensate
amplitudesuo, » should be determined self-consistently. The
§econd-order terms give rise to an additional contribution to
the parameters, ,, B8;,, and Bf,z of the effective Hamil-
tonian and the gaps acquire corrections proportionalg’g}z.
However, detailed investigation of this problem is beyond
the scope of this paper. We comment only on two cases
considered in the main textt) H|[[1,1,0] and (i) H|a. In
the former case we have cgsf ¢,)=0 and the problem is
the same as for two noninteracting systems of plaises

above and Sec. V) ForH along thea axis below the spin-
flop transition we haveuq; ,=0. However, in the flopped
state cosg;+¢,)==*1 and

po12= +2SHQu [A5+(guH)? "L (A34)

Taken into account Eq93) for the flop field we obtain
|mo14>1 near the transition, and the theory should be re-
vised as it stated above. In particuldr, in Eq. (102 does
not have to coincide with the in-plane gaptat0.

APPENDIX B: GREEN'S FUNCTIONS IN MAGNETIC
FIELD

As pointed in Sec. lll the interaction between subsystems Here we evaluate expressions for the Green’s functions in

is very weak andC and D terms should be retained if they
are multiplied by the large fact@®J, only. As a result, from
Egs.(A30),(A31) we obtain final expressions in the form

magnetic field using the non-Hermitian Hamiltoniéfe),
which takes into account the interaction between spin waves.
From Egs.(27), (A5), and(A6) we get
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(w—&)G11— B1F 11— CGy—DF 31+ K;,Gyp=1, —, m*, 0
m™ = — | (B7)
+ Z + + =+ 0, m,
B1 Gt (w+§)F 1+ DG+ CFy— K Fp=0,
B where
—CGy;—DF 1+ (00— &) Go1— BaF 2+ KyG2=0, = —
— 1 [o+é&2 B B8
~ — m, ,=——— _ =
DGyy+ CFyi+ B; Gort (w+ &) F 51— KoF =0, L2 g2 —Bi, w—E1p

s (B1) _

K1Git+ (@—&1)Gi— B1F;;— CGyp— DF4,=0, and €2= €3 ,= A o+ S?(Jo— J) whereA3 .. is given by
) Eqg. (61). As a result we obtain the following equation:

—KiFi1+ B Gut (w+&)F 13+ DGy + CF5=0,

ml_RlaIlRl, I_
KoGay— COyy— DF i+ (0 £n)Gor BoF him T
2621 1 1ut (0=§)Gy— B2F =0, L, m,—K,m, 'K,
_ K2E2+1+ ﬁlﬁ ﬁfﬁﬁg 521+ (0+ 52)52%0, This system of four equations may be solved directly and in

the approximation used abojsee text before EQA32)] we
where as above 1 and 2 label the subsystems and:the baave

denotes substitution of onke by k+Kky. For example,é;

= E1kerkp ANAG21= Gorgri k- (311:%[(‘0‘"51)(0’2_ ) —Ki(w—£1)],
Due to the non-Hermiticity of the HamiltoniafA6) for
calculation of final physical results we need also the solution q
of the, system conjugated to' Eq¢BLl). Corresp_ondlng Fi=— —2[,[3{((1)2— ) — K%ﬁf], (B10)
Green’s functions may be obtained from the solution of Eg. z
(B1) by the replacemenb— —w, B—B*, andB* — 8.
Equations(B1) may be solved in the same way @22)
if one takes into account that onky terms in the left-hand Ga1=
side mix functions with and without the bar. As a result Egs.
(B1) may be rewritten as follows: where we sefl,=J, where

2

7 (2= &+ KD (0?— +K3)(SH*(C-D),

+_
—Fa=

m, K\(gy.012) (1. O - dy(0)=(w?— €3)(w?— €?) — K3(2w?+ €3+ €2) + K3
K, m/\ 021,92 1o, o) (B2 (B11)
where is the determinant of the matrim,—K,m, *K, multiplied
N by (w?—€?), fizz 5%,2_ 1,281, and
my, L Ky, O lo, O )
L I TS O Z(0)=dy(@)dy(@)—[2S3(C—D)]
’ ’ 2 ! — —
(B3) X (w?— +K3)(w?—e*+K3).  (B12)
and

Obviously the equatioiZ(w)=0 determines the spin-wave
w—7 _y ¢ -D spectrum along the direction atH#0, which has now four
My = L2 12 :( ' ) branches. However, taking into account that in real systems
’ AZ,>K3,, €, we may strongly simplify these expressions.
Neglecting small splitting of two modes with=A2 , we

- Kio, 0 1, O obtain
Ki= 0 —Ky,)’ lo= 0 ol (B4)

N -
Bio o+,

Sh(w?— e3+K3)

From Eq.(B2 Gu=—F= :
rom Eq.(B2) we get 1 U 02— @) (wi- &)
(M—Km~*K)gy=1. (B5) (B13)
_ - G —Ft e 2(SH)*C-D)

The corresponding equation fgg, has the form 21— a1 (w?— 63)(0’2_ )’

(m—Km~K)g,=1. (B6)  where
Taking now into account thafjuH<SJ, we have to cal- £ =He2+e5—KI-K3
culate matrix elements ofnf~ 1), and (M~ 1);,, neglecting 2 2 22 ) 9112
in numerators terms that are proportional to interplane cou- *[(e1— - Ki+ K3 +168S L) (C—D)“]".

pling C(C) andD(D). As a result we get (B14)
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In particular, for the field along thEgl,1,q] direction e,

PSEUDODIPOLAR INTERACTION AND . ..
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where

ande_ coincide with optical and acoustic branches given by

Egs. (60) with A3 replaced byA3cos 4p. We must remind
that these results are valid fh_g’b< mla only.

We need also the functior® and F which are solutions
of Eq. (B6). In this case we have

-1
dle( ml 0 )
ml=—2* — .1, (B15)
d 0 m, 1
whered, ,= w?— €%, and
d=d;d,—[2SJ(C—D)]? (B16)
and Eq.(B6) may be represented as follows:
—  did,e - _
ml_ 1T2Klm]TlK1’ L
911=1.
_ —  did,e ~
L, m,— %szgle
(B17)
Solution of this equation is given by
— — S
Gyi= F1+1=—J°(d+d1|<§),
Z;
_ (B19)
G21= F2+1:0:

Z1 = (0®— A5, 0d— A, KTy, (B19)

Using the same approximations as above we obtain the final
expression in the form

Sb

2 A2
0 = AGy

Gu=F;= , (B20)

which holds fork= (kg ,k.).

The spin-wave spectrum in magnetic field is determined
by the conditiorZ(w) =0 whereZ(w) is given by Eq(B12)
andZ(0) is a product of squared spin-wave frequencies and
should be positive. For this value we have

2(0)=(2~K3)(2~K3)
X[(e5-K(e5—K3)—(2SHRY?]. (B2D)

Here atk=0 the expression in the square brackets coincides
with the denominator of the second term in E85). Experi-
mentally the out-of-plane gap is much larger than the in-
plane one and we conclude that the positiveness of the
square brackets is the necessary condition of the stability of
the system, which has been used in derivation of (E§).
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